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ABSTRACT

Time Series Classification (TSC) involves assigning a target label based on features

involving time series data. TSC arises in a variety of domains, like healthcare, fi-

nance, process control, weather pattern prediction, etc. This work is focused on

exploiting both frequency and time domains of a time series. Inspired by the

TimesNet proposed in [27], which learns multi-periodic variations, we proposed

Time-Frequency Network (TFNet), a novel Deep Learning model, and applied it

to irregular medical time series data. Earlier methods used either only features

captured in the time domain or in the frequency domain. It is di�cult to learn

both temporal dependencies and understand cyclic or seasonality patterns when

analyzed in a single domain. To tackle these limitations, we extend the TimesNet

model to perform time domain analysis. Our proposed TFNet achieves an im-

proved performance when applied to in-hospital mortality (IHM) prediction based

on 48 hours of ICU stay, on a dataset extracted from Medical Information Mart

for Intensive Care (MIMIC-III).

Keywords: Time Series Classification, TimesNet, MIMIC-III, In-hospital mor-

tality, irregular time series, Time-Frequency Network
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Chapter 1

Introduction

The history of deep learning dates back to the development of artificial neural net-

works (ANNs) in the 1940s. The structure and functioning of biological neurons

in the human brain inspired the concept of neurons in ANNs. The early years

focused on developing basic models and understanding their computational capa-

bilities. In the 1960s and 1970s, significant progress was made in the field of neural

networks with the development of the perceptron model by Frank Rosenblatt. Af-

ter Geo↵rey Hinton introduced the backpropagation algorithm in the 1980s, deep

learning gained a lot of attention. In 2012, AlexNet [15], a deep convolutional

neural network (CNN), won the ImageNet Large-Scale Visual Recognition Chal-

lenge (ILSVRC) [20] and significantly outperformed traditional computer vision

approaches; this success illustrated the capabilities of deep learning in image clas-

sification and also sparked researchers working on other domains, such as time

series, natural language processing, speech recognition, machine translation, and

many others. In the coming years, researchers have developed numerous deep

learning models that are applied across domains and have shown significant im-

provement in tackling those problems. RNN-like models, such as LSTM, published
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in the 1990s, have been applied to sequential data and have shown state-of-the-art

performance, until the introduction of Attention and Transformers, in 2014, which

took center stage in di↵erent areas with its superior results. O↵ late, RNN-likes

and Transformers are modeled to solve problems like forecasting, classification,

etc., based on time series. Time series data occur in many real-world applications

like weather forecasting, Electronic Health Records (EHR) [8], next-frame detec-

tion in video, pose estimation, electricity load forecasting, etc. One interesting

problem with time series data is to classify them by learning good representations.

Owing to the success of deep learning and an increase in the scale with which the

time series data is available, the deep learning community showed interest in Time

Series Classification (TSC) and developed a wide array of models ranging from

RNN-like models to applying transformers, to developing more complex domain-

specific models which address issues present in a typical time series data, such as

missing data, irregular time series etc.

During the same period, the world has seen an increase in the adoption of Elec-

tronic Health Record (EHR) systems by hospitals and healthcare facilities, mainly

to store patient information digitally and perform administrative tasks. Just In the

United States, the percentage of non-federal hospitals equipped with basic digital

systems rose from 9.4% to 75.5% between 2008 and 2014 [3]. EHR systems store

patient details, demographic data, prescriptions, diagnoses, laboratory test results,

clinical notes, microbiology reports, ventilation settings, procedure codes, and so

on. Lately, researchers have applied machine learning to several clinical or medical

applications such as information extraction, phenotyping, patient de-identification,

generating privacy-preserving data, and predictive tasks based on EHR data [22].

However, note that It is to be noted however that applying scoring systems for

clinical tasks dates back to the 1950s; notably, the Apgar risk score, which allows
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scores based on a predefined chart to evaluate the condition of neonates, was first

published in 1952.

Most of the clinical tasks based on EHR data were performed by classical ma-

chine learning techniques such as support vector machines (SVM) and random

forests until the late 2000s; recently, due to the explosion in the size of EHR data,

deep learning approaches have been found suitable to be applied for the clinical

tasks. Also, since deep learning learns deep feature representations, the need for

hand-engineered features for classical techniques, which would require domain ex-

perts, has been mitigated. There are several EHR databases, both public and

private, in terms of availability, e.g., Several versions of Medical Information Mart

for Intensive Care (MIMIC) and the eICU collaborative research database are two

well-known publically available databases. In this work, we perform our experi-

ments on a benchmark dataset extracted from the MIMIC-III database.

MIMIC-III, available on physionet.org [12], [13] clinical database is a relational

database generated in a single EHR system from 2001 to 2012; it contains over

40,000 de-identified critical care patients with 60,000 ICU stays and lots of events

that include laboratory reports and recorded medical variables. Researchers have

been utilizing the database to investigate several tasks, such as predicting clinical

outcomes, developing risk prediction models, analyzing treatment patterns, under-

standing disease progression, and exploring various other aspects of critical care

medicine.

In this work, we focus on one such outcome prediction task: In-hospital mor-

tality risk prediction. Such predictions on in-hospital mortality are extensively

researched due to their importance in acute care and to improve clinical outcomes

of high-risk patients. While most clinical tasks come with the issue of the in-
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availability of public benchmarks, Hrayr Harutyunyan et al. has extracted four

benchmark datasets from the MIMIC-III [10]. The extraction of such standardized

benchmarks has helped various researchers develop newer techniques and perform

experiments on those benchmarks. We briefly describe our task and our proposed

model in the following sections.

The In-hospital mortality (IHM) task is a binary classification task(target label

indicates if the patient died before hospital discharge) that involves predicting

mortality based on the first 48 hours of ICU stay; figure 1.1 depicts the IHM task,

the majority class indicating the patient has not died has 18342 samples, and the

minority class has 2797 samples, which informs that the data is imbalanced.

Figure 1.1: Diagram depicting the in-hospital mortality task

The use of both temporal and frequency domain analysis on medical time se-

ries is first suggested in UA-CRNN [24]. Inspired by this idea, we propose the

Frequency-Time Network or FTNet, a novel deep learning model that extracts

information in both the time and frequency domain from the multivariate time

series. First, we use the TimesBlock [27] module as the component that extracts

multi-period variations in the time series by an analysis in the frequency domain.

After extracting deep multi-period features, we employ a bidirectional GRU to

learn temporal dependencies. Our model reports better recall for the minority
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class and improved performance in Area Under Precision-Recall Curve (AUPRC)

compared to the baselines. Although existing research compared model perfor-

mances based on Area Under Reciever Operating Curve (AUC-ROC) scores, due

to the presence of class imbalance( 13% positive class) in our dataset, AUPRC is

more informative of the model’s performance, as claimed by Davis et al. in [7]

Outline of the report, in Chapter 2, we briefly discuss various deep-learning

approaches applied to the in-hospital mortality prediction task. Chapter 3 begins

with a discussion of recent transformer architectures and linear models designed

for time series problems. We then discuss in detail the TimesNet architecture [27],

which is the building block in our proposed model. Later, the proposed method

is then discussed in detail. The chapter that follows includes details of dataset

extraction and baseline models. The results obtained by our proposed model and

by transformer models and linear models are reported in Chapter 4. We conclude

in Chapter 5, discussing possible future directions for the in-hospital mortality

prediction task.
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Chapter 2

Literature Review

Medical time series data often are irregular with a lot of missing values due to a

variety of reasons, since laboratory records and other observations, such as weight,

etc., are not recorded at every timestamp or for reducing costs incurred for car-

rying these observations. In [19], it was observed that missing patterns provide

information about the final outcome in tasks like time series classification. Che et

al. in [4] term this type of missingness “informative missingness.”

Previously lot of approaches were developed to tackle the missing value issue in

time series [21]. One solution to address this issue is to simply ignore the data with

missing observations and perform the analysis on the observed data. However, this

results in a loss of data, especially when the missingness pattern contributes to the

target label. Then approaches to fill the missing data, with various methods viz.

Interpolation of observed values [14], kernel methods [18], the use of EM algorithm

[9], but these approaches don’t explore the missing patterns e↵ectively, and often

imputations are in contrast to the predictive model, resulting in poor predictions

[26].
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Lipton et al. in [16], and Choi et al. in [6] tried to resolve the issue of miss-

ing values by modifying RNN-like models LSTM and GRU to encode the missing

patterns by concatenating missing value masks with the inputs. But directly con-

catenating the missing masks does not give enough information to the model about

the exact location of the missing value in the time series. To better encode the

missing mask into the model, Hrayr et al. in [10] have tried to capture missingness

patterns with the use of masking information, which is fed alongside the actual time

series in a channel-wise LSTM architecture that treats features independently and

finally concatenates learned representation for classification. However, this way of

treating features independently results in the loss of correlation information among

features. Hrayr et al. also proposed a multi-task LSTM model, suggesting that

solving multiple clinical tasks simultaneously would be a promising direction to

solve individual tasks e↵ectively. On similar lines to the multi-task models, Pu-

rushotham et al. in [17] proposed a Multimodal Deep Learning Model (MMDL)

that learns shared representations by using an ensemble of feed-forward networks

and GRU. The main idea of MMDL is to capture correlations across multiple

modalities.

To e↵ectively capture missing patterns, Che et al. in [4] proposed GRU-D, a deep

learning model based on the GRU. GRU-D (D for decay mechanism) captures in-

formative missingness with the use of time interval, which encodes the di↵erence

between timestamps alongside masking information. The authors noticed that if

the last observation was made long ago, the missing value tends to be closer to

that last observed value, especially in the case of electronic health records (EHRs).
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In 2020 Tan et al. [24] proposed Uncertainty-Aware Convolutional Recurrent

Neural Network (UA-CRNN). They first use the Gaussian process to convert ir-

regular time series to regular time series and to estimate uncertainty scores. Once

regular time series is obtained, a UA-CRNN is trained in an end-to-end manner.

The main components of the UA-CRNN are the Uncertainty Aware Decomposi-

tion Layer (UADL) which uses high and low pass filters to extract high-frequency,

low-frequency, and mid-frequency components. These components are adjusted

based on the uncertainty scores. To the output of UADL, the Residual Network

(ResNet) is applied, which captures deep sequential features. Finally, they em-

ployed a GRU-RNN to extract temporal features.

In the remainder of this section, we briefly describe some latest state-of-the-art

transformers and the DLinear model. These models were earlier not applied to

the in-hospital mortality task prediction; we trained the models with our dataset

and compared them with our proposed method. Time Series Transformer

(TST) [30] uses the original transformer [25] encoder to perform time series tasks

with two main modifications first, one by replacing the deterministic positional

encodings based on sinusoidal with a learnable positional encoding and second,

instead of using layer normalization, batch normalization is employed. Zereveas

et al. claim that learnable positional encoding performs better for tasks involving

time series, and the use of batch normalization eliminates the e↵ect of outliers

in the data. Traditional transformers have shown state-of-the-art performance on

various time series tasks, like classification and forecasting, but they are unable to

capture global features in the time series (for e.g., overall trend, seasonality, etc.).

Also, they come with an expensive computational bottleneck (due to O(n2) self-

attention). To solve both these issues, FEDformer combines the seasonal-trend

decomposition method with the Transformer. The idea is that the decomposition
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method captures global features of the time series while transformers capture tem-

poral structures. Also exploiting the fact that time series comes with frequency

basis (by Fourier transform), a frequency-enhanced transformer is proposed by

Zhou et al. in [31]. The proposed Frequency Enhanced Decomposed Transformer

(FEDformer) has only a O(n) time complexity in terms of the input sequence

length.

With the idea to improve the performance of long-term forecasting of time series,

Haixu Wu et al. in [28] proposed the Autoformer, which is based on the decom-

position of periods in the time series by using an Auto-correlation block, trained

with the deep architecture. The Auto-correlation layer performs dependency dis-

covery at the sub-series level, exploiting the periodicity in the time series, further

performing aggregation of the identified discoveries. The authors claim that Aut-

oformer is e�cient in both time-complexity compared to other transformer-based

models, which are of the order n2 and improves long-term forecasting performance.

There are two primary components of the Autoformer one is the series decompo-

sition block which essentially tries to extract the trend-cyclicity and seasonality

components of a time series, while trend-cyclicity explains how the time series

could progress in the long term, seasonality captures recurring patterns over a pe-

riod say, a year. The authors claim, however, that since the future is not known,

direct decomposition is not a possibility. To e↵ectively address this issue, a series-

decomposition block is used, which with the help of moving average, smoothens

out periodic fluctuations and, over time, extracts stationarity from intermediate

hidden states. The other component is the Auto-Correlation mechanism which ag-

gregates identical sub-series by time-delay aggregation using series auto-correlation

scores.
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Ailing Zeng et al., with the following question “Are Transformers Really E↵ective

for Time Series Forecasting?” claim that the permutation invariant self-attention

mechanism in the transformers would lose temporal information due to it being

anti-order. Although positional encoding adds some temporal ordering to the to-

kens, applying self-attention to the sequence would inherently mean the loss of

order information which may not be that serious of an issue in NLP but would

result in poor capture of temporal features in time series. With this discussion,

Ailing Zeng et al. proposed a set of one-layer linear architectures in [29] viz. simple

one linear layer, NLinear, and DLinear to solve long-term time series forecasting

(LTSF). Vanilla linear, or simple one linear layer, is just one hidden layer applied

to input at each time stamp. DLinear is an extension of the Vanilla linear with a

decomposition layer that extracts trend and seasonality-components from the raw

input with the help of a moving average kernel, and these two components are

separately transformed with two one-layer linear modules, the outputs of which

are summed up for the final prediction.
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Chapter 3

Proposed Method

3.1 Time-Frequency Network (TFNet)

Inspired by the TimesNet proposed in [27] by Haixun Wu et al., we propose a

Time-Frequency Network (TFNet) that performs a 2-fold feature extraction on

the multivariate time series. First, we obtain 2D features with the use of the

TimesBlock [27] module to learn multi-period variations in the time series by

analyzing the time series in the frequency domain. These 2D features are then

projected back to 1D space with the use of an Inception Block. We then employ a

bidirectional Gated Recurrent Unit to capture temporal dependencies derived from

the learned multi-period features. Basically, we analyze the multivariate time series

in the frequency domain first and then extract temporal features from the multi-

period representations. In the remaining section, we provide a comprehensive

description of each component of our model.
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Figure 3.1: Our proposed model, Time-Frequency Network(TFNet)

3.1.1 Fast Fourier Transform

The Fourier analysis states that any signal can be converted into the frequency

domain by Fourier transform and back into the time domain by Inverse Fourier

transform. In the case of time series signals, analyzing them in the frequency

domain can help capture better seasonality and cyclicity information. Fast Fourier

Transform (FFT) is an algorithm to perform the discrete Fourier transform (DFT)

that decomposes a time series to obtain di↵erent frequency components. FFT

reduces the number of required computations and thus is faster in terms of time

complexity O(N logN) compared to DFT, which is of O(N2) for data of size N.

FFT decomposes the signal into even and odd subsequences based on indices in a

divide and conquer manner, this way DFT can be applied to both the subsequences
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simultaneously, thus resulting in faster computation.
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(3.1)

3.1.2 TimesBlock

In 2023, Haixu Wu et al. proposed TimesBlock as a modular component of the

TimesNet [27]. The TimesBlock extracts multi-period patterns by using a con-

volutional block by first converting the 1D time series into a 2D space and then

projecting these 2D features back to 1D space. First, by applying FFT on the

input multivariate time series X1D 2 RT⇥C , frequencies and their corresponding

amplitudes are computed.

A = Avg(Amp(FFT (X1D)), {f1, ..., fk}

= arg(f21..[T2 ]) Topk(A), pi =

&
T

fi

'
for i 2 {1, .., k}
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where, Amp(.) denotes amplitude calculations. The top K frequencies (i.e., the

largest frequency components) are chosen to obtain 2D tensors where the columns

represent intra-period variation, and rows represent inter-period variation. These

2D tensors are then used to extract local representations by a parameter-e�cient

inception block. The obtained 2D tensors are then projected back to 1D space to

proceed with the adaptive aggregation. For TimesNet, multiple TimesBlocks are

stacked layer by layer for the l
th layer:

X
l
1D = T imesBlock(X l�1

1D +X
l�1
1D )

HereX l�1
1D 2 RT⇥dmodel is the input from the l-1th TimesBlock. Layer Normalization

is applied to the output of each TimesBlock layer. In the remainder of the section,

we describe each of the components in the TimesBlock.

The Embed Layer

The Embed Layer has two components, token embedding that transforms in-

put to deep features using a 1D convolutional layer and a positional embed-

ding similar to the positional encoding of the original Transformer [25], that

uses two sinusoidal waves to add relative positional information to the input se-

quence. Xemb,1D = Embed(X1D),where X1D 2 RT⇥C is length-T 1D time series

and Xemb,1D 2 RT⇥dmodel

Inception Block

Inception block is the idea originally proposed in [23] by Szegedy et al. They

proposed the use of a 2-layer convolutional network with residual connections to

14



learn better local sparse structures from the learned Inception Block uses multiple

convolutional filters of varying sizes viz. 1⇥ 1, 3⇥ 3, 5⇥ 5, and so on, shared for

each of the k tensors obtained after FFT and 2D projection.

for i: 0 to num kernels do
CONV2D(in, out, kernel = 2i + 1, padding = i)(x)

end for

Adaptive Aggregation

With an idea similar to the Auto-Correlation mechanism by Haixu Wu et al. [28],

the amplitudes obtained initially by applying FFT reflect the relative significance

of their corresponding frequencies. This also means that these amplitudes show

us the relative significance of the k 2D tensors, which represent intra-period and

inter-period periodic patterns. Thus the authors suggest an aggregation technique

based on the amplitudes.

Â
l�1
f1

, ...., Â
l�1
fk

= Softmax(Al�1
f1

, ...., A
l�1
fk

)

X
l
1D =

kX

i=1

Â
l�1
fi
⇥ X̂

l,i
1D

Since the intra-period and inter-period variations are captured in the 2D tensors,

TimesBlock can e↵ectively model multi-scale temporal 2D variations simultane-

ously. TimesNet is constructed by combining all the modules mentioned above

and thus captures multiperiod temporal variations e↵ectively. Overall the follow-

ing equations summarize the TimesBlock:
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A
l�1

, {f1, ..., fk}, {p1, ..., pk} = Period(X l�1
1D )

X
l,i
2D = Reshapepi,fi(Padding(X l�1)), i 2 1, .., k

X̂
l,i
2D = Inception(X l,i

2D)), i 2 1, .., k

X̂
l,i
1D = Trunc(Reshape1,(pi⇥fi)(X̂

l,i
2D)), i 2 1, ..., k

X
l,i
2D 2 Rpi⇥fi⇥dmodel , is i

th transformed 2D tensor. Then a parameter-e�cient

Inception block is employed on the 2D tensor. The learned 2D features X̂
l�1
1D 2

RT⇥dmodel are then projected back to 1D space, X l�1
1D 2 RT⇥dmodel

3.1.3 Bidirectional GRU

To solve problems involving sequential data, such as text, next frame detection

in videos, time series forecasting, and classification. When the sequences are too

long RNNs su↵er from an inherent problem of vanishing and exploding gradients.

To address the gradient flow issues Long Short Term Memory(LSTM) network is

proposed in [11] by adding gating mechanisms to the RNN cell that help keep

the gradient well in range during backpropagation. Later in 2014, Gated Recur-

rent Unit (GRU) [5] addressed the vanishing and exploding gradient problems by

controlling the information flow with gates in a manner similar to the LSTMs,

but with lesser parameters. Bidirectional GRU is essentially 2 GRUs, one applied

on the input sequence in the forward order and the other applied on the input

sequence in the backward order, and the final output is the concatenation of the

outputs from the two GRUs. The idea of using a bidirectional GRU is so that

it captures contextual information for a given time from both directions. Below

are the equations that describe the working bidirectional GRU cell for a given
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timestep.

�!
z t = �(Wz · [ht�1, xt] + bz)

�!
r t = �(Wr · [ht�1, xt] + br)

�!
h t = tanh(Wh · [�!r t � ht�1, xt] + bh)

 �
z t = �(

 �
W z · [

 �
h t+1, xt] +

 �
b z)

 �
r t = �(

 �
W r · [

 �
h t+1, xt] +

 �
b r)

 �
h t = tanh(

 �
W h · [ �r t �

 �
h t+1, xt] +

 �
b h)

ht =
�!
h t �

 �
h t

3.1.4 Classfication Head

The obtained time-frequency representations are flattened to a 1D tensor which

is projected to 2 dimensions to finally classify with a softmax. In the equations

below, P denotes the final learned representations after flattening. P̂ denotes the

projection to 2 dimensions feeding P to a Linear layer. Finally, we obtain Ŷ by

applying softmax, whose elements are the probabilities of belonging to a particular

class. We finally predict the class by taking an arg-max of Ŷ .

1D tensor that represents time and frequency level features: X 2 Rdmodel⇥seqlen

P = Flatten(X ),P 2 Rdmodel⇤seqlen

P̂ = Linear(P), P̂ 2 R2

Ŷ = Softmax(P̂ )
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Chapter 4

Experiments and Results

4.1 Details of the dataset

One of the main contributions of [10] is to create benchmarking datasets for four

di↵erent tasks on the MIMIC-III database, one being the in-hospital mortality

benchmark. To create the current benchmark dataset, all hospital admissions who

were transferred between di↵erent ICU wards were excluded from the database

initially. Also, since the physiology of adults and those under the age of 18 vary

significantly, patients under 18 are also excluded from the study. Finally, a cohort

of 33,798 unique patients having a total of 42,276 ICU stays and 17 laboratory

parameters were chosen as features.

From the above cohort, to extract the IHM dataset, all ICU stays for which no

event is recorded within the initial 48 hours spent in the intensive care unit (ICU)

stay or for which the length-of-stay is not known or if the ICU stay is less than

48 hours are not considered, since the current IHM task defined is based on the
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observations made during first 48 hours of the ICU stay. The final benchmark

dataset contains 17903 and 3236 ICU stays in the train and test set, respectively.

The target label for each ICU stay is obtained by comparing the patient death date

with the hospital admission and discharge times recorded. The dataset, which in-

cludes a total of 21,139 ICU stays, has a mortality rate of 13.23% or 2,797 out of

21,139. Train and test sets are in the ratio 85% and 15%, respectively. The figure

4.1 below describes the entire process from cohort selection to data extraction;

please note that subjects denote patients, events denote any clinical assessment,

treatment, or laboratory results recorded, and episodes refer to ICU stays. All the

categorical variables, as presented in 4.3, are one-hot encoded. So, we finally get

an input X 2 R48⇥59, where the 59 variates in each of the 48-time steps represent

our final feature set, and the binary missing mask M 2 R48⇥17, 1 representing that

a value observed.
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Figure 4.1: The cohort selection and dataset extraction process [10]
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4.1.1 The need for data imputation

Figure 4.1 below shows the percentage of missing values for each of the 17 features.

To address the missing value problem, the authors of [10] have proposed previous

value imputation, where possible, and imputation with normal values as mentioned

in 4.3 otherwise. Although there’s not much of a discussion on the rationale behind

choosing such values as normal values, we believe Hrayr et al. have considered

possible feature ranges for, e.g., the weight of a patient can not be in the order of

400kgs except maybe in cases which are rare and chosen a value within that range.
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Figure 4.2: Percentage of missing values for each of the 17 variables, calculated
for all 48 hours
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Figure 4.3: Normal values used to impute[10]

4.2 Experimental setup

All the models are trained on an RTX 3090 GPU. We trained all the transformer

baselines and our proposed method, including the ablations for 30 epochs, using

a batch size of 8. DLinear, however is trained for 100 epochs. We employed

EarlyStopping based on the validation accuracy with a tolerance of 10 and saved

the best model for prediction on the test set. All the models are trained using the

Adam optimizer with an initial learning rate that is equal to 0.0001. Thereafter for

every 5 epochs, we use a learning rate scheduler lr ⇤ (0.5)(epoch num�1). For TFNet
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and its modifications, we took K=3 to select the top K frequencies, i.e., the top K

largest frequencies, after FFT. For models using TimesBlock, the number of layers

of TimesBlock are chosen to be 3, except for our proposed method, which has 5

layers of TimesBlock. The number of kernels for the Inception Block was chosen

to be 6, and they are initialized with Kaiming-Uniform initialization. Wherever a

dropout is employed, the dropout rate is set to 0.1. All layers use GELU activation.

The dimension of the model, dmodel, is taken to be 32 for all TimesBlock-based

models and 128 for transformer baselines and DLinear. Transformer baselines use

3 layers of transformer encoder.

4.3 Baseline models

4.3.1 Logistic Regression with regularization

Logistic regression is a fundamental machine learning algorithm used for binary

classification tasks. It works by employing a linear combination of input features

and their associated weights. This linear combination is then passed through a

sigmoid function, also known as the logistic function. The sigmoid function maps

the output to a range between 0 and 1, interpreting it as the probability of belong-

ing to one of the classes. During the prediction phase, if the probability exceeds a

threshold, the data point is classified as belonging to the positive class; else, it is

assigned to the negative class.

Hrayr et al. in [10] used 714 (17⇥ 6⇥ 7) hand-engineered features per time series

as the input to the logistic regression model. First, 7 subsequences of the original

sequence are constructed from the original sequence, using features of the first

10% of time, first 25% of time, first 50% of time, last 50% of time, last 25% of
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time, and last 10% of time and the full sequence. Then for every feature in the

7 subsequences, six sample statistics, viz. mean, median, maximum, minimum,

skewness, and standard deviation, are calculated. If one sample statistic is not

measurable, its corresponding feature is marked as missing. A logistic regression

with l2 regularization is then trained on the 714 features after they are standard-

ized.

4.3.2 LSTM

LSTM is a type of recurrent network that captures long-range dependencies e↵ec-

tively in sequential data. It was proposed in 1997 by Sepp et al. in [11] to solve

the vanishing and exploding gradient problems in the vanilla RNNs. The authors

introduce di↵erent gates, viz. input gate, forget gate, and output gate, that makes

sure constant error is always propagated. It takes in an input xt

ft = �(Wf · [ht�1, xt] + bf )

it = �(Wi · [ht�1, xt] + bi)

C̃t = tanh(Wc · [ht�1, xt] + bc)

ot = �(Wo · [ht�1, xt] + bo)

Ct = ft � Ct�1 + it � C̃t

ht = ot � tanh(Ct)

4.3.3 Channel Wise LSTM

Instead of analyzing the time series as multivariate data, the authors proposed a

channel-wise LSTM that treats each of the features independently of each other
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and trains a bidirectional LSTM on individual features + the missing mask of that

feature. The authors claim that the channel-wise module has two advantages; first,

it can learn useful features about a single variable before combining it with the

other data. Although LSTM models were also given as input both the actual data

and the missing mask, their ability to learn something meaningful from the missing

mask is poor since they may not know which mask belongs to with feature. Thus

comes the second advantage of the channel-wise LSTM since the mask information

is also an input for each channel it can learn better features from the data masks.

p
(i)
t = LSTM

⇣h
µ
(i)
t , c

(i)
t

i
, p

(i)
t�1

⌘

q
(i)
t = LSTM

⇣h �
µ

(i)
t ,
 �
ct

i
, q

(i)
t�1

⌘

ut =
h
p
(1)
t , q

(2)
t , ....., p

(17)
t , q

(17)
t

i

ht = LSTM (ut, ht�1)

Deep Supervision

Unlike models that do prediction as the last step, deep supervision enforces the

model to replicate the target at each time step, this way of replicating contributes

to the total gradient flow at each time step. Since the loss is now calculated at

all time steps, for a given time step, gradient flows both due to the loss at the

given timestep and losses from the future time steps. So overall loss function is as

follows:

L = (1� ↵) ⇤ CE (y, ŷT ) + ↵ ⇤ 1

T

TX

t=1

CE (y, ŷT )

In the above loss function, CE denotes cross-entropy loss, and ↵ 2 (0, 1) controls

how much di↵erent losses would contribute to the final loss. y denoted true label,

ŷT denotes predicted label at time step T.
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4.4 Results

4.4.1 Discussion

We compared our proposed work with baseline logistic regression and LSTM-type

models; the results are reported in table 4.1. Compared to the best baseline, the

CW-LSTM, our model reported a 15.5% improvement on the recall of positive

class, i.e., 0.3449! 0.3984. Since the task at hand is related to the medical field,

we believe a high recall for the minority class is desirable since a higher number

of positive data are reported positively, meaning fewer false negatives overall.

Compared to CW-LSTM with AUPRC 0.5064, our model reported an AUPRC

of 0.5172, an improvement by 2% over the best model reported by Hrayr et al.

in [10], the CW-LSTM(except for multi-task models based) on AUROC. Jesse

Davis and Mark Goodrich in [7] suggested that although AUROC is usually used

to report performance in binary classification, for highly skewed data, and for ap-

plications where the positive class is critical, AUPRC gives more information on

the model’s overall performance because it focuses on the precision-recall tradeo↵;

it provides a nuanced evaluation by measuring how accurately the model would

perform in classifying the positive class(the rare class). On the other hand, AU-

ROC o↵ers a global assessment of the model’s ability to classify both classes for

all thresholds. An improvement on AUPRC doesn’t necessarily improve AUROC,

especially in case of class imbalance. This phenomenon is identified in our dataset

since our model reports a poorer AUROC than the baselines.

For classification, usually accuracies are estimated to check the model’s perfor-

mance however, when evaluating a classifier on an imbalanced dataset, it can lead
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to an optimistic estimate of its performance. One way to address this issue is by

replacing accuracy with balanced accuracy, defined as the average between recalls

of both classes [1]. Thus, in our work, balanced accuracy is reported instead of

accuracy, and our model has shown a 2% improvement on this metric. Our model

slightly improved the precision of the majority class.

Table 4.1: Performance of our proposed method compared with baselines [10]
model bAcc1 AUROC AUPRC min(P+Se) Precision 0 Precision 1 Recall 0 Recall 1

Logistic Regression 2 0.6441 0.8483 0.4811 0.4652 0.9156 0.648 0.978 0.3102

LSTM 0.634 0.8528 0.4891 0.5 0.9134 0.6193 0.9766 0.2914

LSTM-DS 3 0.6402 0.8571 0.4858 0.4868 0.9147 0.6457 0.9783 0.3021

CW-LSTM 0.6565 0.8632 0.5064 0.492 0.9188 0.5864 0.9682 0.3449

CW-LSTM-DS 3 0.6003 0.86 0.5153 0.484 0.9057 0.7248 0.9895 0.2112

TFNet 0.6793 0.8392 0.5172 0.4872 0.9231 0.5665 0.9602 0.3984

Improvement 3.46% - 2.13% - 0.46% - - 15.51%
1 bAcc, denotes balanced accuracy here and thereafter wherever it is mentioned
2 Logistic Regression is regularized by l2 regularization with � = 0.0001 3 DS denotes Deep Supervision

4.5 Ablation Study

4.5.1 Imputation and transformer baselines

We have performed ablation studies analyzing how various imputation techniques

would a↵ect the model performance namely, we performed three types of imputa-

tion:

• Carry forward imputation

– For carry forward imputation, where present, we have imputed miss-

ing values with observations available in a previous time step till the

next available observed value. In case there is no previous observation

available, we have imputed with normal values [10]
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• Carry-backward imputation

– For carry backward imputation, where present, we have imputed miss-

ing values with observations available from a future time step until an

observed value is present in an earlier time step. In case there is no

future observation available, we have imputed with normal values [10]

• Imputation with normal values

– Normal values are values reported in [10]; they consider the possible fea-

ture ranges and have chosen a value that results in the best performance

of LSTM-type baselines.

With the di↵erent imputations, we have also reported results on some recent trans-

former models viz. TSTransformer [30], Autoformer [28], etc., as well as DLinear

[29], which is a simple linear model, and compared with our proposed model.

Almost all the models report their best performance when carrying forward impu-

tation is performed. Carry-backward imputation results in the worst performance

for each model, validating the claim of Che et al. [4] that values are closer to the

previously observed value. Interestingly DLinear [29] showed better performance

than the transformer baselines in terms of AUROC, AUPRC, and recall of positive

class.

Table 4.2: Results for carry forward imputation
model bAcc AUROC AUPRC min(P+Se) Precision 0 Precision 1 Recall 0 Recall 1

DLinear 0.6477 0.8469 0.5106 0.4813 0.9165 0.6218 0.9745 0.3209

Transformer BN 0.6388 0.8243 0.4317 0.4347 0.9148 0.5367 0.9647 0.3128

Autoformer 0.5614 0.7133 0.3032 0.2895 0.8977 0.3466 0.9598 0.1631

FEDformer 0.6173 0.8228 0.4612 0.4465 0.9097 0.5774 0.9752 0.2594

TimesNet 0.6469 0.8405 0.5133 0.4587 0.9157 0.6297 0.9755 0.3183

TFNet 0.6793 0.8392 0.5172 0.4827 0.9231 0.5665 0.9602 0.3984
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Table 4.3: Results for normal value imputation
model bAcc AUROC AUPRC min(P+Se) Precision 0 Precision 1 Recall 0 Recall 1

DLinear 0.5948 0.8245 0.4455 0.4465 0.9046 0.5909 0.9811 0.2086

Transformer BN 0.6118 0.8073 0.4105 0.4173 0.9084 0.5897 0.9776 0.246

Autoformer 0.5639 0.7204 0.2864 0.2956 0.8985 0.2917 0.9406 0.1872

FEDformer 0.6197 0.8009 0.4538 0.4305 0.9103 0.5556 0.972 0.2674

TimesNet 0.6385 0.8259 0.4772 0.4346 0.9143 0.5672 0.9696 0.3074

TFNet 0.6452 0.8362 0.4797 0.4577 0.9192 0.5581 0.9668 0.3236

Table 4.4: Results for carry backward imputation
model bAcc AUROC AUPRC min(P+Se) Precision 0 Precision 1 Recall 0 Recall 1

DLinear 0.6286 0.8405 0.4872 0.4733 0.9122 0.6105 0.9766 0.2807

Transformer BN 0.6325 0.8253 0.4234 0.4385 0.9135 0.516 0.963 0.3021

Autoformer 0.5264 0.6892 0.2797 0.2701 0.8899 0.3846 0.986 0.0668

FEDformer 0.6511 0.8241 0.4868 0.4603 0.9176 0.56 0.9654 0.3369

TimesNet 0.6329 0.8352 0.4861 0.4599 0.9132 0.5989 0.9745 0.2914

TFNet 0.6443 0.8344 0.4616 0.4519 0.9163 0.5168 0.9598 0.3289

4.5.2 Does the Channel-wise module improve our model?

We have tried di↵erent modifications to the TFNet model using a channel-wise

module to see if they add to the model’s performance. Namely, we performed

experiments on the following:

• CWTFNet

– To the TFNet model, we applied the channel-wise module on the input

before analyzing the learned independent channel-wise features in the

frequency domain by the TimesBlock.

• CWTFNet 2, with the bi-GRU from the CWTFNet removed.

• CWTNet
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– With inspiration from the work of Chang et al. in [2], in the CWTFNet,

we employ the TimesBlock for each of the learned representations from

the channel-wise module.

∗ The channel-wise TimesBlock is trained with and without weight

sharing across the channels.

Table 4.5: Ablations performed with channel-wise module
model Imputation bAcc Precision 0 Precision 1 Recall 0 Recall 1 AUROC AUPRC min(P+Se)

CWTFNet
carry forward 0.6453 0.9163 0.5446 0.9644 0.3262 0.8418 0.4744 0.4548
normal value 0.6455 0.9163 0.5654 0.9675 0.3235 0.8371 0.4836 0.4572

carry backward 0.6383 0.9147 0.5472 0.9665 0.3102 0.8381 0.4685 0.4572

CWTFNet 2
carry forward 0.5715 0.8996 0.5455 0.9825 0.1604 0.7938 0.4015 0.4278
normal value 0.5619 0.8975 0.5096 0.9822 0.1417 0.761 0.3753 0.377

carry backward 0.5296 0.8906 0.5319 0.9923 0.0668 0.7858 0.3533 0.391

CWTNet sharing
carry forward 0.6111 0.9081 0.6642 0.9843 0.238 0.8282 0.4951 0.467
normal value 0.5853 0.9026 0.5635 0.9808 0.1898 0.8183 0.4235 0.4011

carry backward 0.6084 0.9078 0.5449 0.9734 0.2433 0.8294 0.4378 0.4492

CWTNet no sharing
carry forward 0.6354 0.9139 0.5773 0.9713 0.2995 0.8345 0.4789 0.4453
normal value 0.5891 0.9035 0.5396 0.9776 0.2005 0.8089 0.4163 0.4058

carry backward 0.6106 0.9082 0.5644 0.9752 0.246 0.8257 0.4488 0.432

Adding a Channel Wise module before TFNet did not result in an improved model.

The CWTFNet has shown better results than CWTFNet 2, from this, we deduce

that the bi-GRU layer after the 2D multi-period representations are learned is an

important component of the TFNet model. It is observed that adding channel-wise

modules to the TFNet in a sequential doesn’t add much to the performance.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this work:

• We proposed TFNet, a novel deep-learning method that captures represen-

tations in both the time and frequency domain from the multivariate time

series. First, to extract multi-period variations we used the TimesBlock

module, which analyzes the time series in the frequency domain. After the

multi-period representations are extracted, we employ a bidirectional GRU

to learn temporal dependencies.

• Our model achieved an improved performance on the in-hospital mortality

prediction (48 hours) task on the MIMIC-III dataset; reportedly, it shows a

15.5% improved recall of positive class and a 2% improvement in AUPRC

than the best baseline, the CW-LSTM.
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• We tried 3 di↵erent imputation techniques and noted that carry-forward

imputation results in the best performance compared to the other imputation

methods.

• Ablation studies were performed by adding and removing the channel-wise

module and bi-GRU, and we observed that adding a channel-wise did not

improve the model significantly. When bi-GRU is removed, it reports a poor

performance than TFNet this validates the importance of bi-GRU in learning

temporal dependencies from the learned multiperiod representations.

5.2 Future Work

Although a building block of TFNet, the TimesBlock is proposed as a task-general

model, the current work was only focussed on in-hospital mortality prediction on

MIMIC-III. Extensive experiments need to be performed on general time series

classification datasets such as UEA & UCR Time Series Classification Archive.

It needs to be seen if the TFNet would immediately apply to short-term (with

2-12 hour observations) and long-term mortality (with a few months to years of

observations) prediction tasks. Performance on other clinical databases, like eICU,

should be verified. It is also interesting direction to see how the channel-wise mod-

ule, which encodes missing mask information more e↵ectively and the TimesBlock

should combine in the hope of a model that can better capture missingness pat-

terns.
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