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Chapter 1

Introduction

This thesis explores certain topological results on quotients of Stiefel manifolds. The perspective

behind these results are cohomology calculations which in turn lead to geometric consequences.

The quotients of Stiefel manifolds form a nice collection of homogeneous spaces which are

amenable to computational techniques. We consider

Vn,k = real Stiefel manifold of k-orthonormal vectors in Rn ∼= O(n)/O(n− k),

Wn,k = complex Stiefel manifold of k-orthonormal vectors in Cn ∼= U(n)/U(n− k).

These manifolds are ubiquitous in the literature, and many of their features have been extensively

studied.

The Stiefel manifolds have an action by the orthogonal group O(k) in the real case, and

U(k) in the complex case, whose quotients are the Grassmann manifolds. This is in a sense the

quotient of a Lie group by a parabolic subgroup. One may instead take the quotient by a Borel

subgroup and end up with flag manifolds. These manifolds are also widely studied in topology

and algebraic geometry.

A different viewpoint is provided when we consider actions by cyclic subgroups of the or-

thogonal group. As an example, one has the action of S1 on Wn,k by diagonal matrices in

U(k). The quotient space is called the projective Stiefel manifold PWn,k. The real version of

this is the quotient PVn,k = Vn,k/C2, where the cyclic group C2 of order 2 acts via ±1. One

may also consider a cyclic group action on Wn,k by mth roots of unity, and call the quotient

Wn,k;m.

The projective Stiefel manifolds have been of interest in connection with a varied spectrum

of topological questions. On one hand, they are useful in studying equivariant maps between

the Stiefel manifolds [33], and on the other, they form a part of an obstruction theory for

1



2 Chapter 1. Introduction

constructing sections of multiples of a given line bundle [6]. In the real case, they play an

important role in the immersion problem for real projective spaces [37].

1.1 BP -cohomology of complex projective Stiefel manifolds

The cohomology of PWn,k with Z/p-coefficients was computed in [6], which is analogous to

the Z/2-computation for real projective Stiefel manifolds in [19]. Among other applications,

this has been used to prove the non-existence of S1-equivariant maps between complex Stiefel

manifolds [33].

A natural idea here is that extending the computations to generalized cohomology theories

would yield further results about equivariant maps. We follow through along these lines and

compute the BP -cohomology as (Theorem 3.3.7)

Theorem 1.1.1. The BP -cohomology of PWn,k is described as

BP ∗(PWn,k) ∼= ΛBP ∗(pt)(γn−k+2, · · · , γn)⊗BP ∗(pt) BP
∗(pt)[[x]]/I

where γj ’s are of degree 2j−1, x is of degree 2, and I is the ideal generated by {
(
n
j

)
xj |n−k <

j ≤ n}.

The method used to compute the BP -cohomology is the homotopy fixed point spectral

sequence. This works for any complex oriented cohomology theory, where the class x comes

from the choice of complex orientation. Consequently, the K-theory of the complex projective

Stiefel manifold has an analogous formula, which was computed in [20] using the Hodgkin

spectral sequence for the cohomology of homogeneous spaces. The same method is also likely to

work for PℓWn,k, the quotient by a variant of the S1-action, whose cohomology was computed

in [12]. Here, ℓ refers to a tuple of integers (l1, · · · , lk) and the action of S1 is given by

z · (v1, · · · , vk) = (zl1v1, · · · , zlkvk).

We observe that the BP -cohomology ring of PWn,k is just the extension of coefficients

from Z(p) in ordinary cohomology to Z(p)[v1, v2, · · · ] in BP -cohomology. Therefore, the pri-

mary multiplicative structure does not yield new results for equivariant maps between Stiefel

manifolds. However, BP has the action of Adams operations [5], which yield the following new

result on equivariant maps. (see Theorem 3.4.8)

Theorem 1.1.2. Suppose that m,n, l, k are positive integers satisfying

1) n− k < m− l and there is an s such that m < 2s +m− l ≤ n.

2) 2 divides all the binomial coefficients
(

n
n−k+1

)
, · · · ,

(
n

m−l
)
.
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3) 2 does not divide
(

m
m−l+1

)
and 2 ∤ m− l.

Then, there is no S1-equivariant map from Wn,k to Wm,l.

We also obtain some new results using the action of Steenrod operations on H∗PWn,k.

We point out that the analysis of equivariant maps on Stiefel manifolds also leads to results in

topological combinatorics [11].

1.2 p-local decompositions of projective Stiefel manifolds

We explore homotopical results about the quotients of the Stiefel manifolds after localization at

primes. The cohomology of the Stiefel manifold is an exterior algebra, so a natural question is

how much homotopically alike it is to a product of spheres. If it is so, the fibrationWn,k → S2n−1

must have a section S2n−1 →Wn,k, the existence of which has a precise answer [4], [7]. On the

other hand, one may try to write down conditions under which Wn,k is p-regular, that is, when

does its p-localization become equivalent to a product of spheres? This has been studied by

Yamaguchi [39]. His results imply that if p > n, Wn,k is p-regular. We consider the analogous

question for the quotient PWn,k.

The cohomology of PWn,k matches that of CPn−k×
∏n
j=n−k+2 S

2j−1 if p > n. We explore

whether, after localization at p, the two spaces are homotopy equivalent. Elementary arguments

imply that if p is more than half the dimension of PWn,k, this result holds. More precisely, (see

Theorem 4.2.7)

Theorem 1.2.1. If p > 2nk−k2−1
2 + k − n,

(
PWn,k

)
(p)
≃

[
CPn−k × S2n−2k+3 × · · · × S2n−1

]
(p)
.

For a significantly better bound on p in the equivalence above, we look at the obstructions

to forming a map from PWn,k to the product CPn−k×
∏n
j=n−k+2 S

2j−1. We see that if p > n,

these obstructions (localized at p) belong to the “stable range”. This leads us to consider the

stable homotopy type of the projective Stiefel manifold, for which we prove the following result

using certain calculations with the Chern character. (see Theorem 4.3.15)

Theorem 1.2.2. If p > n, the projective Stiefel manifold PWn,k stably splits into a wedge of

spheres in the p-local category.

The path to proving the theorem above goes via a homotopy theoretic result which says that

for a CW-complex of dimension ≤ 2p2−2p, if p-local cohomology is torsion-free, and the Chern

character takes values in Z(p), the space stably splits into a wedge of spheres in the p-local
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category (see Theorem 4.3.7). The stable splitting of the projective Stiefel manifold allows us

to construct stable maps to the desired space. The obstruction theory to lift this to the unstable

category involves another intricate argument with the Chern character that introduces a new

bound on k for which the p-local decomposition result holds. (see Theorem 4.4.3)

Theorem 1.2.3. Suppose p > n+ 1 and k ≤ p+ n−
√
p2 + n2 − 4p+ 2. Then,

(
PWn,k

)
(p)
≃

[
CPn−k × S2n−2k+3 × · · · × S2n−1

]
(p)
.

The homotopical decomposition results for PWn,k imply that with the bound above, the

p-regularity result for the Stiefel manifold is indeed S1-equivariant (see Theorem 4.4.4). The

techniques also imply decomposition results (see Theorem 4.4.5) for the finite cyclic quotients

of Stiefel manifolds Wn,k;m, and that of PℓWn,k for ℓ = (l1, · · · , lk), li ∈ Z, which is Wn,k/S
1

with the action on the ith vector by zli .

1.3 Characteristic classes for quotients of Stiefel manifolds

The Stiefel manifolds are parallelizable except for the spheres. For the quotients of Stiefel

manifolds one has a nice approach towards calculation of their tangent bundle [27]. There is

also a direct method to compute their cohomology via the Serre spectral sequence [19],[6]. This

allows us to calculate explicitly characteristic classes for these manifolds, such as the Stiefel-

Whitney classes, or the Pontrjagin classes. These computations may then be used to deduce

non-embedding and non-immersion results into Euclidean spaces. Further, we may explore the

question whether these manifolds are parallelizable, and obtain bounds on the number of linearly

independent vector fields. Partial answers to these questions are provided in [35].

One may also consider skew embeddings of these manifolds, that is, embeddings in which

the affine spaces corresponding to the tangent spaces in the embedding are skew. This is related

to an embedding of the tangent bundle of the ordered configuration space. Bounds on such

embeddings are also related to Stiefel-Whitney classes in [8]. This allows us to compute bounds

on skew embeddings of PVn,k (5.1.2).

Recently in [26], in an attempt to compute the cohomology of the oriented Grassmannian,

the authors considered the question of representing cohomology classes via Stiefel-Whitney

classes of bundles. More precisely, they consider the subalgebra of H∗(X;Z2) generated by

Stiefel-Whitney classes of vector bundles. The question posed for a space X is the highest

degree d such that every class of degree ≤ d lies in this subalgebra. Such a d is called the
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ucharrank(X). This was computed for the Stiefel manifolds in [25]. We compute the same for

PVn,k in a significant number of cases (5.1.4).

We also consider the diagonal inclusion of S1 inside a maximal torus of O(k), and quotient

the Stiefel manifold with the associated action. This is the space Yn,k = Vn,2k/S
1 with the

action via S1 ∼= SO(2) included in O(2k) as blocks. The manifolds Yn,k are called circle quotient

Stiefel manifolds. We compute it’s tangent bundle (5.2.1), and show that it is not parallelizable

if n−2k ≥ 3 (5.3.1). Further, we compute it’s cohomology (5.2.3), skew embedding dimension

(5.3.3), and upper characteristic rank (5.3.4).

1.4 Organization

In Chapter 2, we recall methods to compute the cohomology of certain quotients of Stiefel

manifolds, via the Serre spectral sequence. In Chapter 3, we produce the calculation of BP -

cohomology for the complex projective Stiefel manifolds and explore the applications for such

a computation. In Chapter 4, we discuss product splittings of projective Stiefel manifolds and

similar quotients after localization at a prime. In chapter 5, we discuss certain characteristic

class computations for these quotients of Stiefel manifolds.





Chapter 2

Cohomology of certain quotients of

Stiefel manifolds

In this chapter, we recall well known computations for the cohomology of Stiefel manifolds and

certain quotients of them. The main technique used is the Serre spectral sequence. All the

spaces considered are homogeneous, so any such G/H fits into a fibration G/H → BH → BG.

The associated Serre spectral sequence is then computed to derive the cohomology of G/H

with suitable coefficients.

2.1 Stiefel manifolds and related homogeneous spaces

We begin with the definitions of some homogeneous spaces we are going to deal with.

Definition 2.1.1. � The manifold consisting of all orthonormal k-frames in Cn will be called

the complex Stiefel manifold Wn,k.

� The manifold consisting of all orthonormal k-frames in Rn will be called the real Stiefel

manifold Vn,k.

Wn,k can be realized as the orbit space U(n)/U(n−k) and Vn,k can be realized as the orbit

space O(n)/O(n−k). If n > k, Vn,k can also be realized as the orbit space SO(n)/SO(n−k).

Hence we have the following fibrations:

� Wn,k −→ BU(n) −→ BU(n− k)

� Vn,k −→ BO(n) −→ BO(n− k)

� Vn,k −→ BSO(n) −→ BSO(n− k), for n > k.

7



8 Chapter 2. Cohomology of certain quotients of Stiefel manifolds

Definition 2.1.2. � A complex projective Stiefel manifold PWn,k is defined to be the

orbit space of the free S1-action on Wn,k described as follows:

z · (w1, · · · , wk) = (zw1, · · · , zwk).

� A real projective Stiefel manifold PVn,k is defined to be the orbit space of the free

C2-action on Vn,k described as follows:

−1 · (v1, · · · , vk) = (−v1, · · · ,−vk).

There is a canonical complex (resp. real) line bundle ζn,k over PWn,k (resp. PVn,k)

associated to the principal S1 (resp. C2) bundle mentioned in the above definition. We also

have the following fibrations:

� Wn,k −→ PWn,k −→ CP∞

� Vn,k −→ PVn,k −→ RP∞.

The bundles ζn,k over projective Stiefel manifolds (PVn,k or PWn,k) enjoy a certain universal

property. They classify the line bundles (real or complex) with the property that their n-fold

Whitney sum has a (real or complex) rank k trivial subbundle. This leads to the following

pullback diagrams:

�

PVn,k //

��

BO(n− k)

��
RP∞ // BO(n),

(2.1.1)

where the map at the bottom is classifying map of n-fold Whitney sum of canonical real

line bundle. [19]

�

PWn,k
//

��

BU(n− k)

��
CP∞ // BU(n),

(2.1.2)

where the map at the bottom is classifying map of n-fold Whitney sum of canonical

complex line bundle. [6]
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The complex projective Stiefel manifolds can be realized as special cases of a more general class

of manifolds known as generalized complex projective Stiefel manifolds.

Definition 2.1.3. A generalized complex projective Stiefel manifold PℓWn,k is defined to

be the orbit space of the free S1 action on Wn,k described as follows:

z · (w1, · · · , wk) = (zl1w1, · · · , zlkwk),

for a primitive tuple ℓ = (l1, · · · , lk) ∈ Zk.

These generalized complex projective Stiefel manifolds also satisfy a universal property as

described in the following theorem,[12].

Theorem 2.1.4. The space PℓWn,k classifies the line bundles L for which there exists an

(n− k)-bundle E such that E ⊕j Lj is a trivial bundle.

Definition 2.1.5. Anm-projective Stiefel manifoldWn,k;m is defined to be the quotient space

of Wn,k under the free action of the cyclic group of order m, Cm considered as a subgroup of

the circle group.

2.2 The Serre spectral sequence for quotients of Stiefel manifolds

Our aim is now to compute the ordinary cohomology with suitable coefficients of the spaces

described in the previous section. In order to doing so our main computational tool will be the

Serre spectral sequence.

Theorem 2.2.1. For a fibration F −→ E −→ B with the action of π1(B) on H∗(F ) being triv-

ial, there is an associated multiplicative spectral sequence called the Serre spectral sequence

converging to H∗(E), whose E2-page is given as follows:

Ep,q2 = Hp(B;Hq(F )) =⇒ Hp+q(E).

In most of the cases the space B turns out to be simply connected and hence we won’t

have to bother with the condition of triviality of the action of π1(B) on H∗(F ).

We shall consider appropriate fibrations involving the homogeneous spaces of our interest

and calculate differentials of the associated Serre spectral sequences. The general pattern of

our cases is as follows: G be a subgroup of U(k) (resp. O(k)). Then we consider the free

action of G on Wn,k (resp. Vn,k) as restriction the free action of U(k) (resp. O(k)). Orbit

space under the free action of U(k) (resp. O(k)) is the Grassmann manifold Grk(Cn) (resp.
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Grk(Rn)). The homogeneous space we are interested in are Wn,k/G (resp. Vn,k/G). Hence

we may consider the following comparisons of fibrations:

Wn,k

��

Wn,k

��

Vn,k

��

Vn,k

��

Vn,k

��

Vn,k

��

Wn,k/G //

��

Gk(Cn)

��

Vn,k/G //

��

Gk(Rn)

��

Vn,k/G //

��

G̃k(Rn)

��
BG // BU(k) BG // BO(k) BG // BSO(k).

(2.2.1)

Now our job is to calculate the Serre spectral sequence associated to the fibration on left of

each diagram by doing so for the fibrations on right and then comparing spectral sequences. But

for that we need the knowledge of the cohomology of Wn,k (resp. Vn,k) and Borel’s theorem

stated below provides us that [14]. Recall that

� H∗(BU(n);Z) ∼= Z[c1, · · · , cn], where ci’s are universal Chern classes.

� H∗(BO(n);Z2) ∼= Z2[w1, · · · , wn], where wi’s are universal Stiefel Whitney classes.

� H∗(BSO(n);Zp) ∼=


Zp[p1, · · · , pn−1

2
] if n is odd

Zp[p1, · · · , pn−2
2
, en] if n is even,

where pi’s are mod p reduction of Pontrjagin classes and en is the Euler class.

Theorem 2.2.2. � H∗(Wn,k;Z) = ΛZ(zn−k+1, · · · , zn), with deg(zi) = 2i−1 and zi’s are

characterized by the property that in the Serre spectral sequence associated to

Wn,k −→ BU(n− k) −→ BU(n)

they are transgressive and transgress to ci’s, the universal Chern classes.

� H∗(Vn,k;Z2) = VZ2(ωn−k, · · · , ωn−1), with deg(ωi) = i and ωi’s are characterized by

the property that in the Serre spectral sequence associated to

Vn,k −→ BO(n− k) −→ BO(n)

they are transgressive and transgress to wi+1’s, the universal Stiefel-Whitney classes.
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�

H∗(Vn,k;Zp) ∼=



Λ(xn−k+2
2

, · · · , xn−1
2
, σn−k) if k is odd, n is odd

Λ(xn−k+1
2

, · · · , xn−1
2
) if k is even, n is odd

Λ(xn−k+1
2

, · · · , xn−2
2
, ϵn) if k is odd, n is even

Λ(xn−k+2
2

, · · · , xn−2
2
, σn−k, ϵn) if k is even, n is even

(2.2.3)

where deg(xi) = 4i− 1, deg(σj) = j, deg(ϵn) = n− 1.

Now calculation of the Serre spectral sequences associated the fibrations on right of (2.2.1)

is done via the following commutative diagrams of fibrations

U(n) //

��

Wn,k

��

O(n) //

��

Vn,k

��
Gk(Cn)

��

Gk(Cn)

��

Gk(Rn)

��

Gk(Rn)

��
B(U(k)× U(n− k)) // BU(k) B(O(k)×O(n− k)) // BO(k)

SO(n) //

��

Vn,k

��

G̃k(Rn)

��

G̃k(Rn)

��
B(SO(k)× SO(n− k)) // BSO(k).

(2.2.2)

The top rows of these diagrams above are given by the quotient maps, and the bottom rows

by the projections onto first factors. Then for complex case computation of the differentials of

spectral sequence associated to the right column in (2.2.2) was done in [12] and as a consequence

the following theorem was obtained.

Proposition 2.2.4. The cohomology ringH∗(Wn,k;Z) is the exterior algebra Λ(zn−k+1, · · · , zn),

with |zj | = 2j − 1. For the spectral sequence associated to Wn,k → Gk(Cn) → BU(k),

the classes zj are transgressive with d2j(zj) = −c′j , where c′j are defined by the equation

(1 + c′1 + · · · )(1 + c1 + · · ·+ ck) = 1.

Similar arguments work for the real case and the following analogous results are obtained

in [11].
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Proposition 2.2.5. With Z2-coefficients, the cohomology ringH∗(Vn,k) has a basis given by the

square-free monomials in ωn−k, · · · , ωn−1, with |ωj | = j. For the spectral sequence associated

to Vn,k → Gk(Rn)→ BO(k), the classes ωj are transgressive with dj(ωj) = −w′
j+1, where w

′
j

are defined by the equation (1 + w′
1 + · · · )(1 + w1 + · · ·+ wk) = 1.

Proposition 2.2.6. Assume that k is odd. With Zp-coefficient ( p > 2 ) in the spectral sequence

associated to Vn,k → G̃rk(Rn)→ BSO(k), the classes xi are transgressive and d4i(xi) = −p′i
where p′i are defined by the equation (1+ p′1+ · · · )(1+ p1+ · · · pk) = 1. The classes σn−k (for

n odd) and ϵn (for n even) (2.2.3) are permanent cycles.

2.3 Cohomology of projective Stiefel manifolds

Cohomology of projective Stiefel manifolds with various coefficients are calculated by Comparing

spectral sequences associated to the columns of the pullback diagrams in (2.1.1) and (2.1.2).

2.3.1 Real projective Stiefel manifolds

In the real case the map in the bottom row of (2.1.1) is the classifying map of k-fold Whitney

sum of canonical real line bundle and hence it pulls back wi to
(
n
i

)
xi. Comparing spectral

sequences associated to the columns of (2.1.1) the following theorem was obtained in [19].

Theorem 2.3.1. Suppose k < n. Let N = min{j | n− k + 1 ⩽ j ⩽ n and
(
n
j

)
is odd}. Then

H∗(PVn,k;Z2) = Z2[x]/(x
N )⊗ V (A) additively, where deg(x) = 1 and V (A) is a Z2-algebra

with simple system of generators {yn−k, · · · , yN−2, yN · · · , yn−1} and deg(yi) = i. That is,

V (A) has a basis given by the square-free monomials in {yn−k, · · · , yN−2, yN · · · , yn−1}.

Also note that, whenever 2 is invertible in the coefficient ring R, H∗(RP∞;R) = R and

hence H∗(PVn,k;R) = H∗(Vn,k;R).

2.3.2 Complex projective Stiefel manifolds

By an entirely similar method used for real projective Stiefel manifolds, the Zp-cohomology of

complex projective Stiefel manifolds was determined in [6].

Theorem 2.3.2. Let p > 2 be prime and N = min{j | n− k + 1 ⩽ j ⩽ n and p ∤
(
n
j

)
} There

exist classes yj ∈ H2j−1(PWn,k;Zp) for n− k < j ⩽ n such that

H∗(PWn,k;Zp) = Zp[x]/(xN )⊗ Λ(yn−k+1, · · · , ŷN , · · · , yn),

and deg(x) = 2.
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Theorem 2.3.3. Let N = min{j | n − k + 1 ⩽ j ⩽ n and
(
n
j

)
is odd}. There exist classes

yj ∈ H2j−1(PWn,k;Z2) for n− k < j ⩽ n and x ∈ H2(PWn,k;Z2) such that

� If n ̸≡ 2 (mod 4) or k < n, then

H∗(PWn,k;Z2) = Z2[x]/(x
N )⊗ Λ(yn−k+1, · · · , ŷN , · · · , yn).

� If n ≡ 2 (mod 4) and k = n, then

H∗(PWn,k;Z2) = Z2[y1]/(y
4
1)⊗ Λ(y3, · · · , yn)

and x = y21.

Computation of rational cohomology for complex projective Stiefel manifolds is done by

computing the transgressions in the spectral sequence associated to Wn,k −→ PWn,k −→

CP∞. The algebra generators of H∗(Wn,k), yj ’s transgress to
(
n
j

)
xj . So 1

( n
k−1)

yn−k+1 kills

xn−k+1 on 2(n− k + 1)-th page and one obtains the following:

Theorem 2.3.4. The rational cohomology of PWn,k is

H∗(PWn,k;Q) = Q[x]/(xn−k+1)⊗ ΛQ(yn−k+2, · · · , yn),

where deg(yj) = 2j − 1 and deg(x) = 2.

Calculation of Z(p)-cohomology of PWn,k requires little extra care.

Theorem 2.3.5. The Z(p)-cohomology of PWn,k is

H∗(PWn,k;Z(p)) = Z(p)[x]/I ⊗ ΛZ(p)
(γn−k+2, · · · , γn),

where I is the ideal of Z(p)[x] generated by the set {
(
n
j

)
xj | n − k < j ⩽ n}, deg(γj) =

2j − 1, deg(x) = 2.

Proof. In the spectral sequence associated to Wn,k −→ PWn,k −→ CP∞, the exterior algebra

generators yj ∈ H∗(Wn,k;Z(p)) = ΛZ(p)
(yn−k+1, · · · , yn) transgress to

(
n
j

)
xj ∈ H∗(CP∞) =

Z(p)[x]. We see that the first non-trivial differential is d2(n−k+1) and the generator yn−k+1 and

all its multiples do not survive in the next page since

d2(n−k+1)(yn−k+1) =

(
n

n− k + 1

)
xn−k+1.
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For the yj of higher degree, it may happen that the only non-trivial differential on it

d2jyj =

(
n

j

)
xj

may be zero. This precisely happens when
(
n
j

)
lies in the ideal generated by

(
n
i

)
for n−k+1 ≤

i < j inside Z(p). This condition may be interpreted in terms of p-adic valuations of these

numbers. For j > n − k + 1, even if d2j(yj) ̸= 0, we still obtain a multiple psyj on which

the differential is 0, determined by the formula s + vp(
(
n
j

)
) = minn−k+1≤i<j vp(

(
n
i

)
). So for

j > n−k+1, even if yj doesn’t survive in the E2j+1 page, some p-power multiple of it would and

that multiple becomes a permanent cycle detecting an element γj ∈ H2j−1(PWn,k;Z(p)).

2.4 Cohomology of other quotients of Stiefel manifolds

2.4.1 Generalized complex projective Stiefel manifolds

The cohomology of PℓWn,k with Zp-coefficients was computed in [12] by the method described

in the last section. One calculates the differentials in the Serre spectral sequence associated

to the fibration Wn,k −→ PℓWn,k −→ CP∞. It turns out that the exterior algebra generators

zj ’s of H
∗(Wn,k;Z(p)) are transgressive and d2j(zj) =

∑
|I|=j(−1)jlIxj , where ℓI :=

∏
ℓ
ij
j for

ℓ = (ℓ1, · · · , ℓk) and I = (i1, · · · , ik).

Theorem 2.4.1. For an odd prime p,

H∗(PℓWn,k;Zp) ∼= Zp[x]/(xN )⊗ Λ(yn−k+1, · · · , ŷN , · · · , yn),

where N = min{j | j > n− k and
∑

|I|=j ℓ
I ̸≡ 0 (mod p)}.

The similar calculation for PWn,k with Z(p)-coefficients yields the formula

H∗(PℓWn,k;Z(p)) ∼= ΛZ(p)
(γn−k+2, · · · , γn)⊗ Z(p)[x]/J,

where |γj | = 2j−1, |x| = 2 and J is the ideal of Z(p)[x] generated by the set {
∑

|I|=j(−1)jlIxj |

n − k < j ≤ n}. Note that for a prime p not dividing
∑

|I|=n−k+1 l
I , we have the following

reduction

H∗(PℓWn,k;Z(p)) ∼= ΛZ(p)
(γn−k+2, · · · , γn)⊗ Z(p)[x]/(x

n−k+1), (2.4.2)

which is exactly same as rational cohomology except the coefficients are now replaced by Q.



2.4. Cohomology of other quotients of Stiefel manifolds 15

2.4.2 m-projective Stiefel manifolds

The cohomology calculation of Wn,k;m is done by considering the fibration S1 −→Wn,k;m −→

PWn,k and the associated complex line bundle is shown to be ζmn,k [21]. Its Zp-cohomology was

computed in [21]. In the associated Serre spectral sequence the cohomology generator of S1

transgresses to mx, where x is the Euler class of ζn,k and d2 is the only non-trivial differential.

Theorem 2.4.3. Suppose that 2 ⩽ k < n, m ⩾ 2 and N = min{j | p ∤
(
n
j

)
and n − k + 1 ⩽

j ⩽ n},

� If p ∤ m, H∗(Wn,k;m;Zp) ∼= ΛZp(xn−k+1, · · · , xn), where |xi| = 2i− 1.

� If p | m and p is odd, H∗(Wn,k;m;Zp) ∼= Zp[x]/(xN )⊗ΛZp(x1, xn−k+1, · · · , x̂N , · · · , xn),

where |x| = 2, |xi| = 2i− 1.

� 1. If 4 | m−2, thenH∗(Wn,k;m;Z2) ∼= Z2[x1]/(x
2N
1 )⊗ΛZp(x1, xn−k+1, · · · , x̂N , · · · , xn),

where |xi| = 2i− 1.

2. If 4 | m, then H∗(Wn,k;m;Z2) ∼= Z2[x]/(x
N ) ⊗ ΛZ2(x1, xn−k+1, · · · , x̂N , · · · , xn),

where |x| = 2, |xi| = 2i− 1.

Following the same method, the cohomology with Z(p) coefficients (for p | m) may be

computed. For p > n, the formula takes the following form

H∗(Wn,k;m;Z(p)) ∼= (ΛZ(p)
(γn−k+1, γn−k+2, · · · , γn)⊗ Z(p)[x])/(mx, x

n−k+1, γn−k+1x),

(2.4.4)

where |γj | = 2j − 1, and |x| = 2. Again we compute the Serre spectral sequence associated

to the fibration S1 −→ Wn,k;m −→ PWn,k and the only non-trivial differential d2 sends the

degree 1 class e generating H∗(S1;Z(p)) to mx. Note that the class e ⊗ xn−k survives in the

E∞-page detecting the degree 2n− 2k + 1 class γn−k+1.





Chapter 3

BP -cohomology of the projective

Stiefel manifolds

In this chapter, we compute the BP -cohomology of the complex projective Stiefel manifold

PWn,k using the homotopy fixed point spectral sequence. Following this computation we discuss

applications to equivariant maps between complex Stiefel manifolds. Most of the arguments

carry over to any complex oriented cohomology theory. The same method is also likely to

work for PℓWn,k, the quotient by a variant of the S1-action, whose cohomology was computed

in [12]. Here, ℓ refers to a tuple of integers (l1, · · · , lk) and the action of S1 is given by

z · (v1, · · · , vk) = (zl1v1, · · · , zlkvk).

We observe that the BP -cohomology ring of PWn,k is just the extension of coefficients

from Z(p) in ordinary cohomology to Z(p)[v1, v2, · · · ] in BP -cohomology. Therefore, the pri-

mary multiplicative structure does not yield new results for equivariant maps between Stiefel

manifolds. However, BP has the action of Adams operations [5], which yields new results on

equivariant maps. (see Theorem 3.4.8)

We also obtain some new results using the action of Steenrod operations on H∗PWn,k.

We point out that the analysis of equivariant maps on Stiefel manifolds also leads to results in

topological combinatorics [11]. The results in this chapter are written up in the paper [9].

3.1 Homotopy fixed point spectral sequence

The purpose of this section is to set up the computational tools for the following sections. The

main idea here is the homotopy fixed point spectral sequence for (naive) G-equivariant spectra:

for a spectrum Z with a G-action, there is a spectral sequence with E2-page H
s(G;πtZ) which

converges to πt−sZ
hG [17] (see also [22]).

17
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The principal example for our paper is when G acts on a function spectrum F (X,E) for a

spectrum E and a basedG-spaceX. Let us make this more precise. Let E be a spectrum so that

the reduced E-cohomology of based spaces is computed as (note here that the cohomological

grading is negative of the usual homotopy grading)

Ẽn(X) ∼= [X,ΣnE] ∼= π−nF (X,E).

Here we use the notation [−,−] for the homotopy classes of maps between spectra. We follow

the construction of function spectra in [28]. If X has a G-action, the function spectrum

F (X,E) is a spectrum with G-action (that is, a G-spectrum indexed over a trivial G-universe).

We write [−,−]Gtr for the equivariant homotopy classes in the category of spectra with G-action,

and FGtr (−,−) for the equivariant function spectrum withG-action. We have the following result

regarding this construction.

Proposition 3.1.1. [28, Ch. XVI, §1, (1.9)] Let X be a based G-space, and E a spectrum.

Then,

πG−nF
G
tr (X,E) ∼= [X,ΣnE]Gtr

∼= [X/G,ΣnE] ∼= Ẽn(X/G).

For a free G-space X, we may apply Proposition 3.1.1 by adding a disjoint base-point. The

homotopy fixed points of a spectrum Z with G-action are ZhG = FGtr (EG+, Z)
G, where EG is

the contractible space with free G-action. We know that for a free G-space X, the projection

X × EG→ X is a G-equivalence. Therefore, we have the following equivalence of spectra.

Proposition 3.1.2. Let X be a free G-space, and E a spectrum. Then

FGtr (X+, E)hG ≃ FGtr (X+, E)G ≃ F (X/G+, E).

In this paper, we apply Corollary 3.1.2 to the case X = Wn,k, the Stiefel manifold of k-

orthogonal vectors in Cn. This action is free and the quotient space is the projective Stiefel

manifold PWn,k.

Corollary 3.1.3. Let E be a spectrum. There is an equivalence of spectra

F (PWn,k+, E) ≃ FS1

tr (Wn,k+, E)hS
1
.

We attempt to understand FS
1

tr (Wn,k+, E)hS
1
via the homotopy fixed point spectral se-

quence. For a spectrum Z with S1-action, we follow the exposition in [15] replacing homology
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with homotopy groups. We have a S1-equivariant filtration of ES1 given by

∅ ⊂ S(C) ⊂ S(C2) ⊂ · · · ⊂ S(Cr) ⊂ S(Cr+1) ⊂ · · · ,

so that

ZhS
1 ≃ lim←−

r

FS
1

tr (S(Cr)+, Z)S
1
.

We index the filtration of ES1 as

E(r)S1 =


S(C

r
2
+1) if r is even

E(r−1)S1 if r is odd,

so that

E(2r)S1/E(2r−1)S1 ≃ S1
+ ∧ S2r, E(2r+1)S1/E(2r)S1 ≃ ∗,

where the action of S1 on S2r is the trivial action. The filtration on the induced tower of

fibrations is written as

ZhS
1

(r) = FS
1

tr (E(r)S1
+, Z)

S1
,

so that

ZhS
1

(r) /Z
hS1

(r−1) ≃


FS

1

tr (S1
+ ∧ Sr, Z)S

1 ≃ Σ−rZ if r is even

∗ if r is odd.

We may now follow [15] to obtain a conditionally convergent spectral sequence [13].

Proposition 3.1.4. Let Z be a homotopy commutative ring spectrum with S1-action. There

is a conditionally convergent multiplicative spectral sequence

Es,t2 = Hs(S1;πt(Z)) =⇒ πt−s(Z
hS1

).

In this expression, the group cohomology H∗(S1;πtZ) of S1 with coefficients in the discrete

group πtZ equals Z[y]⊗ πtZ with |y| = (2, 0).

Example 3.1.5. If Z = E with trivial S1-action, the homotopy fixed point spectrum ZhS
1 ≃

F (BS1
+, E). In this case, the homotopy fixed point spectral sequence becomes

Es,t2 = Hs(CP∞)⊗ πtE =⇒ πt−sF (CP∞
+ , E).
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Making identifications En(CP∞) ∼= π−nF (CP∞
+ , E), we observe that this reduces to the

Atiyah-Hirzebruch spectral sequence for CP∞. If E is complex orientable, the class y becomes

a permanent cycle.

Next we specialize to the case Z = FS
1

tr (X+, E) where X is a free S1-space, and E

is a spectrum. The homotopy groups of FS
1

tr (X+, E) in Proposition 3.1.4 are computed by

forgetting the S1 action, and thus we have,

πtF
S1

tr (X+, E) ∼= πtF (X+, E) ∼= E−t(X).

On the other hand, we apply Corollary 3.1.2 to deduce

πtF
S1

tr (X+, E)hS
1 ∼= πtF

S1

tr (X+, E)S
1 ∼= πtF (X/S

1
+, E) ∼= E−t(X/S1).

We now switch the sign of the t-grading in the spectral sequence of Proposition 3.1.4 to obtain

a conditionally convergent multiplicative spectral sequence

Es,t2 = Hs(S1;Et(X)) ∼= Z[y]⊗ Et(X) =⇒ Es+t(X/S1).

We summarize these facts together in Proposition 3.1.6. For the rest of the section, X is a free

S1-space and E a homotopy commutative ring spectrum.

Proposition 3.1.6. There is a conditionally convergent multiplicative spectral sequence

Es,t2 = Hs(S1;Et(X)) ∼= Z[y]⊗ Et(X) =⇒ Es+t(X/S1).

1) If E is complex orientable, the class y is a permanent cycle.

2) The differential dr changes the grading by (s, t) 7→ (s+ r, t− r + 1).

3) If X, X/S1 are finite CW complexes, and E is complex orientable, the spectral sequence is

strongly convergent.

Proof. The degree of the differentials follow from the construction of the exact couple for the

spectral sequence. We also have the map X+ → S0 which gives a map E → FS
1

tr (X+, E) which

is S1-equivariant. Thus we have a map between the homotopy fixed point spectral sequences

which maps the classes y to one another, and so, 1) follows from the identification in Example

3.1.5.

It remains to prove 3). For this, we show that for k sufficiently large, yk lies in the image

of a differential. It will then follow that for r sufficiently large the classes ym and their π∗E
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multiples are 0 in the Er-page for m ≥ k. Therefore, the Er-page will be concentrated in

the columns between 1 and k, and E∞ = Er by increasing r further if necessary. Hence, the

spectral sequence converges strongly [13, Theorem 7.4].

The space X/S1 being finite dimensional implies that the classifying map X/S1 → BS1 (for

the S1-bundle X → X/S1) factors through a finite skeleton. Hence, we have an equivariant

map X → S(Ck+1) for some k, and thus a map FS
1

tr (S(Ck+1)+, E)→ FS
1

tr (X+, E). As E is

complex orientable,

π∗F
S1

tr (S(Ck+1)+, E) ∼= π∗F (CP k, E) ∼= E−∗(CP k) ∼= π∗E[y]/(yk+1)

for some choice of complex orientation y. Observe that the homotopy fixed point spectral

sequence for the space ES1 as in Example 3.1.5 matches with the Atiyah-Hirzebruch spectral

sequence for CP∞. It follows that the class y represents the complex orientation in the E2-

page. For S(Ck+1) and hence also for X via the equivariant map X → S(Ck+1), the class y

represents a nilpotent class whose k+1-power is 0. Therefore, yk+1 must lie in the image of a

differential, and 3) follows.

Example 3.1.7. Suppose that E = HR for a commutative ring R, the Eilenberg-MacLane

spectrum with π0HR = R. In this case the spectral sequence in Proposition 3.1.6 matches the

Serre spectral sequence (from the E2-page onwards) associated to the fibration

X → X/S1 → CP∞

obtained by identifying the homotopy orbits space XhS1 ≃ X/S1, and the classifying space

BS1 ≃ CP∞. In this case, the spectral sequence is strongly convergent from the corresponding

result for the Serre spectral sequence. Moreover, due to the fact that X/S1 is a finite complex,

the E∞-page vanishes beyond the dimension of X/S1.

Next we provide a method to compute the differentials in the spectral sequence of Proposi-

tion 3.1.6. In the tower of fibrations used to construct the spectral sequence, the spectrum at
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the bottom of the tower is FS
1

tr (S1 ×X+, E)S
1 ≃ F (X+, E).

FS
1

tr (S(Cr)×X+, E)S
1

��
...

FS
1

tr (S(C2)×X+, E)S
1

��

F (X/S1
+, E) ≃ FS1

tr (X+, E)hS
1 //

22eeeeeeeeeeeeeee

77ppppppppppppppppppppppppppppppppp

FS
1

tr (S1 ×X+, E)S
1 ≃ F (X+, E).

Let Q denote the homotopy cofibre of the map X → X/S1. In the category of spectra,

F (Σ−1Q,E) ≃ ΣF (Q,E) is the homotopy cofibre of the map F (X/S1
+, E) → F (X+, E). In

view of the commutative square

F (X/S1
+, E)

≃ // FS
1

tr (ES1 ×X+, E)S
1 //

��

F (X+, E)

FS
1

tr (S(Ck+1)×X+, E)S
1 // F (X+, E),

we obtain coherent maps Pk : ΣF (Q,E)→ΣFS
1

tr (Q(k), E)S
1
, where Q(k) = [S(Ck+1)/S(C)]∧

X+ is the S1-equivariant homotopy cofibre of X ×S(C)→ X ×S(Ck+1). Projecting onto the

first factor gives a map Q(k)→ S(Ck+1)/S(C) which gives a map

F (CP k, E) ≃ FS1

tr (S(Ck+1)/S(C), E)S
1 → FS

1

tr (Q(k), E)S
1
.

Let an element x ∈ En(X) be represented by the map S−n x→ F (X+, E). Our hypothesis

about such an x is a factorization in the following commutative diagram for 0 ≤ k ≤ ∞.

S−n

x

��

y // ΣF (CP k, E)

��

F (X+, E) // ΣFS
1

tr (Q(k), E)S
1
.

(3.1.8)

Before applying this hypothesis we note

Proposition 3.1.9. Suppose that the composite S−n x→ F (X+, E) → ΣFS
1

tr (Q(k), E)S
1
is

null-homotopic. Then, dr(x) = 0 for r ≤ 2k + 1.

Proof. The statement follows from the fact that the composite being null-homotopic implies

that x lifts in the tower of fibrations to FS
1

tr (S(Ck+1)×X+, E)S
1
.
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Example 3.1.10. In the case E = HR, the spectral sequence is the Serre spectral sequence of

the fibration X → X/S1 → CP∞ according to Example 3.1.7. Note that

F (CP k, HR) ≃
∨

1≤i≤k
Σ−2iHR,

so in the diagram (3.1.8) y may be non-trivial only when n is odd, and k ≥ n+1
2 . If n is odd

and (3.1.8) holds for k = n+1
2 , the class x is transgressive, and dn+1(x) is the composite

S−n y→ ΣF (CP
n+1
2 , HR) ≃

∨
1≤i≤n+1

2

Σ−2i+1HR→ Σ−nHR.

We assume now that E is connective, and that (3.1.8) holds for k = ∞. In this case we

have

Proposition 3.1.11. Suppose that (3.1.8) holds for k = ∞ and that E is connective. Then,

dr(x) = 0 if r ≤ n. Further, dn+1(x) = dHn+1(qH(x)), where qH is the map E → Hπ0E, and

dHn+1 is the (n+1)th differential for the spectral sequence of Proposition 3.1.6 for Hπ0E. (Here

we observe that the spectral sequence is one of π0E-modules, so this allows us to interpret the

last statement.)

Proof. We observe that E is connective implies that ΣF (CP k, E) is (−2k+1)-connective (that

is, the homotopy groups are 0 in degree ≤ −2k). Therefore, the composite

S−n y→ ΣF (CP∞, E)→ ΣF (CP k, E)

is trivial for degree reasons if −n ≤ −2k. From the commutative square

S−n

x

��

y // ΣF (CP∞, E) //

��

ΣF (CP k, E)

��

F (X+, E) // ΣF (Q,E)
Pk // ΣFS

1

tr (Q(k), E)S
1
.

we deduce that the composite map from S−n to ΣFS
1

tr (Q(k), E)S
1
along the lower row is trivial.

Hence, from Proposition 3.1.9 we get that dr(x) = 0 if r ≤ n.

Via the map qH : E → Hπ0E, we observe that (3.1.8) also holds for qH(x) when we

replace E by Hπ0E. Therefore, in the associated spectral sequence dHr (qH(x)) = 0 if r ≤ n

and dHn+1(qH(x)) is described in the formula in Example 3.1.10. Also we need only assume n

is odd, as the result is vacuously true in the other case. We fix k = n+1
2 so that n = 2k − 1.
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With this choice of n and k,

π−nΣF (CP k, E) ∼= π0E, π−nΣF (CP k−1, E) = 0.

It follows that the composite of y to ΣF (CP k, E) lifts to yk : S
−n → ΣF (CP k/CP k−1, E).

The differential dn+1(x) may be described as the composite

S−n χ→ FS
1

tr (S(Ck)×X+, E)S
1 → ΣFS

1

tr ([S(Ck+1)/S(Ck)] ∧X+, E)S
1

where χ is a lift of x along the map FS
1

tr (S(Ck)×X+, E)S
1 → F (X+, E). We expand this in

the diagram below

S−n

x

''

χ

��

dn+1(x) // ΣFS1

tr ([S(Ck+1)/S(Ck)] ∧X+, E)S
1

FS1

tr (S(Ck)×X+, E)S
1 //

��

ΣFS1

tr ([S(C∞)/S(Ck)] ∧X+, E)S
1

��

OO

F (X+, E) // ΣFS1

tr (Q,E)S
1

.

Observe that the bottom square is a homotopy pullback square of spectra as the homotopy

fibre of both the vertical maps are FS
1

tr (Q(k − 1), E)S
1
. Therefore, the map χ is determined

from x and the map S−n → ΣFS
1

tr ([S(C∞)/S(Ck)] ∧X+, E)S
1
. This may now be computed

using the lift of y to ΣF (CP∞/CP k−1, E)S
1
as it’s restriction to CP k−1 is 0. We may now

compute dn+1(x) via the following commutative diagram

S−n

χ

��

yk

--
//

dn+1(x)

--[[[[[[[[
[[[[[[[[[

[[[[[[[[[
[[[[[[[[[

[[[[[[[[[
[[[[[[ ΣF (CP∞/CP k−1, E)S

1 //

��

ΣF (CP k/CP k−1, E)

��
FS1

tr (S(Ck)×X+, E)S
1 // ΣFS1

tr ([S(C∞)/S(Ck)] ∧X+, E)S
1 // ΣFS1

tr ([S(Ck+1)/S(Ck)] ∧X+, E)S
1

.

The middle vertical map is the one which quotients out the factor X, and this also in-

duces the right vertical map. Under the identification ΣF (CP k/CP k−1, E) ≃ Σ−2k+1E, and

π−nΣ
−2k+1E ∼= π0E, we identify yk with dHn+1(x).

3.2 The cohomology of Wn,k

In this section, we calculate the generalized cohomology of Wn,k with respect to a complex

oriented spectrum E. Later in the section, we specialize to E = BP , the spectrum for Brown-

Peterson cohomology.
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Recall that a complex orientation for a homotopy commutative ring spectrum E is a class

x ∈ Ẽ2(CP∞), which restricts to a generator of the free rank one π0E-module Ẽ2(S2) ∼=

E0(pt). For a complex oriented spectrum E, we have [3].

E∗(CPn) ∼= E∗(pt)[x]/(xn+1), E∗(CP∞) ∼= E∗(pt)[[x]].

For the complex Stiefel manifold, the classical computations of their cohomology [31] pro-

ceeds using the Serre spectral sequence as for other homogeneous spaces. It is proved that the

cohomology of Wn,k is an exterior algebra with generators in degrees 2n − 2k + 1, 2n − 2k +

3, · · · , 2n− 1. The Stiefel manifold also has a filtration

Wn−k+1,1
� � //Wn−k+2,2

� � // · · ·Wn−1,k−1
� � //� � //Wn,k,

S2n−2k+1

where the inclusion Wn−1,k−1 ↪→ Wn,k is given by adding the last vector en. The filtration

quotients are computed using the following homotopy pushout ([38, Chapter IV] defines the

maps in the diagram below, and [32, Ch. 5, Proposition 2] proves the entirely analogous result

in the real case)

Σ(CPn−2
+ )×Wn−1,k−1� _

��

µn−1 //Wn−1,k−1� _

��
Σ(CPn−1

+ )×Wn−1,k−1
µn //Wn,k.

(3.2.1)

In order to construct µn one defines

S1 × CPn−1 → U(n)

by (z, L) 7→ A(z, L), where A(z, L) : Cn → Cn is the unitary transformation which multiplies

the elements of L by z and fixes the orthogonal complement. The map µn is induced by matrix

multiplication in U(n) and the left action on Wn,k. From the construction of µ and the fact

that Wn,k
∼= U(n)/U(n− k), one obtains the induced map

µn,k : Σ[CPn−1/CPn−k−1]→Wn,k.

It follows from (3.2.1) that

Wn,k/Wn−1,k−1 ≃ Σ[CPn−1/CPn−2] ∧Wn−1,k−1+ ≃ Σ2n−1(Wn−1,k−1+).
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In the case of ordinary cohomology, the exterior algebra generators for the cohomology of Wn,k

pull back under µn,k to Σxi−1 (Σ : H∗X → H∗ΣX is the suspension isomorphism). We now

use this filtration to prove analogous results for the E-cohomology of Wn,k.

Proposition 3.2.2. Let E be a complex oriented cohomology theory, such that there is no

2-torsion in E∗(pt). Then,

E∗(Wn,k) ∼= ΛE∗(pt)(zn−k+1, · · · , zn),

is an exterior algebra with |zi| = 2i− 1. These generators satisfy

1) The inclusion Wn−1,k−1 ↪→Wn,k sends zi to zi if n− k + 1 ≤ i ≤ n− 1 and sends zn to 0.

2) µ∗n,k(zi) = Σxi−1.

Proof. We prove the results by induction on k, constructing the generators zi along the way.

For k = 1, the Stiefel manifold is the sphere S2n−1, and in this case, we know that the

E-cohomology is the exterior algebra on one generator. This starts the induction.

In the induction step, we know that E∗(Wn−1,k−1) is as described in this Proposition, and

attempt to derive the same for E∗(Wn,k) via the pushout (3.2.1). This gives us the following

maps between long exact sequences corresponding to the columns of (3.2.1).

0 // Ẽr(Σ2n−1(Wn−1,k−1+))

id

��

j∗ // Er(Wn,k)

µ∗

��

i∗ // // Er(Wn−1,k−1)

��

0 //

0 // Ẽr(Σ2n−1(Wn−1,k−1+))
// Er(Σ(CPn−1

+ )×Wn−1,k−1) // // Er(Σ(CPn−2
+ )×Wn−1,k−1)

0 //

(3.2.3)

We now justify the various identifications described in (3.2.3). The fact that E is complex

oriented implies E∗(CPn−1) → E∗(CPn−2) is surjective, and the induction hypothesis gives

us that E∗(Wn−1,k−1) is a free E∗(pt)-module. This implies that

Er(Σ(CPn−1
+ )×Wn−1,k−1)→ Er(Σ(CPn−2

+ )×Wn−1,k−1)

is surjective. This implies the identifications in the bottow row of (3.2.3). Note that the

map Σ(CPn−2
+ ) ×Wn−1,k−1 → Wn−1,k−1 has a section corresponding to the inclusion of the

base-point of Σ(CPn−2
+ ), and thus, the map induced on E-cohomology is injective. The identi-

fications on the top follow from the ones of the bottom row, and the fact that Er(Wn−1,k−1)→

Er(Σ(CPn−2
+ )×Wn−1,k−1) is injective. It follows that we have short exact sequences

0→ E∗(Σ2n−1Wn−1,k−1+)
j∗→ E∗(Wn,k)

i∗→ E∗(Wn−1,k−1)→ 0.
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For n− k + 1 ≤ i ≤ n− 1, we choose zi ∈ E2i−1(Wn,k) so that they map to zi under i
∗. The

class zn is chosen so that it maps to Σxn−1 under µn,n−1. From (3.2.3), it follows that zn is a

generator for the ideal of E∗(Wn,k) given by image of j∗. By the construction 1) and 2) follow.

As the classes zi are in odd degree and E∗(pt) has no 2-torsion, we have z2i = 0, and (3.2.3)

implies that E∗(Wn,k) additively matches with the exterior algebra on the zi. The result now

follows by induction on k.

We now proceed to define the generators of the exterior algebra E∗(Wn,k) in a strict fashion

which will satisfy 1) and 2) of Proposition 3.2.2. From the proof, we note that for any classes

zi satisfying 2), E∗(Wn,k) ∼= ΛE∗(pt)(zn−k+1, · · · , zn). Although the results in the following

will have analogous consequences for any complex oriented E, we fix our attention to the case

E = BP , which will be used in the following sections. Recall [34]

BP ∗(pt) ∼= Z(p)[v1, v2, · · · ],

where vi denotes the Araki generators [34, A2.2.2] that lie in degree −2(pi − 1). We also fix

from now on x ∈ B̃P
2
(CP∞) to denote the fixed orientation for a p-typical formal group law

over BP ∗(pt). We also assume that x is such that it maps to the first Chern class under the

map λ : BP → HZ(p).

The method of choosing the generators yj for BP
∗(Wn,k) is by relating them to the BP -

Chern classes cBPj [16]. We start with the case k = n, when Wn,n = U(n). Recall that

H∗(U(n);Z(p)) = ΛZ(p)
(yH1 , · · · , yHn ) with |yHj | = 2j − 1, and in Serre spectral sequence for

the fibration

U(n)→ EU(n)→ BU(n),

yHj transgresses to the jth-Chern class cHj . This follows from [14] which identifies the trans-

gression for the above spectral sequence. We also know that A∗(yHj ) = Σxj−1
H , where

A : Σ(CPn−1
+ ) → U(n) is induced from (z, L) 7→ A(z, L), and xH is the first H-Chern

class of the canonical line bundle over CP∞. Write σ : ΣU(n)→ BU(n) for the adjoint of the

equivalence U(n) ≃ ΩBU(n), and form the composite diagram

Σ2(CPn−1
+ )

ΣA //

ϕ

33Y \ _ b e
ΣU(n)

σ // BU(n).

For a cohomology theory E, denote by ϕ∗E (respectively σ∗E) the map induced by ϕ (respectively

σ) on E-cohomology. We have ϕ∗H(cj) = Σ2xj−1
H as σ∗H(cj) = ΣyHj .
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Proposition 3.2.4. There are classes τj ∈ BP 2j(BU(n)) of the form

τn = cBPn , and ∀ 1 ≤ j ≤ n, τj = cBPj +
∑
k>j

νkc
BP
k

for νk ∈ BP ∗(pt), such that

ϕ∗BP τj = Σ2xj−1.

The standard map BU(n)→ BU(n+ 1) classifying the canonical bundle plus a trivial bundle

sends τj to τj for j ≤ n, and τn+1 to 0. Define yBPj ∈ BP 2j−1(U(n)) by the formula

ΣyBPj = σ∗BP τj . Then,

1) The classes yBP1 , · · · , yBPn are generators for the exterior algebra BP ∗(U(n)).

2) λ(yBPj ) = yHj . (That is, the classes yBPj are lifts of the cohomology classes yHj to BP .)

Proof. We note that using Proposition 3.2.2, it suffices to prove the statements about τj .

Consider the following commutative diagram

BP ∗(Σ2(CPn−1
+ ))

λ
��

BP ∗(ΣU(n))oo

λ

��

BP ∗(BU(n))
σ∗
BPoo

ϕ∗BP

ss WXY[\^_`bcefg

λ

��
H∗(Σ2(CPn−1

+ );Z(p)) H∗(ΣU(n);Z(p))oo H∗(BU(n);Z(p)).σ∗
H

oo

ϕ∗H

kk gfecb`_^\[YXW

(3.2.5)

We have λ(cBPj ) = cj , and also that λ maps the complex orientation of BP to that of H. It

readily follows that ϕ∗BP (c
BP
j )− Σ2xj−1 lies in the kernel of λ, which is the ideal (v1, v2, · · · ).

As

BP ∗(Σ2(CPn−1
+ )) ∼= Z(p)[v1, v2, · · · ]{Σ21,Σ2x, · · · ,Σ2xn−1},

the left vertical arrow of (3.2.5) is an isomorphism in degree 2n. It follows that ϕ∗BP (c
BP
n ) =

Σ2xn−1, and so, τBPn = cBPn maps to the element of BP ∗(Σ2(CPn−1
+ )) required by the

Proposition.

We proceed to construct the τj such that ϕ∗BP τj = Σ2xj−1. Starting from j = n, suppose

that τj+1 has already been defined. We now have ϕ∗BP (c
BP
j ) − Σ2xj−1 ∈ (v1, v2, · · · ). For

degree reasons we have,

ϕ∗BP (c
BP
j )− Σ2xj−1 =

∑
k>j

ρkΣ
2xk−1 =

∑
k>j

ρkϕ
∗
BP (τk),
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for some ρk ∈ (v1, v2, · · · ). Rearranging terms and substituting the formula for τk, we obtain

an equation

Σ2xj−1 = ϕ∗BP (c
BP
j +

∑
k>j

νkc
BP
k ),

where νk is a BP ∗(pt)-linear combination of the classes ρk in the preceeding equation. It

follows that τj = cBPj +
∑

k>j νkc
BP
k satisfies the required criteria. We note that ϕ∗BP has

image in BP ∗(Σ2(CPn−1
+ )) which is a suspension. It follows that the decomposable elements

over BP ∗(pt) map to 0 under ϕ∗BP . Also the formula ϕ∗BP (τj) = Σ2xj−1 implies that ϕ∗BP

induces an isomorphism when restricted to the module of indecomposables. This shows that

the elements νk are unique, and so the classes τk are coherently defined over n as required in

the Proposition.

We now provide a strict definition for the generators of BP ∗(Wn,k) following Proposition

3.2.4. Recall that there are maps

i :Wn−1,k−1 →Wn,k, q :Wn,k →Wn,k−1,

where i adds the vector en at the end, and q forgets the last vector. We have already seen

in (3.2.3) that i∗ is surjective in BP -cohomology. We also note that q∗ is injective. For, q∗

applied to the generators of BP ∗(Wn,k−1) as in Proposition 3.2.2 together with a generator of

BP ∗(S2n−2k+1) = BP ∗(Wn−k+1,1) satisfies 2) of Proposition 3.2.2. This provides a tuple of

exterior algebra generators for BP ∗(Wn,k). Therefore, the quotient map π : U(n) → Wn,k is

injective in BP -cohomology.

Proposition 3.2.6. With notations as above, π∗ mapsBP ∗(Wn,k) to the subalgebra ofBP
∗(U(n))

generated by the classes yBPn−k+1, · · · , yBPn .

Proof. We have a diagram of fibrations

U(n) //

��

Wn,k

��
EU(n) //

��

BU(n− k)

��
BU(n) BU(n),
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which induces the commutative diagram

· · · // BP i(U(n))
δ // BP i+1(EU(n), U(n)) // BP i+1(EU(n)) // · · ·

· · · // BP i(Wn,k)

π∗

OO

δ // BP i+1(BU(n− k),Wn,k) //

π∗

OO

BP i+1(BU(n− k)) //

OO

· · ·

B̃P
i+1

(BU(n)).

α

OO

(3.2.7)

From the construction of the classes yBPj we have, π∗α(τj) = δ(yBPj ). On the other hand, if

j > n−k, the class α(τj)maps to 0 in BP ∗(BU(n−k)). The map BP ∗BU(n)→ BP ∗BU(n−

k) is the map on BP -cohomology associated to the standard inclusion BU(n − k) → BU(n)

classifying the sum of the canonical bundle with k-copies of a trivial bundle. This maps cBPj

to 0 for j > k, and hence, from the formula in Proposition 3.2.4, the classes τj to 0 if j > k.

It follows that for j > k, there are classes yj ∈ BP ∗(Wn,k) such that α(τj) = δ(yj), and from

(3.2.7) that π∗(yj) = yBPj . Also the property ϕ∗BP (τj) = Σ2xj−1 implies that the classes yj

satisfies 2) of Proposition 3.2.2. The result follows readily.

3.3 BP -cohomology of PWn,k

In this section, we describe the BP -cohomology ring of PWn,k using the homotopy fixed point

spectral sequence (Proposition 3.1.6). This is a strongly convergent spectral sequence

Es,t2 = Z[x]⊗BP t(Wn,k) =⇒ BP s+t(PWn,k) (3.3.1)

Recall that

BP ∗(Wn,k) ∼= ΛBP ∗(pt)(yn−k+1, · · · , yn)

by Proposition 3.2.6. We start with a proposition describing the initial differential on the classes

yj .

Proposition 3.3.2. In the spectral sequence (3.3.1), the differentials on yj are described by

dr(yj) =


0 if r < 2j(
n
j

)
xj if r = 2j.
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Proof. The proof will follow from the existence of a diagram as in (3.1.8). We have the

commutative diagram

Wn,k
//

��

PWn,k
//

��

CP∞

f

��
Wn,k

// BU(n− k) // BU(n),

in which the rows are fibrations [6]. The map f classifies the n-fold Whitney sum of universal

canonical complex line bundle. It leads to the following commutative diagram

BP 2j−1(Wn,k) //

��

BP 2j(BU(n− k),Wn,k)

��

BP 2j(BU(n))oo

f∗

��
BP 2j−1(Wn,k) // BP 2j(PWn,k,Wn,k) BP 2j(CP∞).oo

Suppose that the class τj of Proposition 3.2.4 is mapped to ψj under f
∗. In the first row,

the image of yj and image of τj coincide (Proposition 3.2.4 and (3.2.7)), hence, the same must

happen in the bottom row leading to the following homotopy commutative diagram

S−(2j−1)
ψj //

yj

��

ΣF (CP∞, BP )

��
F (Wn,k+, BP )

// ΣF (PWn,k/Wn,k, BP ).

(3.3.3)

The Whitney sum formula for Chern classes over BP -cohomology implies that f∗(cBPj ) =(
n
j

)
xj . The description of τj in Proposition 3.2.4 now leads to the following form for ψj

ψj =

(
n

j

)
xj +

∑
k>j

νk

(
n

k

)
xk. (3.3.4)

Now apply Proposition 3.1.11 to get dr(yj) = 0 if r < 2j, and d2jyj is determined from the

corresponding spectral sequence over HZ(p). This may be computed as in [6] to be d2jyj =(
n
j

)
xj . Hence the result follows.

We now proceed to compute the E∞-page of the spectral sequence. The main idea here is

that (3.3.3) may be used to determine all the differentials on the classes yj .

Proposition 3.3.5. The E∞-page of the spectral sequence (3.3.1) is given by

E∞ = ΛBP ∗(pt)(γn−k+2, · · · , γn)⊗BP ∗(pt) BP
∗(pt)[[x]]/I



32 Chapter 3. BP -cohomology of the projective Stiefel manifolds

where γj are certain elements in BP ∗(Wn,k) with deg(γj) = 2j − 1, and I is the ideal of

BP ∗[[x]] generated by the set {
(
n
j

)
xj |n− k < j ≤ n}.

Proof. The class x is a permanent cycle by Proposition 3.1.6. The multiplicative structure

determines all the differentials once they are known on the classes yj . We notice that E2n+1 is

the E∞-page because d2n(yn) = xn (Proposition 3.3.2) and so all the higher powers of x are

killed in the E2n-page.

From Proposition 3.3.2, we see that the first non-trivial differential is d2(n−k+1) and the

generator yn−k+1 and all its multiples do not survive to the next page since

d2(n−k+1)(yn−k+1) =

(
n

n− k + 1

)
xn−k+1.

For the yj of higher degree, it may happen that the first non-trivial differential on it

d2jyj =

(
n

j

)
xn−k+1

may be zero. This precisely happens when
(
n
j

)
lies in the ideal generated by

(
n
i

)
for n−k+1 ≤

i < j inside Z(p). This condition may be interpreted in terms of p-adic valuations of these

numbers. We then obtain a multiple psyj on which the differential is 0, determined by the

formula s + vp(
(
n
j

)
) = minn−k+1≤i<j vp(

(
n
i

)
). The class psyj may now support higher order

differentials. Their formula is determined by computing psψj using (3.3.3) in the form of (3.1.8)

S−j psψj //

psyj

��

ΣF (CPN , BP )

��

F (Wn,k, BP ) // ΣFS
1

tr ([S(CN+1)/S1] ∧Wn,k+, BP )
S1

for N > 2j. According to the formula (3.3.4), the next possible differential is

d2j+2(p
syj) = psνj+1

(
n

j + 1

)
xj+1 = psνj+1d2j+2(yj+1).

We now rectify this class as psyj − psνj+1yj+1 and obtain a cycle. This process continues until

we reach the E2n+1-page following which there are no further non-zero differentials.

We now formalize the above process by writing down a series of modifications to produce the

element γj . Starting with γ
(2)
j := yj , in r-th step of the modification, the modified element will

be denoted by γ
(r)
j . Below we describe transformations, exactly one of which will be performed

to produce γ
(r+1)
j from γ

(r)
j .
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1. If drγ
(r)
j = 0, then it survives to the next page and we call that element γ

(r+1)
j .

2. If r = 2j and γ
(2j)
j = yj and dr(γ

(r)
j ) =

(
n
j

)
xj . Define s by the formula s + vp(

(
n
j

)
) =

minn−k+1≤i<j vp(
(
n
i

)
), and declare γ

(r+1)
j = psγ

(r)
j .

3. If r > 2j, and dr(γ
(r)
j ) ̸= 0, then we know r is even, and there is a BP ∗-multiple of y r

2

mapped by dr onto the same class (this follows from the formula for ψj in the same way

as demonstrated for psyj above). That is, dr(γ
(r)
j ) = λdr(y r

2
) for some λ ∈ BP ∗(pt).

We declare γ
(r+1)
j = γ

(r)
j − λy r

2
.

We finally write γj = γ
(2n+1)
j which survives to the E∞-page. Hence, we have shown that

the 0-th column of the E∞-page is ΛBP ∗(γn−k+2, · · · , γn) . Also on the E∞-page the ideal

generated by {
(
n
j

)
xj |n − k < j ≤ n} goes to 0, as each of the generators are hit by the

differentials d2j(yj). This completes the proof.

It remains now to solve the additive and multiplicative extension problems to obtainBP ∗PWn,k

from the expression in Proposition 3.3.5. In the following lemma, we show that the part

BP ∗(pt)[x]/I forms a subalgebra of BP ∗PWn,k. Recall the fibrationWn,k → PWn,k
pk→ CP∞.

We prove

Lemma 3.3.6. The kernel of the map p∗ : BP ∗(CP∞) → BP ∗(PWn,k) contains the ideal I

generated by {
(
n
j

)
xj |n− k < j ≤ n} in BP ∗(pt)[[x]].

Proof. The proof goes by induction on k. For k = 1, the fibration is up to homotopy the

following sequence

Wn,1 = S2n−1 // PWn,1 = CPn−1 � � p1 // CP∞,

so that the kernel of p∗1 is the ideal generated by xn, satisfying the statement of the lemma.

Suppose that the lemma is true for PWn,k−1. To show the result for PWn,k , we consider the

diagram

PWn,k

Tn,k //

pk

%%JJ
JJJ

JJJ
JJ

q

��

BU(n− k)� _

��

� t

''OO
OOO

OOO
OOO

CP∞ f // BU(n).

PWn,k−1

pk−1

99ttttttttttt

Tn,k−1

// BU(n− k + 1)
* 


77ooooooooooo

In the above diagram, f classifies the bundle nγ where γ is the canonical line bundle over

CP∞, and q is induced by the S1-equivariant projection Wn,k →Wn,k−1. The three squares in
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the diagram are homotopy pullbacks. Our aim is to understand the kernel of q∗. We see that

PWn,k → PWn,k−1 is, up to homotopy, the sphere bundle associated to the complex bundle

classified by the map Tn,k−1. This is because BU(n−k) is (up to homotopy) the sphere bundle

of the canonical n− k + 1-plane bundle over BU(n− k + 1). As BP is complex oriented, we

obtain a Gysin sequence

· · · // BP ∗PWn,k−1

eBP (Tn,k−1) // BP ∗PWn,k−1
q∗ // BP ∗PWn,k

// · · ·

It follows that the kernel of q∗ is the ideal generated by eBP (Tn,k−1) in BP ∗PWn,k−1. The

bundle Tn,k−1 is obtained by lifting the composite PWn,k−1
pk−1→ CP∞ nγ→ BU(n) to BU(n−k)

so that Tn,k−1 + (k − 1)ϵ = np∗k−1γ. We readily compute eBP as the top BP -Chern class

eBP (Tn,k−1) = p∗k−1cn−k+1(nγ) =

(
n

n− k + 1

)
xn−k+1.

Therefore,
(

n
n−k+1

)
xn−k+1 lies in the kernel of p∗k : BP

∗CP∞ → BP ∗PWn,k. By the inductive

formula for the kernel of p∗k−1 : BP
∗CP∞ → BP ∗PWn,k−1, the proof is now complete.

We now apply Lemma 3.3.6 and Proposition 3.3.5 to complete the calculation ofBP ∗PWn,k.

Theorem 3.3.7. For every prime p, the BP -cohomology algebra of PWn,k is described addi-

tively by BP ∗(pt)-module

BP ∗(PWn,k) ∼= ΛBP ∗(pt)(γn−k+2, · · · , γn)⊗BP ∗(pt) BP
∗(pt)[[x]]/I

where γj ’s are of degree 2j−1, x is of degree 2, and I is the ideal generated by {
(
n
j

)
xj |n−k <

j ≤ n}. This isomorphism is also multiplicative if p ̸= 2.

Proof. Lemma 3.3.6 implies that p∗ induces a ring map of BP ∗-modules BP ∗(pt)[[x]]/I →

BP ∗(PWn,k). Choosing representatives for generators γj of Proposition 3.3.5 in the E∞-page

we obtain a BP ∗(pt)-module map ΛBP ∗(pt)(γn−k+2, · · · , γn) to BP ∗PWn,k. The multiplica-

tion as a bilinear map on these factors gives a map

ΛBP ∗(pt)(γn−k+2, · · · , γn)⊗BP ∗(pt) BP
∗(pt)[[x]]/I → BP ∗PWn,k

of BP ∗(pt)-modules. This is an isomorphism by Proposition 3.3.5 and the multiplicative struc-

ture of the spectral sequence (3.3.1). Further if p ̸= 2, we have γ2j = 0 as γj lies in odd degree.

Therefore, the isomorphism is also multiplicative.
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We observe that in Theorem 3.3.7, we do not expect the isomorphism to be multiplicative

when p = 2, as it does not even hold over HZ/p [6].

3.4 Equivariant maps between Stiefel manifolds

In this section, we demonstrate how the computations of BP -cohomology operations may be

used to rule out S1-equivariant maps between the Stiefel manifolds. The results of [33] can be

improved in this way.

3.4.1. Applications using Steenrod operations. We start with an example using Steenrod

operations in Z/2-cohomology. The Steenrod operations on H∗(PWn,k;Z/2) are described in

[6, Theorem 1.2]. We have from [33] that if there is an S1-equivariant map from Wn,k to Wm,l

with n− k = m− l, then

(
n

n− k + 1

)
divides

(
m

m− l + 1

)
,

which is then used to rule out such equivariant maps in many cases when n − k = m − l and

n > m [33, Theorem 3.10]. The Steenrod operations allow us to rule out equivariant maps for

cases where the above divisibility is valid. An example is given in the Theorem below.

Theorem 3.4.2. Suppose r ≡ −1, −2, or 3 (mod 9) and r ≡ 2, 1, or −2 (mod 7), and

m = 16r − 2. Then, there is no S1-equivariant map from Wm−3,7 to Wm,10.

Proof. Write n = m − 3, k = 7 and l = 10. Observe that the following are satisfied by these

integers

1. m, l even and n, k odd, and m− l = n− k.

2. 2 divides both
(

m
m−l+1

)
,
(

n
n−k+1

)
but 4 does not divide either.

3.
(

n
n−k+1

)
|
(

m
m−l+1

)
.

An S1-equivariant map f from Wn,k to Wm,l induces a map of fibration sequences

Wn,k
//

f

��

PWn,k
//

��

CP∞

��
Wm,l

// PWm,l
// CP∞.

We compare the associated Serre spectral sequences with Z-coefficients in the case n − k =

m − l. The condition (2) implies that f∗(ym−l+1) = cyn−k+1 , where c is odd. This is
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because in those spectral sequences yj transgresses to
(
n
j

)
xj and

(
m
j

)
xj respectively. The

classes yn−k+1 and ym−l+1 also survive in the Z/2-cohomology spectral sequence by (2), and

we have f∗(ym−l+1) = yn−k+1. [6, Theorem 1.2] implies

Sq2(ym−l+1) = (m− l)ym−l+2 +mxym−l+1 = 0,

and

Sq2(yn−k+1) = (n− k)yn−k+2 + nxyn−k+1 = xyn−k+1.

This is a contradiction.

3.4.3. Results using BP -operations. We have seen how Steenrod squares yield some results

on non-existence of S1-equivariant maps between complex Stielfel manifolds. We now derive

stronger results using BP -theory and cohomology operations associated to it. The operations

we use here are the Adams operations defined via [5, 2.4]. These are multiplicative, stable

operations with the formula

Ψa
BP (x) = a−1[a]BP (x), (3.4.4)

where a ∈ Z×
(p), and [a]BP denotes the a-series using the BP -formal group law. These

operations act on the coefficient ring via Ψa
BP (vi) = ap

i−1vi.

Denote the ideal (v1, v2, · · · ) in BP ∗(pt) = Z(p)[v1, v2, · · · ] by J . We fix the {vi | i ≥ 1}

to be the Araki generators [34, A2.2.2]. The formal group law µBP , associated to BP with

respect to our chosen orientation is strictly isomorphic to the additive formal group law over

BP ∗(pt) ⊗ Q and the isomorphism is given by BP -log series. The choice of generators imply

that the BP -log series has the form

logBP (x) = x+
∑
i≥1

lix
pi ,

where li are determined by the relations

pln =
∑

0≤i≤n
liv

pi

n−i

with l0 = 1 and v0 = p. This implies the formula

ln =
vn

p− ppn
(mod J2).
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Now we consider the expression of [3, Part II, Proposition 7.5] (mod J2) to obtain the

following relation for the expBP -series

expBP (x) = x−
∑
i≥1

lix
pi = x−

∑
i≥1

vi

p− ppi
xp

i
(mod J2).

This implies

x+BP y = expBP (logBPx+ logBP y)

= logBPx+ logBP y −
∑
i≥1

li(logBPx+ logBP y)
pi (mod J2)

= x+ y +
∑
i≥1

li(x
pi + yp

i
)−

∑
i≥1

li(x+ y +
∑
j≥1

lj(x
pj + yp

j
))p

i
(mod J2)

= x+ y +
∑
i≥1

li(x
pi + yp

i − (x+ y)p
i
) (mod J2)

= x+ y +
∑
i≥1

vi

p− ppi
(xp

i
+ yp

i − (x+ y)p
i
) (mod J2),

(3.4.5)

where by +BP we mean the formal sum under the formal group law µBP .

We now restrict our attention to p = 2, and obtain the following reduction for Ψ3
BP (3.4.4)

by applying (3.4.5) multiple times.

Ψ3
BP (x) =

1

3
[3]BP (x)

=
1

3
(x+BP [2]BP (x))

=
1

3
(x+BP (2x+BP v1x

2 +BP v2x
4 +BP · · ·+BP vix

2i +BP · · · ))

=
1

3
(x+BP 2x+BP (v1x

2 + · · ·+ vix
2i + · · · )) (mod J2)

=
1

3
((3x+

∑
i≥1

vi

2− 22i
(x2

i
+ (2x)2

i − (3x)2
i
)) +BP (v1x

2 + · · ·+ vix
2i + · · · )) (mod J2)

=
1

3

[
3x+

∑
i≥1

vi

2− 22i

(
x2

i
+ (2x)2

i − (3x)2
i
)]

+
1

3

[
v1x

2 + · · ·+ vix
2i + · · ·

]
(mod J2)

= x+
∑
i≥1

1− 32
i−1

2(1− 22i−1)
vix

2i (mod J2)

We note that 1−32
i−1

2(1−22i−1)
= αi lies in Z×

(2), and in this notation we have

Ψ3
BP (x) = x+

∑
i≥1

αivix
2i (mod J2) (3.4.6)
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We shall now determine the action ofΨ3
BP on BP ∗(Wn,k) = ΛBP ∗(yn−k+1, · · · , yn)modulo

the ideal I2, where I is the ideal of BP ∗(Wn,k) generated by yn−k+1, · · · , yn .

Proposition 3.4.7.

Ψ3
BP (yj) = yj + (j − 1)

∑
i≥1, 2i+j−1≤n

αiviy2i+j−1 (mod I2 + J2)

Proof. Recall the map µn,k : Σ[CPn−1/CPn−k+1] = ΣPn,k −→ Wn,k, for which we had

µ∗n,k(yj) = Σxj−1. Hence this will give us the isomorphism

µ∗n,k : BP
∗(Wn,k)/I

2 −→ ΣBP ∗(Pn,k)

By naturality of the Adams operations, Ψ3
BP commutes with µ∗n,k. The action of Ψ3

BP on yj

is determined up to I2 from the computation for Σxj−1. The Adams operation being stable,

commutes with the suspension, so it is enough to compute the action of Ψ3
BP on xj−1, which

comes from the multiplicative structure and the formulas above.

Ψ3
BP (x

j−1) = (Ψ3
BP (x))

j−1

= (x+
∑
i≥1

αivix
2i)j−1 (mod J2) (using 3.4.6)

= xj−1 +
∑
i≥1

(j − 1)αivix
2i+j−2 (mod J2).

Hence the proposition follows.

We now use the action of BP -Adams operations to prove new results about equivariant maps

between complex Stiefel manifolds. We note from [33] that the existence of a S1-equivariant

map Wn,k →Wm,l implies that n− k ≤ m− l. It states a number of hypotheses on n, k,m, l

in the case n − k = m − l for which equivariant maps do not exist. Proposition 3.4.2 proves

some further results for this case. We use BP -operations to rule out equivariant maps in some

cases where n− k < m− l.

Theorem 3.4.8. Suppose that m,n, l, k are positive integers satisfying

1) n− k < m− l and there is an s such that m < 2s +m− l ≤ n.

2) 2 divides all the binomial coefficients
(

n
n−k+1

)
, · · · ,

(
n

m−l
)
.

3) 2 does not divide
(

m
m−l+1

)
and 2 ∤ m− l.

Then, there is no S1-equivariant map from Wn,k to Wm,l.
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Proof. We assume the contrary that g :Wn,k →Wm,l is an S
1-equivariant map. This induces

a map of homotopy fixed point spectral sequences, and also a compatible map between the

associated projective Stiefel manifolds. The formula for the differentials in the homotopy fixed

point spectral sequence (Proposition 3.3.2) and the fact that
(

n
m−l+1

)
must be odd due to the

hypotheses 2) and 3), implies that the pullback satisfies

g∗(ym−l+1) = βym−l+1 +
∑

j>m−l+1

pjyj (mod I2 + J2).

for some β ∈ Z×
(2) and pj ∈ BP

∗(pt). Note that |yj | = 2j − 1 and |vj | = 2− 2j+1. For degree

reasons, the second term in the above expression will be of the form

∑
j≥1, n≥2j+m−l

kjvjy2j+m−l

where kj ∈ Z(2).

Now we shall compute Ψ3
BP (g

∗(ym−l+1)) and g
∗(Ψ3

BP (ym−l+1)) modulo the ideal I2+J2.

Ψ3
BP (g

∗(ym−l+1)) = Ψ3
BP (βym−l+1 +

∑
j≥1, n≥2j+m−l

kjvjy2j+m−l) (mod I2 + J2)

= β(ym−l+1 + (m− l)
∑

i≥1, 2i+m−l≤n

αiviy2i+m−l)+

∑
j≥1, n≥2j+m−l

kjΨ
3
BP (vj)Ψ

3
BP (y2j+m−l) (mod I2 + J2)

= β(ym−l+1 + (m− l)
∑

i≥1, n≥2i+m−l

αiviy2i+m−l)+

∑
j≥1, n≥2j+m−l

kj · 32
j−1vj · y2j+m−l (mod I2 + J2).

(3.4.9)

On the other hand, we have

g∗(Ψ3
BP (ym−l+1)) = g∗(ym−l+1 + (m− l)

∑
i≥1, m≥2i+m−l

αiviy2i+m−l) (mod I2 + J2)

= βym−l+1 +
∑

j≥1, n≥2j+m−l

kjvjy2j+m−l

+
∑

i≥1, m≥2i+m−l

αivig
∗(y2i+m−l) (mod I2 + J2).

(3.4.10)
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Note that for degree reasons,

αivig
∗(y2i+m−l) = ναiviy2i+m−l (mod I2 + J2),

for some ν ∈ Z(2). Since Ψ3
BP (g

∗(ym−l+1)) = g∗(Ψ3
BP (ym−l+1)), the coefficients for y2s+m−l

(for s as in 1)) in the expressions (3.4.9) and (3.4.10) must be the same modulo the ideal

I2 + J2. This implies

β(m− l)αs + 32
s−1ks = ks

=⇒ β(m− l) = 2(1− 22
s−1)ks.

This contradicts the fact that β(m − l) ∈ Z×
(2). Hence no such S1-equivariant map g can

exist.

Example 3.4.11. One may easily figure out values of m,n, l, k for which the hypothesis of

Theorem 3.4.8 are satisfied. For example putting k = n and m − l + 1 = 2, we obtain : If

n is even and
(
m
2

)
odd, and there is some s such that m < 2s + 1 ≤ n, then, there is no

S1-equivariant map from Wn,n to Wm,m−1.



Chapter 4

p-local decomposition of projective

Stiefel manifolds

The main objective of this chapter is to analyze the p-local homotopy type of the complex

projective Stiefel manifolds, and other analogous quotients of Stiefel manifolds. We take the

cue from a result of Yamaguchi about the p-regularity of the complex Stiefel manifolds [39]

which lays down some hypotheses under which the Stiefel manifold is p-locally a product of odd

dimensional spheres. We show that in many cases, the projective Stiefel manifolds are p-locally

a product of a complex projective space and some odd dimensional spheres. As an application,

we prove that in these cases, the p-regularity result of Yamaguchi is also S1-equivariant. These

results appear in the paper [10].

4.1 Cohomology of projective Stiefel manifolds

We recall the cohomology of projective Stiefel manifolds and other associated quotients of

Stiefel manifolds pointed out in Chapter 2.

H∗(PWn,k;Z(p)) ∼= ΛZ(p)
(γn−k+2, · · · , γn)⊗Z(p)

Z(p)[x]

(
(
n
j

)
xj | n− k + 1 ≤ j ≤ n)

, (4.1.1)

with |γi| = 2i−1 and |x| = 2. The computation is carried out using the Serre spectral sequence

for the fibration Wn,k → PWn,k → CP∞ [6, (2.1)]. One identifies the cohomology of Wn,k as

the exterior algebra Λ(zn−k+1, · · · , zn) with |zj | = 2j − 1, and computes the differentials by

the fact that the zj are transgressive, and the equation d2j(zj) =
(
n
j

)
xj . If p > n, one observes

41
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that the binomial coefficients
(
n
j

)
are units in Z(p), so we have the following reduction of (4.1.1)

H∗(PWn,k;Z(p)) ∼= ΛZ(p)
(γn−k+2, · · · , γn)⊗

Z(p)[x]

(xn−k+1)
. (4.1.1)

In this case, observe that the cohomology of PWn,k matches with that of the product Mn,k =

CPn−k ×
∏n
i=n−k+2 S

2i−1. We now follow [6, §3] to identify the generators γj of (4.1.1). Let

E be a contractible space with free U(n)-action. We have the following homotopy commutative

diagram in which all the squares are homotopy pullbacks,

Wn,k
π //

��

PWn,k
f //

��

BU(n− k)

��
E // CP∞

f0
// BU(n),

(4.1.2)

where f0 classifies the bundle nγ. This gives rise to the following diagram

0

��
H2j−1(PWn,k;Z(p))

δ
��

0

��
H2j(CP∞, PWn,k;Z(p))

i∗

��

H2j(BU(n), BU(n− k);Z(p))f∗
oo

��
H2j(CP∞;Z(p)) H2j(BU(n);Z(p)).f∗0

oo

(4.1.3)

We identify H∗(BU(n), BU(n − k);Z(p)) with the ideal of H∗(BU(n);Z(p)) generated by

the universal Chern classes cj for n − k < j ≤ n, and write uHj = f∗cj . In this notation,

γHj ∈ H2j−1(PWn,k;Z(p)) is defined by the equation

δγHj = ρj = uHj − xj−(n−k+1) µj
µn−k+1

uHn−k+1, (4.1.4)

where µj =
(
n
j

)
. In order to observe how this formula makes sense, one should note that

f∗0 (cj) =
(
n
j

)
xj .

4.1.1 Other quotients of Stiefel manifolds

One may proceed in an analogous manner to the above to write down the cohomology ring

structure for the other quotients of Stiefel manifolds. Let ℓ = (l1, · · · , lk) such that the gcd of
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the li is 1. The cohomology of PℓWn,k with Z/p-coefficients was computed in [12]. The similar

calculation with Z(p)-coefficients yields the formula

H∗(PℓWn,k;Z(p)) ∼= ΛZ(p)
(γn−k+2, · · · , γn)⊗ Z(p)[x]/J,

where |γj | = 2j−1, |x| = 2 and J is the ideal of Z(p)[x] generated by the set {
∑

|I|=j(−1)jℓIxj |

n− k < j ≤ n}. This formula is obtained by calculating the differentials in the Serre spectral

sequence associated to the fibration Wn,k −→ PℓWn,k −→ CP∞. It turns out that the exterior

algebra generators zj ’s of H∗(Wn,k;Z(p)) are transgressive and d2j(zj) =
∑

|I|=j(−1)jℓIxj .

Note that for a prime p not dividing
∑

|I|=n−k+1 ℓ
I , we have the following reduction

H∗(PℓWn,k;Z(p)) ∼= ΛZ(p)
(γn−k+2, · · · , γn)⊗ Z(p)[x]/(x

n−k+1). (4.1.5)

In this case PℓWn,k andMn,k have isomorphic cohomology rings. The analogue of the pullback

(4.1.2) is the diagram [12, (2.1)]

Wn,k
π //

��

PℓWn,k
ϕ //

��

Grk(Cn)

��
E // CP∞

ϕ0
// BU(k),

(4.1.6)

where ϕ0 classifies the bundle
∑
γlj . One may now consider a diagram similar to (4.1.3) by

working with the pair (BU(k), Grk(Cn)) to identify the cohomology generators for PℓWn,k.

The cohomology of Wn,k;m with Z/p coefficients was computed in [21]. For p ∤ m, this is

equivalent to the cohomology of Wn,k, so the interesting case is when p | m. Following the

same method, the cohomology with Z(p) coefficients (for p | m) may be computed. For p > n,

the formula takes the following form

H∗(Wn,k;m;Z(p)) ∼= (ΛZ(p)
(γn−k+1, γn−k+2, · · · , γn)⊗ Z(p)[x])/(mx, x

n−k+1, γn−k+1x),

(4.1.7)

where |γj | = 2j−1, and |x| = 2. The method requires determining the Serre spectral sequence

associated to the fibration S1 −→ Wn,k;m −→ PWn,k and the only differential d2 sends the

degree 1 class e generating H∗(S1;Z(p)) to mx. Note that the class e ⊗ xn−k survives in the

E∞-page detecting the degree 2n− 2k + 1 class γn−k+1.
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4.2 Decomposition results at very large primes

In §4.1, the expressions for the cohomology of the various quotients of Wn,k say that for

large primes, the cohomology of PWn,k and PℓWn,k matches that of Mn,k. For Wn,k;m, the

expression matches the cohomology of a product of the lens space Lm(2n − 2k + 1) and a

bunch of odd dimensional spheres. Using elementary arguments, in this section we observe that

these isomorphisms may be lifted to p-local homotopy equivalences for a sufficiently large lower

bound on p.

The first step towards a homotopical result starting from a cohomology isomorphism is a

rational homotopy calculation. Note that the Serre spectral sequence for the fibrationWn,k −→

PWn,k −→ CP∞ with rational coefficients tell us that

H∗(PWn,k;Q) = Q[x]/(xn−k+1)⊗ ΛQ(γn−k+2, · · · , γn),

where |x| = 2, |γj | = 2j − 1.

4.2.1. Rational splittings for PWn,k. The rational homotopy type of simply connected

spaces are determined by its minimal model [18]. For a space X, we denote its minimal model

by mX . We shall show that mPWn,k
is isomorphic to mMn,k

, which will tell us that they are

rational homotopy equivalent.

We know that

mMn,k
= mCPn−k ⊗mS2n−2k+3 ⊗ · · · ⊗mS2n−1 .

Also mS2j−1 = (Λ(yj), d = 0), where |yj | = 2j − 1, and mCPn−k = (P (x) ⊗ Λ(yn−k+1), d),

where |x| = 2, |yn−k+1| = 2n − 2k + 1 and d(x) = 0, d(yn−k+1) = xn−k+1 [18]. In this

expression, P (x) stands for the polynomial algebra on the generator x.

Proposition 4.2.2. The minimal model for PWn,k is given by

mPWn,k
= P (x̃)⊗ Λ(ỹn−k+1, · · · , ỹn),

where |x̃| = 2, |ỹj | = 2j − 1 and the action of differential is determined by the following:

d(x̃) = 0, d(ỹn−k+1) = x̃n−k+1, d(ỹj) = 0, ∀n− k + 1 < j ≤ n.

Proof. We only need to construct a differential graded algebra (DGA) morphism φ from the the

minimal Sullivan DGA given in the statement to the DGA A∗
PL(PWn,k) (following the same

notation as [18]) which will also be a quasi-isomorphism. Actually it turns out that PWn,k is

a formal space ie. its minimal model is determined by its cohomology ring which we will see
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below. Define φ by the following action on generators

φ(x̃) = ω, φ(ỹn−k+1) = θ, φ(ỹj) = σj , ∀n− k + 1 < j ≤ n (4.2.3)

where ω and σj are cocycles in A∗
PL(PWn,k) such that [ω] = x ∈ H∗(PWn,k;Q), [σj ] =

γj ∈ H∗(PWn,k;Q). Since xn−k+1 = 0 in H∗(PWn,k;Q), there will be some element θ ∈

A2n−2k+1
PL (PWn,k) whose image under the differential in A∗

PL(PWn,k) will be ω
n−k+1. This is

the θ used in 4.2.3. With this definition, φ is clearly a DGA quasi-isomorphism.

Now it is evident that both PWn,k and Mn,k have the same minimal model. Therefore,

PWn,kQ ≃Mn,kQ.

4.2.4. Splitting at large primes. We now replicate the rational result of §4.2.1 in the p-local

homotopy category. The rough estimate is so that 2p − 3 is larger than the dimension of the

manifold, for which we obtain a result by elementary means. We note

dim(PWn,k) = 2nk − k2 − 1 = dim(PℓWn,k), dim(Wn,k;m) = 2nk − k2.

In the following we use the class x ∈ H2(PWn,k) to obtain the map PWn,k → CP∞.

Proposition 4.2.5. For all primes p > 2nk−k2−1
2 +k−n, there is a map (PWn,k)(p) −→ CPn−k(p)

which is a lift of the map (PWn,k)(p) → CP∞
(p) up to homotopy. The same conclusion holds for

PℓWn,k under the additional assumption that p ∤
∑

|I|=n−k+1 ℓ
I .

Proof. The homotopy fibre of the inclusion CPn−k → CP∞ is S2n−2k+1. Therefore, obstruc-

tions for lifting the map PWn,k → CP∞ on p-localizations lie in Hr(PWn,k;πr−1(S
2n−2k+1
(p) )),

which are 0 under the given hypothesis. As dim(PWn,k) < dim(S2n−2k+1) + 2p− 3, the only

obstruction that may arise is if r = 2n− 2k+2, in which degree the cohomology of PWn,k is 0

from (4.1.1). The same argument also works for PℓWn,k under the additional hypothesis.

Let Zn,k =
(
S2n−2k+3 × S2n−2k+5 × · · · × S2n−1

)
(p)

. The cohomology of Zn,k is the

exterior algebra

H∗(Zn,k) ∼= Λ(ϵ2n−2k+3, ϵ2n−2k+5, · · · , ϵ2n−1),

where the classes ϵ2j−1 are pullbacks of the generators of H∗(S2j−1) via the corresponding

projection. We prove

Proposition 4.2.6. Suppose p is as in the hypothesis of Proposition 4.2.5. There is a map

ρ : (PWn,k)(p) → Zn,k such that ρ∗(ϵ2j−1) = γj for all n − k + 2 ≤ j ≤ n, with γj as in

(4.1.4). The same result holds for PℓWn,k if p ∤
∑

|I|=n−k+1 ℓ
I .
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Proof. Suppose L = K(Z(p), 2n−2k+3)×· · ·×K(Z(p), 2n−1), then we get a map ν : Zn,k → L

which classifies the cohomology generators of Zn,k. Now,

πr(Zn,k) ∼= πr(S
2n−2k+3
(p) )⊕ · · · ⊕ πr(S2n−1

(p) ),

and πr(S
2n−2k+j
(p) ) = 0 for 2n−2k+ j < r < 2n−2k+ j+2p−3, imply that πr(Zn,k) = Z(p),

for r odd and r = 2n − 2k + 3, · · · , 2n − 1 and πr(Zn,k) = 0, for all other r ≤ dim(PWn,k).

So ν must be a dim(PWn,k)-equivalence.

From the conclusion of the paragraph above, we will get the following isomorphism

[(PWn,k)(p), Zn,k]
ν∗→ [(PWn,k)(p), L] ∼= H2n−2k+3(PWn,k;Z(p))⊕ · · · ⊕H2n−1(PWn,k;Z(p)).

Hence we get a map ρ : (PWn,k)(p) → Zn,k that pulls back the cohomology generators

ϵ2j−1 ∈ H∗(Zn,k) corresponding to the generators of H∗(S2j−1
(p) ) to γj ∈ H∗(PWn,k,Z(p)).

This argument works entirely analogously for PℓWn,k.

We may now assemble the two results from Propositions 4.2.5 and 4.2.6 to get maps for p

large (
PWn,k

)
(p)
→

(
Mn,k

)
(p)
,

(
PℓWn,k

)
(p)
→

(
Mn,k

)
(p)

which are cohomology isomorphisms. Thus, we have proved the following result.

Theorem 4.2.7. Suppose p > 2nk−k2−1
2 + k − n. Then we have,

(
PWn,k

)
(p)
≃

[
CPn−k × S2n−2k+3 × · · · × S2n−1

]
(p)
.

If further p ∤
∑

|I|=n−k+1 ℓ
I ,

(
PℓWn,k

)
(p)
≃

[
CPn−k × S2n−2k+3 × · · · × S2n−1

]
(p)
.

Theorem 4.2.7 may be used to provide an S1-equivariant decomposition of the Stiefel man-

ifold.

Proposition 4.2.8. For p > 2nk−k2−1
2 + k − n, we have the following splitting as S1-spaces.

(
Wn,k

)
(p)
≃ [S2n−2k+1 × S2n−2k+3 × · · · × S2n−1](p).

Proof. For the bound on p stated in the proposition, there is a map ϕk : (PWn,k)(p) → CPn−k(p)

lifting the classifying map of the S1-bundle Wn,k → PWn,k. Hence we have the following
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homotopy pullback diagram,

(Wn,k)(p) //

��

S2n−2k+1
(p)

��
(PWn,k)(p) // CPn−k(p)

leading to an S1-equivariant map (Wn,k)(p) → S2n−2k+1
(p) . We also have an S1-equivariant

map (Wn,k)(p) → (Wn,k−1)(p) arising from the S1-equivariant projection Wn,k → Wn,k−1.

The product of these two maps is evidently a cohomology isomorphism. So we obtain an

S1-equivariant equivalence

(Wn,k)(p) ≃ S2n−2k+1
(p) × (Wn,k−1)(p).

And by induction on k, we arrive at the result stated in the proposition.

Now observe that both Wn,k;m and Lm(2n− 2k + 1)× S2n−2k+3 × · · · × S2n−1 have the

same Z(p)-cohomology whenever p > n.

Proposition 4.2.9. For p > 2nk−k2−1
2 + k − n we have the the following splitting

(
Wn,k;m

)
(p)
≃ [Lm(2n− 2k + 1)× S2n−2k+3 × · · · × S2n−1](p).

Proof. For p > 2nk−k2−1
2 +k−n, we have the S1-equivariant map Wn,k → S2n−2k+1 as shown

in Proposition 4.2.8. So we get a map Wn,k;m → Lm(2n−2k+1) by considering the Cm-orbit

spaces. Now comparing the spectral sequences associated to the fibrations

S1 →Wn,k;m → PWn,k, and S
1 → Lm(2n− 2k + 1)→ CPn−k,

we can see that the mapWn,k;m → Lm(2n−2k+1) induces an isomorphism on Hj(−;Z(p)) for

j ≤ 2n− 2k+1. We also have the maps Wn,k;m → PWn,k → S2n−2k+2r+1 for k > r > 0 and

they map the cohomology generators of S2j−1 to the corresponding generator of H∗(Wn,k;m)

in (4.1.7). Hence we have a map from Wn,k;m to Lm(2n− 2k + 1)× S2n−2k+3 × · · · × S2n−1

that induces an isomorphism on cohomology, and both spaces being simple, we get the desired

equivalence.
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4.3 Stable decompositions of projective Stiefel manifolds

In this section, we prove stable decomposition results for the projective Stiefel manifold PWn,k

at primes greater than n. The crucial observation here is that if p > n, we have the stable

equivalence

CPn(p) ≃ S
2
(p) ∨ S

4
(p) ∨ · · · ∨ S

2n
(p).

This fact may be proved by showing that the attaching maps of the cells of the p-local complex

projective space are stably trivial if p > n. The reason is that the first non-trivial p-torsion in

the stable homotopy groups of S0 occurs in degree 2p− 3, which is greater than the degrees of

the attaching maps of CPn if p > n. However one requires a more delicate argument to make

this work for PWn,k, because there are cell attachments of degree greater than 2p− 3.

4.3.1. Minimal cell structures. We recall the minimal cell structures for CW complexes

from [23, §4.C]. For a simply connected CW complex with finitely generated homology groups,

we have a CW complex structure with “minimum number of cells”. More precisely, writing

the homology groups using generators and relations, we have one “generator” n-cell for every

generator of a cyclic copy of Hn(X), and one “relator” n + 1-cell whose boundary is k times

a “generator” n-cell in cellular homology whenever the cyclic copy in Hn(X) corresponding to

the generator is Z/k.

We will use a version of the above result for p-local spaces. In this case we use p-local

cells Dn(p) which is the cone of Sn−1
(p) , and a p-local n-cell attachment to a p-local space X is

the attachment of Dn(p) along a map Sn−1
(p) → X. A p-local finite CW complex is one which

is obtained by attaching finitely many p-local cells in increasing dimensions. The following

proposition follows directly using the arguments of [23, Proposition 4.C.1].

Proposition 4.3.2. Suppose that X is a simply connected p-local space such that H∗(X;Z(p))

is finitely generated and torsion free. Then, X has a p-local CW complex structure with one

p-local n-cell for each basis element of Hn(X;Z(p)) ∼= Zl(p).

Remark 4.3.3. Suppose that X is as in Proposition 4.3.2. We observe that as the boundary

map in cellular homology is 0, the attaching map of such a cell factors through the (n − 2)-

skeleton.

4.3.4. The Chern character. Recall the Chern character [24, Chapter 5]

ch : K∗(X)→ H∗(X;Q)[u±]
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where u is a degree 2 class inducing the 2-periodicity in the second factor. We restrict our

attention to p-local finite CW complexes of Proposition 4.3.2, and note that the arguments in

page 73 of [24] implies the following result.

Proposition 4.3.5. Suppose that X is a simply connected p-local space such that H∗(X;Z(p))

is finitely generated and torsion free. Then, K∗(X)⊗Z(p) is torsion-free and the Chern character

induces an isomorphism K∗(X)⊗Q ∼= H∗(X;Q)[u±].

4.3.6. A criterion for stable splitting. We now formulate a general criterion to have a p-local

stable decomposition into a wedge of spheres. This involves ruling out attaching maps in the

image of the J-homomorphism using an assumption on the Chern character. For the remainder

of this section, we work in the category S which stands for the stable homotopy category,

whose objects are sequential spectra and morphisms are the homotopy classes of maps between

them. For a space X, we use the same notation for the suspension spectrum as an object of

S. We also use the Chern character for cellular spectra with finitely many cells. Note from [34,

Theorem 1.1.14] that elements in πsk(S
0) for k > 0 lie in the image of the J-homomorphism if

k < 2p2 − 2p.

Theorem 4.3.7. LetX be a simply connected p-local finite CW-complex satisfying the following

conditions

1. dimX < 2p2 − 2p.

2. H∗(X;Z(p)) is free as a Z(p)-module.

3. The Chern character map for X has image in H∗(X;Z(p)) ⊂ H∗(X;Q).

Then, X ≃ a wedge of p-local spheres.

Proof. We consider the minimal cell structure of X of Proposition 4.3.2 and prove that the

attaching maps are 0 in the stable homotopy category. We show this by induction over k for

X(k), which is the kth-skeleton of X. The properties of the minimal cell structure, the naturality

of the Chern character together with Proposition 4.3.5, implies that any sub-complex A of X

satisfies the three hypotheses stated in the theorem.

We assume that X(k) splits as a wedge of p-local cells, and we want to conclude the same

for X(k+1). Since there are finitely many cells, it suffices to prove that every attaching map

ϕ : Sk(p) −→ X(k) is trivial. We write Y for the mapping cone on ϕ. From Remark 4.3.3, this

attaching map will actually land in X
(k−1)
(p) . Writing

X(k) ≃ Sn1

(p) ∨ · · · ∨ S
nr

(p),
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the attaching map of the p-local (k + 1)-cell in X(p) must factor through
∨
nj ̸=k S

nj

(p), and is

therefore a sum of maps of the form fj : S
k
(p) → S

nj

(p). Note that k−nj < 2p2−2p by condition

1), so that the homotopy class of these maps lie in the image of J homomorphism. Since these

classes are in odd degree, we may assume k− nj is odd. Now we have the following homotopy

commutative diagram

Sk(p)
ϕ //

��

X
(k)
(p)

//

��

Y(p) //

��

Sk+1
(p)

=

��
Sk(p) fj

// S
nj

(p)
// C(fj) // Sk+1

(p)

(4.3.8)

where the second vertical map from left is induced by the retraction

Sn1

(p) ∨ · · · ∨ S
nr

(p) −→ S
nj

(p).

To show that fj is trivial it suffices to show that the K-theoretic e-invariant [2, §7] of fj , eK(fj)

vanishes. Note that [2, Proposition 7.14] implies that we may compute this using complex K-

theory as p ̸= 2. We also notice that since we are dealing with p-local spheres, the e-invariant

will take values in Q/Z(p).

We look at the following diagram of short exact sequences induced by the Chern character:

0 K∗
(p)(X

(k))oo

ch
��

K∗
(p)(Y )oo

ch
��

K∗
(p)(S

k+1)oo

ch
��

0oo

0 H∗(X(k);Q)[u±]oo H∗(Y ;Q)[u±]oo H∗(Sk+1;Q)[u±]oo 0oo

where the short exactness of the first row follows from the short exactness of the bottom row

along with the injectivity of the Chern character map for p-local sphere. As Y is a subcomplex

of X, the image of the Chern character lies in H∗(Y ;Z(p)) by condition 3). Now from the

following diagram (the injectivity of the horizontal arrows follow from (4.3.8))

K(p)(C(fj))
� � //

ch
��

K(p)(Y )

ch
��

H∗(C(fj);Q)[u±] �
� // H∗(Y ;Q)[u±],

we conclude that the image of the Chern character for C(fj) also lies in Z(p)-cohomology.

Applying the reformulation of the e-invariant in [2, Proposition 7.8], we deduce that e(fj) = 0,

and hence fj ≃ 0.
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4.3.9. Algebra generators for K∗(Wn,k) and K
∗(PWn,k). We now write down the structure

of K∗PWn,k (and K∗Wn,k), identifying algebra generators as was done in (4.1.4) for ordinary

cohomology. The coefficient ring for p-local complex K-theory is Z(p)[β
±] where β stands for

the Bott element lying in degree 2. Recall that complex K-theory is complex oriented, and

xK = β−1(L− 1) is a choice of complex orientation for the canonical line bundle L over CP∞.

This implies that every complex vector bundle is K-orientable, and defines universal Chern

classes cKj such that K∗
(p)(BU(n)) ∼= Z(p)[β

±][[cK1 , · · · , cKn ]].

We note that the complex orientation expressed as a map

xK : CP∞ → Σ2K(p)

may be expressed as a composite via the connective cover ku(p) of K(p)

CP∞ xku→ Σ2ku(p) → Σ2K(p)

as CP∞ is 1-connected. This implies that the universal Chern classes cKj are the image of

ku(p)-Chern classes ckuj . Following the method described in [9, Proposition 3.4 and Proposition

3.6] we obtain classes τkuj ∈ ku∗(p)(BU(n)) such that τkuj = ckuj +
∑

k>j νkc
ku
k , where νk ∈

ku∗(p)(pt). We use the map α : (BU(n − k),Wn,k) → (BU(n), ∗) arising from the fibration

Wn,k → BU(n− k)→ BU(n), and the diagram

· · · // kui(p)(Wn,k)
δ // kui+1

(p) (BU(n− k),Wn,k) // kui+1
(p) (BU(n− k)) // · · ·

k̃u
i+1

(p) (BU(n)).

α∗

OO

to define ykuj by the equation δ(ykuj ) = α∗(τkuj ) for j ≥ n − k + 1. The classes ykuj serve as

generators of ku∗(p)(Wn,k), that is,

ku∗(p)(Wn,k) ∼= Λku∗
(p)
(ykun−k+1, · · · , ykun ).
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Pushing forward to K∗
(p), by the map ku(p) → K(p), we obtain classes τKj ∈ K∗

(p)(BU(n)) such

that τKj = cKj +
∑

k>j νkc
K
k , and yKj ∈ K∗

(p)(Wn,k) such that in the diagram

· · · // Ki
(p)(Wn,k)

δ // Ki+1
(p) (BU(n− k),Wn,k) // Ki+1

(p) (BU(n− k)) // · · ·

K̃(p)

i+1
(BU(n)),

α∗

OO

δ(yKj ) = α∗(τKj ), and one can show yKj give a set of generators for K∗
(p)(Wn,k). We now

multiply yKj by a power of β so that yKj ∈ K
−1
(p)(Wn,k). For the projective Stiefel manifold we

have

K∗
(p)(PWn,k) ∼= K∗

(p)⊗BP ∗BP ∗(PWn,k) ∼= ΛK∗
(p)

(pt)(γn−k+3, · · · , γn)⊗K∗
(p)

(pt)K
∗
(p)(pt)[[x]]/I

where |γi| = −1 and |x| = 0 and I is the ideal generated by {
(
n
j

)
xj |n − k < j ≤ n} [9]. We

are assuming p > n, so that

K∗
(p)(PWn,k) ∼= ΛK∗

(p)
(pt)(γn−k+3, · · · , γn)⊗K∗

(p)
(pt) K

∗
(p)(pt)[[x]]/(x

n−k+1)

where |γi| = −1 and |x| = 0. We may construct the K-theoretic algebra generators γKj via the

following analogue of (4.1.3)

0

��
K−1

(p)(PWn,k)

δ
��

0

��
K0

(p)(CP
∞, PWn,k)

i∗

��

K0
(p)(BU(n), BU(n− k))

f∗
oo

��
K0

(p)(CP
∞) K0

(p)(BU(n))
f∗0

oo

(4.3.10)

Identify K0
(p)(BU(n), BU(n−k)) with the ideal in K0

(p)(BU(n)) generated by cKj for n−k <

j ≤ n, and write uKj = f∗τKj . Since

f∗0 τ
K
j =

(
n

j

)
xjK +

∑
k>j

(
n

k

)
νkx

k
K = xjKµ

K
j ,
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where µKj is a unit in K∗
(p)(CP

∞), we see that

i∗(uKj − x
j−(n−k+1)
K

µKj

µKn−k+1

uKn−k+1) = 0.

Let γKj ∈ K
−1
(p)(PWn,k) be defined by

δγKj = uKj − x
j−(n−k+1)
K

µKj

µKn−k+1

uKn−k+1. (4.3.11)

In the following proposition, we show that γKj generates the exterior algebra part ofK∗
(p)(PWn,k).

Proposition 4.3.12. With notations as above,

K∗
(p)(PWn,k) ∼= ΛK∗

(p)
(pt)(γ

K
n−k+3, · · · , γKn )⊗K∗

(p)
(pt) K

∗
(p)(pt)[x]/(x

n−k+1).

Proof. Consider the homotopy fixed point spectral sequence [9, Proposition 2.1]

Es,t2 = Z[y]⊗Kt
(p)(Wn,k) =⇒ Ks+t

(p) (PWn,k),

and from the analogous computation of [9, Proposition 4.5] deduce that a set of elements

form generators of the exterior algebra part if they pullback to corresponding exterior algebra

generators of K∗
(p)(Wn,k). Consequently, it suffices to prove that π∗γKj = yKj in K∗

(p)(Wn,k).

From the diagram (4.1.2) we get the following commutative diagram extending (4.3.10)

K−1
(p)(Wn,k)

δ ∼=
��

K−1
(p)(PWn,k)

δ
��

π∗
oo

K0
(p)(E,Wn,k) K0

(p)(CP
∞, PWn,k)

π∗
oo K0

(p)(BU(n), BU(n− k)).
f∗
oo

Here we compute for j > n− k + 1,

δπ∗(γKj ) = π∗δ(γKj )

= π∗(uKj − x
j−(n−k+1)
K

µKj

µKn−k+1

uKn−k+1)

= π∗uKj (as π∗(x) = 0)

= π∗f∗(τKj ).
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On the other hand, we have the following diagram

U(n) //

{{xx
xx
xx
xx
x














��












∗

zzuu
uu
uu
uu
uu

����
��
��
��
��
��
��
��
�

Wn,k
//

��

BU(n− k)

��
E // BU(n)

which leads to the diagram below

K−1
(p)(Wn,k)

∼= //
� _

��

K0
(p)(E,Wn,k)

��

K0
(p)(BU(n), BU(n− k))oo

��
K−1

(p)(U(n)) ∼=
// K0

(p)(E,U(n)) K0
(p)(BU(n), ∗)oo

In the bottom row of above diagram image of yKj and image of τKj coincide by the construction of

yKj . So in the first row the same will happen for j > n−k. Hence we must have δπ∗γKj = δyKj ,

and δ being injective, we get our desired result.

4.3.13. Stable decompositions for PWn,k(p) . We verify the hypothesis of Theorem 4.3.7

for PWn,k if n < p. First, we prove a lemma regarding the image of the Chern character. Recall

that

H∗(PWn,k;Z(p)) ∼= ΛZ(γ
H
n−k+2, · · · , γHn )⊗ Z(p)[x]/(x

n−k+1)

with |γHj | = 2j − 1 as in (4.1.4), |x| = 2. In the following lemma, we use the construction

of γKj of (4.3.11) which generate the exterior algebra part of the K-theory of PWn,k(p) by

Proposition 4.3.12.

Lemma 4.3.14. For n − k + 2 ≤ j ≤ n , ch(γKj ) is a Q-linear combination of {γHs xt |

n− k + 2 ≤ s ≤ n, 0 ≤ t ≤ n− k}.

Proof. Consider the commutative diagram

K−1(PWn,k)
� � δ //

ch
��

K(CP∞, PWn,k)

ch
��

K(BU(n), BU(n− k))
(f0,f)∗

oo

ch

��
Hodd(PWn,k;Q) �

� δ // Hev(CP∞, PWn,k;Q) Hev(BU(n), BU(n− k);Q)
(f0,f)∗
oo
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with f , f0 as defined in (4.1.2). Now H∗(BU(n), BU(n− k);Q) is the ideal (cn−k+1, · · · , cn)

of H∗(BU(n);Q) = Q[c1, · · · , cn]. In these terms, we must have an equation of the form

ch(τKj ) = cn−k+1 · Pn−k+1,j + cn−k+2 · Pn−k+2,j · · ·+ cn · Pn,j

for some power series Pi,j ∈ Q[[c1, · · · , cn]]. The right commutative square in the above implies

(as (f0, f)
∗ preserves the multiplication of relative cohomology classes)

ch(uKj ) = ch(f∗τKj ) = f∗(cn−k+1)·f∗0 (Pn−k+1,j)+f
∗(cn−k+2)·f∗0 (Pn−k+2,j)+· · ·+f∗(cn)·f∗0 (Pn,j)

with f∗0 (Pi,j) ∈ H∗(CP∞;Q) = Q[[x]]. We may now compute from (4.3.11)

δch(γKj ) = ch(δγKj )

= ch(uKj − x
j−(n−k+1)
K

µKj

µKn−k+1

uKn−k+1)

= ch(f∗τKj − x
j−(n−k+1)
K

µKj

µKn−k+1

f∗τKn−k+1)

= f∗(cn−k+1) · f∗0 (Qn−k+1,j) + ρn−k+2 · f∗0 (Qn,j) + · · ·+ ρn · f∗0 (Qn,j),

where ρj is defined in (4.1.4) as,

ρj = uHj − xj−(n−k+1) µj
µn−k+1

uHn−k+1 = f∗(cj)− xj−(n−k+1) µj
µn−k+1

f∗(cn−k+1),

and for some polynomials Qi,j in the ci. The element δch(γKj ) maps to 0 in H∗(CP∞) from

which it follows that f∗0Qn−k+1,j must be 0, so that

δch(γKj ) = ρn−k+2 · f∗0 (Qn−k+2,j) + · · ·+ ρn · f∗0 (Qn,j).

We now write f∗0 (Qi,j) = ϕi,j(x), and use the fact that δ : H∗(PWn,k)→ H∗+1(CP∞, PWn,k)

is a map of H∗(CP∞)-modules, which implies

δch(γKj ) = ρn−k+2 · f∗0 (Qn−k+2,j) + · · ·+ ρn · f∗0 (Qn,j)

= δ(γHn−k+2) · ϕn−k+2,j(x) + · · ·+ δ(γn) · ϕn,j(x)

= δ(γHn−k+2) · ϕn−k+2,j(x) + · · ·+ γHn · ϕn,j(x)).

As δ is injective, we have that ch(γj) is a linear combination of γHj x
r where n− k+2 ≤ j ≤ n

and r ≤ n − 1. Further as xn−k+1 maps to 0 in H∗(PWn,k;Q), ch(γKj ) must be a Q-linear
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combination of the set described in the statement of the lemma.

We now have all the ingredients in place to prove that the projective Stiefel manifold splits

into a wedge of spheres in the stable homotopy category.

Theorem 4.3.15. Let p be a prime > n. Then, the p-localization of the projective Stiefel

manifold PWn,k(p) stably splits as a wedge of p-local spheres.

Proof. We verify that PWn,k satisfies the conditions of Theorem 4.3.7. The condition (2)

already follows from the expression of (4.1.1). We also have

dim(PWn,k) = 2nk − k2 − 1 = 2n(k − k2

2n
)− 1

< 2n(n− 1) as k ≤ n− 1

< 2p(p− 1) as n < p,

which verifies the condition (1). Finally, we have to verify that the Chern character ch has

image in H∗(PWn,k;Z(p)). As ch is a map of rings, it suffices to verify this on the generators

x and γKj of Proposition 4.3.12. The class x is the pullback of the complex orientation class

via PWn,k → CP∞, so we have

ch(x) = ex − 1 =

n−k∑
i=1

xi

i!
as xn−k+1 = 0,

which clearly lies in H∗(PWn,k;Z(p)) as p > n− k. The Chern character on the classes γKj is

described by Lemma 4.3.14 on which we now apply the integrality result of Adams [1, Theorem

1]. As Wn,k is 2(n− k)-connected, from the fibration

Wn,k → PWn,k → CP∞

we obtain that there is a cell structure on PWn,k whose 2(n−k)-skeleton is homotopy equivalent

to CPn−k. It follows that the restriction of the classes γKj to PW
(2(n−k))
n,k is 0 with respect to

this cell structure. The expression of Lemma 4.3.14 implies that the highest degree term which

may occur in the expression of ch(γKj ) is γHn x
n−k, and this lies in degree 2n − 1 + 2(n − k).

Therefore, following [1], we have ch2(n−k)+1+2r(γ
K
j ) = 0 if r ≥ n−1. For r < n−1 < (p−1),

the m(r) appearing in [1] is not divisible by p; so by [1, Theorem 1], the proof is complete.

Remark 4.3.16. The argument above may be easily modified to deduce that the spaces PℓWn,k

have a p-local stable decomposition into a wedge of spheres under the condition p > n, and
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∑
|I|=n−k+1 ℓ

I is not divisible by p. The latter condition implies that the cohomology of PℓWn,k

with Z(p)-coefficients is torsion-free by (4.1.5). The K-theory is also torsion-free, and the

generators may be chosen via the diagram (4.1.6) using the pair (BU(k), Grk(Cn)) in place

of (BU(n), BU(n − k)) in the calculations above. An analogous calculation implies that the

Chern character has image in Z(p) and then, we realize the p-local decomposition using Theorem

4.3.7.

4.4 Unstable p-local decompositions

In this section, we use the stable decomposition of the p-local PWn,k of §4.3 for p > n, to

deduce an unstable product decomposition. Throughout this section, we work in the category of

p-local spaces. As in §4.2, we compare PWn,k with the product Mn,k = CPn−k×S2(n−k)+3×

S2(n−k)+5 × · · · × S2n−1, which also stably decomposes into a wedge of spheres for p > n.

Note that if p > n, PWn,k and Y both have the same cohomology with Z(p)-coefficients.

In order to show the equivalence between PWn,k andMn,k, we construct maps from PWn,k

to the individual factors of Mn,k in the p-local category. This is possible for small values of k

in comparison to p and n. We first construct maps from PWn,k to CPn−k which lift the map

PWn,k → CP∞ ≃ K(Z, 2) classifying the class x ∈ H2(PWn,k).

Proposition 4.4.1. Suppose that p > n + 1 and k ≤ min{n, p + n −
√
p2 + n2 − 2p+ 1}.

Then, the map PWn,k → CP∞ lifts to CPn−k.

Proof. For n = k, there is nothing to prove. We assume n > k, and that we have a p-local

minimal cell structure on PWn,k via Proposition 4.3.2. The
(
2(n− k)+ 2

)
-skeleton of PWn,k

is homotopy equivalent to CPn−k. It suffices to prove that this equivalence extends all the way

to a map PWn,k → CPn−k.

We prove the extension by considering one cell attachment at a time. Suppose we have an

extension PW → CPn−k for a subcomplex PW of PWn,k. We consider the following diagram

which attaches a single cell to PW

Sq

ϕ

��
PW //

��

CPn−k,

C(ϕ)

::u
u

u
u

u
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and prove that the dashed arrow exists. This will be ensured if the composite Sq → CPn−k is

trivial. Up to homotopy, this lifts to Sq
α→ S2(n−k)+1, and it’s enough to show that this lifted

map is null-homotopic. We first check that α belongs to the stable range using [39, Corollary

3.2], which happens if q ≤ 2(n− k)p+ 2p− 3. Observe that

q ≤ dim(PWn,k)− 1 = 2nk − k2 − 2,

and that the quadratic equation in k

2nk − k2 − 2 = 2(n− k)p+ 2p− 3

has the positive zero (over R) as the second bound in the Proposition. Therefore, we are in the

stable range, and further dim(PWn,k) < 2p2 − 2p (which holds for p > n) guarantees that it

is in fact in the image of J-homomorphism as in the proof of Theorem 4.3.7. We prove that

the e-invariant of this map vanishes.

Note that α induces a map κ : C(ϕ) → CPn−k+1 on mapping cones. We consider the

diagram

PW //

��

CPn−k

��
C(ϕ)

κ //

��

CPn−k+1 //

��

C

��
Sq+1 Σα // S2n−2k+2 // C ′.

In this diagram the squares placed vertically come from the map between cofibre sequences and

so do the squares placed horizontally. It suffices to show e(Σα) vanishes. If not, there exists

τ ∈ K∗(C ′) such that ch(τ) ̸∈ H∗(C ′;Z(p))[u
±] from [2, Proposition 7.8]. Note that this

implies also that the Chern character of the image of τ in K∗(C) goes outside of the image of

H∗(C;Z(p))[u
±] ⊂ H∗(C;Q)[u±]. Our task boils down to checking that the Chern character

map for C takes value in the image of H∗(C;Z(p))[u
±] ⊂ H∗(C;Q)[u±].

We note that the diagram

PW //

��

CPn−k

��
C(ϕ)

κ //

��

CPn−k+1

��
PWn,k

// CP∞
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commutes, where the bottom row is the classifying map of the S1-bundle S1 →Wn,k → PWn,k.

Hence we get the following map between cofibrations,

C(ϕ)
κ //

��

CPn−k+1

��

// C

ω

��
PWn,k

// CP∞ // D

with D being the homotopy cofiber of PWn,k → CP∞. Applying K(p), we obtain the diagram

K−1
(p)(C(ϕ))

� � // K(p)(C) // K(p)(CPn−k+1)
κ∗ // K(p)(C(ϕ))

K−1
(p)(PWn,k)

OOOO

� � // K(p)(D)

OO

// K(p)(CP∞)

OOOO

// K(p)(PWn,k).

OOOO

Now surjectivity of the two terminal vertical arrows follow from the fact that C(ϕ) is sub-

complex of PWn,k under the minimal p-local CW structure (Proposition 4.3.2). In the proof of

Theorem 4.3.15, we have checked that the image of the Chern character for PWn,k lies inside

cohomology with Z(p)-coefficients, and so, the same is true for the image of K−1
(p)(C(ϕ)) inside

K(p)(C).

To complete the proof, we show that the Chern character carries ker(κ∗) toHev(C;Z(p))[u
±].

The composition CPn−k −→ C(ϕ)
κ−→ CPn−k+1 is homotopic to the inclusion, and so,

ker(κ∗) must be equal to the Z(p)-module generated by xn−k+1, where x is the complex ori-

entation of K-theory. Now consider the diagram obtained from (4.3.10),

K(p)(BU(n), BU(n− k)) f∗ //

��

K(p)(D)
ω∗

//

��

K(p)(C)

��
K(p)(BU(n)) // K(p)(CP∞) // K(p)(CPn−k+1).

We see that ω∗f∗cKn−k+1 ∈ K(p)(C) is mapped to
(

n
n−k+1

)
xn−k+1 ∈ K(p)(CPn−k+1). As(

n
n−k+1

)
is a unit in Z(p), it suffices to show that ch(ω∗f∗cKn−k+1) lies inH

ev(CPn−k+1;Z(p))[v
±].

We also notice that using computations analogous to Lemma 4.3.14

ch(ω∗f∗cKn−k+1) = ω∗f∗(ch(cKn−k+1))

= ω∗f∗(cn−k+1 · Pn−k+1 + · · ·+ cn · Pn) [where Pj ∈ Q[[c1, · · · , cn]] ]

= ω∗f∗cn−k+1 ·Qn−k+1 + · · ·+ ω∗f∗cn ·Qn [where Qj ∈ Q[x]/(xn−k+2) ]
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This computation shows that the maximum degree of the homogeneous parts of ch(ω∗f∗cKn−k+1)

is

|cn|+ |xn−k+1| = 2n+ 2(n− k + 1).

As κ : C(ϕ)→ CPn−k+1 is a (2n− 2k+1)-equivalence, C is (2n− 2k)-connected. Therefore,

as p > n+ 1, we apply [1, Theorem 1] to deduce the result.

Proposition 4.4.1 constructs for us the map from PWn,k → CPn−k. The remaining factors

in the product decomposition of Mn,k are spherical and maps are constructed via a connectivity

argument.

Proposition 4.4.2. If p > n and k ≤ min{n, (p + n) −
√
p2 + n2 − 4p+ 2}, then for 1 ≤

r ≤ k − 1, there is a map from PWn,k to S2(n−k)+2r+1 which pulls back the standard Z(p)-

cohomology generator of S2(n−k+r)+1 to the class γn−k+r ∈ H∗(PWn,k;Z(p)).

Proof. From the equivalence of Σ∞PWn,k and Σ∞Mn,k we get maps

νr : Σ
∞PWn,k → Σ∞S2(n−k+r)+1

for 1 ≤ r ≤ k−1, which satisfy ν∗r (ϵ2(n−k+r)+1) = γn−k+r. By the usual Σ
∞−Ω∞ adjunction,

we obtain a map of spaces

ν̃r : PWn,k → QS2(n−k+r)+1.

Now as we are in the p-local category, the fibre F (2(n − k + r) + 1) of the natural map

S2(n−k+r)+1 → QS2(n−k+r)+1 is (2p(n − k + r) + 2p − 4)-connected [39, corollary 3.2]. The

given bounds on k imply that dim(PWn,k) ≤ 2p(n− k + r) + 2p− 4. Hence, the map ν̃r lifts

to S2(n−k+r)+1, and we are done.

We let M(n, p) = p + n −
√
p2 + n2 − 4p+ 2, and summarize the results of Propositions

4.4.1 and 4.4.2 in the following theorem.

Theorem 4.4.3. Let p > n+ 1 and k ≤ min(n,M(n, p)). Then, in the p-local category

PWn,k ≃ CPn−k × S2n−2k+3 × · · · × S2n−1.

Observe that the bound on k holds whenever k < n/2. As in §4.2, the product decomposi-

tion of the projective Stiefel manifold implies an S1-equivariant decomposition of the complex

Stiefel manifold.
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Theorem 4.4.4. Let p > n + 1, and k ≤ min(n,M(n, p)). Then, we have an equivalence of

S1-spaces

Wn,k(p) ≃
[
S2(n−k)+1 × S2n−2k+3 × · · · × S2n−1

]
(p)
.

Proof. As both sides of the equivalence possess a free S1-action, it suffices to exhibit an S1-

equivariant map which is a weak equivalence. We use the map

ϕk : PWn,k → CPn−k

from Proposition 4.4.1 and pullback the circle bundle q : S2(n−k)+1 → CPn−k via ϕk. As ϕk is

a lift of the classifying map of the circle bundle Wn,k → PWn,k, we have a commutative square

Wn,k
ϕ̂k //

��

S2n−2k+1

��
PWn,k

// CPn−k.

We now observe that ϕ̂k is S1-equivariant as it fits in a pullback diagram of S1-bundles. We

now form the equivariant map

Wn,k → S2n−2k+1 ×Wn,k−1.

Now k−1 ≤M(n, p), and we proceed by induction assuming thatWn,k−1 supports the splitting

stated in the theorem, to deduce the result.

There are also analogous splittings for the spaces Wn,k;m and PℓWn,k.

Theorem 4.4.5. Let p > n+ 1, and k ≤ min(n,M(n, p)). Then, we have equivalences

(
Wn,k;m

)
(p)
≃

[
Lm(2n− 2k + 1)× S2n−2k+3 × · · · × S2n−1

]
(p)

if p | m,(
PℓWn,k

)
(p)
≃

[
CPn−k × S2n−2k+3 × · · · × S2n−1

]
(p)

if p ∤
∑

|I|=n−k+1

ℓI .

Proof. The S1-equivariant map Wn,k → S2n−2k+1 in Theorem 4.4.4 yields the map

Wn,k;m → Lm(2n− 2k + 1)

on Cm-orbits. The other factors receive maps via the composite

Wn,k;m → PWn,k → S2n−2k+2r+1
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where the latter map is defined by the equivalence of Theorem 4.4.3. The product of these

two maps imply the first p-local equivalence in the theorem. For the second equivalence, one

applies the stable decomposition for PℓWn,k outlined in Remark 4.3.16. After that, observe

that Proposition 4.4.2 works verbatim for PℓWn,k and Proposition 4.4.1 works analogously by

using the pair (BU(k), Grk(Cn)) instead of (BU(n), BU(n− k)).



Chapter 5

Characteristic classes on certain

quotients of Stiefel manifolds

In this chapter, we compute some topological invariants of projective Stiefel manifolds and

similar quotients of Stiefel manifols. In particular, we consider the circle quotient manifolds

which is defined as the quotient Vn,2k/S
1 with the circle acting via the diagonal embedding of

SO(2) inside SO(2k). The tangent bundle for these manifolds are computable, and together

with the cohomology calculation, we determine the characteristic classes of these manifolds.

We then discuss topological consequences for these manifolds.

5.1 Computations for projective Stiefel manifolds

In this section, we describe some geometric consequences for the real projective Stiefel manifolds,

which are derivable from the cohomology. We only use the cohomology with Z2-coefficients in

this section. Computations with Z-coefficients or Z(2)-coefficients is more involved even in the

case of Stiefel manifolds particularly when n < 2k.

Recall that the Z2-cohomology of PVn,k was determined in [19].

H∗(PVn,k;Z2) = Z2[x]/(x
N )⊗ V (A), for k < n,

where N = min{j | n − k < j ≤ n, and
(
n
j

)
is odd }, A = {yj | n − k ≤ j < n} − {yN−1}

and |x| = 1, |yj | = j. This is computed using the Serre spectral sequence for the fibration

Vn,k → PVn,k → RP∞. The differentials are computed using the commutative diagram of

63
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fibrations

Vn,k //

��

Vn,k

��
PVn,k //

��

BO(n− k)

��
RP∞ // BO(n).

In fact, the bottom square is a homotopy pullback diagram, which may be used to describe

homotopy classes of maps into PVn,k. Proceeding in this direction, one discovers that the

PVn,k classifies line bundles L such that nL has k linearly independent sections.

The tangent bundle of PVn,k was determined in [27] and satisfies the following relation

T (PVn,k)⊕
(
k + 1

2

)
ϵ = nkζn,k, (5.1.1)

where ζn,k is the Hopf bundle over PVn,k. The computation of the tangent bundle is done

via the 2k−1-sheeted covering space PVn,k → Fk(Rn), where the latter is the space of flags

V0 ⊂ V1 ⊂ · · · ⊂ Vk of subspaces of Rn with dim(Vi) = i.

The computation of the tangent bundle (5.1.1) allows us to calculate the Stiefel Whitney

classes of PVn,k. These Stiefel-Whitney classes may also be calculated using the cohomology

and Steenrod operations via Wu’s formula. Note that the total Stiefel Whitney class of ζn,k is

described by

w(ζn,k) = 1 + x.

By the Whitney sum formula, we obtain,

w(T (PVn,k)) = (1 + x)nk. (5.1.2)

5.1.1 Skew embeddings of PVn,k

The Stiefel Whitney classes for a manifold may also be viewed as obstructions to trivializing

vector bundles, and also to constructing linearly independent sections therein. The span of a

manifold is the maximum number of linearly independent sections. For the projective Stiefel

manifold, there are bounds on the span proved using the Stiefel Whitney classes and also by

K-theory calculations [35].

A general embedding problem for a manifold Mn of dimension n seeks to find the precise k

such thatMn embeds in Rn+k. An analogous statement may also be formulated for immersions.

In this case, the Stiefel Whitney class of the stable normal bundle provides an obstruction to the
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immersion dimension. More precisely, consider w̄(M) = w(M)−1, and suppose w̄k(M) ̸= 0.

Then, the manifold does not immerse in Rn+k−1.

An embedding of a manifold inside the Euclidean space RN is called totally skew if the

affine subspaces of RN associated to the tangent space at different points are skew. Two affine

subspaces V,W of RN are called skew, if their affine span has dimension dim(V )+dim(W )+1.

For a smooth manifold M , we define

N(M) = min{n |M admits a skew embedding in Rn}

Suppose an n dimensional manifold M admits a skew embedding inside RN . Then the “skew-

ness” condition ensures that there is a vector bundle monomorphism

T (F2(M))⊕ ϵ −→ F2(M)×RN ,

where F2(M) = M ×M − ∆(M), and this in turns implies that if w̄k(T (F2(M)) ̸= 0 then

N ≥ 2N + k + 1. In particular, this gives us a lower bound for N(M) :

N(M) ≥ 2n+ k + 1.

The authors in [8] then found a condition in terms of the Stiefel Whitney classes of M to

produce a k for which w̄k(T (F2(M)) ̸= 0.

Theorem 5.1.1. [8] If k := max{i | w̄i(M) ̸= 0}, then w̄2k(T (F2(M)) ̸= 0 and hence

N(M) ≥ 2n+ 2k + 1.

Then we have a direct consequence of the above result for M = PVn,k.

Theorem 5.1.2. N(PVn,k) satisfies the following inequality

N(PVn,k) ≥ 2 dim(PVn,k) + 2m+ 1,

where m = max{j |
(
nk+j−1
nk−1

)
̸= 0 and 0 ⩽ j ⩽ N − 1} and N = min{j |

(
n
j

)
odd and n− k <

j ≤ n}.

Proof. From the description of the stable tangent bundle of PVn,k, we obtain the total Stiefel-

Whitney class of PVn,k as follows

w(PVn,k) = (1 + x)nk.
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From this we can see

m = max{j |
(
nk + j − 1

nk − 1

)
̸= 0 and 0 ⩽ j ⩽ N − 1} = max{j | w̄j(PVn,k) ̸= 0}.

Applying 5.1.1 we get N(PVn,k) ⩾ 2 dim(PVn,k) + 2m+ 1.

5.1.2 Characteristic rank of projective Stiefel manifolds

Let X be a connected finite CW-complex and ξ a real vector bundle over X. The characteristic

rank of ξ over X, denoted by charrankX(ξ), is by definition the largest integer k, 0 ⩽ k ⩽

dim(X), such that every cohomology class x ∈ Hj(X;Z/2), 0 ⩽ j ⩽ k, is a polynomial in the

Stiefel-Whitney classes wi(ξ).The upper characteristic rank ofX, denoted by ucharrank(X),

is the maximum of charrankX(ξ) as ξ varies over all vector bundles over X.

The main result regarding the characteristic rank for Stiefel manifolds shows that the lowest

degree non-zero class in cohomology usually does not arise as a Stiefel-Whitney class of a vector

bundle, [25]. On the other hand, when we consider a quotient of a Stiefel manifold Vn,k/G,

the classes in low degrees naturally arise from characteristic classes of G-representations. In

the case of the projective Stiefel manifold with Z/2-coefficients, the class x and it’s powers

are expressable in terms of Stiefel-Whitney classes of bundles. The remaining part which is

additively an exterior algebra pulls back non-trivially to the Stiefel manifold, and this is usually

not representable in terms of Stiefel-Whitney classes of bundles. We elaborate this in the next

few results.

We start with a lemma which will be used later.

Lemma 5.1.3. For any real vector bundle ξ over V8r+1,2 with r > 1, the class w8r(ξ) = 0.

Proof. We have the following pushout diagram

RPn−2 × Vn−1,k−1
//

��

Vn−1,k−1

��
RPn−1 × Vn−1,k−1

// Vn,k

This tells us that the cofiber of the map Vn−1,k−1 −→ Vn,k is Σn−1(Vn−1,k−1)+.

Now taking (n, k) = (8r + 1, 2) gives the following cofiber sequence

S8r−1 −→ V8r+1,2 −→ Σ8rS8r−1
+ .
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Applying K̃O on it we get the following exact sequence

K̃O(Σ8rS8r−1
+ ) −→ K̃O(V8r+1,2) −→ K̃O(S8r−1).

Now we know K̃O(S8r−1) = π8r−1(BO) = π7(BO) = 0. So K̃O(Σ8rS8r−1
+ ) −→ K̃O(V8r+1,2)

must be a surjection. But we have

K̃O(Σ8rS8r−1
+ ) = K̃O(S16r−1 ∨ S8r)

= K̃O(S16r−1)⊕ K̃O(S8r)

= π7(BO)⊕ K̃O(S8r)

= K̃O(S8r)

So we have a surjection K̃O(S8r) −→ K̃O(V8r+1,2). This means any stable bundle over V8r+1,2

is a pullback of a stable bundle over S8r by this composed map. But wn(ξ) = 0 for any vector

bundle ξ over Sn whenever n ̸= 1, 2, 4, 8 [29]. So for r > 1, w8r(ξ) = 0 for any vector bundle

ξ over S8r and hence same is true for V8r+1,2 as well.

Theorem 5.1.4. If n− k = 5, 6 or ≥ 9, the upper characteristic rank of PVn,k is given by

ucharrank(PVn,k) =


n− k − 1 if 2 |

(
n
k−1

)
n− k if 2 ∤

(
n
k−1

)
.

Proof. First we consider the case n − k ̸= N − 1, then ucharrank(PVn,k) < n − k, since

yn−k ∈ Hn−k(PVn,k) can not be a polynomial combination of Stiefel-Whitney classes of some

bundle ξ over PVn,k. Because otherwise the pullback of yn−k via the map Vn,k −→ PVn,k

would be a polynomial combination of Stiefel-Whitney classes of the pullback bundle of ξ over

Vn,k contradicting [25]. Moreover we can easily see charrank(ζn,k) = n− k− 1. So in this case

ucharrank(PVn,k) = n− k − 1.

On the other hand for n− k = N − 1, Hn−k(PVn,k) = Z2⟨xn−k⟩ and Hn−k+1(PVn,k) =

Z2⟨yn−k+1⟩. If n−k+1 is not a power of 2, then yn−k+1 cannot be a polynomial combination

of Stiefel-Whitney classes because of the cohomology ring structure of H∗(PVn,k;Z2) and from

the fact that the Stiefel-Whitney classes of a bundle are generated by the Stiefel-Whitney classes

of degree powers of 2 of that bundle over the Steenrod algebra (this fact is a consequence of

Wu’s formula) [30]. So in this case ucharrank(PVn,k) = n− k since charrank(ζn,k) = n− k.
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Now we consider the case where n−k = N −1, and n−k+1 = 2s, for some s > 3. In this

case the only way yn−k+1 can be a polynomial in Stiefel-Whitney classes is if yn−k+1 = wn−k+1.

But the lemma 5.1.3 rules out this possibility and we get ucharrank(PVn,k) = n− k.

We also note that one may carry the argument above forward to even obtain partial results

in the cases n − k = 1, 2, 3, 4, 7, 8. For example, if n − k = 1, we observe that if n ≡ 2, 3

(mod 4), then N = 2, so the first class in the exterior algebra part is y2. This pulls back non-

trivially to Vn,k, where y2 = y21, and y1 is a first Stiefel-Whitney class. Thus, y2 is expressible

using Stiefel-Whitney classes over Vn,k. However, this does not allow us to deduce that y2 is

thus, expressible over PVn,k. On the other hand if n ≡ 0, 1 (mod 4), the first possible value

of N is 4, and if we further assume that
(
n
4

)
≡ 0 (mod 2), then y3 survives in the cohomology

of PVn,k. From [25], we know that y3 is not expressible in terms of Stiefel-Whitney classes in

Vn,k, so we have ucharrank(PVn,k) = 2 in this case.

5.1.3 The complex case

For the complex projective Stiefel manifold PWn,k =Wn,k/S
1, recall that the Z2-cohomology

is determined additively in [6].

H∗(PWn,k;Z2) = Z2[x]/(x
N )⊗ ΛZ2(A), for k < n,

where N = min{j | n − k < j ⩽ n, and
(
n
j

)
is odd }, A = {yj | n − k < j ⩽ n} − {yN−1}

and |x| = 2, |yj | = 2j− 1. We compute the characteristic rank in the proposition below, which

turns out to be much easier in this case.

Proposition 5.1.5. The upper characteristic rank of PWn,k is given by

ucharrank(PWn,k) =


2(n− k) if 2 |

(
n
k−1

)
2(n− k) + 2 if 2 ∤

(
n
k−1

)
.

Proof. Here the first class which appears in the exterior algebra part of the cohomology is in odd

degree. The lower classes belong to the algebra generated by x which is closed under products

and Steenrod operations. By Wu’s formula, a Stiefel-Whitney class in degree which is not a

power of 2, is expressible in terms of lower degree Stiefel-Whitney classes via the multiplication

and Steenrod operations. This implies that the first generator of the exterior algebra part of the

cohomology cannot be expressible in terms of Stiefel-Whitney classes. The result follows.
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5.2 The circle quotient Stiefel manifolds

There may be many circle actions defined on a real Stiefel manifold Vn,k. The ones that give us

a homogeneous space act via a homomorphism S1 → O(k), where the latter acts on the Stiefel

manifold by an orthogonal transformation on the vectors. This comes from a homomorphism

into a maximal torus of O(k), and up to conjugation they are a block diagonal inclusion of

products of SO(2). As in the case of projective Stiefel manifolds, we look at the diagonal

inclusion of S1 in the maximal torus. This gives us a manifold that we call the circle quotient

Stiefel manifold, which is more precisely defined below.

We define the space Yn,k as the orbit space of the S1-action on Vn,2k defined as follows:

We consider S1 as SO(2) embedded inside the maximal torus SO(2)k ⊂ SO(2k) by diagonal

map. Then the action of our interest is the restriction of the action of SO(2k) on Vn,2k from

right by matrix multiplication.

The construction gives a principal fiber bundle

S1 −→ Vn,2k −→ Yn,k.

The complex line bundle associated to this principal bundle over Yn,k will be denoted by ζ. We

denote the realification of ζ by ζr.

From the definition of Yn,k, it is clear that we have the following diagram of fibrations:

SO(2) //

∆
��

Vn,2k // Yn,k

π
��

q

��

SO(2)k //

��

Vn,2k // F̃

p

��
O(2)k // Vn,2k // F,

(5.2.1)

where F̃ is the 2k-sheeted cover of F , the space of flags V0 ⊂ V1 ⊂ · · · ⊂ Vk of subspaces

of Rn with dim(Vi) = 2i. The canonical real vector bundles over F will be denoted by ξj ,

for 1 ⩽ j ⩽ k + 1 and rank of ξj = 2, for 1 ⩽ j ⩽ k. Recall that the tangent bundle of F ,

TF ∼=
⊕

1⩽i<j⩽k+1 ξi ⊗R ξj , [27].

5.2.1 The tangent bundle of Yn,k

We now identify the tangent bundle of Yn,k in following theorem.
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Theorem 5.2.1. The tangent bundle of Yn,k is described as

TYn,k =

(
k

2

)
ζr ⊗R ζr ⊕ (kζr ⊗R q

∗ξk+1)⊕ (k − 1)ϵ,

and additionally it satisfies the following relation

TYn,k ⊕
(
k + 1

2

)
ζr ⊗R ζr = nkζr ⊕ (k − 1)ϵ.

Proof. From 5.2.1 we obtain the principal bundle

SO(2)k

∆(SO(2))
−→ Yn,k

π−→ F̃ .

The tangent bundle is a direct sum of pullback of the tangent bundle of the base and the vector

bundle which restricts to the tangents along each fibre, with the latter being a trivial bundle.

Now we can determine the tangent bundle of Yn,k as follows:

TYn,k ∼= π∗T F̃ ⊕ (k − 1)ϵ

∼= q∗TF ⊕ (k − 1)ϵ

∼= q∗
( ⊕

1⩽i<j⩽k+1

ξi ⊗R ξj

)
⊕ (k − 1)ϵ

∼=
(
k

2

)
ζr ⊗R ζr ⊕ (kζr ⊗R q

∗ξk+1)⊕ (k − 1)ϵ

Since
⊕

1⩽j⩽k+1 ξj = nϵ, by pulling back both sides via q∗ we have kζr ⊕ q∗ξk+1 = nϵ. So

from the previous formula for TYn,k, we have

TYn,k ⊕
(
k + 1

2

)
ζr ⊗R ζr = nkζr ⊕ (k − 1)ϵ.

Once we have the formula for the tangent bundle of Yn,k, we may start analyzing questions

regarding the number of linearly independent vector fields, restrictions on immersions into Eu-

clidean space, skew embeddings, and characteristic rank. The necessary ingredient in the entire

matter is the cohomology calculation for Yn,k.
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5.2.2 Z2-cohomology of Yn,k

As the action of S1 on Vn,2k occurs via a homomorphism D : S1 → O(2k), we have the

following commutative diagram

S1 //

��

O(2k)

��
Vn,2k //

��

Vn,2k

��
Yn,k //

��

Gr2k(Rn)

��
CP∞ // BO(2k),

where the rows are part of a homotopy fibration sequence. As a consequence the bottom square

gives a homotopy pullback diagram

Yn,k //

��

Gr2k(Rn)

��
CP∞ // BO(2k).

This implies that the circle quotient Stiefel manifold Yn,2k has the following universal property.

Proposition 5.2.2. Up to homotopy, the space Yn,k classifies complex line bundles ξ such that

for the realification r(ξ), kr(ξ) has a complimentary bundle µ of dimension n − 2k. (That is,

µ⊕ kr(ξ) = nϵ.)

The fibrations above allow us to compute the cohomology of Yn,k.

Theorem 5.2.3. The Z2-cohomology of Yn,k is (additively)

H∗(Yn,k;Z2) ∼= ΛZ2(yn−2k, · · · , ŷ2J−1 , · · · , yn−1)⊗ Z2[x]/(x
J),

where deg(yj) = j and x is the mod 2 Euler class of the bundle ζ, and J = min{r |(
k+r−1
k−1

)
is odd and n− 2k ⩽ 2r ⩽ n− 1}.
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Proof. We consider the following commutative diagram of fibrations

Vn,2k // Yn,k //

��

CP∞

��
Vn,2k // Gr2k(Rn) // BO(2k).

(5.2.2)

It is known that H∗(Vn,k;Z2) is additively exterior algebra on generators {yj | n− k ⩽ j < n},

with deg(yj) = j, [14]. We want to compute the action of differentials on yj ’s in the spectral

sequence associated to first row of 5.2.2. This is done by comparing the spectral sequences

associated to the diagram 5.2.2. But the spectral sequence for the bottom row of 5.2.2 was

done in [11] and says that yj ’s are transgressive with τ(yj) = w̄j+1, where w̄j+1 is the (j +1)-

th inverse universal Stiefel-Whitney class. So we know yj ’s are transgressive in the spectral

sequence of our interest and image of the transgression is given below.

The map CP∞ −→ BO(2k) is the classifying map for the k-fold Whitney sum of the

underlying real 2-plane bundle r(γ1) of the canonical complex line bundle γ1. So we can

conclude w(kr(γ1)) = (1 + x)k and hence w(kr(γ1)) = (1 + x)−k. So

τ(yj) = wj+1(kr(γ
1)) =


(k+ j+1

2
−1

k−1

)
x

j+1
2 if j is odd

0 if j is even.

This calculation enables us to determine the E∞-page of the spectral sequence associated to

the first row of the diagram and will be equal to

E∞ = V (S)⊗ Z2[x]/(x
J),

where S = {yj | n− 2k ⩽ j ⩽ n− 1}−{y2J−1} and J = min{r |
(
k+r−1
k−1

)
is odd and n− 2k ⩽

2r ⩽ n− 1}. Now choosing lifts of the elements in S we can conclude that additively

H∗(Yn,k;Z2) ∼= ΛZ2(yn−2k, · · · , ŷ2J−1 , · · · , yn−1)⊗ Z2[x]/(x
J),

where deg(yj) = j and x is the mod 2 Euler class of the bundle ζ, and J = min{r |(
k+r−1
k−1

)
is odd and n− 2k ⩽ 2r ⩽ n− 1}.
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5.3 Computations for the circle quotient manifolds

Computations described in section 3 will allow us to obtain numerical information for certain

topological invariants for spaces Yn,k.

5.3.1 Stable span and paralleizability of Yn,k

We shall check the parallelizability of Yn,k using the relation obtained for TYn,k in 5.2.1.

The total Pontryagin class for ζr is p(ζr) = 1 + x20, where x0 ∈ H2(Yn,k;Z) is the Euler

class of ζ and whose mod 2 reduction is x. To determine the total Pontryagin class for

ζr ⊗R ζr, we note that the complexification of ζr ⊗R ζr is (ζ ⊗C ζ) ⊕ (ζ∗ ⊗C ζ
∗) ⊕ 2ϵ. Hence

p(ζr ⊗R ζr) = 1 + 4x20.

So from the following relation relating the first Pontryagin classes:

p1(TYn,k) = p1(nkζr)− p1(
(
k + 1

2

)
ζr ⊗R ζr),

we get p1(TYn,k) = (nk − 2k2 − 2k)x20. Considering n − 2k ≥ 4, if we look at the Gysin

sequence for the circle bundle Vn,2k −→ Yn,k, we have

0 = H3(Vn,2k) // H2(Yn,k)
∪x0 // H4(Yn,k) // · · · .

This ensures x20 is non-zero and hence p1(TYn,k) ̸= 0. Hence we obtain

Theorem 5.3.1. If n− 2k ⩾ 4, Yn,k is not parallelizable.

The above theorem is a special case of a very general result due to Singhof and Wemmer

[36], which further guarantees that for n− 2k ⩾ 4, Yn,k is not even stably parallelizable. Their

theorem also implies for n− 2k = 1 or 2, Yn,k is stably parallelizable whereas for n− 2k = 3 it

is not.

Recall that span of a vector bundle is its maximum number of linearly independent sections.

We know Stiefel Whitney classes for a manifold M provide an upper bound for its stable span,

span0(M) = span(TM ⊕ ϵ)− 1 . That bound for Yn,k is described in the theorem below.

Theorem 5.3.2. If

m := max{j |
(
nk + j − 1

nk − 1

)
̸≡ 0 (mod 2), 0 ⩽ j ⩽ J − 1},
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then 2m-th inverse Stiefel-Whitney class of Yn,k, w̄2m(Yn,k) is non-zero and hence stable span

of Yn,k satisfies the following inequality

span0(Yn,k) ⩽ dim(Yn,k)− 2m.

Proof. The formula 5.2.1 for tangent bundle of Yn,k allows us to calculate its total Stiefel-

Whitney class.

w(Yn,k) = w(nkζr) · w
((k + 1

2

)
ζr ⊗R ζr

)−1

= (1 + x)nk · w
(
ζr ⊗R ζr

)−(k+1
2 )
.

(5.3.1)

To determine the total Stiefel-Whitney class of ζr ⊗R ζr, we apply splitting principle for this

bundle. Suppose the bundle ζr splits as L1⊕L2 over Y
′. Then ζr⊗Rζr splits as

⊕
1⩽i,j⩽2 Li⊗R

Lj over Y
′. We calculate the total Stiefel-Whitney class of

⊕
1⩽i,j⩽2 Li ⊗R Lj below:

w
( ⊕
1⩽i,j⩽2

Li ⊗R Lj
)
=

∏
1⩽i,j⩽2

w(Li ⊗R Lj)

=
∏

1⩽i,j⩽2

(1 + w1(Li) + w1(Lj))

= (1 + w1(L1) + w1(L2))
2

= (1 + w1(L1 ⊕ L2))
2 = 1.

Hence we must have w
(
ζr ⊗R ζr

)
= 1. So from 5.3.1, we get

w(Yn,k) = (1 + x)nk =⇒ w̄(Yn,k) = (1 + x)−nk. (5.3.2)

Then from the definition of m, we see that w̄2m(Yn,k) ̸= 0 and the theorem follows.

5.3.2 Skew embedding and immersion dimensions of Yn,k

The result concerning non-vanishing of inverse Stiefel-Whitney class stated in theorem 5.3.2

immediately produces lower bounds of skew embedding and immersion dimension of Yn,k.

Theorem 5.3.3. Yn,k does not admit an immersion in Rdim(Yn,k)+2m−1 and a skew embedding

in R2dim(Yn,k)+4m, where

m = max{j |
(
nk + j − 1

nk − 1

)
̸≡ 0 (mod 2), 0 ≤ j ≤ J − 1}.
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Proof. The statement concerning immersion follows since Stiefel-Whitney classes of the normal

bundle of an immersion in an Euclidean space are same as the inverse Stiefel-Whitney classes

of tangent bundle.

The statement about skew embedding follows directly by combining theorems 5.1.1 and

5.3.2.

5.3.3 Characteristic rank of Yn,k

We shall determine the upper characteristic rank of Yn,k for a large number of cases.

Theorem 5.3.4. If n− 2k = 5, 6 or ≥ 9, the upper characteristic rank of Yn,k is given by

ucharrank(Yn,k) =


n− 2k − 1 if 2 |

(
n

2k−1

)
n− 2k if 2 ∤

(
n

2k−1

)
.

Proof. The proof is similar to the proof of theorem 5.1.4. First we consider the case n− 2k ̸=

2J−1. Then there is a non-zero class yn−2k ∈ Hn−2k(Yn,k) which is pulled back to the generator

ofHn−2k(Vn,2k;Z2) = Z2 and which is not expressible as a polynomial in Stiefel-Whitney classes

of some bundle over Yn,k because that would contradict the fact that ucharrank(Vn,2k) =

n− 2k − 1, [25] otherwise. So in this case we must have ucharrank(Yn,k) = n− 2k − 1 since

charrank(ζ) = n− 2k − 1.

Next we consider the case n− 2k = 2J − 1. Then
⊕

0⩽i⩽n−2kH
i(Yn,k;Z2) = Z2[x]/(x

J)

and Hn−2k+1(Yn,k;Z2) = Z2{yn−2k+1}. So for n− 2k+1 ̸= a power of 2, Wu’s formula rules

out the possibility of yn−2k+1 being Stiefel-Whitney class of a bundle over Yn,k and we get

ucharrank(Yn,k) = n − 2k. And for n − 2k + 1 = a power of 2 greater than 8, invoking the

lemma 5.1.3 one again obtains ucharrank(Yn,k) = n− 2k.
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