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Chapter 1

Introduction

In sample survey, estimation of different finite population parameters like, mean, median, variance,

coefficient of variation, correlation and regression coefficients, interquartile range, measure

of skewness, etc. was considered extensively in the past. However, comparison of different

estimators of the same parameters has been limited. Also, asymptotic theory for several estimators

has not been adequately developed in the available literature. One of the main objectives of this

thesis is to compare various estimators of finite population parameters under different sampling

designs (with no non-response) and superpopulation models, and to identify asymptotically

efficient estimators among them. Another objective of this thesis is to understand the role of

auxiliary information in the implementation of different sampling designs and in the construction

of different estimators.

Suppose that P={1, 2, . . . , N} is a finite population of size N , s is a sample of size n (< N)

from P , and S is the collection of all possible samples having size n. Then, a sampling design

P (s) is a probability distribution on S such that 0 ≤ P (s) ≤ 1 for all s ∈ S and
∑

s∈S P (s)=1.

In this thesis, we consider sampling designs having fixed sample size. Now, suppose that

X1, . . . , XN denote the population values on a positive real-valued size variable x. In sample

survey, these population values are assumed to be known and utilized to implement sampling

designs as well as to construct estimators. In this thesis, we consider the following sampling

designs.

Simple random sampling without replacement (SRSWOR): In SRSWOR, n units are selected

from the population P such that any subset of n units has the same probability =
(N
Cn

)−1 of

being selected.

Rejective sampling design ([40]): Suppose that α1, . . . , αN are such that αi > 0 for any

i=1, . . . , N and
∑N

i=1 αi=1. Then, in the rejective sampling design, n units are first drawn with

replacement, where the ith population unit is selected with probability =αi, for i=1, . . . , N . If

1
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any population unit is selected in the sample more than once, the sample is rejected and the entire

procedure is repeated until n distinct units are selected in the sample. SRSWOR is a special case

of rejective sampling design.

High entropy sampling design ([4]): A sampling design P (s) is called high entropy sam-

pling design if D(P ||R)=
∑

s∈S P (s) log
(
P (s)/R(s)

)
→ 0 as n,N → ∞ for some rejective

sampling design R(s). Some examples of high entropy sampling designs are SRSWOR, Lahiri–

Midzuno–Sen (LMS) sampling design and Rao–Sampford (RS) sampling design.

LMS sampling design ([55], [57] and [75]): In LMS sampling design, the first unit is selected

from P , where the ith population unit has the probability =Xi/
∑N

j=1Xj of being selected for

i=1, . . . , N . Following the first draw, n− 1 units are selected from the remaining N − 1 units

in P using SRSWOR. One can show that in this sampling design, the selection probability of a

sample is proportional to the total of the values of the size variable x for the sampled units.

RS sampling design ([4]): In RS sampling design, a population unit is first selected in such a way

that the ith population unit has the probability =Xi/
∑N

j=1Xj of being selected for i=1, . . . , N .

After replacing this unit back into the population, n − 1 units are drawn with replacement,

where the ith population unit is selected with probability =λi(1− λi)
−1/

∑N
i=1 λi(1− λi)

−1 for

λi=nXi/
∑N

i=1Xi. If any population unit is selected in the sample more than once, the sample

is rejected and the entire procedure is repeated until n distinct units are selected in the sample.

πPS sampling design ([4] and [9]): A sampling design is called πPS (i.e., inclusion probability

π proportional to size) sampling design if its inclusion probabilities {πi}Ni=1 satisfy the condition

πi=nXi/
∑N

j=1Xj for i=1, . . . , N . RS sampling design is an example of πPS sampling designs.

High entropy πPS (HEπPS) sampling design: A sampling design is called a HEπPS sampling

design if it is a high entropy sampling design as well as a πPS sampling design. It was shown by

[4] that RS sampling design is a HEπPS sampling design.

Rao–Hartley–Cochran (RHC) sampling design ([66]): In RHC sampling design, P is first

divided randomly into n disjoint groups, say P1, . . . ,Pn of sizes N1, . . . , Nn, respectively, by

taking a sample of N1 units from N units using SRSWOR, then a sample of N2 units from

the remaining N − N1 units using SRSWOR, then a sample of N3 units from the remaining

N −N1 −N2 units using SRSWOR and so on. Following this random split, one unit is selected

from each group independently. For each r=1, . . . , n, the qth unit from Pr is selected with

probability =X ′
qr/
∑Nr

l=1X
′
lr, where X ′

qr is the x value of the qth unit in Pr.
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Stratified multistage cluster sampling design ([35] and [77]): Suppose that the finite population

P is divided into H strata or subpopulations, where stratum h consists of Mh clusters for

h=1, . . . ,H . Further, the jth cluster in stratum h consists of Nhj units for j=1, . . . ,Mh. For any

given h=1, . . . ,H , j=1, . . . ,Mh and l=1, . . . , Nhj , we assume that the lth unit from cluster j in

stratum h is the ith unit in the population P , where i=
∑h

h′=1

∑Mh′
j′=1Nh′j′ −

∑Mh
j′=j Nhj′ + l. In

stratified multistage cluster sampling design with SRSWOR, first a sample sh of mh (< Mh)

clusters is selected from stratum h under SRSWOR for each h. Then, a sample shj of rh (< Nhj)

units is selected from jth cluster in stratum h if it is selected in the sample of clusters sh in

the first stage for h=1, . . . ,H . Thus the resulting sample is s=∪1≤h≤H,j∈shshj . The samplings

in the two stages are done independently across the strata and the clusters. Under the above

sampling design, the inclusion probability of the ith population unit is πi=mhrh/MhNhj if it

belongs to the jth cluster of stratum h. Note that stratified multistage cluster sampling design with

SRSWOR becomes stratified sampling design with SRSWOR, when Nhj=1 for any h=1, . . . ,H

and j=1, . . . ,Mh. Also, note that stratified multistage cluster sampling design with SRSWOR

becomes multistage cluster sampling design with SRSWOR, when H=1.

Suppose that (Yi, Zi) is the value of (y, z) for the ith population unit, where y is a finite/infinite

dimensional study variable, z is a finite dimensional covariate, and i=1, . . . , N . In sample

survey, the population total of z is assumed to be known. Moreover, z is used to construct

different estimators (e.g., generalized regression (GREG) estimator). The variables (z, x) are

also known as auxiliary variables. Sometimes, we consider superpopulation models, where

{(Yi, Zi, Xi) : 1 ⩽ i ⩽ N} are assumed to be independently and identically distributed (i.i.d.)

random elements on (Ω,F ,P).

In Chapter 2 of this thesis, several well known estimators of finite population mean and its

functions are investigated under some standard sampling designs. Such functions of mean include

the variance, the correlation coefficient and the regression coefficient in the population as special

cases. We compare the performance of these estimators under different sampling designs based

on their asymptotic distributions. Equivalence classes of estimators under different sampling

designs are constructed so that estimators in the same class have equivalent performance in terms

of asymptotic mean squared errors (MSEs). Estimators in different asymptotic-MSE equivalence

classes are then compared under some superpopulations satisfying linear models. It is shown that

the pseudo empirical likelihood (PEML) estimator of the population mean under SRSWOR has

the lowest asymptotic MSE among all the estimators under different sampling designs considered

in this chapter. It is also shown that for the variance, the correlation coefficient and the regression

coefficient of the population, the plug-in estimators based on the PEML estimator have the lowest

asymptotic MSEs among all the estimators considered in this chapter under SRSWOR. On the

other hand, for any HEπPS sampling design, which uses the auxiliary information, the plug-in

estimators of those parameters based on the Hájek estimator have the lowest asymptotic MSEs

among all the estimators considered in this chapter. This chapter is based on [29].



4 Chapter 1. Introduction

Asymptotic equivalence of some specific estimators of the population mean under some

sampling designs was shown earlier in [22] and [74]. [22] established asymptotic equivalence

of the PEML and the GREG estimators by showing that under some conditions on sampling

designs, the difference between these two estimators is asymptotically negligible in probability.

On the other hand, [74] showed that the ratio estimator has the same asymptotic distribution under

SRSWOR and LMS sampling designs. The result that the difference between two estimators is

asymptotically negligible in probability is a stronger result than the result that the asymptotic

distributions of these estimators are the same. However, none of these authors constructed

asymptotic-MSE equivalence classes, which consist of several estimators of a function of the

population means under several sampling designs. Comparisons of some estimators of the

population mean under some sampling designs were also carried out in [1], [2], [24]) and

[64] based on asymptotic MSEs. However, the above comparisons included neither the PEML

estimator nor HEπPS sampling designs.

In Chapter 3 of this thesis, the Horvitz–Thompson (HT), the RHC and the GREG estimators

of the finite population mean are considered, when the observations are from an infinite dimen-

sional space. We compare these estimators based on their asymptotic distributions under some

commonly used sampling designs and some superpopulations satisfying linear regression models.

We show that the GREG estimator is asymptotically at least as efficient as any of the other two

estimators under different sampling designs considered in this chapter. Further, we show that the

use of some well-known sampling designs utilizing auxiliary information may have an adverse

effect on the performance of the GREG estimator, when the degree of heteroscedasticity present

in linear regression models is not very large. On the other hand, the use of those sampling designs

improves the performance of this estimator, when the degree of heteroscedasticity present in linear

regression models is large. We develop methods for determining the degree of heteroscedasticity,

which in turn determines the choice of appropriate sampling design to be used with the GREG

estimator. We also investigate the consistency of the covariance operators of the above estimators.

We carry out some numerical studies using real and synthetic data and our theoretical results are

supported by the results obtained from those numerical studies. This chapter is based on [30].

[12], [13], [14], [16], [15], etc. investigated different asymptotic properties of the HT and the

model assisted estimators of the finite population mean, when population observations are from

C[0, T ], the space of continuous functions defined on [0, T ]. The model assisted estimator can be

related to the GREG estimator considered earlier in [22] for finite dimensional data. All these

authors carried out their investigation under sampling designs, which satisfy some regularity

conditions. These sampling designs include SRSWOR, stratified sampling design with SRSWOR,

rejective sampling designs, etc. However, none of the above authors compared the HT and the

model assisted estimators.
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In Chapter 4 of this thesis, the weak convergence of the quantile processes, which are

constructed based on different estimators of the finite population quantiles, is shown under

various well-known sampling designs based on a superpopulation model. The results related to

the weak convergence of these quantile processes are applied to find asymptotic distributions of

the smooth L-estimators and the estimators of smooth functions of finite population quantiles.

Based on these asymptotic distributions, confidence intervals can be constructed for several

finite population parameters like the median, the α-trimmed means, the interquartile range and

the quantile based measure of skewness. Comparisons of various estimators are carried out

based on their asymptotic distributions. We show that the use of the auxiliary information in

the construction of the estimators sometimes has an adverse effect on the performances of the

smooth L-estimators and the estimators of smooth functions of finite population quantiles under

several sampling designs. Further, the performance of each of the above-mentioned estimators

sometimes becomes worse under sampling designs, which use the auxiliary information, than

their performances under SRSWOR. Moreover, it is shown that the sample median is more

efficient than the sample mean under SRSWOR, whenever the finite population observations are

generated from some symmetric and heavy-tailed superpopulation distributions with the same

superpopulation mean and median. In the cases of symmetric superpopulation distributions with

the same superpopulation mean and median, it is also shown that the GREG estimator of the

finite population mean is more efficient than the sample median under SRSWOR, whenever there

is substantial correlation present between the study and the auxiliary variables. This chapter is

based on [31].

Strong and weak versions of Bahadur type representations of the sample quantile process

were shown under simple random sampling in [78]. A quantile process based on the sample

quantile, which is obtained by inverting the Hájek estimator of finite population distribution

function, was constructed under high entropy sampling designs in [26]. However, there is no

result available in the literature related to the weak convergence of quantile processes based

on quantile estimators like the ratio, the difference, and the regression estimators, which are

constructed using auxiliary information. There is also no available result related to the weak

convergence of a quantile process under RHC and stratified multistage cluster sampling designs.

In sample survey, construction of several estimators (e.g., GREG and ratio estimators of

the finite population mean) and derivation of their properties involve some form of regression

analysis. Regression analysis also plays an important role for statistical analysis of estimators,

when sampling designs (e.g., πPS, LMS and RHC) use auxiliary information. In Chapter 5 of this

thesis, estimators obtained from least square (LS), asymmetric least square (ALS), truncated least

square (TLS), least absolute deviation (LAD) and quantile regression (QR) are considered, when

the sample observations are drawn from a finite population using some sampling design. The

asymptotic distributions of these estimators are derived under different sampling designs based

on a superpopulation model. Comparisons of several estimators are also carried out based on
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their asymptotic distributions. From these comparisons, it is shown that the use of the auxiliary

information in the design stage sometimes has an adverse effect on the performances of different

estimators of parameters in finite populations. It is also shown that the estimators of the finite

population mean constructed based on quantile and TLS regression become more efficient than

the GREG estimator under various sampling designs, whenever the finite population observations

on the study variable are generated from some heavy-tailed distributions. This chapter is based

on [32].

In the case of i.i.d. sample observations, [46], [39], [50], [51], [59], [33], [21], [49], [42],

etc. studied several asymptotic properties of the estimators obtained from LS, ALS, TLS, LAD,

QR, and other well-known regression methods. However, asymptotic behavior of the above-

mentioned estimators have not been studied much, when the sample observations are drawn from

a finite population using some sampling design. It becomes challenging to show Bahadur type

representations and asymptotic normality of these estimators, when the sample observations may

neither be independent nor identical.

In this thesis, several asymptotic results (e.g., central limit theorems for several estimators of

the finite population mean, weak convergence of various empirical and quantile processes, etc.)

are first derived under rejective sampling designs using consistency and asymptotic normality

of the HT estimator under these sampling designs following the ideas in [40] and [4]. Then,

these results are derived under high entropy sampling designs using the fact that any high

entropy sampling design can be approximated by a rejective sampling design in Kullback-

Liebler divergence. Thus high entropy sampling designs play an important role in the study

of the asymptotic behaviour of several estimators, when the sample observations are neither

independent nor identical.

Some of the major findings from the above-mentioned chapters are as follows. Given any

sampling design, the estimators, which are constructed using the auxiliary information in the

estimation stage, often become more efficient than the estimators, which are constructed without

using any auxiliary information. However, each of the estimators considered in the above chapters

usually becomes more efficient under SRSWOR than under RHC and HEπPS sampling designs,

which use the auxiliary information in the design stage. This implies that although the use of

the auxiliary information in the estimation stage usually improves the performance of different

estimators, the use of the auxiliary information in the design stage often has adverse effect on

the performance of these estimators. In practice, SRSWOR is easier to implement than the

sampling designs that use the auxiliary information. Thus the above result is significant in view of

selecting the appropriate sampling design. Further, for the finite population mean, the estimator

constructed based on QR as well as TLS regression becomes more efficient than the GREG

estimator constructed based on LS regression under several sampling designs, whenever the

population values on the study variable are generated from heavy-tailed distributions.
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Chapter 2

A comparison of estimators of mean

and its functions in finite populations

Let y be a Rd-valued (d ≥ 1) study variable. Throughout this chapter, we assume that the

covariate z and the size variable x are the same. Recall from the introduction that (Yi, Xi)

denotes the value of (y, x) for the ith population unit, where i=1, . . . , N , and x is a positive

real-valued size variable. Suppose that Y =
∑N

i=1 Yi/N is the finite population mean of y. The

HT estimator (see [44])) and the RHC (see [66]) estimator are commonly used design unbiased

estimators of Y . Other well-known estimators of Y are the Hájek estimator (see [41], [73],

etc.), the ratio estimator (see [24]), the product estimator (see [24]), the GREG estimator (see

[22]) and the PEML estimator (see [22]). However, these latter estimators are not always design

unbiased. For the expressions of the above estimators, the reader is referred to Table 2.1 in

Section 2.1 of this chapter. Now, consider the finite population parameter g(
∑N

i=1 h(Yi)/N).

Here, h:Rd → Rp is a function with p ≥ 1 and g:Rp → R is a continuously differentiable

function. All vectors in Euclidean spaces will be taken as row vectors and superscript T will be

used to denote their transpose. Examples of such a parameter are the variance, the correlation

coefficient, the regression coefficient, etc. associated with a finite population. For simplicity,

we shall often write h(Yi) as hi. Then, g(h)=g(
∑N

i=1 hi/N) is estimated by plugging in the

estimator ĥ of h.

In this chapter, our objective is to find asymptotically efficient (in terms of asymptotic MSE)

estimator of g(h). In Section 2.1, based on the asymptotic distribution of the estimator of g(h)

under SRSWOR, LMS, HEπPS and RHC sampling designs (see the introduction), we construct

9
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asymptotic-MSE equivalence classes of estimators such that any two estimators in the same class

have the same asymptotic MSE. We first consider the special case, when g(h)=Y , and compare

equivalence classes of estimators under superpopulations satisfying linear models in Section

2.2. Among different estimators under different sampling designs considered in this chapter,

the PEML estimator of the population mean under SRSWOR turns out to be the estimator with

the lowest asymptotic MSE. Also, the PEML estimator has the same asymptotic MSE under

SRSWOR and LMS sampling design. Interestingly, we observe that the performance of the

PEML estimator under RHC and any HEπPS sampling designs, which use auxiliary information,

is worse than its performance under SRSWOR. Earlier, it was shown that the GREG estimator is

asymptotically at least as efficient as the HT, the ratio and the product estimators under SRSWOR

(see [24]). It follows from our analysis that the PEML estimator is asymptotically equivalent to

the GREG estimator under all the sampling designs considered in this chapter.

[74] proved that the ratio estimator has the same asymptotic distribution under SRSWOR

and LMS sampling design. [22] showed that under some conditions on the sampling design,

the difference between the PEML and the GREG estimators is asymptotically negligible in

probability, i.e., the PEML estimator is asymptotically equivalent to the GREG estimator. Among

different sampling designs, SRSWOR and RHC sampling design satisfy these conditions. The

result that the difference between two estimators is asymptotically negligible in probability is

a stronger result than the result that the asymptotic distributions of these estimators are the

same. However, none of the earlier authors constructed asymptotic-MSE equivalence classes,

which consist of several estimators of a function of the population means under several sampling

designs.

[64] compared the sample mean under the simple random sampling with replacement with

the usual unbiased estimator of the population mean under the probability proportional to size

sampling with replacement, when the study variable and the size variable are exactly linearly

related. [2] compared the ratio estimator of the population mean under SRSWOR with the RHC

estimator under RHC sampling design, when an approximate linear relationship holds between

the study variable and the size variable. [1] carried out the comparison of the ratio estimator of

the population mean under LMS sampling design and the RHC estimator under RHC sampling

design, when the study variable and the size variable are approximately linearly related. It was

shown that the GREG estimator of the population mean is asymptotically at least as efficient

as the HT, the ratio and the product estimators under SRSWOR (see [24]). However, the above

comparisons included neither the PEML estimator nor HEπPS sampling designs.
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In Section 2.2, we also consider the cases, when g(h) is the variance, the correlation coefficient

and the regression coefficient in the population. Note that if the estimators of the population

variance are constructed by plugging in the HT, the ratio, the product or the GREG estimators of

the population means, then the estimators of the variance may become negative. One also faces

problem with the plug-in estimators of the correlation coefficient and the regression coefficient as

these estimators require estimators of population variances. On the other hand, if the estimators of

the above-mentioned parameters are constructed by plugging in the Hájek or the PEML estimators

of the population means, such a problem does not occur. Therefore, for these parameters, we

compare only those equivalence classes, which contain the plug-in estimators based on the Hájek

and the PEML estimators. From this comparison under superpopulations satisfying linear models,

we once again conclude that for any of these parameters, the plug-in estimator based on the

PEML estimator has asymptotically the lowest MSE among all the estimators considered in this

chapter under SRSWOR as well as LMS sampling design. Moreover, under any HEπPS sampling

design, which use the auxiliary information, the plug-in estimator based on the Hájek estimator

has asymptotically the lowest MSE among all the estimators considered in this chapter.

Some empirical studies carried out in Section 2.3 using synthetic and real data demonstrate

that the numerical and the theoretical results corroborate each other. In Section 2.4, the biased

estimators considered in this chapter are compared empirically with their bias-corrected versions

based on jackknifing in terms of MSE. We make some remarks on our major findings in Section

2.5. Proofs of the results are given in Sections 2.6 and 2.7.

2.1. Comparison of different estimators of g(h)

In this section, we first provide the expressions (see Table 2.1 below) of those estimators of Y ,

which are considered in this chapter. In Table 2.1, πi=
∑

s∋Ui
P (s) is the inclusion probability

of the ith population unit, and Gi is the total of the x values of that randomly formed group

from which the ith population unit is selected in the sample by RHC sampling design (see [66]

and the introduction). In the case of the GREG estimator, Ŷ ∗=
∑

i∈s d(i, s)Yi/
∑

i∈s d(i, s),

X̂∗=
∑

i∈s d(i, s)Xi/
∑

i∈s d(i, s) and β̂=
∑

i∈s d(i, s)(Yi− Ŷ ∗)(Xi− X̂∗)/
∑

i∈s d(i, s)(Xi−

X̂∗)
2, where {d(i, s) : i ∈ s} are sampling design weights. Finally, the ci’s (> 0) in the

PEML estimator are obtained by maximizing
∑

i∈s d(i, s) log(ci) subject to
∑

i∈s ci=1 and∑
i∈s ci(Xi − X)=0. Following [22], we consider both the GREG and the PEML estimators
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TABLE 2.1: Estimators of Y .

Estimator Expression

HT Ŷ HT=
∑

i∈s(Nπi)
−1Yi

RHC Ŷ RHC=
∑

i∈s(NXi)
−1GiYi

Hájek Ŷ H=
∑

i∈s π
−1
i Yi/

∑
i∈s π

−1
i

Ratio Ŷ RA=(
∑

i∈s π
−1
i Yi/

∑
i∈s π

−1
i Xi)X

Product Ŷ PR=
∑

i∈s(Nπi)
−1Yi

∑
i∈s(Nπi)

−1Xi/ X

GREG Ŷ GREG=Ŷ ∗ + β̂(X − X̂∗)

PEML Ŷ PEML=
∑

i∈s ciYi

with d(i, s)=(Nπi)−1 under SRSWOR, LMS and any HEπPS sampling designs, and with

d(i, s)=(NXi)
−1Gi under RHC sampling design.

We compare the estimators of g(h), which are obtained by plugging in the estimators of h

mentioned in Table 2.2 below. The expressions of these estimators of h̄ are the same as the

expressions of the estimators of Y (see Table 2.1) with Yi replaced by h(Yi). First, we find

TABLE 2.2: Estimators of h.

Sampling
Estimators

designs

SRSWOR
HT (which coincides with Hájek estimator), ratio,

product, GREG and PEML estimators

LMS
HT, Hájek, ratio, product, GREG and

PEML estimators

HEπPS
HT (which coincides with ratio and product

estimators), Hájek, GREG and PEML estimators

RHC RHC, GREG and PEML estimators

equivalence classes of estimators of g(h) such that any two estimators in the same class are

asymptotically normal with the same mean g(h) and same variance.

We define our asymptotic framework as follows. Let {Pν} be a sequence of populations

with Nν , nν → ∞ as ν → ∞ (see [48], [85], [26], [7], [43] and references therein), where

Nν and nν are, respectively, the population size and the sample size corresponding to the νth

population. Henceforth, we shall suppress the subscript ν that tends to ∞ for the sake of
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simplicity. Throughout this chapter, we consider the following assumption (cf. Assumption 1 in

[12], A4 in [25], A1 in [16] A4 in [26] and (HT3) in [7])

Assumption 2.1.1. n/N → λ as ν → ∞, where 0 ≤ λ < 1.

Before we state the main results, let us discuss some assumptions on {(Xi, hi) : 1 ≤ i ≤ N}

(recall that hi=h(Yi)). Note that in any finite dimensional Euclidean space, we consider the

Euclidean norm and denote it by || · ||.

Assumption 2.1.2. {Pν} is such that
∑N

i=1 ||hi||4/N=O(1) and
∑N

i=1X
4
i /N =O(1) as ν → ∞.

Further, limν→∞ h exists, and X=
∑N

i=1Xi/N and S2
x=
∑N

i=1(Xi−X)2/N are bounded away

from 0 as ν → ∞. Moreover, ∇g(µ0) ̸= 0, where µ0=limν→∞ h and ∇g is the gradient of g.

Assumption 2.1.3. max1≤i≤N Xi/min1≤i≤N Xi=O(1) as ν → ∞.

Let Vi be one of hi, hi − h, hi − hXi/X , hi + hXi/X and hi − h − Sxh(Xi − X)/S2
x

for i=1, . . . , N , h=
∑N

i=1 hi/N and Sxh=
∑N

i=1Xihi/N − h X . Define TV =
∑N

i=1 Vi(1 −

πi)/
∑N

i=1 πi(1−πi), where πi is the inclusion probability of the ith population unit. Also, in the

case of RHC sampling design, define V=
∑N

i=1 Vi/N , X=
∑N

i=1Xi/N and γ=
∑n

r=1 Ñr(Ñr −

1)/N(N − 1), where Ñr is the size of the rth group formed randomly in RHC sampling design,

r=1, . . . , n. It follows from Lemma 2.7.5 in Section 2.7 that nγ → c as ν → ∞ for some

c ≥ 1− λ. Now, we state the following assumptions on the population values and the sampling

designs.

Assumption 2.1.4. P (s) is such that nN−2
∑N

i=1(Vi−TV πi)
T (Vi−TV πi)(π

−1
i −1) converges

to some positive definite (p.d.) matrix as ν → ∞.

Assumption 2.1.5. nγXN−1
∑N

i=1(Vi −XiV/X)T (Vi −XiV/X)/Xi converges to some p.d.

matrix as ν → ∞.

Similar assumptions like Assumptions 2.1.2, 2.1.4 and 2.1.5 are often used in sample survey

literature (see Assumption 3 in [12], A3 and A6 in both [25] and [26], (HT2) in [7], and F2 and F3

in [43]). Assumptions 2.1.2 and 2.1.5 hold (almost surely), whenever {(Xi, hi) : 1 ≤ i ≤ N} are

generated from a superpopulation model satisfying appropriate moment conditions (see Lemma

2.7.8 in Section 2.7). The condition
∑N

i=1 ||hi||4/N=O(1) holds, when h is a bounded function

(e.g., h(y)=y and y is a binary study variable). Assumption 2.1.3 implies that the variation in the

population valuesX1, . . . , XN cannot be too large. Under any πPS sampling design, Assumption
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2.1.3 is equivalent to the condition that L ≤ Nπi/n ≤ L′ for some constants L,L′ > 0, any

i=1, . . . , N and all sufficiently large ν ≥ 1. This latter condition was considered earlier in

the literature (see (C1) in [7] and Assumption 2–(i) in [85]). Assumption 2.1.3 holds (almost

surely), when {Xi}Ni=1 are generated from a superpopulation distribution and the support of the

distribution of Xi is bounded away from 0 and ∞. Assumption 2.1.4 holds (almost surely) for

SRSWOR, LMS and any πPS sampling designs under appropriate superpopulation models (see

Lemma 2.7.8 in Section 2.7). In the context of the RHC sampling design, we also consider the

following assumption.

Assumption 2.1.6. For the RHC sampling design, {Ñr}nr=1 are such that

Ñr =


N/n, for r = 1, · · · , n, when N/n is an integer,

⌊N/n⌋, for r = 1, · · · , k, and

⌊N/n⌋+ 1, for r = k + 1, · · · , n, when N/n is not an integer,

(2.1.1)

where k is such that
∑n

r=1 Ñr=N . Here, ⌊N/n⌋ is the integer part of N/n.

[66] showed that this choice of {Ñr}nr=1 minimizes the variance of the RHC estimator.

Assumptions 2.1.1–2.1.6 are used to prove some technical results (see Lemmas 2.7.1–2.7.7 in

Section 2.7) under LMS, HEπPS and RHC sampling designs, which will be required to construct

asymptotic-MSE equivalence classes of estimators for g(h) under different sampling designs

considered in this chapter. Now, we state the following theorems.

Theorem 2.1.1. Suppose that Assumptions 2.1.1–2.1.4 hold. Then, classes 1, 2, 3 and 4 in Table

2.3 describe asymptotic-MSE equivalence classes of estimators for g(h) under SRSWOR and

LMS sampling design.

For next two theorems, we assume that nmax1≤i≤N Xi/
∑N

i=1Xi < 1. Note that this

condition is required to hold for any without replacement πPS sampling design.

Theorem 2.1.2. (i) If Assumptions 2.1.1–2.1.4 hold, then classes 5, 6 and 7 in Table 2.3 describe

asymptotic-MSE equivalence classes of estimators for g(h) under any HEπPS sampling design.

(ii) Under RHC sampling design, if Assumptions 2.1.1–2.1.3, 2.1.5 and 2.1.6 hold, then classes 8

and 9 in Table 2.3 describe asymptotic-MSE equivalence classes of estimators for g(h).
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TABLE 2.3: Estimators of h based on which asymptotic-MSE equivalence classes of estimators
for g(h) are formed.

Sampling design

Equivalence
SRSWOR LMS HEπPS RHC

classes

class 1
GREG and GREG and

PEML PEML

class 2 1 HT
HT and
Hájek

class 3 Ratio Ratio

class 4 Product Product

class 5
GREG and

PEML

class 6 2 HT

class 7 Hájek

class 8
GREG and

PEML

class 9 RHC
1 The HT and the Hájek estimators coincide under SRSWOR.
2 The HT, the ratio and the product estimators coincide under HEπPS

sampling designs.

Remark 2.1.1. It is to be noted that if Assumptions 2.1.2–2.1.4 hold, and 2.1.1 holds with λ=0,

then in Table 2.3, class 8 is merged with class 5, and class 9 is merged with class 6. For details,

see Section 2.6.

Next, suppose that Wi=∇g(h)hTi for i=1, . . . , N , W=
∑N

i=1Wi/N , Sxw=
∑N

i=1WiXi/N −

W X , S2
w=
∑N

i=1W
2
i /N −W 2, S2

x=
∑N

i=1X
2
i /N − X

2 and ϕ=X − (n/N)
∑N

i=1X
2
i /NX .

Now, we state the following theorem.

Theorem 2.1.3. Suppose that the assumptions of Theorems 2.1.1 and 2.1.2 hold. Then, Table

2.4 gives the expressions of asymptotic MSEs, ∆2
1, . . . ,∆

2
9, of estimators in asymptotic-MSE

equivalence classes 1, . . . , 9 in Table 2.3, respectively.

Remark 2.1.2. It can be shown in a straightforward way from Table 2.4 that ∆2
1 ≤ ∆2

i for i=2, 3

and 4. Thus, both the plug-in estimators of g(h) that are based on the GREG and the PEML

estimators are asymptotically as good as, if not better than, the plug-in estimators based on

the HT (which coincides with the Hájek estimator), the ratio and the product estimators under
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SRSWOR, and the plug-in estimators based on the HT, the Hájek, the ratio and the product

estimators under LMS sampling design.

TABLE 2.4: Asymptotic variances of estimators for g(h) (note that for simplifying notations,
the subscript ν is dropped from the expressions on which limits are taken).

∆2
1=(1− λ) lim

ν→∞

(
S2
w − (Sxw/Sx)

2
)

∆2
2=(1− λ) lim

ν→∞
S2
w

∆2
3=(1− λ) lim

ν→∞

(
S2
w − 2WSxw/X +

(
W/X

)2
S2
x

)
∆2

4=(1− λ) lim
ν→∞

(
S2
w + 2WSxw/X +

(
W/X

)2
S2
x

)
∆2

5= lim
ν→∞

(1/N)
∑N

i=1

(
Wi −W − (Sxw/S

2
x)(Xi −X)

)2×(
(X/Xi)− (n/N)

)
∆2

6= lim
ν→∞

(1/N)
∑N

i=1

{
Wi + ϕ−1X

−1
Xi

(
(n/N)

∑N
i=1WiXi/N −W X

)}2×{
(X/Xi)− (n/N)

}
∆2

7= lim
ν→∞

(1/N)
∑N

i=1

(
Wi −W + (n/NϕX)XiSxw

)2×(
(X/Xi)− (n/N)

)
∆2

8= lim
ν→∞

nγ(X/N)
∑N

i=1

(
Wi −W − (Sxw/S

2
x)(Xi −X)

)2
/Xi

∆2
9= lim

ν→∞
nγ
(
(X/N)

∑N
i=1W

2
i /Xi −W

2)

Let us now consider some examples of g(h) in Table 2.5 below. Conclusions of Theorems

TABLE 2.5: Examples of g(h).

Parameter d p h g

Mean 1 1 h(y)=y g(s)=s

Variance 1 2 h(y)=(y2, y) g(s1, s2)=s1 − s22

Correlation
2 5

h(z1, z2)=(z1, z2, g(s1, s2, s3, s4, s5)=(s5 − s1s2)/

coefficient z21 , z
2
2 , z1z2) ((s3 − s21)(s4 − s22))

1/2

Regression
2 4

h(z1, z2)=(z1, z2, g(s1, s2, s3, s4, s5)=
coefficient z22 , z1z2) (s4 − s1s2)/(s3 − s22)

2.1.1–2.1.3, and Remarks 2.1.1 and 2.1.2 hold for all of the above parameters. Here, we recall

from the 5th paragraph in the beginning of this chapter that for the variance, the correlation

coefficient and the regression coefficient, we consider only the plug-in estimators that are based

on the Hájek and the PEML estimators.
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2.2. Comparison of estimators under superpopulation models

In this section, we derive asymptotically efficient estimators for the mean, the variance, the

correlation coefficient and the regression coefficient under superpopulations satisfying linear

regression models. Earlier, [64] [58], [2], [1] and [24] used the linear relationship between

the Yi’s and the Xi’s for comparing different estimators of the mean. However, they did not

use any probability distribution for the (Yi, Xi)’s. Subsequently, [65], [36], [19], [7], [63], etc.

considered the linear relationship between the Yi’s and the Xi’s and a probability distribution

for the (Yi, Xi)’s for constructing different estimators and studying their behavior. However,

the problem of finding asymptotically the most efficient estimator for the mean among a large

class of estimators as considered in this chapter was not done earlier in the literature. Also, large

sample comparisons of the plug-in estimators of the variance, the correlation coefficient and

the regression coefficient considered in this chapter were not carried out in the earlier literature.

As mentioned in the introduction, let us assume that {(Yi, Xi) : 1 ≤ i ≤ N} are i.i.d. random

vectors defined on a probability space (Ω,F ,P). Without any loss of generality, for convenience,

we take σ2x=EP(Xi−EP(Xi))
2 =1. This might require rescaling the variable x. Here,EP denotes

the expectation with respect to the probability measure P. Recall that the population values

X1, . . . , XN are used to implement some of the sampling designs like LMS, RHC, HEπPS, etc.

In such a case, we consider a function P (s, ω) on S × Ω so that P (s, ·) is a random variable on

Ω for each s ∈ S, and P (·, ω) is a probability distribution on S for each ω ∈ Ω (see [7]). Note

that P (s, ω) is the sampling design for any fixed ω in this case. Then, the ∆2
j ’s in Table 2.4 can

be expressed in terms of superpopulation moments of (h(Yi), Xi) by strong law of large numbers

(SLLN). In that case, we can easily compare different classes of estimators in Table 2.3 under

linear models. Let us first state the following assumption on superpopulation distribution P.

Assumption 2.2.1. Xi ≤ b a.s. [P] for some b > 0, EP(Xi)
−2 < ∞, and max1≤i≤N Xi/

min1≤i≤N Xi=O(1) as ν → ∞ a.s. [P]. Also, the support of the distribution of (h(Yi), Xi) is

not a subset of a hyperplane in Rp+1.

The condition, Xi ≤ b a.s. [P] for some b > 0, in Assumption 2.2.1 and Assumption 2.1.1

along with 0 ≤ λ < EP(Xi)/b ensure that nmax1≤i≤N Xi/
∑N

i=1Xi < 1 for all sufficiently

large ν a.s. [P], which is required for implementing a πPS sampling design. On the other hand,

the condition, max1≤i≤N Xi/min1≤i≤N Xi =O(1) as ν → ∞ a.s. [P], in Assumption 2.2.1

implies that Assumption 2.1.3 holds a.s. [P]. Further, Assumption 2.2.1 ensures that Assumption

2.1.5 holds a.s. [P] (see Lemma 2.7.3 in Section 2.7). Assumption 2.2.1 also ensures that
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Assumption 2.1.4 holds under LMS and any πPS sampling designs a.s. [P] (see Lemma 2.7.3 in

Section 2.7).

Let us first consider the case, when g(h) is the mean of y (see the 2nd row in Table 2.5)

Further, suppose that Yi=α + βXi + ϵi for α, β ∈ R and i=1, . . . , N , where {ϵi}Ni=1 are i.i.d.

random variables and are independent of {Xi}Ni=1 with EP(ϵi)=0 and EP(ϵi)
4 <∞. Then, we

have the following theorem.

Theorem 2.2.1. Suppose that Assumption 2.1.1 holds with 0 ≤ λ < EP(Xi)/b, and Assumptions

2.1.6 and 2.2.1 hold. Then, a.s. [P], the PEML estimator under SRSWOR as well as LMS sampling

design has the lowest asymptotic MSE among all the estimators of the population mean under

different sampling designs considered in this chapter.

Remark 2.2.1. Note that for SRSWOR, the PEML estimator of the population mean has the

lowest asymptotic MSE among all the estimators considered in this chapter a.s. [P], when

Assumption 2.1.1 holds with 0 ≤ λ < 1, and Assumptions 2.1.6 and 2.2.1 hold (see the proof of

Theorem 2.2.1).

Theorem 2.2.2. Suppose that Assumption 2.1.1 holds with 0 ≤ λ < EP(Xi)/b, and Assumptions

2.1.6 and 2.2.1 hold. Then, a.s. [P], the performance of the PEML estimator of the population

mean under RHC and any HEπPS sampling designs, which use auxiliary information is worse

than its performance under SRSWOR.

Recall from the 5th paragraph in the beginning of this chapter that for the variance, the

correlation coefficient and the regression coefficient, we compare only those equivalence classes,

which contain the plug-in estimators based on the Hájek and the PEML estimators. We first state

the following assumption.

Assumption 2.2.2. ξ > 2max{µ1, µ−1/(µ1µ−1 − 1)}, where ξ=µ3 − µ2µ1 is the covariance

between X2
i and Xi, and µj=EP(Xi)

j , j=−1, 1, 2, 3.

The above assumption is used to prove part (ii) in each of Theorems 2.2.3 and 2.2.4. This

condition holds when theXi’s follow well-known distributions like Gamma (with shape parameter

value larger than 1 and any scale parameter value), Beta (with the second shape parameter value

greater than the first shape parameter value and the first shape parameter value larger than 1),

Pareto (with shape parameter value lying in the interval (3, (5+
√
17)/2) and any scale parameter

value), Log-normal (with any parameter value) and Weibull (with shape parameter value lying in
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the interval (1, 3.6) and any scale parameter value). Now, consider the case, when g(h) is the

variance of y (see the 3rd row in Table 2.5). Recall the linear model Yi=α+βXi+ ϵi from above

and assume that EP(ϵi)
8 <∞. Then, we have the following theorem. Now, consider the case,

when g(h) is the variance of y, i.e., d=1, p=2, h(y)=(y, y2), and g(s1, s2)=s2 − s21. Recall the

linear model Yi=α + βXi + ϵi from above and assume that EP(ϵi)
8 < ∞. Then, we have the

following theorem.

Theorem 2.2.3. (i) Let us first consider SRSWOR and LMS sampling design and suppose that

Assumptions 2.1.1 and 2.2.1 hold. Then, a.s. [P], the plug-in estimator of the population variance

based on the PEML estimator has the lowest asymptotic MSE among all the estimators considered

in this chapter.

(ii) Next consider any HEπPS sampling design and suppose that Assumption 2.1.1 holds with

0 ≤ λ < EP(Xi)/b, and Assumptions 2.2.1 and 2.2.2 hold. Then, a.s. [P], the plug-in estimator

of the population variance based on the Hájek estimator has the lowest asymptotic MSE among

all the estimators considered in this chapter.

Next, suppose that y=(z1, z2) ∈ R2 and consider the case, when g(h) is the correlation

coefficient between z1 and z2 (see the 4th row in Table 2.5). Let us also consider the case, when

g(h) is the regression coefficient of z1 on z2 (see the 5th row in Table 2.5). Further, suppose that

Yi=α+ βXi + ϵi for Yi=(Z1i, Z2i), α, β ∈ R2 and i=1, . . . , N , where {ϵi}Ni=1 are i.i.d. random

vectors in R2 independent of {Xi}Ni=1 with EP(ϵi)=0 and EP||ϵi||8 < ∞. Then, we have the

following theorem.

Theorem 2.2.4. (i) Let us first consider SRSWOR and LMS sampling design and suppose that

Assumptions 2.1.1 and 2.2.1 hold. Then, a.s. [P], the plug-in estimator of each of the correlation

and the regression coefficients in the population based on the PEML estimator has the lowest

asymptotic MSE among all the estimators considered in this chapter.

(ii) Next consider any HEπPS sampling design and suppose that Assumption 2.1.1 holds with

0 ≤ λ < EP(Xi)/b, and Assumptions 2.2.1 and 2.2.2 hold. Then, a.s. [P], the plug-in estimator

of each of the above parameters based on the Hájek estimator has the lowest asymptotic MSE

among all the estimators considered in this chapter.
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2.3. Data analysis

In this section, we intend to carry out an empirical comparison of the estimators of the mean, the

variance, the correlation coefficient and the regression coefficient, which are discussed in this

chapter, based on both real and synthetic data. Recall that for the above parameters, we have

considered several estimators and sampling designs, and conducted a theoretical comparison

of those estimators in Sections 2.1 and 2.2. For empirical comparison, we exclude some of the

estimators considered in theoretical comparison so that the results of the comparison become

concise and comprehensive. The reasons for excluding those estimators are given below.

(i) Since the GREG estimator is well-known to be asymptotically better than the HT, the ratio

and the product estimators under SRSWOR (see [24]), we exclude these latter estimators

under SRSWOR.

(ii) Since the MSEs of the estimators under LMS sampling design become very close to the

MSEs of the same estimators under SRSWOR as expected from Theorem 2.1.1, we do not

report these results under LMS sampling design. Moreover, SRSWOR is a simpler and

more commonly used sampling design than LMS sampling design.

Thus we consider the estimators mentioned in Table 2.6 below for the empirical comparison.

Recall from Table 2.2 that the HT, the ratio and the product estimators of the mean coincide

TABLE 2.6: Estimators considered for the empirical comparison.

Parameters Estimators

Mean

GREG and PEML estimators under SRS-
WOR; HT, Hájek, GREG and PEML

estimators under 3RS sampling design;
and RHC and GREG estimators under

RHC sampling design
Variance, correlation Obtained by plugging in Hájek and PEML

coefficient and regression estimators under each of SRSWOR and1RS
coefficient sampling design, and PEML estimator

under RHC sampling design
3 We consider RS sampling design since it is a HEπPS sampling design,

and it is easier to implement than other HEπPS sampling designs.

under any HEπPS sampling design. We draw I=1000 samples each of sizes n=75, 100 and 125

using sampling designs mentioned in Table 2.6. We use the R software for drawing samples as
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well as computing different estimators. For RS sampling design, we use the ‘pps’ package in R,

and for the PEML estimator, we use R codes in [87]. Two estimators g(ĥ1) and g(ĥ2) of g(h)

under sampling designs P1(s) and P2(s), respectively, are compared empirically by means of the

relative efficiency defined as

RE(g(ĥ1), P1|g(ĥ2), P2) =MSEP2(g(ĥ2))/MSEP1(g(ĥ1)),

where MSEPj (g(ĥj))=I
−1
∑I

l=1(g(ĥjl)− g(h0))
2 is the empirical MSE of g(ĥj) under Pj(s),

j=1, 2. Here, ĥjl is the estimate of h based on the jth estimator and the lth sample, and g(h0) is

the true value of the prameter g(h), j=1, 2, l=1, . . . , I . g(ĥ1) under P1(s) will be more efficient

than g(ĥ2) under P2(s) if RE(g(ĥ1), P1|g(ĥ2), P2) > 1.

Next, for each of the parameters considered in this section, we compare average lengths

of asymptotically 95% confidence intervals (CIs) constructed based on several estimators used

in this section. In order to construct asymptotically 95% CIs, we need an estimator of the

asymptotic MSE of
√
n(g(ĥ) − g(h)). If we consider SRSWOR or RS sampling design, it

follows from the proofs of Theorems 2.1.1 and 2.1.2 that the asymptotic MSE of
√
n(g(ĥ) −

g(h)) is ∆̃2
1=limν→∞ nN−2∇g(h)

∑N
i=1(Vi − TV πi)

T (Vi − TV πi)(π
−1
i − 1)∇g(h)T , where

TV =
∑N

i=1 Vi(1−πi)/
∑N

i=1 πi(1−πi). Moreover, Vi is hi or hi−h or hi−h−Sxh(Xi−X)/S2
x

if ĥ is ĥHT or ĥH or ĥPEML (as well as ĥGREG) with d(i, s)=(Nπi)−1, respectively. Recall

from the paragraph following Assumption 2.1.3 that Sxh=
∑N

i=1Xihi/N −X h. Following the

idea of [16], we estimate ∆̃2
1 by

∆̂2
1 = nN−2∇g(ĥ)

∑
i∈s

(V̂i − T̂vπi)
T (V̂i − T̂vπi)(π

−1
i − 1)π−1

i ∇g(ĥ)T , (2.3.1)

where T̂v=
∑

i∈s V̂i(π
−1
i − 1)/

∑
i∈s(1 − πi), ĥ=ĥHT in the case of the mean, the variance

and the regression coefficient, and ĥ=ĥH in the case of the correlation coefficient. Here, V̂i

is hi or hi − ĥHT or hi − ĥHT − Ŝxh,1(Xi − X̂HT )/Ŝ
2
x,1 if ĥ is ĥHT or ĥH or ĥPEML (as

well as ĥGREG) with d(i, s)=(Nπi)−1. Further, Ŝxh,1=
∑

i∈s(Nπi)
−1Xihi − X̂HT ĥHT and

Ŝ2
x,1=

∑
i∈s(Nπi)

−1X2
i − X̂

2

HT . We estimate h in ∇g(h) by ĥHT in the case of the mean, the

variance and the regression coefficient because ĥHT is an unbiased estimator and it is easier to

compute than the other estimators of h considered in this chapter. On the other hand, different

estimators of the correlation coefficient that are considered in this chapter may become undefined

if we estimate h by any estimator other than ĥH and ĥPEML (see the 5th paragraph in the



22 Chapter 2. A comparison of estimators of mean and its functions in finite populations

beginning of this chapter). In this case, we choose ĥH because it is easier to compute than

ĥPEML.

Next, if we consider RHC sampling design, it follows from the proof of Theorem 2.1.2

that the asymptotic MSE of
√
n(g(h) − g(ĥ)) is ∆̃2

2=limν→∞ nγXN−1∇g(h)
∑N

i=1(Vi −

XiV/X)T (Vi − XiV/X)X−1
i ∇g(h)T , where γ and V are as in the paragraph following As-

sumption 2.1.3. Moreover, Vi is hi or hi − h− Sxh(Xi −X)/S2
x if ĥ is ĥRHC or ĥPEML (as

well as ĥGREG) with d(i, s)=(NXi)
−1Gi, respectively. Here, Gi is the total of the x values of

that randomly formed group from which the ith population unit is selected in the sample by RHC

sampling design (cf. [20]). We estimate ∆̃2
2 by

∆̂2
2 = nγXN−1∇g(ĥ)

∑
i∈s

(V̂i −XiV̂RHC/X)T×

(V̂i −XiV̂RHC/X)(GiX
−2
i )∇g(ĥ)T ,

(2.3.2)

where V̂RHC=
∑

i∈s(NXi)
−1GiV̂i, ĥ=ĥRHC in the case of the mean, the variance and the

regression coefficient, and ĥ=ĥPEML in the case of the correlation coefficient. Here, V̂i is

hi or hi − ĥRHC − Ŝxh,2(Xi − X)/Ŝ2
x,2 if ĥ is ĥRHC or ĥPEML (as well as ĥGREG) with

d(i, s)=(NXi)
−1Gi. Further, Ŝxh,2=

∑
i∈sN

−1Gihi −X ĥRHC and Ŝ2
x,1=

∑
i∈sN

−1GiXi −

X
2. In the case of the mean, the variance and the regression coefficient, we estimate h in ∇g(h)

by ĥRHC for the same reason as discussed in the preceding paragraph, where we discuss the

estimation of h by ĥHT under SRSWOR and RS sampling design. On the other hand, in the case

of the correlation coefficient, we estimate h in ∇g(h) by ĥPEML under RHC sampling design so

that the estimator of the correlation coefficient appeared in the expression of ∇g(h) in this case

becomes well defined.

We draw I=1000 samples each of sizes n=75, 100 and 125 using sampling designs mentioned

in Table 2.6. Then, for each of the parameters, the sampling designs and the estimators mentioned

in Table 2.6, we construct I many asymptotically 95% CIs based on these samples and compute

the average and the standard deviation (s.d.) of their lengths.

2.3.1 Analysis based on synthetic data

In this section, we consider the population values {(Yi, Xi) : 1 ≤ i ≤ N} on (y, x) generated

from a linear model as follows. We choose N=5000 and generate the Xi’s from a gamma

distribution with mean 1000 and s.d. 200. Then, Yi is generated from the linear model Yi=500 +
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Xi+ϵi for i=1, . . . , N , where ϵi is generated independently of {Xi}Ni=1 from a normal distribution

with mean 0 and s.d. 100. We also generate the population values {(Yi, Xi) : 1 ≤ i ≤ N} from

a linear model, when y=(z1, z2) is a bivariate study variable. The population values {Xi}Ni=1 are

generated in the same way as in the earlier case. Then, Yi=(Z1i, Z2i) is generated from the linear

model Zji=αj +Xi + ϵji for i=1, . . . , N , where α1=500 and α2=1000. The ϵ1i’s are generated

independently of the Xi’s from a normal distribution with mean 0 and s.d. 100, and the ϵ2i’s are

generated independently of the Xi’s and the ϵ1i’s from a normal distribution with mean 0 and s.d.

200. We consider the estimation of the mean and the variance of y for the first data set and the

correlation and the regression coefficients between z1 and z2 for the second data set.

The results of the empirical comparison based on synthetic data are summarized as follows.

For each of the mean, the variance, the correlation coefficient and the regression coefficient, the

plug-in estimator based on the PEML estimator under SRSWOR turns out to be more efficient

than any other estimator under any other sampling design (see Tables 2.7–2.11) considered in

Table 2.6 when compared in terms of relative efficiencies. Also, for each of the above parameters,

asymptotically 95% CI based on the PEML estimator under SRSWOR has the least average

length (see Tables 2.12–2.16). Thus the empirical results stated here corroborate the theoretical

results stated in Theorems 2.2.1–2.2.4.

TABLE 2.7: Relative efficiencies of estimators for mean of y.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(Ŷ PEML, SRSWOR | Ŷ GREG, SRSWOR) 1.049985 1.020252 1.035038

RE(Ŷ PEML, SRSWOR | Ŷ H , RS) 4.870516 5.370899 4.987635

RE(Ŷ PEML, SRSWOR | Ŷ HT , RS ) 2.026734 2.061607 2.027386

RE(Ŷ PEML, SRSWOR | Ŷ PEML, RS) 1.144439 1.124697 1.170224

RE(Ŷ PEML, SRSWOR | Ŷ GREG, RS) 1.144455 1.124975 1.170267

RE(Ŷ PEML, SRSWOR| Ŷ RHC , RHC ) 2.022378 1.978623 2.143015

RE(Ŷ PEML, SRSWOR | Ŷ PEML, RHC) 1.089837 1.030332 1.094067

RE(Ŷ PEML, SRSWOR | Ŷ GREG, RHC) 1.089853 1.030587 1.094108
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TABLE 2.8: Relative efficiencies of estimators for variance of y. Recall from Table 2.5 in
Section 2.1 that for variance of y, h(y)=(y2, y) and g(s1, s2)=s1 − s22.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | g(ĥH), SRSWOR) 1.0926 1.0848 1.0419

RE(g(ĥPEML), SRSWOR | g(ĥH), RS) 1.0367 1.0435 1.0226

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RS) 1.15067 1.136 1.1635

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RHC) 1.141 1.1849 1.1631

TABLE 2.9: Relative efficiencies of estimators for correlation coefficient between z1 and
z2. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between z1 and z2,
h(z1, z2)=(z1, z2, z21 , z

2
2 , z1z2) and g(s1, s2, s3, s4, s5)=(s5 − s1s2)/((s3 − s21)(s4 − s22))

1/2.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | g(ĥH), SRSWOR) 1.0304 1.0274 1.0385

RE(g(ĥPEML), SRSWOR | g(ĥH), RS) 1.0307 1.0838 1.0515

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RS) 1.0573 1.1862 1.1081

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RHC) 1.0847 1.1459 1.0911

TABLE 2.10: Relative efficiencies of estimators for regression coefficient of z1 on
z2. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z1 on z2,

h(z1, z2)=(z1, z2, z22 , z1z2) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | g(ĥH), SRSWOR) 1.0389 1.0473 1.0218

RE(g(ĥPEML), SRSWOR | g(ĥH), RS) 1.0589 1.0829 1.0827

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RS) 1.1219 1.1334 1.2137

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RHC) 1.2037 1.1307 1.1399
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TABLE 2.11: Relative efficiencies of estimators for regression coefficient of z2 on
z1. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z2 on z1,

h(z1, z2)=(z2, z1, z21 , z1z2) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | g(ĥH), SRSWOR) 1.0498 1.04 1.0301

RE(g(ĥPEML), SRSWOR | g(ĥH), RS) 1.0655 1.0652 1.0548

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RS) 1.1073 1.1153 1.1135

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RHC) 1.0762 1.0905 1.1108

TABLE 2.12: Average and s.d. of lengths of asymptotically 95% CIs for mean of y.

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

Ŷ H , SRSWOR
536.821 538.177 539.218
(11.357) (9.0784) (6.8211)

4 Ŷ PEML, SRSWOR
44.824 38.81 34.648
(3.7002) (2.7727) (2.2055)

Ŷ HT , RS
689.123 597.999 535.951
(7.8452) (5.7176) (4.8422)

Ŷ H , RS
102.611 87.915 59.98307
(10.969) (8.453) (6.5828)

4 Ŷ PEML, RS
345.956 115.944 78.711
(654.77) (265.93) (1041.2)

Ŷ RHC , RHC
848.033 624.881 541.421
(6.8489) (4.9609) (4.0927)

4 Ŷ PEML, RHC
64.573 56.531 50.601
(715.16) (275.11) (651.31)

4 It is to be noted that in the cases of PEML and GREG estimators under any given sampling
design, we have the same asymptotic MSE and hence the same asymptotic CI. Therefore,
the average and the s.d. of lengths of CIs are not reported for the GREG estimator.
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TABLE 2.13: Average and s.d. of lengths of asymptotically 95% CIs for variance of y. Recall
from Table 2.5 in Section 2.1 that for variance of y, h(y1)=(y2, y) and g(s1, s2)=s1 − s22.

Average length
(s.d.)

PPPPPPPPPPPPPPPPPPP

Estimator
and sampling
design based on
which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
1010775 878689.4 786228
(34245.5) (26373.9) (20414.5)

g(ĥPEML), SRSWOR
29432.4 25929 23422
(6076.97) (4441.2) (3526.8)

g(ĥH), RS
444594.4 434160.7 239065
(44701.7) (31965.2) (26739.6)

g(ĥPEML), RS
1152403 1290084 235909.1
(9083944) (869339.1) (1183961)

g(ĥPEML), RHC
1031407 895639 801178.9
(7311193) (1530759) (417582.9)

TABLE 2.14: Average and s.d. of lengths of asymptotically 95% CIs for correlation coefficient
between z1 and z2. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between
z1 and z2, h(z1, z2)=(z1, z2, z21 , z

2
2 , z1z2) and g(s1, s2, s3, s4, s5)=(s5−s1s2)/((s3−s21)(s4−

s22))
1/2.

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
8.2191 8.0909 8.0897

(2.429) (1.889) (1.449)

g(ĥPEML), SRSWOR
0.2542 0.2575 0.2583

(0.0467) (0.0365) (0.0294)

g(ĥH), RS
4.6847 3.3135 1.3942

(2.555) (1.884) (1.421)

g(ĥPEML), RS
5.0473 4.3229 3.1306

(162.9) (17.19) (21.04)

g(ĥPEML), RHC
8.3174 8.3898 8.3514

(15.82) (41.88) (19.62)
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TABLE 2.15: Average and s.d. of lengths of asymptotically 95% CIs for regression coefficient
of z1 on z2. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z1 on z2,

h(z1, z2)=(z1, z2, z22 , z1z2) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
5.9565 5.068 4.4818

(2.013) (1.514) (1.135)

g(ĥPEML), SRSWOR
0.2596 0.2251 0.2032

(0.0429) (0.0324) (0.025)

g(ĥH), RS
3.0488 1.469 1.1532

(2.178) (1.517) (1.171)

g(ĥPEML), RS
3.6477 1.8558 1.4023

(19.09) (4.697) (4.672)

g(ĥPEML), RHC
6.111 5.1324 4.6658

(25.16) (38.36) (11.17)

TABLE 2.16: Average and s.d. of lengths of asymptotically 95% CIs for regression coefficient
of z2 on z1. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z2 on z1,

h(z1, z2)=(z2, z1, z21 , z1z2) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
11.2173 9.6463 8.5885

(3.238) (2.418) (1.877)

g(ĥPEML), SRSWOR
0.4198 0.3652 0.3307

(0.0661) (0.0531) (0.0405)

g(ĥH), RS
6.7247 3.3547 1.7421

(3.546) (2.539) (1.921)

g(ĥPEML), RS
11.3373 9.988 8.7889

(151.9) (31.83) (7.405)

g(ĥPEML), RHC
19.9049 3.5595 1.8327

(28.77) (321.7) (8.164)
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2.3.2 Analysis based on real data

In this section, we consider a data set on the village amenities in the state of West Bengal

in India obtained from the Office of the Registrar General & Census Commissioner, India

(https://censusindia.gov.in). Relevant study variables for this data set are described in Table 2.17

below. We consider the following estimation problems for a population consisting of 37478

TABLE 2.17: Description of study variables.

y1 Number of primary schools in village

y2 Scheduled castes population size in village

y3 Number of secondary schools in village

y4 Scheduled tribes population size in village

villages. For these estimation problems, we use the number of people living in village x as the

size variable.

(i) First, we consider the estimation of the mean and the variance of each of y1 and y2. It can

be shown from the scatter plot and the least square regression line in Figure 2.1 below that

y1 and x have an approximate linear relationship. Also, the correlation coefficient between

y1 and x is 0.72. On the other hand, y2 and x do not seem to have a linear relationship (see

the scatter plot and the least square regression line in Figure 2.2 below).

(ii) Next, we consider the estimation of the correlation and the regression coefficients of y1

and y3 as well as of y2 and y4. The scatter plot and the least square regression line in

Figure 2.3 below show that y3 does not seem to be dependent on x. Further, we see from

the scatter plot and the least square regression line of y4 and x (see Figure 2.4 below) that

y4 and x do not seem to have a linear relationship.

The results of the empirical comparison based on real data are summarized in Table 2.18 below.

For further details see Tables 2.19–2.38 below. The approximate linear relationship between

y1 and x (see the scatter plot and the least square regression line in Figure 2.1 below) could

be a possible reason why the plug-in estimator based on the PEML estimator under SRSWOR

becomes the most efficient for each of the mean and the variance of y1 among all the estimators

under different sampling designs considered in this section. Also, possibly for the same reason,

the plug-in estimators of the correlation and the regression coefficients between y1 and y3 based
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on the PEML estimator under SRSWOR become the most efficient among all the estimators

under different sampling designs considered in this section.
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FIGURE 2.1: Scatter plot and least square regression line for variables y1 and x.

On the other hand, any of y2, and y4 does not seem to have a linear relationship with x (see the

scatter plots and the least square regression lines in Figures 2.2 and 2.4 below). Possibly, because

of this reason, the plug-in estimators of the parameters related to y2 and y4 based on the PEML

estimator are not able to outperform the the plug-in estimators of those parameters based on the

HT and the Hájek estimators. Next, we observe that there are substantial correlation present

between y2 and x (correlation coefficient=0.67), and y4 and x (correlation coefficient=0.25).
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Possibly, because of this, under RS sampling design, which uses the auxiliary information, the

plug-in estimators of the parameters related to y2 and y4 based on the HT and the Hájek estimators

become the most efficient among all the estimators under different sampling designs considered

in this section.
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FIGURE 2.2: Scatter plot and least square regression line for variables y2 and x.
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FIGURE 2.3: Scatter plot and least square regression line for variables y3 and x.
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FIGURE 2.4: Scatter plot and least square regression line for variables y4 and x.
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TABLE 2.18: Most efficient estimators in terms of relative efficiencies (it follows from Tables
2.29–2.38 that asymptotically 95% CIs based on most efficient estimators have least average

lengths).

Parameters Most efficient estimators

Mean and variance of y1
The plug-in estimator based on the

the PEML estimator under SRSWOR

Mean of y2 The HT estimator under RS sampling design

Variance of y2
the plug-in estimator based on the Hájek

estimator under RS sampling design

Correlation and regression The plug-in estimator based on the PEML
coefficients of y1 and y3 estimator under SRSWOR

Correlation and regression The plug-in estimator based on the Hájek
coefficients of y2 and y4 estimator under RS sampling design

TABLE 2.19: Relative efficiencies of estimators for mean of y1.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(Ŷ PEML, SRSWOR | Ŷ GREG, SRSWOR) 1.008215 1.005233 1.020408

RE(Ŷ PEML, SRSWOR | Ŷ H , RS) 3.503939 3.880443 4.175886

RE(Ŷ PEML, SRSWOR | Ŷ HT , RS) 1.796937 2.182675 1.8311

RE(Ŷ PEML, SRSWOR | Ŷ PEML, RS) 1.20961 1.228022 1.50233

RE(Ŷ PEML, SRSWOR | Ŷ GREG, RS) 1.21831 1.237737 1.553863

RE(Ŷ PEML, SRSWOR | Ŷ RHC , RHC) 3.274031 2.059141 2.030995

RE(Ŷ PEML, SRSWOR | Ŷ PEML, RHC) 1.088166 1.388563 1.51547

RE(Ŷ PEML, SRSWOR | Ŷ GREG, RHC) 1.097934 1.398241 1.567545

TABLE 2.20: Relative efficiencies of estimators for variance of y1. Recall from Table 2.5 in
Section 2.1 that for variance of y1, h(y1)=(y21 , y1) and g(s1, s2)=s1 − s22.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | g(ĥH), SRSWOR) 1.3294 1.2413 1.1476

RE(g(ĥPEML), SRSWOR | g(ĥH), RS) 2.5303 1.6656 1.5374

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RS) 3.1642 2.4051 2.5831

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RHC) 2.5499 4.7704 3.0985
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TABLE 2.21: Relative efficiencies of estimators for mean of y2.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(Ŷ HT , RS | Ŷ H , RS) 4.367712 4.008655 4.463214

RE(Ŷ HT , RS | Ŷ PEML, RS) 1.148074 1.082488 1.088804

RE(Ŷ HT , RS | Ŷ GREG, RS) 1.216958 1.115967 1.154132

RE(Ŷ HT , RS | Ŷ RHC , RHC) 1.073138 1.03213 1.07484

RE(Ŷ HT , RS | Ŷ PEML, RHC) 1.230884 1.0937 1.207308

RE(Ŷ HT , RS | Ŷ GREG, RHC) 1.304737 1.127526 1.279746

RE(Ŷ HT , RS | Ŷ PEML, SRSWOR) 2.440441 2.305339 2.350916

RE(Ŷ HT , RS | Ŷ GREG, SRSWOR) 2.58687 2.376638 2.49197

TABLE 2.22: Relative efficiencies of estimators for variance of y2. Recall from Table 2.5 in
Section 2.1 that for variance of y2, h(y2)=(y22 , y2) and g(s1, s2)=s1 − s22.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥH), RS | g(ĥPEML), RS) 11.893 6.967 34.691

RE(g(ĥH), RS | g(ĥPEML), RHC) 5.0093 19.456 21.919

RE(g(ĥH), RS | g(ĥH), SRSWOR) 9.8232 10.27 16.763

RE(g(ĥH), RS | g(ĥPEML), SRSWOR) 2.4768 4.8093 6.2264

TABLE 2.23: Relative efficiencies of estimators for correlation coefficient between y1 and
y3. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between y1 and y3,
h(y1, y3)=(y1, y3, y21 , y

2
3 , y1y3) and g(s1, s2, s3, s4, s5)=(s5 − s1s2)/((s3 − s21)(s4 − s22))

1/2.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | g(ĥH), SRSWOR) 1.0967 1.0369 1.0374

RE(g(ĥPEML), SRSWOR | g(ĥH), RS) 1.317 1.4831 1.2561

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RS) 1.9803 1.9874 1.8441

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RHC) 2.0562 1.9651 1.8541
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TABLE 2.24: Relative efficiencies of estimators for regression coefficient of y1 on
y3. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y1 on y3,

h(y1, y3)=(y1, y3, y23 , y1y3) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | g(ĥH), SRSWOR) 1.0298 1.0504 1.0423

RE(g(ĥPEML), SRSWOR | g(ĥH), RS) 1.8046 1.2304 1.3482

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RS) 2.2709 1.5949 1.854

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RHC) 1.8719 1.5069 1.5626

TABLE 2.25: Relative efficiencies of estimators for regression coefficient of y3 on
y1. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y3 on y1,

h(y1, y3)=(y3, y1, y21 , y1y3) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | g(ĥH), SRSWOR) 1.0997 1.2329 1.1529

RE(g(ĥPEML), SRSWOR | g(ĥH), RS) 1.3948 1.3329 1.368

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RS) 3.6069 1.5532 1.8035

RE(g(ĥPEML), SRSWOR | g(ĥPEML), RHC) 2.5567 1.4867 1.5335

TABLE 2.26: Relative efficiencies of estimators for correlation coefficient between y2 and
y4. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between y2 and y4,
h(y2, y4)=(y2, y4, y22 , y

2
4 , y2y4) and g(s1, s2, s3, s4, s5)=(s5 − s1s2)/((s3 − s21)(s4 − s22))

1/2.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥH), RS | g(ĥPEML), RS) 1.448 1.696 2.027

RE(g(ĥH), RS | g(ĥPEML), RHC) 1.491 2.135 2.27

RE(g(ĥH), RS | g(ĥH), SRSWOR) 2.39 2.521 2.849

RE(g(ĥH), RS | g(ĥPEML), SRSWOR) 2.185 2.396 2.594
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TABLE 2.27: Relative efficiencies of estimators for regression coefficient of y2 on
y4. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y2 on y4,

h(y2, y4)=(y2, y4, y24 , y2y4) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥH), RS | g(ĥPEML), RS) 1.8158 2.3771 3.2021

RE(g(ĥH), RS | g(ĥPEML), RHC) 2.5985 2.6002 3.4744

RE(g(ĥH), RS | g(ĥH), SRSWOR) 3.3278 4.5041 6.312

RE(g(ĥH), RS | g(ĥPEML), SRSWOR) 2.9788 3.9417 6.0391

TABLE 2.28: Relative efficiencies of estimators for regression coefficient of y4 on
y2. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y4 on y2,

h(y2, y4)=(y4, y2, y22 , y2y4) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥH), RS | g(ĥPEML), RS) 1.3146 1.6055 1.937

RE(g(ĥH), RS | g(ĥPEML), RHC) 1.652 2.7715 2.0362

RE(g(ĥH), RS | g(ĥH), SRSWOR) 3.8248 2.4388 3.4371

RE(g(ĥH), RS | g(ĥPEML), SRSWOR) 3.1843 2.3399 3.038

TABLE 2.29: Average and s.d. of lengths of asymptotically 95% CIs for mean of y1.

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

Ŷ H , SRSWOR
0.7233 0.7303 0.7333
(0.2304) (0.1885) (0.1431)

4 Ŷ PEML, SRSWOR
0.3703 0.3734 0.3847
(0.1608) (0.1534) (0.1074)

Ŷ HT , RS
0.7738 0.7735 0.8271
(0.2724) (1.071) (0.2001)

Ŷ H , RS
0.4345 0.455 0.5414
(0.8312) (8.807) (0.5479)

4 Ŷ PEML, RS
0.6784 0.7207 0.7896
(0.3945) (12.176) (0.2694)

Ŷ RHC , RHC
0.7415 0.7716 0.8014
(0.4007) (0.6359) (0.2931)

4 Ŷ PEML, RHC
0.4911 0.5078 0.5289
(0.9865) (0.4992) (0.3594)
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TABLE 2.30: Average and s.d. of lengths of asymptotically 95% CIs for variance of y1. Recall
from Table 2.5 in Section 2.1 that for variance of y1, h(y1)=(y21 , y1) and g(s1, s2)=s1 − s22.

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
5.2879 4.2111 4.4304
(8.762) (9.309) (6.856)

g(ĥPEML), SRSWOR
2.7519 2.9935 3.0013
(7.181) (8.622) (5.952)

g(ĥH), RS
3.5121 3.1177 3.1095
(1.345) (11.37) (10.88)

g(ĥPEML), RS
3.7475 3.939 3.792
(4.041) (16.14) (11.08)

g(ĥPEML), RHC
3.6365 3.4972 3.4158
(14.99) (8.278) (10.95)

TABLE 2.31: Average and s.d. of lengths of asymptotically 95% CIs for mean of y2.

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

Ŷ H , SRSWOR
312.1 322.48 326.36

(150.08) (121.86) (93.707)

4 Ŷ PEML, SRSWOR
243.23 216.42 198.11
(65.059) (55.256) (44.972)

Ŷ HT , RS
184.98 160.79 144.43
(24.336) (17.942) (13.89)

Ŷ H , RS
189.49 163.19 145.82
(314.18) (209.6) (164.32)

4 Ŷ PEML, RS
343.6 300.14 272.63

(60.804) (20.411) (21.998)

Ŷ RHC , RHC
277.91 240.09 214.78
(16.039) (12.042) (9.2784)

4 Ŷ PEML, RHC
279.97 242.43 217.09
(52.788) (58.394) (21.356)
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TABLE 2.32: Average and s.d. of lengths of asymptotically 95% CIs for variance of y2. Recall
from Table 2.5 in Section 2.1 that for variance of y2, h(y2)=(y22 , y2) and g(s1, s2)=s1 − s22.

Average length
(s.d.)

PPPPPPPPPPPPPPPPPPP

Estimator
and sampling
design based on
which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
1498664 1588740 2418155
(3236118) (2694726) (3205532)

g(ĥPEML), SRSWOR
1035032 1077345 1002397
(1472036) (1376947) (1573834)

g(ĥH), RS
887813.9 764055.6 684218.5
(464853) (377760) (298552)

g(ĥPEML), RS
1385778 1168689 1055339
(1584677) (1339377) (1177054)

g(ĥPEML), RHC
1319413 1134532 1072290
(1473379) (1384754) (1472584)

TABLE 2.33: Average and s.d. of lengths of asymptotically 95% CIs for correlation coefficient
between y1 and y3. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between
y1 and y3, h(y1, y3)=(y1, y3, y21 , y

2
3 , y1y3) and g(s1, s2, s3, s4, s5)=(s5−s1s2)/((s3−s21)(s4−

s22))
1/2.

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
0.3682 0.3753 0.3893
(0.1138) (0.1039) (0.0936)

g(ĥPEML), SRSWOR
0.2747 0.2881 0.2884
(0.1095) (0.1008) (0.0879)

g(ĥH), RS
0.3351 0.3453 0.3587
(0.1652) (0.0938) (0.1034)

g(ĥPEML), RS
592.48 260.44 469.36
(0.2859) (0.3441) (2.738)

g(ĥPEML), RHC
3838.4 2740.5 2238.3
(1.2271) (0.1467) (0.1104)
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TABLE 2.34: Average and s.d. of lengths of asymptotically 95% CIs for regression coefficient
of y1 on y3. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y1 on y3,

h(y1, y3)=(y1, y3, y23 , y1y3) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
1.6443 1.781 1.8077
(1.223) (1.127) (0.8849)

g(ĥPEML), SRSWOR
1.3984 1.4239 1.491
(0.8867) (0.7898) (0.6645)

g(ĥH), RS
1.4072 1.5299 1.5449
(0.6463) (0.4833) (0.4883)

g(ĥPEML), RS
3240.4 4938.4 1705.3
(4.3202) (1.659) (2.017)

g(ĥPEML), RHC
50701.7 17291.2 22245.7
(2.659) (3.93) (1.51)

TABLE 2.35: Average and s.d. of lengths of asymptotically 95% CIs for regression coefficient
of y3 on y1. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y3 on y1,

h(y1, y3)=(y3, y1, y21 , y1y3) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
0.1387 0.1449 0.1508
(0.091) (0.072) (0.0616)

g(ĥPEML), SRSWOR
0.1015 0.0994 0.1002
(0.0868) (0.0692) (0.0593)

g(ĥH), RS
0.1305 0.1379 0.1447
(0.0919) (0.0438) (0.0357)

g(ĥPEML), RS
113.4 263.23 78.782

(0.1712) (0.0725) (0.0545)

g(ĥPEML), RHC
798.95 490.91 286.92
(0.6227) (0.0862) (0.1107)
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TABLE 2.36: Average and s.d. of lengths of asymptotically 95% CIs for correlation coefficient
between y2 and y4. Recall from Table 2.5 in Section 2.1 that for correlation coefficient between
y2 and y4, h(y2, y4)=(y2, y4, y22 , y

2
4 , y2y4) and g(s1, s2, s3, s4, s5)=(s5−s1s2)/((s3−s21)(s4−

s22))
1/2.

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
0.3428 0.359 0.3821
(0.191) (0.1783) (0.1844)

g(ĥPEML), SRSWOR
0.3088 0.3279 0.3537
(0.1886) (0.171) (0.1773)

g(ĥH), RS
0.2924 0.2926 0.298
(0.1561) (0.1491) (0.1568)

g(ĥPEML), RS
833.87 300.13 242.51
(0.5226) (0.4406) (0.8658)

g(ĥPEML), RHC
7593.1 3526.1 2390.9
(0.4385) (0.4869) (0.2661)

TABLE 2.37: Average and s.d. of lengths of asymptotically 95% CIs for regression coefficient
of y2 on y4. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y2 on y4,

h(y2, y4)=(y2, y4, y24 , y2y4) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
1.1188 1.1117 1.1566
(1.251) (1.061) (1.171)

g(ĥPEML), SRSWOR
0.9865 1.0005 1.0534
(0.9935) (0.8784) (0.8758)

g(ĥH), RS
0.8575 0.847 0.8427
(0.6472) (0.5219) (0.4524)

g(ĥPEML), RS
1583.8 1647.2 1533.9
(1.733) (1.822) (1.302)

g(ĥPEML), RHC
24127.4 10798.8 5076.1
(2.05) (1.468) (2.385)



2.4. Comparison of estimators with their bias-corrected versions 41

TABLE 2.38: Average and s.d. of lengths of asymptotically 95% CIs for regression coefficient
of y4 on y2. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y4 on y2,

h(y2, y4)=(y4, y2, y22 , y2y4) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

Average length
(s.d.)

````````````````````````̀

Estimator and
sampling design
based on which CI is constructed

Sample size

n=75 n=100 n=125

g(ĥH), SRSWOR
0.1607 0.1727 0.1682
(0.2236) (0.2175) (0.1744)

g(ĥPEML), SRSWOR
0.1456 0.1586 0.1577
(0.2018) (0.1868) (0.1616)

g(ĥH), RS
0.1219 0.1232 0.1273
(0.0798) (0.0663) (0.0615)

g(ĥPEML), RS
236.81 108.3 85.466
(0.3529) (0.1879) (0.3227)

g(ĥPEML), RHC
1568.1 2215.1 659.3
(0.4045) (0.197) (0.1416)

2.4. Comparison of estimators with their bias-corrected versions

In this section, we empirically compare the biased estimators considered in Table 2.6 in Section

2.3 with their bias-corrected versions based on both synthetic and real data used in Section 2.3.

Following the idea in [80], we compute the bias-corrected jackknife estimator corresponding

to each of the biased estimators considered in Table 2.6. For the mean, we compute the bias-

corrected jackknife estimators corresponding to the GREG and the PEML estimators under

each of SRSWOR, RS and RHC sampling designs, and the Hájek estimator under RS sampling

design. On the other hand, for each of the variance, the correlation coefficient and the regression

coefficient, we consider the bias-corrected jackknife estimators corresponding to the estimators

that are obtained by plugging in the Hájek and the PEML estimators under each of SRSWOR

and RS sampling design, and the PEML estimator under RHC sampling design.

Suppose that s is a sample of size n drawn using one of the sampling designs given in

Table 2.6. Further, suppose that s−i is the subset of s, which excludes the ith unit for any

given i ∈ s. Now, for any i ∈ s, let us denote the estimator g(ĥ) constructed based on s−i

by g(ĥ−i). Then, we compute the bias-corrected jackknife estimator of g(h) corresponding

to g(ĥ) as ng(ĥ) − (n − 1)
∑

i∈s g(ĥ−i)/n (cf. [80]). Recall from Section 2.3 that we draw

I=1000 samples each of sizes n=75, 100 and 125 from some synthetic as well as real data sets
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using sampling designs mentioned in Table 2.6 and compute MSEs of the estimators considered

in Table 2.6 based on these samples. Here, we compute MSEs of the above-mentioned bias-

corrected jackknife estimators using the same procedure and compare them with the original

biased estimators in terms of MSE. We observe from the above analyses that for all the parameters

considered in Section 2.3, the bias-corrected jackknife estimators become worse than the original

biased estimators in the cases of both the synthetic and the real data (see Tables 2.39–2.53

below). Despite reducing the biases of the original biased estimators, bias-correction increases

the variances of these estimators significantly. This is the reason why the bias-corrected jackknife

estimators have larger MSEs than the original biased estimators in the cases of both the synthetic

and the real data.

TABLE 2.39: Relative efficiencies of estimators for mean of y in the case of synthetic data.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(Ŷ PEML, SRSWOR | 5 Ŷ BCPEML, SRSWOR) 1.050461 1.021275 1.038282

RE(Ŷ GREG, SRSWOR | 5 Ŷ BCGREG, SRSWOR) 1.002649 1.003156 1.005397

RE(Ŷ H , RS | 5 Ŷ BCH , RS) 1.036379 1.006945 1.12841

RE(Ŷ PEML, RS | 5 Ŷ BCPEML, RS) 1.016953 1.013402 1.011762

RE(Ŷ GREG, RS | 5 Ŷ BCGREG, RS) 1.016692 1.011597 1.011493

RE(Ŷ PEML, RHC | 5 Ŷ BCPEML, RHC) 1.01914 1.02292 1.024689

RE(Ŷ GREG, RHC | 5 Ŷ BCGREG, RHC) 1.011583 1.052311 1.023058

5 BCPEML=Bias-corrected PEML estimator, BCH=Bias-corrected Hájek estimator, and
BCGREG=Bias-corrected GREG estimator.

TABLE 2.40: Relative efficiencies of estimators for variance of y in the case of synthetic data.
Recall from Table 2.5 in Section 2.1 that for variance of y, h(y)=(y2, y) and g(s1, s2)=s1 − s22.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | 6 BC g(ĥPEML), SRSWOR) 1.0208 1.01 1.0669

RE(g(ĥH), SRSWOR | 6 BC g(ĥH), SRSWOR) 38.642 50.009 65.398

RE(g(ĥH), RS | 6 BC g(ĥH), RS) 1.0029 1.0117 1.074

RE(g(ĥPEML), RS | 6 BC g(ĥPEML), RS) 1.0112 1.023 1.0377

RE(g(ĥPEML), RHC | 6 BC g(ĥPEML), RHC) 1.0141 1.015 1.0126

6 BC=Bias-corrected.
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TABLE 2.41: Relative efficiencies of estimators for correlation coefficient between z1 and z2 in
the case of synthetic data. Recall from Table 2.5 in Section 2.1 that for correlation coefficient
between z1 and z2, h(z1, z2)=(z1, z2, z21 , z

2
2 , z1z2) and g(s1, s2, s3, s4, s5)=(s5−s1s2)/((s3−

s21)(s4 − s22))
1/2.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | 6 BC g(ĥPEML), SRSWOR) 89.989 95.299 123.89

RE(g(ĥH), SRSWOR | 6 BC g(ĥH), SRSWOR) 90.407 96.79 141.989

RE(g(ĥH), RS | 6 BC g(ĥH), RS) 90.037 102.914 152.993

RE(g(ĥPEML), RS | 6 BC g(ĥPEML), RS) 95.68 98.758 158.832

RE(g(ĥPEML), RHC | 6 BC g(ĥPEML), RHC) 86.27 120.582 125.374

TABLE 2.42: Relative efficiencies of estimators for regression coefficient of z1 on z2 in the case
of synthetic data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z1 on z2,

h(z1, z2)=(z1, z2, z22 , z1z2) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | 6 BC g(ĥPEML), SRSWOR) 80.64 91.707 124.476

RE(g(ĥH), SRSWOR | 6 BC g(ĥH), SRSWOR) 79.298 89.105 123.042

RE(g(ĥRS), RS | 6 BC g(ĥH), RS) 85.97 96.22 135.449

RE(g(ĥPEML), RS | 6 BC g(ĥPEML), RS) 83.331 97.583 125.657

RE(g(ĥPEML), RHC | 6 BC g(ĥPEML), RHC) 75.343 112.619 115.594

TABLE 2.43: Relative efficiencies of estimators for regression coefficient of z2 on z1 in the case
of synthetic data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of z2 on z1,

h(z1, z2)=(z2, z1, z21 , z1z2) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | 6 BC g(ĥPEML), SRSWOR) 72.061 105.389 111.124

RE(g(ĥH), SRSWOR | 6 BC g(ĥH), SRSWOR) 69.114 108.837 118.675

RE(g(ĥH), RS | 6 BC g(ĥH), RS) 69.16 115.113 144.811

RE(g(ĥPEML), RS | 6 BC g(ĥPEML), RS) 72.448 127.387 131.558

RE(g(ĥPEML), RHC | 6 BC g(ĥPEML), RHC) 90.132 104.121 148.139



44 Chapter 2. A comparison of estimators of mean and its functions in finite populations

TABLE 2.44: Relative efficiencies of estimators for mean of y1 in the case of real data.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(Ŷ PEML, SRSWOR | 5 Ŷ BCPEML, SRSWOR) 1.070226 1.019958 1.007533

RE(Ŷ GREG, SRSWOR | 5 Ŷ BCGREG, SRSWOR) 1.146007 1.116225 1.117507

RE(Ŷ H , RS | 5 Ŷ BCH , RS) 1.240493 1.012969 1.155246

RE(Ŷ PEML, RS | 5 Ŷ BCPEML, RS) 1.374578 1.046986 1.055930

RE(Ŷ GREG, RS | 5 Ŷ BCGREG, RS) 1.466647 1.138300 1.205053

RE(Ŷ PEML, RHC | 5 Ŷ BCPEML, RHC) 1.566827 1.083589 1.132790

RE(Ŷ GREG, RHC | 5 Ŷ BCGREG, RHC) 1.460886 1.037045 1.028358

TABLE 2.45: Relative efficiencies of estimators for variance of y1 in the case of real data. Recall
from Table 2.5 in Section 2.1 that for variance of y1, h(y1)=(y21 , y1) and g(s1, s2)=s1 − s22.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | 6 BC g(ĥPEML), SRSWOR) 1.1812 1.2736 1.8669

RE(g(ĥH), SRSWOR | 6 BC g(ĥH), SRSWOR) 4.3526 4.8948 6.0349

RE(g(ĥH), RS | 6 BC g(ĥH), RS) 1.115 1.1239 1.2269

RE(g(ĥPEML), RS | 6 BC g(ĥPEML), RS) 1.4373 1.1739 1.6481

RE(g(ĥPEML), RHC | 6 BC g(ĥPEML), RHC) 1.8502 1.0186 1.0384

TABLE 2.46: Relative efficiencies of estimators for mean of y2 in the case of real data.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(Ŷ H , RS | 5 Ŷ BCH , RS) 1.252123 1.325047 1.241809

RE(Ŷ PEML, RS | 5 Ŷ BCPEML, RS) 1.988105 2.146357 2.260343

RE(Ŷ GREG, RS | 5 Ŷ BCGREG, RS) 2.055588 2.018015 2.287817

RE(Ŷ PEML, RHC | 5 Ŷ BCPEML, RHC) 1.831377 2.083210 2.006134

RE(Ŷ GREG, RHC | 5 Ŷ BCGREG, RHC) 1.925938 1.983984 2.091003

RE(Ŷ PEML, SRSWOR | 5 Ŷ BCPEML, SRSWOR) 1.001786 1.004973 1.060588

RE(Ŷ GREG, SRSWOR | 5 Ŷ BCGREG, SRSWOR) 1.021103 1.008525 1.003390
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TABLE 2.47: Relative efficiencies of estimators for variance of y2 in the case of real data. Recall
from Table 2.5 in Section 2.1 that for variance of y2, h(y2)=(y22 , y2) and g(s1, s2)=s1 − s22.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥH), RS | 6 BC g(ĥH), RS) 13.301 6.3589 33.579

RE(g(ĥPEML), RS | 6 BC g(ĥPEML), RS) 4.448 7.4621 7.989

RE(g(ĥPEML), RHC | 6 BC g(ĥPEML), RHC) 21.855 3.0076 11.368

RE(g(ĥH), SRSWOR | 6 BC g(ĥH), SRSWOR) 8.7641 5.6119 13.7

RE(g(ĥPEML), SRSWOR | 6 BC g(ĥPEML), SRSWOR) 6.2655 2.0015 6.959

TABLE 2.48: Relative efficiencies of estimators for correlation coefficient between y1 and y3
in the case of real data. Recall from Table 2.5 in Section 2.1 that for correlation coefficient
between y1 and y3, h(y1, y3)=(y1, y3, y21 , y

2
3 , y1y3) and g(s1, s2, s3, s4, s5)=(s5−s1s2)/((s3−

s21)(s4 − s22))
1/2.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | 6 BC g(ĥPEML), SRSWOR) 23.149 51.887 45.976

RE(g(ĥH), SRSWOR | 6 BC g(ĥH), SRSWOR) 90.769 163.74 154.97

RE(g(ĥH), RS | 6 BC g(ĥH), RS) 72.604 79.355 163.03

RE(g(ĥPEML), RS | 6 BC g(ĥPEML), RS) 24.483 35.874 43.164

RE(g(ĥPEML), RHC | 6 BC g(ĥPEML), RHC) 29.189 65.949 43.13

TABLE 2.49: Relative efficiencies of estimators for regression coefficient of y1 on y3 in the
case of real data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y1 on y3,

h(y1, y3)=(y1, y3, y23 , y1y3) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | 6 BC g(ĥPEML), SRSWOR) 31.789 50.26 50.107

RE(g(ĥH), SRSWOR | 6 BC g(ĥH), SRSWOR) 236.49 119.88 222.23

RE(g(ĥH), RS | 6 BC g(ĥH), RS) 63.933 77.049 184.45

RE(g(ĥPEML), RS | 6 BC g(ĥPEML), RS) 31.503 44.945 263.5

RE(g(ĥPEML), RHC | 6 BC g(ĥPEML), RHC) 65.145 76.533 90.413
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TABLE 2.50: Relative efficiencies of estimators for regression coefficient of y3 on y1 in the
case of real data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y3 on y1,

h(y1, y3)=(y3, y1, y21 , y1y3) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥPEML), SRSWOR | 6 BC g(ĥPEML), SRSWOR) 26.09 29.557 32.345

RE(g(ĥH), SRSWOR | 6 BC g(ĥH), SRSWOR) 98.43 104.19 165.95

RE(g(ĥH), RS | 6 BC g(ĥH), RS) 100.3 110.15 196.34

RE(g(ĥPEML), RS | 6 BC g(ĥPEML), RS) 11.416 71.664 23.433

RE(g(ĥPEML), RHC | 6 BC g(ĥPEML), RHC) 13.268 28.198 50.571

TABLE 2.51: Relative efficiencies of estimators for correlation coefficient between y2 and y4
in the case of real data. Recall from Table 2.5 in Section 2.1 that for correlation coefficient
between y2 and y4, h(y2, y4)=(y2, y4, y22 , y

2
4 , y2y4) and g(s1, s2, s3, s4, s5)=(s5−s1s2)/((s3−

s21)(s4 − s22))
1/2.

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥH), RS | 6 BC g(ĥPEML), RS) 79.092 58.241 120.229

RE(g(ĥPEML), RS | 6 BC g(ĥPEML), RS) 82.309 61.995 316.929

RE(g(ĥPEML), RHC | 6 BC g(ĥPEML), RHC) 175.22 74.847 220.74

RE(g(ĥH), SRSWOR | 6 BC g(ĥH), SRSWOR) 87.942 36.363 97.432

RE(g(ĥPEML), SRSWOR | 6 BC g(ĥPEML), SRSWOR) 120.02 51.959 121.42

TABLE 2.52: Relative efficiencies of estimators for regression coefficient of y2 on y4 in the
case of real data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y2 on y4,

h(y2, y4)=(y2, y4, y24 , y2y4) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

RE(g(ĥH), RS | 6 BC g(ĥH), RS) 125.17 256.45 260.15

RE(g(ĥPEML), RS | 6 BC g(ĥPEML), RS) 145.1 333.5 135.65

RE(g(ĥPEML), RHC | 6 BC g(ĥPEML), RHC) 86.93 238.32 292.89

RE(g(ĥPEML), SRSWOR | 6 BC g(ĥPEML), SRSWOR) 93.707 101.93 121.44

RE(g(ĥH), SRSWOR | 6 BC g(ĥH), SRSWOR) 115.85 146.16 104.66
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TABLE 2.53: Relative efficiencies of estimators for regression coefficient of y4 on y2 in the
case of real data. Recall from Table 2.5 in Section 2.1 that for regression coefficient of y4 on y2,

h(y2, y4)=(y4, y2, y22 , y2y4) and g(s1, s2, s3, s4)=(s4 − s1s2)/(s3 − s22).

hhhhhhhhhhhhhhhhhRelative efficiency
Sample size

n=75 n=100 n=125

RE(g(ĥH), RS | 6 BC g(ĥH), RS) 47.3317 73.749 52.592

RE(g(ĥH), RS | 6 BC g(ĥPEML), RS) 105.87 126.42 323.82

RE(g(ĥH), RS | 6 BC g(ĥPEML), RHC) 93.403 79.453 91.347

RE(g(ĥH), RS | 6 BC g(ĥPEML), SRSWOR) 530.94 173.19 191.26

RE(g(ĥH), RS | 6 BC g(ĥH), SRSWOR) 394.29 156.27 164.7

2.5. Concluding discussion and remarks

It follows from Theorem 2.2.1 that the PEML estimator of the mean under SRSWOR becomes

asymptotically either more efficient than or equivalent to any other estimator under any other

sampling design considered in this chapter. It also follows from Theorems 2.1.1 and 2.1.2 that the

GREG estimator of the mean is asymptotically equivalent to the PEML estimator under different

sampling designs considered in this chapter. However, our numerical studies (see Section 2.3)

based on finite samples indicate that the PEML estimator of the mean performs slightly better

than the GREG estimator under all the sampling designs considered in Section 2.3 (see Tables

2.7, 2.19 and 2.21). Moreover, as pointed out in the 5th paragraph in the beginning of this chapter,

if the estimators of the variance, the correlation coefficient and the regression coefficient are

constructed by plugging in the GREG estimator of the mean, then the estimators of the population

variances involved in these parameters may become negative. On the other hand, if the estimators

of these parameters are constructed by plugging in the PEML estimator of the mean, then such

a problem does not occur. Further, for these parameters, depending on sampling designs, the

plug-in estimator based on either the PEML or the Hájek estimator turns out to be asymptotically

best among different estimators that we have considered (see Theorems 2.2.3 and 2.2.4).

We see from Theorem 2.2.1 that for the population mean, the PEML estimator, which is

not design unbiased, performs better than design unbiased estimators like the HT and the RHC

estimators. Further, as pointed out in the beginning of this chapter, the plug-in estimators of the

population variance based on the HT and the RHC estimators may become negative. This affects
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the plug-in estimators of the correlation and the regression coefficients based on the HT and the

RHC estimators.

It follows from Table 2.3 that under LMS sampling design, the large sample performances

of all the estimators of functions of means considered in this chapter are the same as their large

sample performances under SRSWOR. The LMS sampling design was introduced to make the

ratio estimator of the mean unbiased. It follows from Remark 2.1.2 in Section 2.1 that the

performance of the ratio estimator of the mean is worse than several other estimators that we

have considered even under LMS sampling design.

The coefficient of variation is another well-known finite population parameter, which can

be expressed as a function of population means g(h). We have d=1, p=2, h(y)=(y2, y) and

g(s1, s2)=
√
s1 − s22/s2 in this case. Among the estimators considered in this chapter, the plug-in

estimators of g(h) that are based on the PEML and the Hájek estimators of the mean can be used

for estimating this parameter since it involves the finite population variance (see the 5th paragraph

in the beginning of this chapter). We have avoided reporting the comparison of the estimators

of the coefficient of variation in this chapter because of complex mathematical expressions.

However, the asymptotic results stated in Theorems 2.2.3 and 2.2.4 also hold for this parameter.

In sample survey, sometimes we deal with stratified sampling designs (see [24]) in which

the population is divided into H (> 1) strata and a sample is drawn from each stratum by a

sampling design independently across the strata. For a stratified population, the population mean

of y can be expressed as Y =
∑H

l=1(Nl/N)Y l, where Nl is the number of population units in the

lth stratum and Y l is the mean of y for the lth stratum. Further, N=
∑H

l=1Nl. Therefore, an

estimator of Y under a stratified sampling design is obtained as Ŷ =
∑H

l=1(Nl/N)Ŷ l, where Ŷ l

is the HT, the RHC, the Hájek, the ratio, the product, the GREG or the PEML estimator of Y l

constructed based on the sample drawn from the lth stratum. Also, several plug in estimators

of a function of population means g(h) can be constructed under a stratified sampling design

following the approach of this chapter. Suppose that H is fixed as ν → ∞, the assumptions of

Theorems 2.1.1–2.1.3 and Remarks 2.1.1–2.1.2 hold in each stratum, and limν→∞(Nl/N)=Λl

for some 0 < Λl < 1, l=1, . . . , l. Then, conclusions of the aforementioned results hold for

estimators of g(h) under stratified sampling design.

An empirical comparison of the biased estimators considered in this chapter and their bias-

corrected versions are carried out based on jackknifing in Section 2.4 in terms of their MSEs.
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It follows from this comparison that for all the parameters considered in this chapter, the bias-

corrected estimators become worse than the original biased estimators in the cases of both the

synthetic and the real data. This is because, although bias-correction results in reduction of biases

in the original biased estimators, the variances of these estimators increase substantially after

bias-correction.

2.6. Proofs of the main results

In this section, we give the proofs of Theorems 2.1.1–2.1.3 and 2.2.2–2.2.4, and Remark 2.1.1.

Let us denote the HT, the RHC, the Hájek, the ratio, the product, the GREG and the PEML

estimators of population means of h(y) by ĥHT , ĥRHC , ĥH , ĥRA, ĥPR, ĥGREG and ĥPEML,

respectively.

Proof of Theorem 2.1.1. Let us consider SRSWOR and LMS sampling design. It follows from

(i) in Lemma 2.7.4 in Section 2.7 that
√
n(ĥ − h)

L−→ N(0,Γ) as ν → ∞ for some p.d.

matrix Γ, when ĥ is one of ĥHT , ĥH , ĥRA, ĥPR, and ĥGREG with d(i, s)=(Nπi)−1 under any

of these sampling designs. Now, note that maxi∈s |Xi − X|=op(
√
n), and

∑
i∈s π

−1
i (Xi −

X)/
∑

i∈s π
−1
i (Xi−X)2=Op(1/

√
n) as ν → ∞ under the above sampling designs (see Lemma

2.7.7 in Section 2.7). Then, by applying Theorem 1 of [22] to each real-valued coordinate of

ĥPEML and ĥGREG, we get
√
n(ĥPEML − ĥGREG)=op(1) as ν → ∞ for d(i, s)=(Nπi)−1

under these sampling designs. This implies that ĥPEML and ĥGREG with d(i, s)=(Nπi)−1 have

the same asymptotic distribution. Therefore, if ĥ is one of ĥHT , ĥH , ĥRA, ĥPR, and ĥGREG and

ĥPEML with d(i, s)=(Nπi)−1, we have

√
n(g(ĥ)− g(h))

L−→ N(0,∆2) as ν → ∞ (2.6.1)

under any of the above mentioned sampling designs for some ∆2 > 0 by the delta method and the

assumption ∇g(µ0) ̸= 0 at µ0=limν→∞ h. It can be shown from the proof of (i) in Lemma 2.7.4

in Section 2.7 that ∆2=∇g(µ0)Γ1 (∇g(µ0)T , where Γ1=limν→∞ nN−2
∑N

i=1(Vi−TV πi)
T (Vi−

TV πi)(π
−1
i − 1). It can also be shown from Table 2.54 in Section 2.7 that under each of

the above sampling designs, Vi in Γ1 is hi or hi − h or hi − hXi/X or hi + hXi/X or

hi − h− Sxh(Xi −X)/S2
x if ĥ is ĥHT or ĥH or ĥRA or ĥPR, or ĥGREG with d(i, s)=(Nπi)−1,

respectively.
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Now, by Lemma (i) in 2.7.6 in Section 2.7, we have

σ21 = σ22 = (1− λ) lim
ν→∞

N∑
i=1

(Ai − Ā)2/N, (2.6.2)

where σ21 and σ22 are as defined in the statement of Lemma 2.7.6 in Section 2.7, andAi=∇g(µ0)VT
i

for different choices of Vi mentioned in the preceding paragraph. Note that g(ĥGREG) and

g(ĥPEML) have the same asymptotic distribution under each of SRSWOR and LMS sampling

design since
√
n(ĥPEML − ĥGREG)=op(1) for ν → ∞ under these sampling designs as pointed

out earlier in this proof. Further, (2.6.2) implies that g(ĥGREG) with d(i, s)=(Nπi)−1 has

the same asymptotic MSE under SRSWOR and LMS sampling design. Thus g(ĥGREG) and

g(ĥPEML) with d(i, s)=(Nπi)−1 under SRSWOR and LMS sampling design form class 1 in

Table 2.3.

Next, (2.6.2) yields that g(ĥHT ) has the same asymptotic MSE under SRSWOR and LMS

sampling design. It also follows from (2.6.2) that g(ĥH) has the same asymptotic MSE under

SRSWOR and LMS sampling design. Now, note that g(ĥHT ) and g(ĥH) coincide under SR-

SWOR. Thus g(ĥHT ) under SRSWOR, and g(ĥHT ) and g(ĥH) under LMS sampling design

form class 2 in Table 2.3.

Next, (2.6.2) implies that g(ĥRA) has the same asymptotic MSE under SRSWOR and LMS

sampling design. Further, (2.6.2) implies that g(ĥPR) has the same asymptotic MSE under

SRSWOR and LMS sampling design. Thus g(ĥRA) under SRSWOR and LMS sampling design

forms class 3 in Table 2.3, and g(ĥPR) under those sampling designs forms class 4 in Table 2.3.

This completes the proof of Theorem 2.1.1.

Proof of Theorem 2.1.2. Let us first consider a HEπPS sampling design. Then, it can be shown

in the same way as in the 1st paragraph of the proof of Theorem 2.1.1 that
√
n(ĥPEML −

ĥGREG)=op(1) for d(i, s)=(Nπi)−1 under this sampling design. It can also be shown in the

same way as in the 1st paragraph of the proof of Theorem 2.1.1 that if ĥ is one of ĥHT , ĥH ,

and ĥGREG and ĥPEML with d(i, s)=(Nπi)−1, then (2.6.1) holds under the above-mentioned

sampling design. Here, we recall from Table 2.3 that the HT, the ratio and the product estimators

coincide under any HEπPS sampling design. Further, the asymptotic MSE of
√
n(g(ĥ)− g(h))

is ∇g(µ0)Γ1 (∇g(µ0))T , where µ0=limν→∞ h, Γ1=limν→∞ nN−2
∑N

i=1(Vi − TV πi)
T (Vi −

TV πi)(π
−1
i − 1), and Vi in Γ1 is hi or hi − h or hi − h − Sxh(Xi − X)/S2

x if ĥ is ĥHT or

ĥH , or ĥGREG with d(i, s)=(Nπi)−1, respectively. Now, since
√
n(ĥPEML − ĥGREG)=op(1)
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for ν → ∞ under any HEπPS sampling design, g(ĥGREG) and g(ĥPEML) have the same

asymptotic distribution under this sampling design. Thus under any HEπPS sampling design,

g(ĥGREG) and g(ĥPEML) with d(i, s)=(Nπi)−1 form class 5, g(ĥHT ) forms class 6, and g(ĥH)

forms class 7 in Table 2.3. This completes the proof of (i) in Theorem 2.1.2.

Let us now consider the RHC sampling design. We can show from (ii) in Lemma 2.7.4

in Section 2.7 that
√
n(ĥ − h)

L−→ N(0,Γ) as ν → ∞ for some p.d. matrix Γ, when ĥ

is either ĥRHC or ĥGREG with d(i, s)=(NXi)
−1Gi under RHC sampling design. Further,

√
n(ĥPEML − ĥGREG)=op(1) as ν → ∞ for d(i, s)=(NXi)

−1Gi under RHC sampling design

since Assumption 2.1.3 holds, and S2
x is bounded away from 0 as ν → ∞ (see A2.2 of Appendix

2 in [22]). Therefore, if ĥ is one of ĥRHC , and ĥGREG and ĥPEML with d(i, s)=(NXi)
−1Gi,

then we have
√
n(g(ĥ)− g(h))

L−→ N(0,∆2) as ν → ∞ (2.6.3)

for some ∆2 > 0 by the delta method and the condition ∇g(µ0) ̸= 0 at µ0=limν→∞ h. Moreover,

it follows from the proof of (ii) in Lemma 2.7.4 in Section 2.7 that ∆2=∇g(µ0)Γ2(∇g(µ0))T ,

where Γ2=limν→∞ nγXN−1
∑N

i=1(Vi−XiV/X)T (Vi−XiV/X)/Xi. It further follows from

Table 2.54 in Section 2.7 that Vi in Γ2 is hi if ĥ is ĥRHC . Also, Vi in Γ2 is hi − h− Sxh(Xi −

X)/S2
x if ĥ is ĥGREG with d(i, s)=(NXi)

−1Gi. Now, g(ĥGREG) and g(ĥPEML) have the same

asymptotic distribution under RHC sampling design since
√
n(ĥPEML − ĥGREG)=op(1) for

ν → ∞ under this sampling design as pointed out earlier in this paragraph. Thus g(ĥGREG) and

g(ĥPEML) with d(i, s)=(NXi)
−1Gi under RHC sampling design form class 8, and g(ĥRHC)

forms class 9 in Table 2.3. This completes the proof of (ii) in Theorem 2.1.2.

Proof of Remark 2.1.1. It follows from (ii) in Lemma 2.7.6 in Section 2.7 that in the case of

λ=0,

σ23 = σ24 = lim
ν→∞

((X/N)
N∑
i=1

A2
i /Xi − Ā2), (2.6.4)

where σ31 and σ42 are as defined in the statement of Lemma 2.7.6 in Section 2.7, andAi=∇g(µ0)VT
i

for different choices of Vi mentioned in the proof of Theorem 2.1.2 above. Thus g(ĥGREG) with

d(i, s)=(Nπi)−1 under any HEπPS sampling design, and with d(i, s)=(NXi)
−1Gi under RHC

sampling design have the same asymptotic MSE. Therefore, class 8 is merged with class 5 in

Table 2.3. Further, (2.6.4) implies that g(ĥHT ) under any HEπPS sampling design and g(ĥRHC)

have the same asymptotic MSE. Therefore, class 9 is merged with class 6 in Table 2.3. This

completes the proof of Remark 2.1.1.
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Proof of Theorem 2.1.3. Recall the expression of Ai’s from the proofs of Theorems 2.1.1 and

2.1.2. Note that limν→∞
∑

(Ai − Ā)2/N=limν→∞
∑

(Bi − B̄)2/N , limν→∞ nγ
(
(X/N)×∑N

i=1A
2
i /Xi−Ā2

)
=limν→∞ nγ

(
(X/N)

∑N
i=1B

2
i /Xi−B̄2

)
and limν→∞

{
(1/N)

∑N
i=1A

2
i×(

(X/Xi)−(n/N)
)
−ϕ−1X

−1(
(n/N)

∑N
i=1AiXi/N−ĀX

)2}=limν→∞
{
(1/N)

∑N
i=1B

2
i ×(

(X/Xi)−(n/N)
)
−ϕ−1X

−1(
(n/N)

∑N
i=1BiXi/N−B̄ X

)2} forBi=∇g(h)VT
i and Vi as in

Table 2.54 in Section 2.7 since ∇g(h) → ∇g(µ0) as ν → ∞. Here, ϕ=X−(n/N)
∑N

i=1X
2
i /NX .

Then, from Lemma 2.7.6 in Section 2.7 and the expressions of asymptotic MSEs of
√
n(g(ĥ)−

g(h)) discussed in the proofs of Theorems 2.1.1 and 2.1.2, the results in Table 2.4 follow. This

completes the proof of Theorem 2.1.3.

Proof of Theorem 2.2.1. Note that Assumptions 2.1.2 and 2.1.3 hold a.s. [P] since Assumption

2.2.1 holds and EP(ϵi)
4 <∞. Also, note that Assumption 2.1.4 holds a.s. [P] under SRSWOR

and LMS sampling design (see Lemma 2.7.8 in Section 2.7). Then, under the above sampling

designs, conclusions of Theorems 2.1.1 and 2.1.3 hold a.s. [P] for d=p=1, h(y)=y and g(s)=s.

Note that Wi=∇g(h)hTi =Yi. Also, note that the ∆2
i ’s in Table 2.4 can be expressed in terms

of superpopulation moments of (Yi, Xi) a.s. [P] by SLLN since EP(ϵi)
4 < ∞. Recall from

the beginning of Section 2.2 that we have taken σ2x=1. Then, we have ∆2
2 − ∆2

1=(1 − λ)σ2xy,

∆2
3−∆2

1=(1−λ)(σxy−EP(Yi)/µ1)
2 and ∆2

4−∆2
1=(1−λ)(σxy+EP(Yi)/µ1)

2 a.s. [P], where

µ1=EP(Xi) and σxy=covP(Xi, Yi). Hence, ∆2
1 < ∆2

i a.s. [P] for i=2, 3, 4. This completes the

proof of (i) in Theorem 2.2.1.

Next consider the case 0 ≤ λ < EP(Xi)/b. Note that nγ → c as ν → ∞ for some

c ≥ 1 − λ > 0 by Lemma 2.7.5 in Section 2.7. Also, note that a.s. [P], Assumption

2.1.5 holds in the case of RHC sampling design and Assumption 2.1.4 holds in the case

of any HEπPS sampling design (see Lemma 2.7.8 in Section 2.7). Then, under RHC and

any HEπPS sampling designs, conclusions of Theorems 2.1.2 and 2.1.3 hold a.s. [P] for

d=p=1, h(y)=y and g(s)=s. Further, we have ∆2
5 − ∆2

1=
{
EP
(
Yi − EP(Yi))

2
(
µ1/Xi − λ

)
−

µ21σxy
(
σxycovP(Xi, 1/Xi) − 2covP(Yi, 1/Xi)

)
+ λσ2xy

}
− (1 − λ)

{
σ2y − σ2xy

}
, ∆2

6 − ∆2
5=

EP
(
Y 2
i

(
µ1/Xi − λ

))
−
{
λEP(YiXi) − EP(Yi)µ1

}2
/χµ1 −

{
EP
(
Yi − EP(Yi) − σxy(Xi −

µ1)
)2(

µ1/Xi − λ
)}

, ∆2
7 − ∆2

5=
{
µ21σxy

(
σxycovP(Xi, 1/Xi) − 2covP(Yi, 1/Xi)

)
− λσ2xy −

λ2σ2xy/µ1χ
}

, ∆2
8 −∆2

1=c
{
µ1EP(Yi −EP(Yi))

2/Xi − µ21σxy(σxycovP(Xi, 1/Xi)− 2covP(Yi,

1/Xi))
}
− (1 − λ)

{
σ2y − σ2xy

}
and ∆2

9 − ∆2
1=c
{
µ1EP(Y

2
i /Xi) − E2

P(Yi)
}
− (1 − λ)

{
σ2y −

σ2xy
}

a.s. [P], where σ2y=varP(Yi), χ=µ1 − λ(µ2/µ1) and µ2=EP(Xi)
2. Here, we note that

χ=EP
(
X2

i (µ1/Xi − λ)
)
/µ1 > 0 because Assumption 2.2.1 holds and Assumption 2.1.1
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holds with 0 ≤ λ < EP(Xi)/b. Moreover, from the linear model set up, we can show

that ∆2
5 − ∆2

1=σ2(µ1µ−1 − 1) > 0, ∆2
6 − ∆2

5=EP
{
(α + βXi) − χ−1Xi(α + βµ1 − λα −

λβµ2/µ1)
}2{

µ1/Xi−λ
}
≥ 0, ∆2

7−∆2
5=β2EP

{
(Xi−µ1)−λχ−1Xi(µ1−µ2/µ1)

}2{
µ1/Xi−

λ
}
≥ 0, ∆2

8−∆2
1=σ2

(
cµ1µ−1−(1−λ)

)
≥ cσ2(µ1µ−1−1) > 0 and ∆2

9−∆2
1=σ2

(
cµ1µ−1−(1−

λ)
)
+cα2(µ1µ−1−1) > 0 a.s. [P], where σ2=EP(ϵi)

2. Note that ∆2
6−∆2

5 ≥ 0 and ∆2
7−∆2

5 ≥ 0

because Assumption 2.2.1 holds and Assumption 2.1.1 holds with 0 ≤ λ < EP(Xi)/b. Therefore,

∆2
1 < ∆2

i a.s. [P] for i=2, . . . , 9. This completes the proof of (ii) in Theorem 2.2.1.

Proof of Theorem 2.2.2. The proof follows in a straightforward way from the proof of Theorem

2.2.1.

Proof of Theorem 2.2.3. Using similar arguments as in the 1st paragraph of proof of Theorem

2.2.1, we can say that under SRSWOR and LMS sampling design, conclusions of Theorems

2.1.1 and 2.1.3 hold a.s. [P] for d=1, p=2, h(y)=(y, y2) and g(s1, s2)=s2 − s21 in the same way

as conclusions of Theorems 2.1.1 and 2.1.3 hold a.s. [P] for d=p=1, h(y)=y and g(s)=s in the

1st paragraph of the proof of Theorem 2.2.1. Note that Wi=Y 2
i − 2YiY for the above choices

of h and g. Further, it follows from SLLN and the assumption EP(ϵi)
8 < ∞ that the ∆2

i ’s in

Table 2.4 can be expressed in terms of superpopulation moments of (Yi, Xi) a.s. [P]. Note that

∆2
2 −∆2

1=cov2P(W̃i, Xi) a.s. [P], where W̃i=Y 2
i − 2YiEP(Yi). Then, ∆2

1 < ∆2
2 a.s. [P]. This

completes the proof of (i) in Theorem 2.2.3.

Next consider the case of 0 ≤ λ < EP(Xi)/b. Using the same line of arguments as in

the 2nd paragraph of the proof of Theorem 2.2.1, it can be shown that under RHC and any

HEπPS sampling designs, conclusions of Theorems 2.1.2 and 2.1.3 hold a.s. [P] for d=1, p=2,

h(y)=(y, y2) and g(s1, s2)=s2 − s21 in the same way as conclusions of Theorems 2.1.2 and 2.1.3

hold a.s. [P] for d=p=1, h(y)=y and g(s)=s in the 2nd paragraph of the proof of Theorem 2.2.1.

Note that ∆2
7 −∆2

5=
{
µ21covP(W̃i, Xi)

(
covP(W̃i, Xi)covP(Xi, 1/Xi)− 2covP(W̃i, 1/Xi)

)}
−

λ2cov2P(W̃i, Xi)/χµ1−λcov2P(W̃i, Xi) ≤
{
µ21× covP(W̃i, Xi)

(
covP(W̃i, Xi)covP(Xi, 1/Xi)−

2covP(W̃i, 1/Xi)
)}

a.s. [P] because χ > 0. Recall from Assumption 2.2.2 that ξ=µ3−µ2µ1 and

µj=EP(Xi)
j for j=−1, 1, 2, 3. Then, from the linear model set up, we have

{
µ21covP(W̃i, Xi)×(

covP(W̃i, Xi)covP(Xi, 1/Xi) − 2covP(W̃i, 1/Xi)
)}

=(β2µ1)2(ξ − 2µ1)((ξ + 2µ1)ζ1 − 2ζ2).

Here, ζ1=1 − µ1µ−1 and ζ2=µ1 − µ2µ−1. Note that (ξ + 2µ1)ζ1 − 2ζ2=ξζ1 + 2µ−1 and

ζ1 < 0. Therefore,
{
µ21covP(W̃i, Xi)

(
covP(W̃i, Xi)covP(Xi, 1/Xi)− 2covP(W̃i, 1/Xi)

)}
< 0

if ξ > 2max{µ1, µ−1/(µ1µ−1 − 1)}. Hence, ∆2
7 −∆2

5 < 0 a.s. [P]. This completes the proof

of (ii) in Theorem 2.2.3.



54 Chapter 2. A comparison of estimators of mean and its functions in finite populations

Proof of Theorem 2.2.4. Using the same line of arguments as in the 1st paragraph of the proof

of Theorem 2.2.1, it can be shown that under SRSWOR and LMS sampling design, conclusions

of Theorems 2.1.1 and 2.1.3 hold a.s. [P] for d=2, p=5, h(z1, z2)=(z1, z2, z21 , z
2
2 , z1z2) and

g(s1, s2, s3, s4, s5)=(s5 − s1s2)/((s3 − s21)(s4 − s22))
1/2 in the case of the correlation coeffi-

cient between z1 and z2, and for d=2, p=4, h(z1, z2)=(z1, z2, z22 , z1z2) and g(s1, s2, s3, s4)=

(s4 − s1s2)/(s3 − s22) in the case of the regression coefficient of z1 on z2 in the same way as

conclusions of Theorems 2.1.1 and 2.1.3 hold a.s. [P] for d=p=1, h(y)=y and g(s)=s in the case

of the mean of y in the 1st paragraph of the proof of Theorem 2.2.1. Further, if Assumption 2.1.1

holds with 0 ≤ λ < EP(Xi)/b, then using similar arguments as in the 2nd paragraph of the proof

of Theorem 2.2.1, it can also be shown that under RHC and any HEπPS sampling designs, con-

clusions of Theorems 2.1.2 and 2.1.3 hold a.s. [P] for d=2, p=5, h(z1, z2)=(z1, z2, z21 , z
2
2 , z1z2)

and g(s1, s2, s3, s4, s5)=(s5− s1s2)/((s3− s21)(s4− s22))1/2 in the case of the correlation coeffi-

cient between z1 and z2, and for d=2, p=4, h(z1, z2)=(z1, z2, z22 , z1z2) and g(s1, s2, s3, s4)=(s4−

s1s2)/(s3−s22) in the case of the regression coefficient of z1 on z2 in the same way as conclusions

of Theorems 2.1.2 and 2.1.3 hold a.s. [P] for d=p=1, h(y)=y and g(s)=s in the case of the mean of

y in the 2nd paragraph of the proof of Theorem 2.2.1. Note thatWi=R12[(Z1/S
2
1−Z2/S12)Z1i+

(Z2/S
2
2 −Z1/S12)Z2i −Z2

1i/2S
2
1 −Z2

2i/2S
2
2 +Z1iZ2i/S12] for the correlation coefficient, and

Wi=(1/S2
2)[−Z2Z1i − (Z1 − 2S12Z2/S

2
2)Z2i − S12Z

2
2i/S

2
2 +Z1iZ2i] for the regression coeffi-

cient. Here, Z1=
∑N

i=1 Z1i/N , Z2=
∑N

i=1 Z2i/N , S2
1=
∑N

i=1 Z
2
1i /N − Z

2
1, S2

2=
∑N

i=1 Z
2
2i/N −

Z
2
2, S12=

∑N
i=1 Z1i Z2i/N − Z1Z2 and R12=S12/S1S2. Also, note that since EP||ϵi||8 < ∞,

the ∆2
i ’s in Table 2.4 can be expressed in terms of superpopulation moments of (h(Z1i, Z2i), Xi)

a.s. [P] for both the parameters by SLLN. Further, for the above parameters, we have ∆2
2 −

∆2
1=cov2P(W̃i, Xi) > 0 and ∆2

7 − ∆2
5=
{
µ21covP(W̃i, Xi)

(
covP(W̃i, Xi)covP(Xi, 1/Xi) − 2×

covP(W̃i, 1/Xi)
)}

−λ2cov2P(W̃i, Xi)/χµ1−λcov2P(W̃i, Xi) ≤
{
µ21covP(W̃i, Xi)

(
covP(W̃i, Xi)×

covP(Xi, 1/Xi)− 2covP(W̃i, 1/Xi)
)}

a.s. [P], where W̃i is the same as Wi with all finite pop-

ulation moments in the expression of Wi replaced by their corresponding superpopulation

moments. Also, from the linear model set up, we have
{
µ21covP(W̃i, Xi)

(
covP(W̃i, Xi)covP(Xi,

1/Xi) − 2covP(W̃i, 1/Xi)
)}

=K1(ξ − 2µ1)((ξ + 2µ1)ζ1 − 2ζ2) for some constant K1 > 0 in

the case of the correlation coefficient, and
{
µ21covP(W̃i, Xi)

(
covP(W̃i, Xi)covP(Xi, 1/Xi) −

2covP(W̃i, 1/Xi)
)}

=K2(ξ − 2µ1)((ξ + 2µ1)ζ1 − 2ζ2) for some constant K2 > 0 in the case

of the regression coefficient. Thus proofs of both the parts of the theorem follow in the same way

as the proof of Theorem 2.2.3.
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2.7. Proofs of additional results required to prove the main results

In this section, we state and prove some lemmas, which are required to prove Theorems 2.1.1–

2.1.3 and 2.2.2–2.2.4, and Remark 2.1.1.

Lemma 2.7.1. Suppose that Assumption 2.1.3 holds. Then, LMS sampling design is a high

entropy sampling design. Moreover, under each of SRSWOR, LMS and any HEπPS sampling

designs, there exist constants L,L′ > 0 such that

L ≤ min
1≤i≤N

(Nπi/n) ≤ max
1≤i≤N

(Nπi/n) ≤ L′ (2.7.1)

for all sufficiently large ν .

The condition (2.7.1) was considered earlier in [85], [7], etc. However, the above authors did

not discuss whether LMS and HEπPS sampling designs satisfy (2.7.1) or not.

Proof. Suppose that P (s) and R(s) denote LMS sampling design and SRSWOR, respec-

tively. Note that SRSWOR is a rejective sampling design. Then, P (s)=(x/X)/NCn and

R(s)=(NCn)
−1, where x=

∑
i∈sXi/n and s ∈ S. By Cauchy-Schwarz inequality, we have

D(P ||R) = E((x/X) log(x/X)) ≤ K1E|x/X − 1| ≤ K1E(x/X − 1)2 (2.7.2)

for some K1 > 0 since Assumption 2.1.3 holds, and log(x) ≤ |x− 1| for x > 0. Here E denotes

the expectation with respect to R(s). Therefore,

nD(P ||R) ≤ K1(1− n/N)(N/(N − 1))(S2
x/X

2
) ≤ 2K1(

N∑
i=1

X2
i /NX

2
)

≤ 2K1( max
1≤i≤N

Xi/ min
1≤i≤N

Xi)
2 = O(1)

(2.7.3)

as ν → ∞. Hence, D(P ||R) → 0 as ν → ∞. Thus LMS sampling design is a high entropy

sampling design.

Next, note that (2.7.1) holds trivially under SRSWOR. Now, suppose that {πi}Ni=1 denote

inclusion probabilities of P (s). Then, we have πi=(n − 1)/(N − 1) + (Xi/
∑N

i=1Xi)((N −

n)/(N − 1)) and πi − n/N=−(N − n)(N(N − 1))−1(Xi/X − 1). Further,

|πi − n/N |
n/N

=
N − n

n(N − 1)

∣∣∣∣Xi

X
− 1

∣∣∣∣ ≤ N − n

n(N − 1)

(
max1≤i≤N Xi

min1≤i≤N Xi
+ 1

)
. (2.7.4)
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Therefore, max1≤i≤N |Nπi/n − 1| → 0 as ν → ∞ by Assumption 2.1.3. Hence, K2 ≤

min1≤i≤N (Nπi/n) ≤ max1≤i≤N (Nπi/n) ≤ K3 for all sufficiently large ν and some constants

K2 > 0 and K3 > 0. Thus (2.7.1) holds under LMS sampling design. Further, (2.7.1) holds

under any HEπPS sampling design since Assumption 2.1.3 holds.

Next, consider Vi’s and V as in the paragraph preceding Assumption 2.1.4. Let us define V̂1=∑
i∈s(Nπi)

−1Vi and Σ1=nN−2
∑N

i=1(Vi−TV πi)
T (Vi−TV πi)(π

−1
i −1), where πi’s and TV

are as in the paragraph preceding Assumption 2.1.4. Let us also define V̂2=
∑

i∈s(NXi)
−1GiVi

and Σ2=nγXN−1
∑N

i=1 (Vi−XiV/X)T (Vi−XiV/X)/Xi, whereGi’s are as in the paragraph

containing Table 2.1, and γ is as in the paragraph preceding Assumption 2.1.4. Now, we state the

following Lemma.

Lemma 2.7.2. Suppose that Assumptions 2.1.1–2.1.4 hold. Then, under SRSWOR, LMS and any

HEπPS sampling designs, we have
√
n(V̂1−V) L−→ N(0,Γ1) as ν → ∞, where Γ1=limν→∞Σ1.

Further, suppose that Assumptions 2.1.1–2.1.3, 2.1.5 and 2.1.6 hold. Then, we have
√
n(V̂2 −

V) L−→ N(0,Γ2) as ν → ∞ under RHC sampling, where Γ2=limν→∞Σ2.

Proof. Note that SRSWOR is a high entropy sampling design since it is a rejective sampling

design. It follows from Lemma 2.7.1 that (2.7.1) in Lemma 2.7.1 holds under SRSWOR and any

HEπPS sampling design. It also follows from Lemma 2.7.1 that LMS sampling design is a high

entropy sampling design, and (2.7.1) holds under this sampling design. Now, fix ϵ > 0 and m1 ∈

Rp. Suppose that L(ϵ,m1)=(n−1N2m1Σ1mT
1 )

−1
∑

i∈G(ϵ,m1)
(m1 (Vi−TV πi)

T )2(π−1
i −1) for

G(ϵ,m1)={1 ≤ i ≤ N : |m1(Vi − TV πi)
T | > ϵπiN(n−1 m1Σ1mT

1 )
1/2}, TV =

∑N
i=1 Vi(1 −

πi)/
∑N

i=1 πi(1− πi) and Ṽi=(n/Nπi)Vi −(n/N)TV , i=1, . . . , N . Then, given any δ > 0,

L(ϵ,m1) ≤ (m1Σ1mT
1 )

−(1+δ/2)n−δ/2ϵ−δN−1
N∑
i=1

(||m1||||Ṽi||)2+δ(Nπi/n) (2.7.5)

since |m1ṼT
i |/(

√
nϵ(m1Σ1mT

1 )
1/2) > 1 for any i ∈ G(ϵ,m1). It follows from Jensen’s inequal-

ity that

N−1
N∑
i=1

||Ṽi||2+δ(Nπi/n) ≤ 21+δ
(
N−1

N∑
i=1

||Vi(n/Nπi)||2+δ(Nπi/n)+

||(n/N)TV ||2+δ
) (2.7.6)
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since
∑N

i=1 πi=n. It also follows from Assumptions 2.1.2 and 2.1.3, and Jensen’s inequality that∑N
i=1 ||Vi||2+δ/N=O(1) as ν → ∞ for any 0 < δ ≤ 2. Further,

∑N
i=1 πi(1− πi)/n is bounded

away from 0 as ν → ∞ under SRSWOR, LMS and any HEπPS sampling designs because (2.7.1)

holds under these sampling designs, and Assumption 2.1.1 holds. Therefore,

N−1
N∑
i=1

||Vi(n/Nπi)||2+δ(Nπi/n) = O(1) and ||(n/N)TV ||2+δ = O(1), (2.7.7)

and hence N−1
∑N

i=1 ||Ṽi||2+δ(Nπi/n)=O(1) as ν → ∞ under the above sampling designs.

Then, L(ϵ,m1) → 0 as ν → ∞ for any ϵ > 0 under all of these sampling designs since As-

sumption 2.1.4 holds. Therefore, inf{ϵ > 0 : L(ϵ,m1) ≤ ϵ} → 0 as ν → ∞, and consequently

the Hájek-Lindeberg condition holds for {m1VT
i }Ni=1 under each of the above sampling designs.

Also,
∑N

i=1 πi(1− πi) → ∞ as ν → ∞ under these sampling designs. Then, from Theorem 5 in

[4],
√
nm1(V̂1 − V)T

L−→ N(0,m1Γ1mT
1 ) as ν → ∞ under each of the above sampling designs

for any m1 ∈ Rp and Γ1=limν→∞Σ1. Hence,
√
n(V̂1 − V)

L−→ N(0,Γ1) as ν → ∞ under the

above-mentioned sampling designs.

Next, define

L(m1) = nγ

(
max
1≤i≤N

Xi

)(
N−1

n∑
r=1

Ñ3
r (Ñr − 1)

N∑
i=1

(m1(ViX/Xi − V)T )4×

Xi

)1/2(
X

3/2
n∑

r=1

Ñr(Ñr − 1)m1Σ2mT
1

)−1

,

(2.7.8)

where γ=
∑n

r=1 Ñr(Ñr − 1)/N(N − 1) as before. Note that as ν → ∞,

(
N−1

N∑
i=1

(m1(ViX/Xi − V)T )4(Xi/X)

)1/2

= O(1) and X−1
max
1≤i≤N

Xi = O(1) (2.7.9)

since Assumptions 2.1.2 and 2.1.3 hold. Now, under Assumptions 2.1.1 and 2.1.6, we have

(
∑n

r=1 Ñ
3
r (Ñr − 1))1/2(

∑n
r=1 Ñr(Ñr − 1))−1=O(1/

√
n) and nγ=O(1) as ν → ∞. Therefore,

L(m1) → 0 as ν → ∞ since Assumption 2.1.5 holds. This implies that the condition C1 in [61]

holds for {m1VT
i }Ni=1. Therefore, by Theorem 2.1 in [61],

√
nm1(V̂2−V)T

L−→ N(0,m1Γ2mT
1 )

as ν → ∞ under RHC sampling design for any m1 ∈ Rp and Γ2=limν→∞Σ2. Hence,
√
n(V̂2 −

V)
L−→ N(0,Γ2) as ν → ∞ under RHC sampling design.

Next, suppose that C=
∑N

i=1 Ci/N , Ĉ1=
∑

i∈s(Nπi)
−1Ci and Ĉ2=

∑
i∈s(NXi)

−1GiCi for

Ci=(hi, Xihi, X
2
i ), i=1, . . . , N . Let us also define X̂1=

∑
i∈s (Nπi)

−1Xi. Now, we state the
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following lemma.

Lemma 2.7.3. Suppose that Assumptions 2.1.1–2.1.3 and 2.1.6 hold. Then, under SRSWOR,

LMS and any HEπPS sampling designs, we have Ĉ1 − C=op(1),
√
n(X̂1 − X)=Op(1) and

√
n(
∑

i∈s(Nπi)
−1 − 1)=Op(1) as ν → ∞. Moreover, under RHC sampling design, we have

Ĉ2 − C=op(1) and
√
n(
∑

i∈s(NXi)
−1Gi − 1)=Op(1) as ν → ∞.

Proof. We first show that as ν → ∞, Ĉ1 − C=op(1),
√
n(X̂1 − X)=Op(1) and

√
n(
∑

i∈s

(Nπi)
−1 − 1)=Op(1) under a high entropy sampling design P (s) satisfying (2.7.1) in Lemma

2.7.1. Fix m2 ∈ R2p+1. Suppose that Q(s) is a rejective sampling design with inclusion prob-

abilities equal to those of P (s) (cf. [4]). Under Q(s), var(m2(
√
n(Ĉ1 − C)T ))=m2(nN

−2∑N
i=1(Ci − TCπi)

T (Ci − TCπi)(π
−1
i − 1))mT

2 (1 + e) (see Theorem 6.1 in [40]), where

TC=
∑N

i=1 Ci (1−πi)/
∑N

i=1 πi(1−πi), and e→ 0 as ν → ∞ whenever
∑N

i=1 πi(1−πi) → ∞

as ν → ∞. Note that (2.7.1) holds under Q(s), and hence
∑N

i=1 πi(1 − πi) → ∞ as

ν → ∞ under Q(s) because (2.7.1) holds under P (s), and Assumption 2.1.1 holds. Then,

m2(nN
−2
∑N

i=1(Ci − TCπi)
T (Ci − TCπi)(π

−1
i − 1))mT

2 ≤ nN−2
∑N

i=1(m2CT
i )

2/πi=O(1)

under Q(s) since Assumption 2.1.2 holds. Therefore,
√
n(Ĉ1 − C)=Op(1) as ν → ∞ un-

der Q(s) since var(m2(
√
n(Ĉ1 − C)T ))=O(1) as ν → ∞ for any m2 ∈ R2p+1 under Q(s).

Now,
∑

s∈E P (s) ≤
∑

s∈E Q(s) +
∑

s∈S |P (s) − Q(s)| ≤
∑

s∈E Q(s) + (2D(P ||Q))1/2

≤
∑

s∈E Q(s) + (2D(P ||R))1/2 (see Lemmas 2 and 3 in [4]), where E={s ∈ S : ||
√
n(Ĉ1 −

C)|| > δ} for δ > 0 and R(s) is any other rejective sampling design. Let us consider a rejec-

tive sampling design R(s) such that D(P ||R) → 0 as ν → ∞. Therefore, given any ϵ > 0,

there exists a δ > 0 such that
∑

s∈E P (s) ≤ ϵ for all sufficiently large ν. Hence, as ν → ∞,
√
n(Ĉ1 − C)=Op(1) and Ĉ1 − C=op(1) under P (s). Similarly, we can show that as ν → ∞,

√
n(X̂1 − X)=Op(1) and

√
n(
∑

i∈s(Nπi)
−1 − 1)=Op(1) under P (s). Now, recall from the

proof of Lemma 2.7.2 that SRSWOR and LMS sampling design are high entropy sampling

designs, and they satisfy (2.7.1). Also, any HEπPS sampling design satisfies (2.7.1). Therefore,

as ν → ∞, Ĉ1 − C=op(1),
√
n(X̂1 −X)=Op(1) and

√
n(
∑

i∈s(Nπi)
−1 − 1)=Op(1) under the

above-mentioned sampling designs.

Under RHC sampling design, var(m2(
√
n(Ĉ2−C)T ))=m2(nγXN

−1
∑N

i=1 (Ci−XiC/X)T

(Ci − XiC/X)/Xi)mT
2 (see [61]). Recall from the proof of Lemma 2.7.2 that nγ=O(1) as

ν → ∞. Then, var(m2(
√
n(Ĉ2 − C)T )) ≤ nγ(X/N)

∑N
i=1(m2CT

i )
2/Xi=O(1) as ν → ∞

since Assumptions 2.1.2, 2.1.3 and 2.1.6 hold. Hence, as ν → ∞,
√
n(Ĉ2 − C)=Op(1)
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and Ĉ2 − C=op(1) under RHC sampling design. Similarly, we can show that as ν → ∞,
√
n(
∑

i∈s(NXi)
−1Gi − 1)=Op(1) under RHC sampling design.

Recall from the 1st paragraph in Section 2.6 that we denote the HT, the RHC, the Hájek, the

ratio, the product, the GREG and the PEML estimators of population means of h(y) by ĥHT ,

ĥRHC , ĥH , ĥRA, ĥPR, ĥGREG and ĥPEML, respectively. Suppose that ĥ denotes one of ĥHT ,

ĥH , ĥRA, ĥPR, and ĥGREG with d(i, s)=(Nπi)−1. Then, a Taylor type expansion of ĥ− h can

be obtained as ĥ−h=Θ(V̂1−V)+R, where V̂1=
∑

i∈s(Nπi)
−1Vi, V=

∑N
i=1 Vi/N , and Vi’s, Θ

and R are as described in Table 2.54 below. On the other hand, if ĥ is either ĥRHC or ĥGREG with

TABLE 2.54: Expressions of Vi, Θ and R for different ĥ’s.

ĥ Vi Θ R
ĥHT hi 1 0

ĥH hi − h (
∑

i∈s(Nπi)
−1)−1 0

ĥRA hi − hXi/X X/X̂1 0

ĥPR hi + hXi/X X̂1/X −(1− X̂1/X))2h

ĥGREG with hi − h−
(
∑

i∈s(Nπi)
−1)−1 (X̂2 −X)×

d(i, s)=(Nπi)−1 Sxh(Xi −X)/S2
x (Sxh/S

2
x − β̂1)

ĥRHC hi 1 0

ĥGREG with hi − h−
(
∑

i∈s(NXi)
−1Gi)

−1 X((
∑

i∈s(NXi)
−1Gi)

−1

d(i, s)=(NXi)
−1Gi Sxh(Xi −X)/S2

x −1)(Sxh/S
2
x − β̂2)

d(i, s)=(NXi)
−1Gi, a Taylor type expansion of ĥ−h can be obtained as ĥ−h=Θ(V̂2−V)+R.

Here, V̂2=
∑

i∈s(NXi)
−1GiVi, Gi’s are as in the paragraph containing Table 2.1, and the

Vi’s, Θ and R are once again described in Table 2.54. In Table 2.54, X̂1=
∑

i∈s(Nπi)
−1Xi,

X̂2=X̂1/
∑

i∈s(Nπi)
−1, β̂1=(

∑
i∈s(Nπi)

−1
∑

i∈s(Nπi)
−1hiXi−ĥHT X̂1)/(

∑
i∈s(Nπi)

−1×∑
i∈s(Nπi)

−1X2
i − (X̂1)

2) and β̂2=(
∑

i∈s((NXi)
−1Gi)

∑
i∈s(N

−1Gihi)− ĥRHCX)/(
∑

i∈s

((NXi)
−1Gi)

∑
i∈s(N

−1GiXi)−X
2
). Now, we state the following lemma.

Lemma 2.7.4. (i) Suppose that Assumptions 2.1.1–2.1.4 hold. Further, suppose that ĥ is one of

ĥHT , ĥH , ĥRA, ĥPR, and ĥGREG with d(i, s)=(Nπi)−1. Then, under SRSWOR, LMS and any

HEπPS sampling designs,

√
n(ĥ− h)

L−→ N(0,Γ) as ν → ∞ (2.7.10)
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for some p.d. matrix Γ.

(ii) Further, suppose that Assumptions 2.1.1–2.1.3, 2.1.5 and 2.1.6 hold, and ĥ is ĥRHC or

ĥGREG with d(i, s)=(NXi)
−1Gi. Then, (2.7.10) holds under RHC sampling design.

Proof. It can be shown from Lemma 2.7.2 that
√
n(V̂1 − V)

L−→ N(0,Γ1) as ν → ∞ under

SRSWOR, LMS and any HEπPS sampling designs, where Γ1=limν→∞ nN−2
∑N

i=1 (Vi −

TV πi)
T (Vi − TV πi)(π

−1
i − 1) with TV =

∑N
i=1 Vi(1− πi)/

∑N
i=1 πi(1− πi). Note that Γ1 is a

p.d. matrix under each of the above sampling designs as Assumption 2.1.4 holds under these

sampling designs. Let us now consider from Table 2.54 various choices of Θ and R corresponding

to ĥHT , ĥH , ĥRA, ĥPR, and ĥGREG with d(i, s)=(Nπi)−1. Then, it can be shown from Lemma

2.7.3 that for each of these choices,
√
nR=op(1) and Θ− 1=op(1) as ν → ∞ under the above-

mentioned sampling designs. Therefore, (2.7.10) holds under those sampling designs with Γ=Γ1.

This completes the proof of (i) in Lemma 2.7.4

We can show from Lemma 2.7.2 that
√
n(V̂2 − V)

L−→ N(0,Γ2) as ν → ∞ under RHC

sampling design, where Γ2=limν→∞ nγXN−1
∑N

i=1(Vi−XiV/X)T (Vi−XiV/X)X−1
i with

γ=
∑n

r=1 Ñr(Ñr − 1)/N(N − 1). Note that Γ2 is a p.d. matrix since Assumption 2.1.5 holds.

Let us now consider from Table 2.54 different choices of Θ and R corresponding to ĥRHC , and

ĥGREG with d(i, s)=(NXi)
−1Gi. Then, it follows from Lemma 2.7.3 that for each of these

choices,
√
nR=op(1) and Θ − 1=op(1) as ν → ∞ under RHC sampling design. Therefore,

(2.7.10) holds under RHC sampling design with Γ=Γ2. This completes the proof of (ii) in

Lemma 2.7.4

Next, recall from the paragraph following Assumption 2.1.2 that γ=
∑n

r=1 Ñr(Ñr−1)/N(N−

1) with Ñr being the size of the rth group formed randomly in RHC sampling design. Then, we

state the following lemma.

Lemma 2.7.5. Suppose that Assumptions 2.1.1 and 2.1.6 hold. Then, nγ → c for some c ≥

1− λ > 0 as ν → ∞, where λ is as in Assumption 2.1.1.

Proof. Let us first consider the case of λ=0. Note that

n(N/n− 1)(N − n)/(N(N − 1)) ≤ nγ ≤

n(N/n+ 1)(N − n)/(N(N − 1))
(2.7.11)
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by Assumption 2.1.6 in Section 2.1. Moreover, n(N/n+1)(N−n)/(N(N−1))=(1+n/N)(N−

n)/(N − 1) → 1 and n(N/n− 1)(N − n)/(N(N − 1))=(1− n/N)(N − n)/(N − 1) → 1 as

ν → ∞ because Assumption 2.1.1 holds and λ=0. Thus we have nγ → 1 as ν → ∞ in this case.

Next, consider the case, when λ > 0 and λ−1 is an integer. Here, we consider the following

sub-cases. Let us first consider the sub-case, when N/n is an integer for all sufficiently large

ν. Then, by Assumption 2.1.6, we have nγ=(N − n)/(N − 1) for all sufficiently large ν. Now,

since Assumption 2.1.1 holds, we have

(N − n)/(N − 1) → 1− λ as ν → ∞. (2.7.12)

Further, consider the sub-case, when N/n is a non-integer and N/n − λ−1 ≥ 0 for all

sufficiently large ν. Then by Assumption 2.1.6, we have

nγ = (N/(N − 1))(n/N)⌊N/n⌋
(
2−

(
(n/N)⌊N/n⌋

)
− (n/N)

)
(2.7.13)

for all sufficiently large ν. Now, since Assumption 2.1.1 holds, we have 0 ≤ N/n− λ−1 < 1 for

all sufficiently large ν. Then, ⌊N/n⌋=λ−1 for all sufficiently large ν, and hence

(N/(N − 1))(n/N)⌊N/n⌋
(
2−

(
(n/N)⌊N/n⌋

)
− (n/N)

)
→ 1− λ (2.7.14)

as ν → ∞.

Next, consider the sub-case, whenN/n is a non-integer andN/n−λ−1 < 0 for all sufficiently

large ν. Then, the result in (2.7.13) holds by Assumption 2.1.6, and −1 ≤ N/n − λ−1 < 0

for all sufficiently large ν by Assumption 2.1.1. Therefore, ⌊N/n⌋=λ−1 − 1 for all sufficiently

large ν, and hence the result in (2.7.14) holds. Thus in the case of λ > 0 and λ−1 an integer, nγ

converges to 1− λ as ν → ∞ through all the sub-sequences, and hence nγ → 1− λ as ν → ∞.

Thus we have c=1− λ in this case.

Finally, consider the case, when λ > 0, and λ−1 is a non-integer. Then, N/n must

be a non-integer for all sufficiently large ν, and hence nγ=(N/(N − 1))(n/N)⌊N/n⌋
(
2 −(

(n/N)⌊N/n⌋
)
− (n/N)

)
for all sufficiently large ν by Assumption 2.1.6. Note that in this

case, N/n − ⌊λ−1⌋ → λ−1 − ⌊λ−1⌋ ∈ (0, 1) as ν → ∞ by Assumption 2.1.1. There-

fore, ⌊λ−1⌋ < N/n < ⌊λ−1⌋ + 1 for all sufficiently large ν, and hence ⌊N/n⌋=⌊λ−1⌋ for

all sufficiently large ν. Thus nγ → λ⌊λ−1⌋(2 − λ⌊λ−1⌋ − λ) as ν → ∞ by Assumption
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2.1.1. Now, if t=⌊λ−1⌋ and λ−1 is a non-integer, then (t + 1)−1 < λ < t−1. Therefore,

λ⌊λ−1⌋(2−λ⌊λ−1⌋−λ)−1+λ=−
(
1− (2t+1)λ+ t(t+1)λ2

)
=−(1− tλ)(1− (t+1)λ) > 0.

Thus we have c=λ⌊λ−1⌋(2− λ⌊λ−1⌋ − λ) > 1− λ in this case. This completes the proof of the

Lemma.

Recall the expressions of Σ1 and Σ2 from the paragraph preceding Lemma 2.7.2, and ∇g

and µ0 from Assumption 2.1.2. Note that the expression of Σ1 remains the same for different

HEπPS sampling designs. Also, recall from the paragraph preceding Theorem 2.1.3 that ϕ=X −

(n/N)
∑N

i=1X
2
i /NX . Now, we state the following lemma.

Lemma 2.7.6. (i) Suppose that Assumptions 2.1.1–2.1.4 hold. Further, suppose that σ21 and σ22 de-

note limν→∞∇g(µ0)Σ1∇g(µ0)T under SRSWOR and LMS sampling design, respectively, where

µ0=limν→∞ h. Then, we have σ21=σ22=(1− λ) limν→∞
∑N

i=1(Ai − Ā)2/N for Ai=∇g(µ0)VT
i ,

i=1, . . . , N .

(ii) Next, suppose that Assumption 2.1.5 holds, and σ23=limν→∞ ∇g(µ0)Σ2∇g(µ0)T in the

case of RHC sampling design. Then, we have σ23=limν→∞ nγ((X/N)
∑N

i=1A
2
i /Xi − Ā2).

On the other hand, if Assumptions 2.1.1–2.1.4 hold, and σ24=limν→∞ ∇g(µ0)Σ1∇g(µ0)T un-

der any HEπPS sampling design, then we have σ24= limν→∞
{
(1/N)

∑N
i=1A

2
i

(
(X/Xi) −

(n/N)
)
− ϕ−1X

−1(
(n/N)

∑N
i=1AiXi/N −AX

)2}. Further, if Assumption 2.1.1 holds with

λ=0, and Assumptions 2.1.2–2.1.4 and 2.1.6 hold, then we have σ24=σ23=limν→∞((X/N)∑N
i=1A

2
i /Xi − Ā2).

Proof. Let us first note that the limits in the expressions of σ21 and σ22 exist in view of Assump-

tion 2.1.4. Also, note that ∇g(µ0)Σ1∇g(µ0)T=nN−2
∑N

i=1(Ai − Taπi)
2(π−1

i − 1)=nN−2

[
∑N

i=1A
2
i (π

−1
i − 1) − (

∑N
i=1Ai(1 − πi))

2/
∑N

i=1 πi(1 − πi)], where Ta=
∑N

i=1Ai(1 − πi)/∑N
i=1 πi(1 − πi) and Ai=∇g(µ0)VT

i . Now, substituting πi=n/N in the above expression for

SRSWOR, we get σ21= limν→∞ nN−2 [
∑N

i=1A
2
i (N/n − 1) − (

∑N
i=1Ai(1 − n/N))2/n(1 −

n/N)]=limν→∞ (1−n/N)
∑N

i=1(Ai−Ā)2/N . Since Assumption 2.1.1 holds, we have σ21=(1−

λ) limν→∞
∑N

i=1(Ai − Ā)2/N . Let {πi}Ni=1 be the inclusion probabilities of LMS sampling de-

sign. Then, σ22−σ21=limν→∞ nN−2[
∑N

i=1A
2
i (π

−1
i −N/n)−((

∑N
i=1Ai(1−πi))2/

∑N
i=1 πi(1−

πi)− (
∑N

i=1Ai(1− n/N))2/n(1− n/N))]. Now, it can be shown from the proof of Lemma

2.7.1 that max1≤i≤N |Nπi/n − 1| → 0 as ν → ∞. Therefore, using Assumption 2.1.2,

we can show that limν→∞ nN−2
∑N

i=1 A
2
i (π

−1
i −N/n)=0 and limν→∞ nN−2[(

∑N
i=1Ai(1−

πi))
2/
∑N

i=1 πi(1 − πi) − (
∑N

i=1Ai(1 − n/N))2/n(1 − n/N)]=0, and consequently σ21=σ22 .

This completes the proof of (i) in Lemma 2.7.6
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Next, consider the case of RHC sampling design and note that the limit in the expression of σ23

exists in view of Assumption 2.1.5. Also, note that ∇g(µ0)Σ2∇g(µ0)T =nγ(X/N)
∑N

i=1(Ai−

ĀXi/X)2/Xi=nγ((X/N)
∑N

i=1A
2
i / Xi−Ā2), where Ā=

∑N
i=1Ai/N and γ=

∑n
r=1 Ñr(Ñr−

1)/N(N − 1). Thus we have σ23=limν→∞ nγ((X/N)
∑N

i=1A
2
i /Xi − Ā2)=limν→∞((X/N)×∑N

i=1A
2
i /Xi − Ā2).

Next, note that the limit in the expression of σ24 exists in view of Assumption 2.1.4. Sub-

stituting πi=nXi/
∑N

i=1Xi in ∇g(µ0)Σ1∇g(µ0)T for any HEπPS sampling design, we get

σ24=limν→∞ nN−2[
∑N

i=1A
2
i (
∑N

i=1Xi/nXi−1)−(
∑N

i=1Ai(1−nXi/
∑N

i=1Xi))
2/
∑N

i=1(nXi/∑N
i=1Xi)(1 − nXi/

∑N
i=1Xi)]=limν→∞

{
(1/N)

∑N
i=1A

2
i

(
(X/Xi) − (n/N)

)
− ϕ−1X

−1×(
(n/N)

∑N
i=1AiXi/N−AX

)2}. Further, we can show that σ24=limν→∞((X/N)
∑N

i=1A
2
i /Xi−

Ā2), when Assumptions 2.1.2 and 2.1.3 hold, and Assumption 2.1.1 holds with λ=0. It also

follows from Lemma 2.7.5 that nγ → 1 as ν → ∞, when Assumption 2.1.1 holds with λ=0.

Thus we have σ23=σ24=limν→∞((X/N)
∑N

i=1A
2
i /Xi − Ā2). This completes the proof of (ii) in

Lemma 2.7.6.

Lemma 2.7.7. Suppose that Assumptions 2.1.1–2.1.3 hold. Then under SRSWOR, LMS and any

HEπPS sampling designs, we have

(i) u∗ = max
i∈s

|Li| = op(
√
n), and (ii)

∑
i∈s

π−1
i Li

/∑
i∈s

π−1
i L2

i = Op(1/
√
n)

as ν → ∞, where Li=Xi −X for i=1, . . . , N

Proof. Let P (s) be any sampling design and E be the expectation with respect to P (s). Then,

E(u∗/
√
n) ≤ (max1≤i≤N Xi + X)/

√
n ≤ X(max1≤i≤N Xi/ min1≤i≤N Xi + 1)/

√
n=o(1)

as ν → ∞ since Assumptions 2.1.2 and 2.1.3 hold. Therefore, (i) holds under P (s) by Markov

inequality. Thus (i) holds under SRSWOR, LMS and any HEπPS sampling designs.

Using similar arguments as in the 1st paragraph of the proof of Lemma 2.7.3, it can be shown

that
√
n(
∑

i∈s Li/Nπi−L̄)=
√
n
∑

i∈s Li/Nπi=Op(1) and
∑

i∈s L
2
i /Nπi−

∑N
i=1 L

2
i /N=op(1)

as ν → ∞ under a high entropy sampling design P (s) satisfying (2.7.1) in Lemma 2.7.1. There-

fore, 1/(
∑

i∈s L
2
i /Nπi) =Op(1) as ν → ∞ under P (s) since

∑N
i=1 L

2
i /N is bounded away from

0 as ν → ∞ by Assumption 2.1.2. Thus under P (s),
∑

i∈s π
−1
i Li/

∑
i∈s π

−1
i L2

i =Op(1/
√
n) as

ν → ∞.
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It follows from Lemma 2.7.1 that SRSWOR and LMS sampling design are high entropy

sampling designs and satisfy (2.7.1). It also follows from Lemma 2.7.1 that any HEπPS sampling

design satisfies (2.7.1). Therefore, the result in (ii) holds under the above-mentioned sampling

designs.

In the following lemma, we demonstrate some situations, when Assumptions 2.1.2–2.1.5 hold.

Let us recall {Vi}Ni=1 and V from the paragraph preceding Assumption 2.1.4. Let us also recall

the expressions of Σ1 and Σ2 from the paragraph preceding Lemma 2.7.2 and b from Assumption

2.2.1. Now, we state the following lemma.

Lemma 2.7.8. (i) Suppose that Assumptions 2.1.1, 2.2.1 and 2.1.6 hold, and {(h(Yi), Xi) : 1 ≤

i ≤ N} are generated from a superpopulation distribution P with EP||h(Yi)||4 < ∞. Then,

Assumptions 2.1.2, 2.1.3 and 2.1.5 hold a.s. [P].

(ii) Further, if Assumptions 2.1.1 and 2.2.1 hold, and EP||h(Yi)||2 <∞, then Assumption 2.1.4

holds a.s. [P] under SRSWOR and LMS sampling design. Moreover, if Assumptions 2.1.1 holds

with 0 ≤ λ < EP(Xi)/b, Assumption 2.2.1 holds, and EP||h(Yi)||2 <∞, then Assumption 2.1.4

holds a.s. [P] under any πPS sampling design.

Proof. As before, for simplicity, let us write h(Yi) as hi. Under the conditions Assumption 2.2.1

and EP||h(Yi)||4 <∞, Assumption 2.1.2 holds a.s. [P] by SLLN. Also, under Assumption 2.2.1,

Assumption 2.1.3 holds a.s. [P]. Next, by SLLN, limν→∞Σ2=cEP(Xi)EP[(hi− (EP(Xi))
−1Xi

EP(hi))
T (hi−(EP(Xi))

−1XiEP(hi))X
−1
i ] a.s. [P] for Vi=hi, hi−hXi/X and hi+hXi/X be-

cause nγ → c as ν → ∞ by Lemma 2.7.5. Similarly, limν→∞Σ2=cEP(Xi)EP[(hi −EP(hi))
T (hi−

EP(hi))/Xi] a.s. [P] for Vi=hi − h, and limν→∞Σ2=EP(Xi)EP[ (hi − EP(hi) − Cxh(Xi −

EP(Xi)))
T (hi−EP(hi)−Cxh(Xi−EP(Xi)))/Xi] a.s. [P] for Vi=hi−h−Sxh(Xi−X)/S2

x.

Here, Cxh=(EP(hiXi)− EP(hi)EP(Xi))/ (EP(Xi)
2 − (EP(Xi))

2). Note that the above limits

are p.d. matrices because Assumption 2.2.1 holds. Therefore, Assumption 2.1.5 holds a.s. [P].

This completes the proof of (i) in Lemma 2.7.8

Next, note that Σ1=(1− n/N)(
∑N

i=1 VT
i Vi/N −VTV) under SRSWOR. Then, Assumption

2.1.4 holds a.s. [P] by directly applying SLLN. Under LMS sampling design, Assumption

2.1.4 can be shown to hold a.s. [P] in the same way as the proof of the result σ21=σ22 in the

proof of Lemma 2.7.6. Next, we have limν→∞Σ1=EP
[{
hi+χ

−1(EP(Xi))
−1Xi

(
λEP(hiXi)−

EP(hi)EP(Xi)
)}T{

hi + χ−1(EP(Xi))
−1Xi

(
λEP(hiXi) − EP(hi)EP(Xi)

)}{
EP(Xi)/Xi −
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λ
}]

a.s. [P] for Vi=hi, hi−hXi/X and hi+hXi/X under any πPS sampling design (i.e., a sam-

pling design with πi=nXi/
∑N

i=1Xi) by SLLN because Assumptions 2.1.1 and 2.2.1 hold, and

EP||hi||2 <∞. Here, χ=EP(Xi)− λ(EP(Xi)
2/EP(Xi)). Moreover, under any πPS sampling

design, we have limν→∞Σ1=EP
[{
hi − EP(hi) + λχ−1(EP(Xi))

−1XiCxh

}T{
hi − EP(hi) +

λχ−1(EP(Xi))
−1XiCxh

}
×
{
EP(Xi)/Xi − λ

}]
a.s. [P] for Vi=hi − h and limν→∞Σ1=

EP
[{
hi−EP(hi)−Cxh(Xi−EP(Xi))

}T{
hi−EP(hi)−Cxh(Xi−EP(Xi))

}{
EP(Xi)/Xi−λ

}]
a.s. [P] for Vi=hi − h− Sxh(Xi −X)/S2

x. Note that the above limits are p.d. matrices because

Assumption 2.2.1 holds and Assumption 2.1.5 holds with 0 ≤ λ < EP(Xi)/b. Therefore,

Assumption 2.1.4 holds a.s. [P] under any πPS sampling design. This completes the proof of (ii)

in Lemma 2.7.8.





Chapter 3

Estimators of the mean of infinite

dimensional data in finite populations

In the recent past, [12], [13], [16], etc. considered the HT estimator (see [44]) of the finite

population mean, when population observations are from some functional space. [14] and

[15] also constructed a model assisted estimator for finite population mean function based on

some homoscedastic linear regression models. This model assisted estimator can be related to

the GREG estimator considered earlier in [22] for finite dimensional data. All these authors

investigated different asymptotic properties of the HT and the model assisted estimators in C[0, T ],

the space of continuous functions defined on [0, T ], under sampling designs, which satisfy some

regularity conditions. These sampling designs include SRSWOR, stratified sampling design

with SRSWOR and rejective sampling designs. However, none of these authors compared the

performance of the aforementioned estimators under different sampling designs.

In this chapter, we consider the extensions of the HT and the RHC estimators (see Table 2.1

in Chapter 2) for the population mean of a study variable that lies in an infinite dimensional

separable Hilbert space H because these estimators are widely used design unbiased estimators

of the population mean for finite dimensional data. We also consider the extension of the GREG

estimator (see Table 2.1 in Chapter 2) for the population mean of the same study variable, which

is not a design unbiased estimator but known to be asymptotically often more efficient than other

estimators for finite dimensional data (see Sections 2.1 and 2.2 in Chapter 2). We compare the

HT, the RHC and the GREG estimators using their asymptotic distributions under SRSWOR,

LMS, HEπPS and RHC sampling designs (see the introduction), and some superpopulations

67
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satisfying linear regression models. The main results obtained from this comparison are the

following.

• The GREG estimator is asymptotically at least as good as the HT estimator under each of

SRSWOR, LMS and any HEπPS sampling designs. Also, the GREG estimator turns out

to be asymptotically at least as good as the RHC estimator under RHC sampling design.

• If the degree of heteroscedasticity present in linear regression models is not very large,

then the use of the well-known sampling designs like RHC and any HEπPS sampling

designs instead of SRSWOR may have an adverse effect on the performance of the GREG

estimator. In other words, the use of the auxiliary information in the design stage of

sampling may have an adverse effect on the performance of the GREG estimator. On

the other hand, if the degree of heteroscedasticity present in linear regression models is

sufficiently large, then the sampling designs like RHC and any HEπPS sampling designs

lead to an improvement in the performance of the GREG estimator.

In section 3.1, we discuss infinite dimensional extensions of the HT, the RHC and the GREG

estimators of the population mean. In section 3.2, we compare these estimators using their

asymptotic distributions under the sampling designs mentioned above and some superpopulations

satisfying linear regression models. In this section, we also discuss the estimation of asymptotic

covariance operators of several estimators and show that these estimators of asymptotic covariance

operators are consistent. Some numerical results based on both synthetic and real data are

presented in Section 3.3. Several methods of determining the degree of heteroscedasticity present

in linear regression models are provided in Section 3.4. Proofs of various results are given in

Sections 3.5 and 3.6.

3.1. Estimators based on infinite dimensional data

Suppose that H is an infinite dimensional separable Hilbert space with associated inner product

⟨·, ·⟩, and y is a H-valued study variable. Some examples of such a study variable are electricity

consumption curve of household in the summer/winter (e.g., see [12], [13], [16], [14], etc.),

rainfall curve in state/district over a particular time period (e.g., see the website of India Meteoro-

logical Department (https://mausam.imd.gov.in/imd_latest/contents/rainfall_statistics_3.php)),

growth curve of height of male/female over a certain period of time (see [83]), micro-array

https://mausam.imd.gov.in/imd_latest/contents/rainfall_statistics_3.php
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expression levels of genes in cell/tissue (e.g., see the Colon dataset in the statistical software

R), etc. Recall from the introduction that Y1, . . . , YN are the population values of y. The HT

estimator of the finite population mean of y, Y =
∑N

i=1 Yi/N , is defined as

Ŷ HT =
∑
i∈s

(Nπi)
−1Yi, (3.1.1)

where πi=
∑

s∋i P (s) is the inclusion probability of the ith population unit for i=1, . . . , N .

Before we write the expression of the RHC estimator, recall from the introduction that in the

RHC sampling design, the population P is first divided randomly into n disjoint groups of sizes

Ñ1, . . . , Ñn such that
∑n

r=1 Ñr=N , and then one unit is selected from each group independently.

Also, recall from the beginning of Section 2.1 in Chapter 2 that Gi denotes the total of the x

values of that randomly formed group from which the ith unit is selected in the sample s. Then,

the RHC estimator of Y can be expressed as

Ŷ RHC =
∑
i∈s

(NXi)
−1GiYi, (3.1.2)

where X1, . . . , XN are known population values on the size variable x in (0,∞).

[66] considered the RHC estimator for a real-valued study variable. The RHC estimator is

more easily computable than other unbiased estimators under other unequal probability sampling

designs without replacement (e.g., the HT or the Des Raj estimator (see [58]) under probability

proportional to size sampling without replacement). Moreover, the RHC estimator has smaller

variance than the usual unbiased estimator under the probability proportional to size sampling

with replacement. Also, its variance can be estimated by a non negative unbiased estimator. These

results continue to hold, when we consider the RHC estimator for a H-valued study variable.

[68], [72], [28], [22], etc.considered the GREG estimator for finite dimensional data. Suppose

that z=(z1, . . . , zd) is a Rd-valued (d ≥ 1) covariate with population values Z1, . . . , ZN and

known population total
∑N

i=1 Zi. It will be appropriate to note that the size variable x may be

one of the real-valued components of z in some cases. As mentioned in Chapter 2, all vectors

in Euclidean spaces will be taken as row vectors and superscript T will be used to denote their

transpose. Further, suppose that G is any separable Hilbert space with inner product ⟨·, ·⟩, and

B(G,H) is the class of all bounded linear operators from G to H. It is to be noted that B(G,H)

is an infinite dimensional Hilbert space associated with the Hilbert-Schmidt (HS) inner product
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(see [45]). For any a ∈ G and b ∈ H, let us consider the tensor product a ⊗ b ∈ B(G,H),

which is defined as (a ⊗ b)e=⟨a, e⟩b, e ∈ G. Suppose that Ẑ=
∑

i∈s π
−1
i Zi/

∑
i∈s π

−1
i . Let us

also suppose that the inverse of Ŝzz=
∑

i∈s π
−1
i (Zi − Ẑ)T (Zi − Ẑ)/

∑
i∈s π

−1
i exists. Then, an

infinite dimensional version of the GREG estimator for the population mean is defined as

Ŷ GREG = Ŷ + Ŝzy((Z − Ẑ)Ŝ−1
zz ), (3.1.3)

where Z=
∑N

i=1 Zi/N , Ŷ =
∑

i∈s π
−1
i Yi/

∑
i∈s π

−1
i and Ŝzy=

∑
i∈s π

−1
i (Zi − Ẑ) ⊗ (Yi − Ŷ )/∑

i∈s π
−1
i . Under RHC sampling design, we consider the GREG estimator Ŷ GREG after replac-

ing π−1
i by GiX

−1
i (cf. [22]).

3.2. Comparison of estimators under superpopulation models

In this section, we compare among the HT and the GREG estimators under SRSWOR, LMS and

HEπPS sampling designs, and the RHC and the GREG estimators under RHC sampling design.

For this, as mentioned in the introduction, we assume that the observations {(Yi, Zi, Xi) : 1 ≤

i ≤ N} are i.i.d. H× Rd+1-valued random variables on a probability space (Ω,F ,P). Also, as

in Section 2.2, we consider the function P (s, ω) that is defined on S × Ω. Recall from Section

2.2 that for each s ∈ S, P (s, ω) is a random variable on Ω, and for each ω ∈ Ω, P (s, ω) is a

probability distribution on S. It is to be noted that P (s, ω) is a sampling design for each ω ∈ Ω.

Next, recall from Section 2.1 in Chapter 2 that our asymptotic framework is as follows. Let {Pν}

be a sequence of populations with Nν , nν → ∞ as ν → ∞, where Nν and nν are, respectively,

the population size and the sample size corresponding to the νth population. We shall frequently

drop the limiting index ν for the sake of notational simplicity.

We now slightly modify the notation to describe high entropy sampling designs given in

the introduction. Suppose that a sampling design P (s, ω) is such that the Kullback–Leibler

divergence D(P ||R)=
∑

s∈S P (s, ω) log
(
P (s, ω)/R(s, ω)

)
converges to 0 as ν → ∞ a.s. [P]

for some rejective sampling design R(s, ω) (for the description of rejective sampling design, see

the introduction). Such a sampling design is known as the high entropy sampling design (cf.

[4], [16], [7], etc.). We call a sampling design P (s, ω) a HEπPS sampling design if it is a high

entropy sampling design as well as a πPS sampling design (see the introduction).
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Before we state our main results, let us consider some assumptions on distributions of

{Yi, Zi, Xi}Ni=1. Recall from Section 2.2 in Chapter 2 that EP denotes that expectation with

respect to the probability measure P. The expectations of H-valued random variables are defined

using Bochner integrals (see [45]). Also, recall from Section 2.1 in Chapter 2 that in any finite

dimensional Euclidean space, we consider the Euclidean norm and denote it by || · ||. On the

other hand, in H, we consider the norm induced by the inner product associated with H and

denote it by || · ||H.

Assumption 3.2.1. n/N → λ as ν → ∞, where 0 ≤ λ < 1.

Assumption 3.2.2. 0 < Xi ≤ b a.s. [P] for some b > 0, EP(Xi)
−2 < ∞, and max1≤i≤N Xi/

min1≤i≤N Xi=O(1) as ν → ∞ a.s. [P].

Assumption 3.2.3. EP||Yi||4H <∞, EP||Zi||4 <∞, and EP(Zi − EP(Zi))
T (Zi − EP(Zi)) is

positive definite (p.d.).

Assumptions 3.2.1 and 3.2.2 are discussed in Chapter 2 (see the discussion related to Assump-

tions 2.1.1, 2.1.3 and 2.2.1 in Chapter 2). Assumption 3.2.3 implies that the fourth order raw

moments of Yi and Zi exist. In this chapter, Assumptions 3.2.1–3.2.3 are used to prove some

technical results (see Lemmas 3.6.1–3.6.4 in Section 3.6) under LMS, HEπPS and RHC sampling

designs, which will be required to show weak convergence of
√
n(Ŷ HT − Y ),

√
n(Ŷ RHC − Y )

and
√
n(Ŷ GREG − Y ) via uniform approximation (see [54]). Now, we state the following

proposition.

Proposition 3.2.1. Suppose that Assumptions 3.2.1–3.2.3 hold. Then, a.s. [P], under SRSWOR

and LMS sampling design,
√
n(Ŷ HT −Y )

L−→ N as ν → ∞, where N is a Gaussian distribution

in H with mean 0 and some covariance operator. Moreover, if Assumption 3.2.1 holds with

0 ≤ λ < EP(Xi)/b, and Assumptions 3.2.2 and 3.2.3 hold, then the same result holds under any

HEπPS sampling design.

Next, as in Chapter 2, here also we consider the following assumption.

Assumption 3.2.4. For the RHC sampling design, {Ñr}nr=1 are such that

Ñr =


N/n, for r = 1, · · · , n, when N/n is an integer,

⌊N/n⌋, for r = 1, · · · , k, and

⌊N/n⌋+ 1, for r = k + 1, · · · , n, when N/n is not an integer,

(3.2.1)
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where k is such that
∑n

r=1 Ñr=N . Here, ⌊N/n⌋ is the integer part of N/n.

Now, we state the following propositions.

Proposition 3.2.2. Suppose that Assumptions 3.2.1–3.2.4 hold. Then, a.s. [P], under RHC

sampling design,
√
n(Ŷ RHC − Y )

L−→ N as ν → ∞, where N is a Gaussian distribution in H

with mean 0 and some covariance operator.

Proposition 3.2.3. Suppose that Assumptions 3.2.1–3.2.3 hold. Then, a.s. [P], under SRSWOR

and LMS sampling design,
√
n(Ŷ GREG − Y )

L−→ N as ν → ∞, where N is a Gaussian

distribution in H with mean 0 and some covariance operator. Further, if Assumption 3.2.1 holds

with 0 ≤ λ < EP(Xi)/b, and Assumptions 3.2.2 and 3.2.3 hold, then the same result holds under

any HEπPS sampling design. Moreover, if Assumptions 3.2.1–3.2.4 hold, then the above result

holds under RHC sampling design.

The weak convergence of the HT and the GREG estimators is shown under SRSWOR, LMS

and HEπPS sampling designs (see Propositions 3.2.1 and 3.2.3) using the weak convergence

of the HT and the GREG estimators under high entropy sampling designs and the fact that

the aforementioned sampling designs can be approximated by rejective sampling designs in

Kullback-Liebler divergence. The technique used to prove Propositions 3.2.1–3.2.3 is based on

the idea of convergence in distribution via uniform approximation considered in [54]. This idea

was used in [54] to extend central limit theorem for independent random variables from finite

dimensional Euclidean space to an infinite dimensional separable Hilbert space (see Proposition

2.1 in [54]). Any infinite dimensional separable Hilbert space (e.g., the space of square integrable

functions equipped with L2-inner product) is isometrically isomorphic to the space of square

summable sequences l2 because a separable Hilbert space always has a complete orthonormal

basis. Further, the l2 space can be conveniently viewed as an infinite dimensional extension

of a finite dimensional Euclidean space. Thus it is relatively easy to extend the results from

multivariate data setup to the functional data setup using the sequence structure of the l2 space.

[12] and [15] showed the weak convergence of the HT and the model assisted estimators,

respectively, in C[0, T ] under some conditions on sampling designs (see pp. 110-111 in [12]

and pp. 569-573 in [15]). These conditions hold under usual sampling designs like SRSWOR,

stratified sampling design with SRSWOR, rejective sampling design, etc. We are able to dispense

with these conditions, and show the weak convergence of the HT and the GREG estimators in

a separable Hilbert space under SRSWOR, LMS and any HEπPS sampling designs. Many of



3.2. Comparison of estimators under superpopulation models 73

these sampling designs are not covered in the earlier literature. We are also able to show the

weak convergence of the RHC and the GREG estimators in a separable Hilbert space under RHC

sampling design. These results are not available in the earlier literature.

We develop our results in a separable Hilbert space framework rather than in a space of

continuous functions equipped with supremum norm because we are able to prove Propositions

3.2.1–3.2.3 in the case of a separable Hilbert space framework. The space of continuous functions

is a subset of the space of square integrable functions, which is a separable Hilbert space equipped

withL2 inner product. Random functions from the space of continuous functions can be expressed

as linear combinations of orthonormal basis functions in the space of square integrable functions

through the Karhunen-Loève expansion.

Next, we carry out the comparison of the estimators mentioned earlier based on the above

results. We say that an estimator Ŷ 1 with asymptotic covariance operator Γ is asymptotically

at least as efficient as another estimator Ŷ 2 with asymptotic covariance operator ∆ if ∆− Γ is

non negative definite (n.n.d.), i.e., if ⟨(∆− Γ)a, a⟩ ≥ 0 for any a ∈ H. We also say that Ŷ 1 is

asymptotically more efficient than Ŷ 2 if ∆− Γ is p.d, i.e., if ⟨(∆− Γ)a, a⟩ > 0 for any a ∈ H

and a ̸= 0. We now state the following theorems.

Theorem 3.2.1. Suppose that Assumptions 3.2.1–3.2.3 hold. Then, a.s. [P], the GREG estimator

is asymptotically at least as efficient as the HT estimator under SRSWOR as well as LMS sampling

design. Moreover, a.s. [P], both the GREG estimator has the same asymptotic distribution under

SRSWOR and LMS sampling design.

Before we state the next theorem, let us consider superpopulations satisfying the linear

regression model

Yi = β0 +
d∑

j=1

Zjiβj + ϵiX
η
i , (3.2.2)

where i=1, . . . , N , {ϵi}Ni=1 are i.i.d. H-valued random variables independent of {Zi, Xi}Ni=1

with mean 0. Here, Zi=(Z1i, . . . , Zdi), βj ∈ H for j=0, . . . , d, and η ≥ 0 is the degree of

heteroscedasticity present in the linear model given above. For any given η > 0, the conditional

total variance of Yi given (Zi, Xi), the trace of the conditional covariance operator of Yi given

(Zi, Xi), increases as the value of Xi increases (cf. [72]). In essence, the parameter η determines

the rate at which this conditional total variance increases withXi. Similar types of linear model as

in (3.2.2) were used for constructing several estimators by earlier authors, when the observations
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on y are from some finite dimensional Euclidean space (see [17], [71], [72] and references

therein). A homoscedastic (i.e., when η=0) version of the above linear regression model was

considered earlier in [14] and [15] for constructing the model assisted estimator of Y , when the

observations on y are from some functional space. Now, we state the following theorem.

Theorem 3.2.2. Suppose that (3.2.2) and Assumptions 3.2.1–3.2.4 hold. Then, a.s. [P], the GREG

estimator is asymptotically at least as efficient as the RHC estimator under RHC sampling design.

Further, if (3.2.2) holds, Assumption 3.2.1 holds with 0 ≤ λ < EP(Xi)/b, and Assumptions

3.2.2 and 3.2.3 hold, then a.s. [P], the GREG estimator is asymptotically at least as efficient as

the HT estimator under any HEπPS sampling design.

It follows from the preceding results that the GREG estimator is asymptotically at least as

efficient as the HT and RHC estimators under each of the sampling designs considered in this

chapter. Also, both the HT and the GREG estimators have the same asymptotic distribution under

SRSWOR and LMS sampling design. Now, we compare the performance of the GREG estimator

under SRSWOR, RHC sampling design and HEπPS sampling designs based on the degree of

heteroscedasticity η.

Theorem 3.2.3. Suppose that (3.2.2) holds, and ϵi has a p.d. covariance operator. Further,

suppose that Assumption 3.2.1 holds with 0 ≤ λ < EP(Xi)/b, and Assumptions 3.2.2–3.2.4 hold.

Then, the sampling designs among SRSWOR, HEπPS and RHC sampling designs under which

the GREG estimator becomes the most efficient estimator a.s. [P] are as mentioned in Table 3.1

below. Further, if Assumption 3.2.1 holds with λ=0, and Assumptions 3.2.2–3.2.4 hold, then the

GREG estimator has the same asymptotic distribution under RHC and any HEπPS sampling

designs.

Proofs of Theorems 3.2.1–3.2.3 involve some results related to operator theory, which are

available in [45]. It follows from (3.5.18) in the proof of Theorem 3.2.3 that covP(X
2η−1
i , Xi),

the covariance between X2η−1
i and Xi, determines the sampling design among SRSWOR,

HEπPS and RHC sampling designs under which the GREG estimator becomes the most efficient

estimator. The GREG estimator performs more efficiently under SRSWOR than under RHC

and any HEπPS sampling designs, whenever covP(X
2η−1
i , Xi) < 0. On the other hand, the

GREG estimator under RHC as well as any HEπPS sampling design becomes more efficient

than the GREG estimator under SRSWOR in the case of λ=0, whenever covP(X
2η−1
i , Xi) >

0, and the GREG estimator under any HEπPS sampling design becomes more efficient than
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TABLE 3.1: Sampling designs for which the GREG estimator becomes the most efficient
estimator.

λ=0
λ > 0 & λ > 0 &

λ−1 is an integer λ−1 is a non-integer

η < 0.5 SRSWOR SRSWOR SRSWOR

η = 0.5
1 SRSWOR, HEπPS 1 SRSWOR, HEπPS 2 SRSWOR & HEπPS

& RHC & RHC

η > 0.5 3 HEπPS & RHC HEπPS HEπPS
1 GREG estimator has the same asymptotic distribution under SRSWOR, RHC

sampling design and HEπPS sampling designs for η=0.5, λ > 0 and λ−1 an
integer.

2 GREG estimator has the same asymptotic distribution under SRSWOR and
HEπPS sampling designs, when η=0.5, λ > 0 and λ−1 is a non-integer.

3 GREG estimator has the same asymptotic distribution under HEπPS and RHC
sampling designs for η > 0.5 and λ=0.

the GREG estimator under both SRSWOR and RHC sampling design in the case of λ > 0,

whenever covP(X
2η−1
i , Xi) > 0. Now, x2η−1 is a decreasing function of x for η < 0.5 and

an increasing function of x for η > 0.5. Therefore, covP(X
2η−1
i , Xi) < 0 for η < 0.5 and

covP(X
2η−1
i , Xi) > 0 for η > 0.5. Thus the use of the auxiliary information in HEπPS and

RHC sampling designs has an adverse effect on the performance of the GREG estimator, when

η < 0.5. On the other hand, for the case of η > 0.5, the use of HEπPS and RHC sampling

designs improves the performance of the GREG estimator.

Note that if we consider a generalized version of the linear regression model in (3.2.2) as

Yi=β0 +
∑d

j=1 Zjiβj + ϵig(Xi) for i=1, . . . , N and some non-negative real-valued function

g, then it can be shown in the same way as in the proof of Theorem 3.2.2 that the conclusion

of Theorem 3.2.2 holds under the above linear model. It can also be shown in the same way

as in the proof of Theorem 3.2.3 that the results in 2nd, 3rd and 4th rows in Table 3.1 related

to Theorem 3.2.3 hold, whenever covP(g
2(Xi)X

−1
i , Xi) < 0, covP(g

2(Xi)X
−1
i , Xi)=0 and

covP(g
2(Xi)X

−1
i , Xi) > 0, respectively. In particular, the results in 2nd, 3rd and 4th rows in

Table 3.1 hold if g2(x)x−1 is decreasing, constant and increasing function of x, respectively.

Let us denote the asymptotic covariance operator of
√
n(Ŷ − Y ) by Γ, where Ŷ denotes

one of Ŷ HT , Ŷ RHC and Ŷ GREG. Next, suppose that Ŷ is either Ŷ HT or Ŷ GREG under one

of SRSWOR, LMS and any HEπPS sampling designs. Then, it follows from the proofs of
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Propositions 3.2.1 and 3.2.3 that Γ=limν→∞ nN−2
∑N

i=1(Vi − TV πi)⊗ (Vi − TV πi)(π
−1
i − 1)

a.s. [P], where TV =
∑N

i=1 Vi(1− πi)/
∑N

i=1 πi(1− πi) and {πi}Ni=1 are inclusion probabilities.

Further, Vi is Yi for Ŷ being Ŷ HT . Also, Vi is Yi−Y −Szy((Zi−Z)S−1
zz ) for Ŷ being Ŷ GREG.

Here, Szy=
∑N

i=1(Zi − Z)⊗ (Yi − Y )/N and Szz=
∑N

i=1(Zi − Z)T (Zi − Z)/N . We estimate

Γ by

Γ̂ = (nN−2)
∑
i∈s

(V̂i − T̂V πi)⊗ (V̂i − T̂V πi)(π
−1
i − 1)π−1

i , (3.2.3)

where V̂i is Yi or Yi − Ŷ HT − Ŝzy((Zi − ẐHT )Ŝ
−1
zz ) for Ŷ being Ŷ HT or Ŷ GREG, respectively.

Also, T̂V =
∑

i∈s V̂i(π
−1
i − 1)/

∑
i∈s(1 − πi), Ŝzz=

∑
i∈s π

−1
i (Zi − Ẑ)T (Zi − Ẑ)/

∑
i∈s π

−1
i ,

and Ŝzy=
∑

i∈s π
−1
i (Zi − Ẑ)⊗ (Yi − Ŷ )/

∑
i∈s π

−1
i .

Next, suppose that Ŷ is either Ŷ RHC or Ŷ GREG under RHC sampling design. Then, it can

be shown from the proofs of Propositions 3.2.2 and 3.2.3 that Γ=limν→∞ nγXN−1
∑N

i=1

(
Vi −

XiV /X)⊗ (Vi−XiV /X
)
X−1

i a.s. [P], where γ=
∑n

r=1 Ñr(Ñr − 1)/N(N − 1) with Ñr being

the size of the rth group formed randomly in the first step of the RHC sampling design (see the

introduction), r=1, . . . , n. Further, Vi is Yi for Ŷ being Ŷ RHC . Also, Vi is Yi − Y − Szy((Zi −

Z)S−1
zz ) for Ŷ being Ŷ GREG. In this case, we estimate Γ by

Γ̂ = nγ(XN−1)
∑
i∈s

(
V̂i −XiV̂ RHC/X

)
⊗
(
V̂i −XiV̂ RHC/X

)
(GiX

−2
i ), (3.2.4)

where V̂i is Yi or Yi − Ŷ RHC − Ŝzy((Zi − ẐRHC)Ŝ
−1
zz ) for Ŷ being Ŷ RHC or Ŷ GREG, respec-

tively. Further, V̂ RHC=
∑

i∈s(NXi)
−1GiV̂i, ẐRHC=

∑
i∈s(NXi)

−1GiZi and Ŝzy and Ŝzz are

the same as above with π−1
i replaced by GiX

−1
i . Also, recall b from Assumption 3.2.2. Now, we

state the following theorem concerning the consistency of Γ̂ as an estimator of Γ with respect to

the HS norm (see [45]).

Theorem 3.2.4. Let us consider Γ, the asymptotic covariance operator of
√
n(Ŷ − Y ), and its

estimator Γ̂ from the preceding discussion. Suppose that Assumptions 3.2.1–3.2.3 hold. Then,

a.s. [P], under SRSWOR and LMS sampling design, Γ̂
p−→ Γ as ν → ∞. Here, the convergence

in probability holds with respect to the HS norm. Further, if Assumption 3.2.1 holds with

0 ≤ λ < EP(Xi)/b, and Assumptions 3.2.2 and 3.2.3 hold, then the same result holds under any

HEπPS sampling design. Moreover, if Assumptions 3.2.1–3.2.4 hold, then the above result holds

under RHC sampling design.
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3.3. Data analysis

3.3.1 Analysis based on synthetic data

In this section, we consider a finite population of size N=1000 generated as follows. We first

generate the observations X1, . . . , XN on the size variable x from a gamma distribution with

mean 500 and standard deviation (s.d.) 100. Here, we assume that the covariate z and the size

variable x are same. Then, we generate the population observations on y from L2[0, 1] using

linear regression models Yi(t)=1000 + β(t)Xi + ϵi(t)X
η
i , where β(t)=1, t and 1− (t− 0.5)2,

η=k/10 for k=0, 1, . . . , 10, and {ϵi(t)}t∈[0,1]’s are i.i.d. copies of standard Brownian motion

with mean 0 and covariance kernel σ(s, t)=s∧ t. The population observations on y are generated

at t1, . . . , tr, where r=100 and tj=jr−1 for j=1, . . . , r. We now consider the estimation of the

mean of y. We compare the HT and the GREG estimators under SRSWOR and RS sampling

design, and the RHC and the GREG estimators under RHC sampling design in terms of relative

efficiencies as defined in the following paragraph. The RS sampling design is chosen as a HEπPS

sampling design since it is easier to implement than any other HEπPS sampling design. We shall

not report the results under LMS sampling design because these results are very close to the

results under SRSWOR as expected from our theoretical results.

Suppose that each curve in a population of N curves from L2[0, 1] is observed at t1, . . . , tr ∈

[0, 1] for some r > 1. Let us consider I samples each of size n from this population. Then, the

MSE of an estimator of Y , say Ŷ , under sampling design P (s) is computed as MSE(Ŷ , P )=

(rI)−1
∑I

l=1

∑r
j=1(Ŷ l(tj)− Y (tj))

2 (see [12], [14], etc.), where Ŷ l is an estimate of Y based

on the lth sample, l=1, . . . , I . Further, we define the relative efficiency of an estimator Ŷ 1 under

sampling design P1(s) compared to another estimator Ŷ 2 under sampling design P2(s) by

RE(Ŷ 1, P1|Ŷ 2, P2) =MSE(Ŷ 2, P2)/MSE(Ŷ 1, P1).

We say that Ŷ 1 under P1(s) is more efficient than Ŷ 2 under P2(s) if RE(Ŷ 1, P1 | Ŷ 2, P2)> 1.

We compute relative efficiencies of the estimators mentioned in the preceding paragraph based

on I=1000 samples each of size n=100. We plot the relative efficiency of the HT estimator

compared to the GREG estimator under each of SRSWOR and RS sampling design as well as the

relative efficiency of the RHC estimator compared to the GREG estimator under RHC sampling

design for different η. We also plot the relative efficiency of the GREG estimator under SRSWOR

compared to the GREG estimator under each of RS and RHC sampling designs. We use the R
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software for drawing samples as well as computing estimators. For RS sampling design, we use

the ‘pps’ package in R. The results obtained from this analysis are summarized as follows.

(i) It follows from Figures 3.1, 3.2 and 3.3 that the relative efficiency curve of the HT estimator

compared to the GREG estimator under each of SRSWOR and RS sampling design and

that of the RHC estimator compared to the GREG estimator under RHC sampling design

always lie below the y = 1 line (dashed line), when β(t)=1, t or 1 − (t − 0.5)2. This

implies that the GREG estimator is more efficient than the HT estimator under SRSWOR

and RS sampling design, and the GREG estimator is more efficient than the RHC estimator

under RHC sampling design for different η. The above results are in conformity with

Theorems 3.2.1 and 3.2.2.
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FIGURE 3.1: Comparison of HT, GREG and RHC estimators under different sampling designs
for β(t)=1.

(ii) We see from Figures 3.4, 3.5 and 3.6 that the relative efficiency curve of the GREG

estimator under SRSWOR compared to that under each of RS and RHC sampling designs

lies above y = 1 line, when η < 0.5 and β(t)=1, t or 1− (t− 0.5)2. However, these lines

lie below y = 1 line, when η > 0.5. This means that the use of the sampling designs like

RS and RHC have an adverse effect on the performance of the GREG estimator, when

η < 0.5. However, the use of the above sampling designs improves the performance of

the GREG estimator, when η > 0.5. Thus the above empirical results corroborate the

theoretical results stated in Theorem 3.2.3.
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FIGURE 3.2: Comparison of HT, GREG and RHC estimators under different sampling designs
for β(t)=t.
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FIGURE 3.3: Comparison of HT, GREG and RHC estimators under different sampling designs
for β(t)=1− (t− 0.5)2.

3.3.2 Analysis based on real data

In this section, we consider Electricity Customer Behaviour Trial data available in Irish Social

Science Data Archive (ISSDA, https://www.ucd.ie/issda/ ). In this data set, we have electricity

consumption of Irish households measured (in kWh) at the end of every half an hour during the

period, 14th July in 2009 to 31st December in 2010. We are interested in the estimation of the
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FIGURE 3.4: Comparison of GREG estimators under different sampling designs for β(t)=1.
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FIGURE 3.5: Comparison of GREG estimators under different sampling designs for β(t)=t.

mean electricity consumption curve in the summer months, viz. June, July and August in 2010

and in the winter month of December in 2010. It is to be noted that we consider the estimation of

the mean electricity consumption curve only in the winter month of December in 2010 because

the data for the other two months in the winter of 2010, viz. January and February in 2011 are

unavailable. In this data set, we have N=5372 households for which electricity consumption
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FIGURE 3.6: Comparison of GREG estimators under different sampling designs for β(t)=1−
(t− 0.5)2.

data are available during July and August of 2009 and all the summer months of 2010. We also

have N=5092 households for which electricity consumption data are available during December

of both 2009 and 2010. Further, for each unit, there are 4416 and 1488 measurement points in

summer months and December of 2010, respectively. Electricity consumption in summer months

and December of 2010 can be viewed as electricity consumption curves in L2[0, T1] and L2[0, T2],

respectively, where T1=30× 4416=132480 and T2=30× 1488=44640. For estimating the mean

electricity consumption curve in the summer months of 2010, we choose the mean electricity

consumption in July and August of 2009 as the size variable x, the mean electricity consumption

in July of 2009 as the first covariate z1 and the mean electricity consumption in August of 2009

as the second covariate z2. On the other hand, for estimating the mean electricity consumption

curve in December of 2010, we choose the mean electricity consumption in December of 2009

as both the size variable x and the covariate z. In case of the above estimation problems, we

compare the estimators considered in the preceding section in terms of relative efficiencies (see

Section 3.3.1). We compute relative efficiencies of these estimators based on I=1000 samples

each of size n=100, where these samples are selected from the two data sets consisting of 5372

and 5092 observations, respectively. The results obtained from this analysis are summarized as

follows.
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TABLE 3.2: Relative efficiencies of the HT, the GREG and the RHC estimators under various
sampling designs.

Relative efficiency
Jun, July and August December

in 2010 in 2010

RE(Ŷ GREG, SRSWOR | Ŷ HT , SRSWOR) 1.529 1.805

RE(Ŷ GREG, RS | Ŷ HT , RS) 1.427 1.263

RE(Ŷ GREG, RHC | Ŷ RHC , RHC) 1.531 1.251

TABLE 3.3: Relative efficiencies of the GREG estimator under various sampling designs.

Relative efficiency
Jun, July and August December

in 2010 in 2010

RE(Ŷ GREG, RS | Ŷ GREG, SRSWOR) 2.32 1.76

RE(Ŷ GREG, RS | Ŷ GREG, RHC) 1.018 1.012

(i) We see from Table 3.2 that the GREG estimator is more efficient than the HT estimator

under SRSWOR and RS sampling design in both the data sets. Also, the GREG estimator

is more efficient than the RHC estimator under RHC sampling design in both the data sets.

Therefore, these results support the results stated in Theorems 3.2.1 and 3.2.2.

(ii) In the cases of both the data sets, we observe the presence of substantial heteroscedasticity

in electricity consumption data, when we plot each of the first three principal components

(PC) of electricity consumption data against the size variable (see Figures 3.7 and 3.8).

Further, it follows from Table 3.3 that the GREG estimator under RS sampling design is

more efficient than any other estimator under any other sampling design for both the data

sets. Thus the empirical results stated here are in conformity with the theoretical results

stated in Theorem 3.2.3.

3.4. Determining the degree of heteroscedasticity η

In this section, we provide two methods for checking whether the degree of heteroscedasticity

η in the linear regression model in (3.2.2) in Section 3.2 is bigger than 0.5 or smaller than 0.5

based on a pilot survey using SRSWOR. In the first method, we estimate η based on some

non-parametric estimation methods. In the second method, we choose η based on statistical tests

of heteroscedasticity.
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FIGURE 3.7: Scatter plots of the first three principal components of electricity consumption
data versus the size variable.

3.4.1 Estimation of η

Under the linear regression model in (3.2.2), we have the conditional total variance tr(covP(Yi|Zi,

Xi))= tr(covP(ϵi))X
2η
i , where tr denotes the trace of an operator, and covP(Yi|Zi, Xi) is the

conditional covariance operator of Yi given (Zi, Xi). Thus according to the linear model

(3.2.2), log
(
tr(covP(Yi|Zi, Xi))

)
and log(Xi) are linearly related with the slope 2η. Now,

in the case of H=L2[0, T ], we have tr(covP(Yi|Zi, Xi))=
∫
[0,T ] varP(Yi(t)|Zi, Xi)dt, where

varP(Yi(t)|Zi, Xi) is the conditional variance of Yi(t) given (Zi, Xi). Suppose that the obser-

vations {(Yi, Zi, Xi) : 1 ≤ i ≤ N} in the population are generated from the linear model in

(3.2.2) and the observations on the study variable y are obtained at t1, . . . , tr in [0, T ]. Further,

suppose that s is a sample of size n drawn based on a pilot survey using SRSWOR. Then, we

estimate tr(covP(Yi|Zi, Xi)) based on
{(
Yi(tl), Zi, Xi

)
: i ∈ s, l = 1, . . . , r

}
as follows. For

any i ∈ s and l=1, . . . , r, we first construct the local average estimator of EP(Yi(tl)|Zi, Xi), the

conditional mean of Yi(tl) given (Zi, Xi), as

ÊP(Yi(tl)|Zi, Xi) =
∑
k∈s

d∏
j=1

1[|Zji−Zjk|≤h1l]1[|Xi−Xk|≤h1l]Yk(tl)

/
∑
k∈s

d∏
j=1

1[|Zji−Zjk|≤h1l]1[|Xi−Xk|≤h1l].

(3.4.1)
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FIGURE 3.8: Scatter plots of the first three principal components of electricity consumption
data versus the size variable.

Here, Zji is jth component of Zi. For any given l=1, . . . , r, we compute the bandwidth

h1l using leave one out cross validation based on {(Yi(tl), Zi, Xi) : i ∈ s}. Now, using

{ÊP(Yi(tl)|Zi, Xi) : i ∈ s}, we estimate varP(Yi(tl)|Zi, Xi) by local sample variance

v̂arP(Yi(tl)|Zi, Xi) =
∑
k∈s

d∏
j=1

1[|Zji−Zjk|≤h2l]1[|Xi−Xk|≤h2l]×

(
Yk(tl)− ÊP(Yk(tl)|Zk, Xk)

)2/∑
k∈s

d∏
j=1

1[|Zji−Zjk|≤h2l]1[|Xi−Xk|≤h2l]

(3.4.2)

for any i ∈ s and l=1, . . . , r. We compute the bandwidth h2l based on
{((

Yi(tl)− ÊP(Yi(tl)|Zi,

Xi)
)2
, Zi, Xi

)
: i ∈ s

}
using leave one out cross validation in the same way as we compute

the bandwidth h1l. Now, given
{
v̂arP(Yi(tl)|Zi, Xi) : i ∈ s, l = 1, . . . , r

}
, we estimate

tr(covP(Yi|Zi, Xi)) by Tr−1
∑r

l=1 v̂arP(Yi(tl)|Zi, Xi) for any i ∈ s. Then, we fit a least

square regression line to the data
{(
log
(
Tr−1

∑r
l=1 v̂arP(Yi(tl)|Zi, Xi)

)
, log(Xi)

)
: i ∈ s

}
,

and compute the slope of this line. The slope, say θ̂, is expected to be close to 2η if the linear

model in (3.2.2) holds. Thus η̂=0.5θ̂ can be considered as an estimator of η. We demonstrate this

method based on real and synthetic data as follows.

(i) Let us first consider the data sets from Section 3.3.2. Recall from Section 3.3.2 that in

the case of the estimation of the mean electricity consumption curve in June, July and
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August of 2010, we have r=4416. On the other hand, in the case of the estimation of the

mean electricity consumption curve in the December of 2010, we have r=1488. Also,

recall that T=30r in the cases of the estimation problems for both the data sets. We draw

I=100 samples each of size n=500 from these populations using SRSWOR and estimate

η as above based on these samples. Then, we compute the proportion of cases, when

η̂ > 0.5. It follows that this proportion is 0.72 in the case of the estimation of the mean

electricity consumption curve in June, July and August of 2010 and 0.76 in the case of the

estimation of the mean electricity consumption curve in the December of 2010. Recall

from Section 3.3.2 that in the cases of the estimation problems for both the data sets, the

GREG estimator under RS sampling design is more efficient than any other estimator

under any other sampling design when compared in terms of relative efficiencies. These

corroborate the results stated in Theorem 3.2.3.

(ii) Next, suppose that finite populations each of sizeN=5000 are generated from linear models

in the same way as in Section 3.3.1. Recall from Section 3.3.1 that r=100, T=1 and η=0.1k

for k=0, . . . , 10 in this case. We draw I=100 samples each of size n=500 from these

populations using SRSWOR. Based on each sample s, we estimate η. Now, suppose that

η̂lk is the estimate of 0.1k based on the lth sample for k=0, . . . , 10 and l=1, . . . , I . Then,

we compute the proportion l−1#{l : η̂lk ≤ 0.5} for different η’s and β(t)’s (see Section

3.3.1) in Table 3.4. It follows from Table 3.4 that for the values of η smaller than 0.5, the

proportions are close to 1. On the other hand, these proportions gradually decrease and

become 0, when η becomes larger than 0.5. Once again, these corroborate the results stated

in Theorem 3.2.3.

3.4.2 Tests for η

Under the linear regression model in (3.2.2), in the case of H=L2[0, T ], we haveX−η
i

∫
[0,T ] Yi(t)dt=

X−η
i

∫
[0,T ] β0(t)dt +

∑d
j=1

( ∫
[0,T ] βj(t)dt

)
ZjiX

−η
i +

∫
[0,T ] ϵi(t)dt for i=1, . . . , N . As in the

preceding section, suppose that observations on the study variable y are obtained at t1, . . . , tr

in [0, T ], and s is a sample of size n drawn based on a pilot survey using SRSWOR. Then we

can say that {(ỸiX−η
i , (1, Zi)X

−η
i ) : i ∈ s} are generated from a homoscedastic linear model.

Here, Ỹi=
∫
[0,T ] Yi(t)dt for i ∈ s. We approximate Ỹi by Ŷi=Tr−1

∑r
l=1 Yi(tl). Next, for every

η in {0.1k : k = 0, . . . , 10}, we test the null hypothesis H0,η : the data {(ŶiX−η
i , (1, Zi)X

−η
i ) :

i ∈ s} are generated from a homoscedastic linear model against the alternative hypothesis H1,η :
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TABLE 3.4: Proportion of cases when η̂ ≤ 0.5 for different η’s and β(t)’s in the case of synthetic
data.

η β(t)=1 β(t)=t β(t)=1− (t− 0.5)2

0 1 1 1

0.1 1 1 1

0.2 1 1 1

0.3 1 0.99 0.98

0.4 0.99 0.95 0.96

0.5 0.9 0.92 0.94

0.6 0.52 0.56 0.59

0.7 0.2 0.24 0.2

0.8 0.01 0.02 0

0.9 0 0 0

1 0 0 0

heteroscedasticity is present in the data {(ŶiX−η
i , (1, Zi)X

−η
i ) : i ∈ s}. For this purpose, we use

the Breusch-Pagan (BP, see [11]), the White (see [86]) and the Glejser (see [38]) tests because

these are some well-known tests for heteroscedasticity. In these tests, the residuals obtained

from the ordinary least square regression between the response and the explanatory variables are

expressed in terms of explanatory variables by means of different parametric models, and it is

checked whether the explanatory variables have any influence on these residuals. Large P -values

of the BP, the White and the Glejser tests are indicative of substantial evidence in favour of H0,η.

Thus, we select the η from {0.1k : k = 0, . . . , 10} for which we have the highest P -value. We

denote this η by η̂. Now, we demonstrate this method based on real and synthetic data as follows.

(i) As in the preceding section, let us first consider the data sets used in Section 3.3.2. We

draw I=100 samples each of size n=500 from these data sets using SRSWOR and compute

η̂ as above based on each of these samples. Then, for each of the three tests and each of the

data sets, we compute the proportion of cases, when η̂ > 0.5 (see Table 3.5). As mentioned

in the preceding Section, in the cases of both the estimation problems, the GREG estimator

under RS sampling design becomes the most efficient estimator when compared in terms

of relative efficiencies. These corroborate the results stated in Theorem 3.2.3.

(ii) Next, we determine η as above based on the synthetic data considered in Section 3.4.1.

We draw I=100 samples each of size n=500 from these data sets using SRSWOR and

compute η̂ based on each of these samples. Then, for each of the three tests, every η in
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TABLE 3.5: Proportion of cases when η̂ > 0.5 for different tests and data sets in the case of
electricity consumption data.

Test
Jun, July and August December

in 2010 in 2010

BP 0.79 0.83

White 0.76 0.78

Glejser 0.84 0.8

{0.1k : k = 1, . . . , 10} and each β(t) (see Section 3.3.1), we compute the proportion of

cases, η̂ ≤ 0.5 (see Table 3.6). As in the previous section, it follows from Table 3.6 that

for the values of η smaller than 0.5, these proportions are close to 1. On the other hand,

these proportions gradually decrease and become 0, when η becomes larger than 0.5. Once

again, these corroborate the results stated in Theorem 3.2.3.

TABLE 3.6: Proportion of cases when η̂ ≤ 0.5 for different η’s and β(t)’s in the case of synthetic
data.

η
β(t)=1 β(t)=t β(t)=1− (t− 0.5)2

BP White Glejser BP White Glejser BP White Glejser

0 1 1 1 1 1 1 1 1 1

0.1 1 1 1 1 1 1 1 1 1

0.2 0.96 0.99 0.99 0.99 1 1 1 0.97 0.93

0.3 0.95 0.77 0.98 0.9 0.91 0.93 0.98 0.9 0.88

0.4 0.85 0.75 0.84 0.83 0.72 0.88 0.87 0.9 0.79

0.5 0.6 0.65 0.68 0.67 0.58 0.69 0.58 0.69 0.72

0.6 0.47 0.29 0.36 0.43 0.46 0.47 0.39 0.45 0.36

0.7 0.17 0.22 0.15 0.16 0.21 0.14 0.13 0.25 0.17

0.8 0.09 0.07 0.06 0.07 0.06 0.05 0.03 0.04 0.09

0.9 0.01 0.02 0 0.01 0.01 0.01 0.01 0.01 0

1 0 0 0 0 0 0 0 0 0

3.5. Proofs of the main results

In this section, we give the proofs of different Propositions and Theorems. For technical de-

tails, which are related to operator theory and used in the proofs of Propositions and The-

orems, the reader is referred to [45]. Let us first introduce some notations. Let {ej}∞j=1

be an orthonormal basis of the separable Hilbert space H. Suppose that Vi is either Yi or
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Yi − Y − Szy((Zi − Z)S−1
zz ), where Szy=

∑N
i=1(Zi − Z)⊗ (Yi − Y )/N and Szz=

∑N
i=1(Zi −

Z)T (Zi−Z)/N . Further, suppose that V̂ 1=
∑

i∈s(Nπi)
−1Vi and Σ1=nN−2

∑N
i=1(Vi−TV πi)⊗

(Vi − TV πi)(π
−1
i − 1), where TV =

∑N
i=1 Vi(1 − πi)/

∑N
i=1 πi(1 − πi), and πi is the inclusion

probability of the ith population unit. Moreover, in the case of RHC sampling design, suppose

that V̂ 2=
∑

i∈s(NXi)
−1GiVi and Σ2=nγXN−1

∑N
i=1

(
Vi −XiV /X

)
⊗
(
Vi −XiV /X

)
X−1

i ,

where V =
∑N

i=1 Vi/N , X=
∑N

i=1Xi/N , Gi is the total of the x values of that randomly formed

group from which the ith population unit is selected in the sample by RHC sampling design (see

the introduction), and γ=
∑n

r=1 Ñr(Ñr − 1)/N(N − 1) with Ñr being the size of the rth group

formed randomly in the first step of the RHC sampling design for r=1, . . . , n. Let us also assume

that Sk=
√
n(V̂ k − V ) for k=1, 2.

Proof of Proposition 3.2.1. Recall the expression of Ŷ HT from (3.1.1) in Section 3.1 and note

that S1=
√
n(Ŷ HT −Y ) if we substitute Vi=Yi in S1. It follows from Lemma 3.6.3 in Section 3.6

that (⟨S1, e1⟩, . . . , ⟨S1, er⟩)
L−→ Nr(0,Γ1,r) as ν → ∞ for any r ≥ 1 under SRSWOR, LMS and

any HEπPS sampling designs a.s. [P]. Here, Γ1,r is a r×r matrix such that ((Γ1,r))jl=⟨Γ1ej , el⟩,

and Γ1=limν→∞Σ1 a.s. [P]. Further, it follows from the 1st paragraph in the proof of Lemma

3.6.2 in Section 3.6 that Γ1=∆1 for SRSWOR and LMS sampling design, and Γ1=∆2 for any

HEπPS sampling design. Here,

∆1 = (1− λ)EP(Yi − EP(Yi))⊗ (Yi − EP(Yi)) and

∆2 = EP

[{
Yi − χ−1Xi

(
EP(Yi)− λEP(XiYi)/EP(Xi)

)}
⊗{

Yi − χ−1Xi

(
EP(Yi)− λEP(XiYi)/EP(Xi)

)}{
X−1

i EP(Xi)− λ

}] (3.5.1)

with χ=EP(Xi)− λEP(Xi)
2/EP(Xi). Now, suppose that Πr denotes the orthogonal projection

onto the linear span of {e1, . . . , er}, i.e., Πr(a)=
∑r

j=1⟨a, ej⟩ej for any r ≥ 1 and a ∈ H. Then,

by continuous mapping theorem, Πr(S1)=
∑r

j=1⟨S1, ej⟩ej
L−→ N1 ◦Π−1

r as ν → ∞ under the

above sampling designs for any r ≥ 1 a.s. [P], where N1 is the Gaussian distribution in H with

mean 0 and covariance operator Γ1. Moreover, in view of Lemma 3.6.4 in Section 3.6, we have

limr→∞ limν→∞
∑

s∈B1,r
P (s, ω)=0 a.s. [P], where P (s, ω) denotes one of the above sampling

designs. Then, by Proposition 2.1 in [54],
√
n(Ŷ HT − Y )

L−→ N1 as ν → ∞ under the above

sampling designs a.s. [P].

Proof of Proposition 3.2.2. Recall the expression of Ŷ RHC from (3.1.2) in Section 3.1 and

note that S2=
√
n(Ŷ RHC − Y ) if we substitute Vi=Yi in S2. It follows in view of Lemma
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3.6.3 in Section 3.6 that under RHC sampling design, (⟨S2, e1⟩, . . . , ⟨S2, er⟩)
L−→ Nr(0,Γ2,r) as

ν → ∞ for any r ≥ 1 a.s. [P]. Here, Γ2,r is a r × r matrix such that ((Γ2,r))jl=⟨Γ2ej , el⟩, and

Γ2=limν→∞Σ2 a.s. [P]. Further, it follows from the 2nd paragraph in the proof of Lemma 3.6.2

in Section 3.6 that Γ2=∆3. Here,

∆3 = c
{
EP(Xi)EP

(
(Yi ⊗ Yi)X

−1
i

)
− EP(Yi)⊗ EP(Yi)

}
(3.5.2)

with c=limν→∞ nγ > 0. It is to be noted that nγ → c as ν → ∞ for some c ≥ 1 − λ > 0

by Lemma 2.7.5 in Section 2.7 of Chapter 2. Therefore, by continuous mapping theorem,

Πr(S2)=
∑r

j=1⟨S2, ej⟩ej
L−→ N2 ◦ Π−1

r as ν → ∞ under RHC sampling design for any r ≥ 1

a.s. [P], where N2 is the Gaussian distribution in H with mean 0 and covariance operator Γ2.

Next, it follows from Lemma 3.6.4 in Section 3.6 that limr→∞ limν→∞
∑

s∈B2,r
P (s, ω)=0

a.s. [P], where P (s, ω) denotes RHC sampling design. Then, by Proposition 2.1 in [54],
√
n(Ŷ RHC − Y )

L−→ N2 as ν → ∞ under RHC sampling design a.s. [P].

Proof of Proposition 3.2.3. Recall from (3.1.3) in Section 3.1 that Ŷ GREG=Ŷ + Ŝzy((Z −

Ẑ)Ŝ−1
zz ), where Ŷ =

∑
i∈s π

−1
i Yi/

∑
i∈s π

−1
i , Ẑ=

∑
i∈s π

−1
i Zi/

∑
i∈s π

−1
i , Ŝzz=

∑
i∈s π

−1
i (Zi −

Ẑ)T (Zi − Ẑ)/
∑

i∈s π
−1
i , and Ŝzy=

∑
i∈s π

−1
i (Zi − Ẑ)⊗ (Yi − Ŷ )/

∑
i∈s π

−1
i . Note that

Ŷ GREG − Y = Θ(V̂ 1 − V ) +B, (3.5.3)

where V̂ 1=
∑

i∈s(Nπi)
−1Vi, Vi=Yi − Y −Szy((Zi −Z)S−1

zz ), Θ=(
∑

i∈s π
−1
i )−1, B=Szy((Ẑ −

Z)S−1
zz )−Ŝzy((Ẑ−Z)Ŝ−1

zz ), Szy=
∑N

i=1(Zi−Z)⊗(Yi−Y )/N , and Szz=
∑N

i=1(Zi−Z)T (Zi−

Z)/N . Using Lemmas 3.6.3 and 3.6.4 in Section 3.6, it can be shown in the same way as in the

proof of Proposition 3.2.1 that as ν → ∞,
√
n(V̂ 1 − V )

L−→ N3 under SRSWOR, LMS and any

HEπPS sampling designs a.s. [P], where N3 is the Gaussian distribution in H with mean 0 and

covariance operator Γ1. Here, Γ1=limν→∞Σ1 a.s. [P]. It follows from the last paragraph in the

proof of Lemma 3.6.2 in Section 3.6 that Γ1=∆4 under SRSWOR and LMS sampling design,

and Γ1=∆5 under any HEπPS sampling design. Here,

∆4 = (1− λ)EP

{(
Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

))
⊗(

Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

))}
and

(3.5.4)
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∆5 = EP

[{
Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

)
+

χ−1Xiλ

(
EP(XiYi)− EP(Xi)EP(Yi)− Czy

(
(EP(XiZi)− EP(Xi)EP(Zi))×

C−1
zz

))
(EP(Xi))

−1

}
⊗
{
Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

)
+

χ−1Xiλ

(
EP(XiYi)− EP(Xi)EP(Yi)− Czy

(
(EP(XiZi)− EP(Xi)EP(Zi))×

C−1
zz

))
(EP(Xi))

−1

}{
X−1

i EP(Xi)− λ

}]
(3.5.5)

with χ=EP(Xi)−λEP(Xi)
2/EP(Xi). Now, to establish the weak convergence of

√
n(Ŷ GREG−

Y ) under the above sampling designs a.s. [P], it is enough to show that Θ
p−→ 1 and

√
nB

p−→ 0

under these sampling designs as ν → ∞ a.s. [P].

Suppose that || · ||op denotes the operator norm. Note that except the operator norm, we use

only the HS norm for the operators considered in this chapter and denote it by || · ||HS . Also,

note that

||B||H ≤ (||S−1
zz ||op||Szy − Ŝzy||op + ||Ŝzy||op||S−1

zz − Ŝ−1
zz ||op)||Ẑ − Z||. (3.5.6)

It follows in view of Lemma 3.6.5 in Section 3.6 that as ν → ∞,

∣∣∣∣∣∣∣∣∑
i∈s

(Nπi)
−1(Yi ⊗ Zi)−

N∑
i=1

(Yi ⊗ Zi)/N

∣∣∣∣∣∣∣∣
HS

= op(1),
∣∣∣∣∣∣∣∣∑

i∈s
(Nπi)

−1ZT
i Zi−

N∑
i=1

ZT
i Zi/N

∣∣∣∣∣∣∣∣ = op(1),
√
n

∣∣∣∣∣∣∣∣Ẑ1 − Z

∣∣∣∣∣∣∣∣ = Op(1), and
∑
i∈s

(Nπi)
−1 − 1 = op(1)

(3.5.7)

under the sampling designs considered in the previous paragraph a.s. [P], where Ẑ1=
∑

i∈s(Nπi)
−1

×Zi. Consequently, in view of Assumption 3.2.3,

√
n

∣∣∣∣∣∣∣∣Ẑ − Z

∣∣∣∣∣∣∣∣ = Op(1),

∣∣∣∣∣∣∣∣Ŝzz − Szz

∣∣∣∣∣∣∣∣
op

≤
∣∣∣∣∣∣∣∣Ŝzz − Szz

∣∣∣∣∣∣∣∣ = op(1) and∣∣∣∣∣∣∣∣Ŝzy − Szy

∣∣∣∣∣∣∣∣
op

≤
∣∣∣∣∣∣∣∣Ŝ∗

zy − S∗
zy

∣∣∣∣∣∣∣∣
HS

= op(1)

(3.5.8)

as ν → ∞ under these sampling designs a.s. [P]. Here, Ŝ∗
zy=
∑

i∈s π
−1
i (Yi − Ŷ ) ⊗ (Zi −

Ẑ)/
∑

i∈s π
−1
i and S∗

zy=
∑N

i=1(Yi − Y )⊗ (Zi −Z)/N are adjoints of Ŝzy and Szy, respectively.

Now, recall Czz and Czy from the 2nd paragraph in the proof of Lemma 3.6.2 in Section 3.6. Note

that ||Szz − Czz||=o(1) and ||Szy − Czy||HS=o(1) as ν → ∞ a.s. [P] in view of Assumption
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3.2.3. Also, note that C−1
zz exists by Assumption 3.2.3. Consequently, ||S−1

zz ||op=O(1), ||Ŝ−1
zz −

S−1
zz ||op=op(1) and ||Ŝzy||op=Op(1) as ν → ∞ a.s. [P]. Thus

√
n||B||H=op(1) and Θ− 1=op(1)

as ν → ∞ under the above-mentioned sampling designs a.s. [P]. Hence, the weak convergence

of
√
n(Ŷ GREG − Y ) follows under these sampling designs by using Proposition 2.1 in [54].

Let us next consider the RHC sampling design. Recall from Section 3.1 that we consider

Ŷ GREG under RHC sampling design with π−1
i replacing GiX

−1
i . Then, under this sampling

design,

Ŷ GREG − Y = Θ(V̂ 2 − V ) +B, (3.5.9)

where V̂ 2=
∑

i∈s(NXi)
−1GiVi for Vi=Yi − Y − Szy((Zi − Z)S−1

zz ), and Θ and B are the same

as defined in the 1st paragraph of this proof with π−1
i replaced by GiX

−1
i . Using Lemmas 3.6.3

and 3.6.4 in Section 3.6, it can be shown in a similar way as in the proof of Proposition 3.2.2 that
√
n(V̂ 2 − V )

L−→ N4 as ν → ∞ under RHC sampling design a.s. [P], where N4 is the Gaussian

distribution in H with mean 0 and covariance operator Γ2. It follows from the last paragraph in

the proof of Lemma 3.6.2 in Section 3.6 that Γ2=∆6=limν→∞Σ2 a.s. [P]. Here,

∆6 = cEP(Xi)EP

{(
Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

))
⊗(

Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

))
X−1

i

} (3.5.10)

with c=limν→∞ nγ > 0. It is to be noted that nγ → c as ν → ∞ for some c ≥ 1 − λ > 0

by Lemma 2.7.5 in Section 2.7 of Chapter 2. Moreover, using Lemma 3.6.5 in Section 3.6,

it can be shown in the same way as in the preceding paragraph of this proof that Θ
p−→ 1 and

√
nB

p−→ 0 as ν → ∞ under RHC sampling design a.s. [P]. Threfore, the weak convergence of
√
n(Ŷ GREG − Y ) follows under this sampling design by using Proposition 2.1 in [54].

Proof of Theorem 3.2.1. Let us recall the expressions of ∆1 and ∆4 from the proofs of Proposi-

tions 3.2.1 and 3.2.2, respectively. It follows from the proof of Proposition 3.2.3 that a.s. [P],
√
n(Ŷ GREG − Y ) has the same asymptotic covariance operator ∆4 under SRSWOR and LMS

sampling design. It further follows from the proof of Proposition 3.2.1 that a.s. [P], the asymptotic

covariance operator of
√
n(Ŷ HT − Y ) is ∆1 under SRSWOR as well as LMS sampling design.

Let Ai=⟨Yi, a⟩ for a ∈ H and i=1, . . . , N . Then, we have

⟨(∆1 −∆4)a, a⟩ = (1− λ)
(
EP(Ai − EP(Ai))

2 − EP(Ai − EP(Ai)−

CzaC
−1
zz (Zi − EP(Zi))

T )2
)
= (1− λ)CzaC

−1
zz C

T
za

(3.5.11)
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for Cza=EP(Ai−EP(Ai))(Zi−EP(Zi)) and Czz=EP(Zi−EP(Zi))
T (Zi−EP(Zi)). Note that

CzaC
−1
zz C

T
za ≥ 0 for any a ∈ H by Assumption 3.2.3. In fact, there exists a ∈ H such that a ̸= 0

and Cza=0. Therefore, ∆1 −∆4 is p.s.d. Hence, a.s. [P], the GREG estimator is asymptotically

at least as efficient as the HT estimator under SRSWOR and LMS sampling design. Moreover,

a.s. [P], both the GREG estimator has the same asymptotic distribution under SRSWOR and

LMS sampling design.

Proof of Theorem 3.2.2. Let us recall the expressions of ∆2, ∆3, ∆5 and ∆6 from the proofs of

Propositions 3.2.1–3.2.3. It can be shown from the proofs of Propositions 3.2.2 and 3.2.3 that

a.s. [P], asymptotic covariance operators of
√
n(Ŷ RHC − Y ) and

√
n(Ŷ GREG − Y ) under RHC

sampling design are ∆3 and ∆6, respectively. Now, it follows from the linear regression model

in (3.2.2) in Section 3.2 that

⟨∆3a, a⟩ = c

[
µxEP(ϵ̃i)

2EP
(
X2η−1

i

)
+ µxEP

(
β̃0 +

d∑
j=1

β̃jZji

)2

X−1
i −

( d∑
j=0

β̃jµj

)2]
and ⟨∆6a, a⟩ = cµxEP(ϵ̃i)

2EP
(
X2η−1

i

)
,

(3.5.12)

where c=limν→∞ nγ > 0, a ∈ H, ϵ̃i=⟨ϵi, a⟩, µx=EP(Xi), β̃j=⟨βj , a⟩ for j=0, . . . , d, µ0=1, and

µj=EP(Zji) for j=1, . . . , d. Therefore,

⟨(∆3 −∆6)a, a⟩ = cµxEP

(
β̃0 +

d∑
j=1

β̃jZji −Xi

d∑
j=0

β̃jµjµ
−1
x

)2

X−1
i ≥ 0 (3.5.13)

for any a ∈ H. Thus ∆3 −∆6 is n.n.d. Hence, a.s. [P], the GREG estimator is asymptotically

at least as efficient as the RHC estimator under RHC sampling design. Next, it follows from

the proofs of Propositions 3.2.1 and 3.2.3 that a.s. [P], asymptotic covariance operators of
√
n(Ŷ HT − Y ) and

√
n(Ŷ GREG − Y ) under any HEπPS sampling design are ∆2 and ∆5,

respectively. Further, it follows from the linear regression model in (3.2.2) in Section 3.2 that

⟨∆2a, a⟩ =
[
EP(ϵ̃i)

2

{
µxEP

(
X2η−1

i

)
− λEP

(
X2η

i

)}
+ EP

{(
β̃0 +

d∑
j=1

β̃jZji

)2

×

(
X−1

i µx − λ
)}

− χ−1µ−1
x

{
(1− λ)β̃0µx +

( d∑
j=1

β̃j
(
µjµx − λµjx

)}2]

and ⟨∆5a, a⟩ = EP(ϵ̃i)
2

(
µxEP

(
X2η−1

i

)
− λEP

(
X2η

i

))
,

(3.5.14)
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where µjx=EP(ZjiXi) for j=1, . . . , d and χ=µx − λEP(Xi)
2(µx)

−1. Now, since Assumption

3.2.2 holds and 0 ≤ λ ≤ µxb
−1, we have

⟨(∆2 −∆5)a, a⟩ = EP

[{(
β̃0 +

d∑
j=1

β̃jZji

)
− χ−1Xi

( d∑
j=0

β̃jµj − λβ̃0−

d∑
j=1

λβ̃jµjxµ
−1
x

)}2(
X−1

i µx − λ
)]

≥ 0

(3.5.15)

Thus using similar arguments as above, we can say that a.s. [P], the GREG estimator is asymptot-

ically at least as efficient as the HT estimator under any HEπPS sampling design.

Proof of Theorem 3.2.3. Recall from the proofs of Theorems 3.2.1 and 3.2.2 that a.s. [P], the

asymptotic covariance operators of the GREG estimator under SRSWOR, any HEπPS sampling

design and RHC sampling design are ∆4, ∆5 and ∆6, respectively. Also, recall from (3.5.12)

and (3.5.14) in the proof of Theorem 3.2.2 that

⟨∆5a, a⟩ = EP(ϵ̃i)
2

(
µxEP

(
X2η−1

i

)
− λEP

(
X2η

i

))
and ⟨∆6a, a⟩

= cµxEP(ϵ̃i)
2EP

(
X2η−1

i

) (3.5.16)

for any a ∈ H under the linear regression model in (3.2.2) in Section 3.2. It can be further shown

using (3.2.2) in Section 3.2 and (3.6.10) in the proof of Lemma 3.6.2 in Section 3.6 that

⟨∆4a, a⟩ = (1− λ)EP(ϵ̃i)
2EP(X

2η
i ) (3.5.17)

for any a ∈ H. Therefore, we have

⟨(∆4 −∆5)a, a⟩ = EP(ϵ̃i)
2covP

(
X2η−1

i , Xi

)
⟨(∆6 −∆5)a, a⟩ = EP(ϵ̃i)

2

(
λEP

(
X2η

i

)
− (1− c)EP

(
X2η−1

i

)
µx

)
and

⟨(∆4 −∆6)a, a⟩ = EP(ϵ̃i)
2

(
(1− λ)EP

(
X2η

i

)
− cEP

(
X2η−1

i

)
µx

) (3.5.18)

for any a ∈ H. Note that EP(ϵ̃i)
2=⟨EP(ϵi ⊗ ϵi)a, a⟩ > 0 for any a ∈ H since EP(ϵi ⊗ ϵi) is

p.d. Also, note that covP
(
X2η−1

i , Xi

)
> 0 for η > 0.5, covP

(
X2η−1

i , Xi

)
= 0 for η = 0.5 and

covP
(
X2η−1

i , Xi

)
< 0 for η < 0.5. Further, it follows from Lemma 2.7.5 in Section 2.7 of

Chapter 2 that c=1 for λ=0, c=1− λ for λ > 0 and λ−1 an integer, and c > 1− λ when λ > 0
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and λ−1 is a non-integer. Therefore, the results in Table 3.7 below hold, and hence the results

stated in Table 3.1 hold.

TABLE 3.7: Relations among ∆4, ∆5 and ∆6.

λ=0
λ > 0 & λ > 0 &

λ−1 is an integer λ−1 is a non-integer

η < 0.5
∆5 −∆4 and ∆5 −∆4 and ∆5 −∆4 and

∆6 −∆4 are p.d. ∆6 −∆4 are p.d. ∆6 −∆4 are p.d.

η = 0.5 ∆4=∆5=∆6 ∆4=∆5=∆6
∆4=∆5 and

∆6 −∆4 is p.d.

η > 0.5
∆5=∆6 and ∆4 −∆5 and ∆4 −∆5 and

∆4 −∆5 is p.d. ∆6 −∆5 are p.d. ∆6 −∆5 are p.d.

Next, if we put λ=0 and c=1, respectively, in the expressions of ∆5 and ∆6 in the proof of

Lemma 3.6.2 in Section 3.6, we have ∆5=∆6. Thus a.s. [P], the GREG estimator has the same

asymptotic covariance operator under RHC and any HEπPS sampling designs. Hence, a.s. [P],

the GREG estimator has the same asymptotic distribution under RHC and any HEπPS sampling

designs. This completes the proof of the theorem.

Proof of Theorem 3.2.4. Recall the expression of Γ̂ from (3.2.3) in Section 3.2 and note that

Γ̂ = (nN−2)

(∑
i∈s

(V̂i ⊗ V̂i)(π
−1
i − 1)π−1

i −
∑
i∈s

(1− πi)T̂V ⊗ T̂V

)
(3.5.19)

with T̂V =
∑

i∈s V̂i(π
−1
i − 1)/

∑
i∈s(1− πi). Let us first consider the case, when Γ denotes the

asymptotic covariance operator of
√
n(Ŷ HT − Y ) and Γ̂ is its estimator. Then, we have V̂i=Yi in

Γ̂. Now, recall the expression of Σ1 from the beginning of this section and note that

Σ1 = (nN−2)

( N∑
i=1

(Vi ⊗ Vi)(π
−1
i − 1)−

N∑
i=1

πi(1− πi)TV ⊗ TV

)
(3.5.20)

with TV =
∑N

i=1 Vi(1− πi)/
∑N

i=1 πi(1− πi). Let us substitute Vi=Yi in Σ1. We shall first show

that under SRSWOR, LMS and any HEπPS sampling designs, Γ̂− Σ1
p−→ 0 with respect to the

HS norm as ν → ∞ a.s. [P]. It follows by Assumption 3.2.3 that
∑N

i=1 ||Yi||2H/N=O(1) as

ν → ∞ a.s. [P]. It also follows by (3.6.1) in the statement of Lemma 3.6.1 in Section 3.6 that as

ν → ∞,
∑N

i=1

(
Nπi(1 − πi)/n

)2
/N=O(1) under the above sampling designs a.s. [P]. Then,

using the same line of arguments as in the proof of Lemma 3.6.5 in Section 3.6, it can be shown

that
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(∑
i∈s

(1− πi)−
N∑
i=1

πi(1− πi)

)/
n = op(1) and

∣∣∣∣∣∣∣∣∑
i∈s

V̂i(π
−1
i − 1)−

N∑
i=1

Vi(1− πi)

∣∣∣∣∣∣∣∣
H

/
N = op(1)

(3.5.21)

as ν → ∞ a.s. [P]. Moreover,
∑N

i=1 πi(1− πi)/n is bounded away from 0 as ν → ∞ a.s. [P]

because (3.6.1) and Assumption 3.2.1 hold. Consequently, under all of the above-mentioned

sampling designs, (nN−2)
(∑

i∈s(1− πi)(T̂V ⊗ T̂V )−
∑N

i=1 πi(1− πi)(TV ⊗ TV )
) p−→ 0 with

respect to the HS norm as ν → ∞ a.s. [P]. Similarly, (nN−2)
(∑

i∈s(V̂i ⊗ V̂i)(π
−1
i − 1)π−1

i −∑N
i=1(Vi ⊗ Vi)(π

−1
i − 1)

) p−→ 0 with respect to the HS norm as ν → ∞ a.s. [P]. Thus under the

above sampling designs, Γ̂− Σ1
p−→ 0 with respect to the HS norm as ν → ∞ a.s. [P]. Recall

from Section 3.2 that Γ=limν→∞Σ1 a.s. [P]. Therefore, under the aforesaid sampling designs,

Γ̂
p−→ Γ with respect to the HS norm as ν → ∞ a.s. [P].

Let us next consider the case, when Γ denotes the asymptotic covariance operator of
√
n(Ŷ GREG − Y ) and Γ̂ denotes its estimator. Then, Γ̂ is the same as described in the pre-

ceding paragraph with V̂i=Yi − Ŷ HT − Ŝzy((Zi − ẐHT )Ŝ
−1
zz ). Let us also consider Σ1 with

Vi=Yi − Y − Szy((Zi − Z)S−1
zz ). Note that

(∑
i∈s

V̂i(π
−1
i − 1)−

N∑
i=1

Vi(1− πi)

)/
N =

∑
i∈s

(V̂i − Vi)(π
−1
i − 1)/N+

(∑
i∈s

Vi(π
−1
i − 1)−

N∑
i=1

Vi(1− πi)

)/
N.

(3.5.22)

It can be shown in the same way as in the proof of Lemma 3.6.5 in Section 3.6 that ||(
∑

i∈s Vi×

(π−1
i −1)−

∑N
i=1 Vi(1−πi))/N ||H=op(1) under the sampling designs considered in the previous

paragraph as ν → ∞ a.s. [P]. Further, it can be shown that ||
∑

i∈s(V̂i−Vi)(π
−1
i −1)/N ||H=op(1)

as ν → ∞ a.s. [P] since ||Ŷ HT − Y ||H=op(1), ||Ŝzy − Szy||op=op(1), ||Ŝ−1
zz − S−1

zz ||op=op(1),

||Ŝzy||op=Op(1) and ||S−1
zz ||op=O(1) as ν → ∞ a.s. [P] (see the proof of Proposition 3.2.3).

Then, (nN−2)(
∑

i∈s(1 − πi)(T̂V ⊗ T̂V ) −
∑N

i=1 πi(1 − πi)(TV ⊗ TV ))
p−→ 0 with respect to

the HS norm as ν → ∞ a.s. [P]. Similarly, (nN−2)(
∑

i∈s(V̂i ⊗ V̂i)(π
−1
i − 1)π−1

i −
∑N

i=1(Vi ⊗

Vi)(π
−1
i − 1))

p−→ 0 with respect to the HS norm as ν → ∞ a.s. [P]. Hence, under the above

sampling designs, Γ̂− Σ1
p−→ 0, and hence Γ̂

p−→ Γ with respect to the HS norm as ν → ∞ a.s.

[P].
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Next, consider the case, when Γ denotes the asymptotic covariance operator of
√
n(Ŷ RHC −

Y ) or
√
n(Ŷ GREG − Y ) under RHC sampling design, and Γ̂ denotes its estimator. Recall from

(3.2.4) in Section 3.2 that in this case,

Γ̂ = nγ(XN−1)
∑
i∈s

(
V̂i −XiV̂ RHC/X

)
⊗
(
V̂i −XiV̂ RHC/X

)
(GiX

−2
i ) =

nγ

(
(XN−1)

∑
i∈s

(V̂i ⊗ V̂i)GiX
−2
i − V̂ RHC ⊗ V̂ RHC

)
.

(3.5.23)

Also, recall the expression of Σ2 from the beginning of this section and note that

Σ2 = nγ

(
(XN−1)

N∑
i=1

(Vi ⊗ Vi)X
−1
i − V ⊗ V

)
. (3.5.24)

Then, it can be shown in a similar way as in the earlier cases that under RHC sampling design,

Γ̂− Σ2
p−→ 0 with respect to the HS norm as ν → ∞ a.s. [P]. Therefore, under RHC sampling

design, Γ̂
p−→ Γ with respect to the HS norm as ν → ∞ a.s. [P] because Γ=limν→∞Σ2 a.s. [P]

(see Section 3.2).

3.6. Proofs of additional results required to prove the main results

In this section, we state and prove some technical lemmas, which will be required to prove our

main results.

Lemma 3.6.1. Suppose that Assumption 3.2.2 holds. Then, LMS sampling design is a high

entropy sampling design. Moreover, under each of SRSWOR, LMS and any HEπPS sampling

designs, we have, for all sufficiently large ν,

L ≤ Nπi/n ≤ L′ for some constants L,L′ > 0 and all 1 ≤ i ≤ N a.s. [P]. (3.6.1)

Lemma 3.6.1 is similar to Lemma 2.7.1 in Chapter 2.

Proof. The proof of the above Lemma follows exactly the same way as the proof of Lemma

2.7.1.



3.6. Proofs of additional results required to prove the main results 97

Before we state the next lemma, let us recall {ej}∞j=1, {Vi}Ni=1 Σ1 and Σ2 from the paragraph

preceding the proof of Proposition 3.2.1 in Section 3.5. Let us also recall b from Assumption

3.2.2. We now state the following lemma.

Lemma 3.6.2. Suppose that Assumptions 3.2.1–3.2.3 hold. Then, under SRSWOR and LMS

sampling design, Σ1 → Γ1 with respect to the HS norm as ν → ∞ a.s. [P] for some n.n.d.

HS operator Γ1. Also,
∑∞

j=1⟨Γ1ej , ej⟩ < ∞, and
∑∞

j=1⟨Σ1ej , ej⟩ →
∑∞

j=1⟨Γ1ej , ej⟩ under

the above sampling designs as ν → ∞ a.s. [P]. Further, if Assumption 3.2.1 holds with

0 ≤ λ < EP(Xi)/b, and Assumptions 3.2.2 and 3.2.3 hold, then, the above results hold under

any HEπPS sampling design. Moreover, if Assumptions 3.2.1–3.2.4 hold, then in the case of RHC

sampling design, Σ2 → Γ2 with respect to the HS norm as ν → ∞ a.s. [P] for some n.n.d. HS

operator Γ2. Also,
∑∞

j=1⟨Γ2ej , ej⟩ < ∞, and
∑∞

j=1⟨Σ2ej , ej⟩ →
∑∞

j=1⟨Γ2ej , ej⟩ as ν → ∞

a.s. [P].

Proof. Let us first consider the case Vi=Yi for i=1, . . . , N . Then, we have

Σ1 = nN−2
N∑
i=1

(Vi − TV πi)⊗ (Vi − TV πi)(π
−1
i − 1) = nN−2

{ N∑
i=1

(Yi ⊗ Yi)×

(π−1
i − 1)−

( N∑
i=1

Yi(1− πi)⊗
N∑
i=1

Yi(1− πi)

)/ N∑
i=1

πi(1− πi)

}
.

(3.6.2)

Now, substituting πi=n/N for SRSWOR, we obtain Σ1=(1−n/N)
∑N

i=1(Yi−Y )⊗(Yi−Y )/N .

Note that EP||Yi||2H <∞ in view of Assumption 3.2.3. Then, under SRSWOR,

Σ1 → ∆1 = (1− λ)EP(Yi − EP(Yi))⊗ (Yi − EP(Yi)) (3.6.3)

with respect to the HS norm as ν → ∞ a.s. [P] by SLLN and Assumption 3.2.1. Now, suppose

that Σ(1)
1 and Σ

(2)
1 denote Σ1 under SRSWOR and LMS sampling design, respectively. Further,

suppose that {πi}Ni=1 are the inclusion probabilities of LMS sampling design. Then, we have

Σ
(2)
1 − Σ

(1)
1 = nN−2

{ N∑
i=1

(π−1
i − n−1N)(Yi ⊗ Yi)

}
−

nN−2

{( N∑
i=1

Yi(1− πi)⊗
N∑
i=1

Yi(1− πi)

)/ N∑
i=1

πi(1− πi)−

( N∑
i=1

Yi(1− n/N)⊗
N∑
i=1

Yi(1− n/N)

)/
n(1− n/N)

}
(3.6.4)
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by (3.6.2). Further, it follows from the proof of Lemma 2.7.1 in Section 2.7 of Chapter 2 that

as ν → ∞, max1≤i≤N |n−1Nπi − 1| → 0 a.s. [P]. It also follows from Assumption 3.2.3 that

N−1
∑N

i=1 ||Yi||2H=O(1) as ν → ∞ a.s. [P]. Therefore, it can be shown that as ν → ∞,

nN−2

{ N∑
i=1

(π−1
i − n−1N)(Yi ⊗ Yi)

}
→ 0 and (3.6.5)

nN−2

{( N∑
i=1

Yi(1− πi)⊗
N∑
i=1

Yi(1− πi)

)/ N∑
i=1

πi(1− πi)−

( N∑
i=1

Yi(1− n/N)⊗
N∑
i=1

Yi(1− n/N)

)/
n
(
1− n/N

)}
→ 0, and hence

(3.6.6)

Σ
(2)
1 −Σ

(1)
1 → 0 with respect to the HS norm a.s. [P]. Thus Σ1 → Γ1 as ν → ∞ under SRSWOR

as well as under LMS sampling design a.s. [P] with Γ1=∆1. Next, under any HEπPS sampling

design (i.e., a sampling design with πi=nXi/
∑N

i=1Xi),

Σ1 → ∆2 = EP

[{
Yi − χ−1Xi

(
EP(Yi)− λEP(XiYi)/EP(Xi)

)}
⊗{

Yi − χ−1Xi

(
EP(Yi)− λEP(XiYi)/EP(Xi)

)}{
X−1

i EP(Xi)− λ

}] (3.6.7)

with respect to the HS norm as ν → ∞ a.s. [P] by SLLN because EP||Yi||2H < ∞, As-

sumptions 3.2.1 and 3.2.2 hold. Here, χ=EP(Xi) − λEP(Xi)
2/EP(Xi). Note that ∆2 is

a n.n.d. HS operator since Assumption 3.2.1 holds with 0 ≤ λ < EP(Xi)/b. Thus as

ν → ∞, Σ1 → Γ1 under any HEπPS sampling design a.s. [P] with Γ1=∆2. Next, note that∑∞
j=1⟨∆1ej , ej⟩=EP||Yi −EP(Yi)||2H <∞ and

∑∞
j=1⟨∆2ej , ej⟩=EP

[
||Yi − χ−1Xi{EP(Yi)−

λEP(XiYi)/EP(Xi)}||2H{X
−1
i EP(Xi)−λ}

]
<∞ since Assumption 3.2.2 holds, andEP||Yi||2H <

∞. Then, it can be shown in the same way as argued above that as ν → ∞,
∑∞

j=1⟨Σ1ej , ej⟩=

nN−2
{∑N

i=1(π
−1
i − 1)||Yi||2H−

∑N
i=1 ||Yi(1−πi)||2H/

∑N
i=1 πi(1−πi)

}
→
∑∞

j=1⟨∆1ej , ej⟩

under SRSWOR and LMS sampling design, and
∑∞

j=1⟨Σ1ej , ej⟩ →
∑∞

j=1⟨∆2ej , ej⟩ under any

HEπPS sampling design a.s. [P].

Next, consider the case of RHC sampling design and Σ2 with Vi=Yi. Then, we have

Σ2 = nγXN−1
N∑
i=1

(
Vi −XiV /X

)
⊗
(
Vi −XiV /X

)
X−1

i (3.6.8)
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= nγ

{
XN−1

N∑
i=1

(Yi ⊗ Yi)X
−1
i − Y ⊗ Y

}
,

where γ=
∑n

r=1 Ñr(Ñr−1)/N(N −1) with Ñr being the size of the rth group formed randomly

in the first step of the RHC sampling design (see the introduction) for r=1, . . . , n. Note that

nγ → c as ν → ∞ for some c ≥ 1− λ > 0 by Lemma 2.7.5 in Section 2.7 of Chapter 2. Then,

by SLLN,

Σ2 → ∆3 = c
{
EP(Xi)EP

(
(Yi ⊗ Yi)X

−1
i

)
− EP(Yi)⊗ EP(Yi)

}
(3.6.9)

with respect to the HS norm as ν → ∞ a.s. [P]. Thus Γ2=∆3 in this case. It follows that∑∞
j=1⟨∆3ej , ej⟩ =c

{
EP(Xi)EP(||Yi||2HX

−1
i ) − ||EP(Yi)||2H

}
< ∞ since Assumption 3.2.2

holds, and EP||Yi||2H < ∞. Further, it can be shown using SLLN that
∑∞

j=1⟨Σ2ej , ej⟩=nγ×{
XN−1

∑N
i=1 ||Yi||2HX

−1
i − ||Y ||2H

}
→
∑∞

j=1⟨∆3ej , ej⟩ as ν → ∞ a.s. [P].

Let us next consider the case Vi=Yi−Y −Szy((Zi−Z)S−1
zz ) for i=1, . . . , N . It follows from

SLLN that
∑N

i=1 ||Vi||2H/N=O(1) as ν → ∞ a.s. [P] because Assumption 3.2.3 holds. Then, it

can be shown using similar arguments as in the 1st paragraph of this proof that as ν → ∞,

Σ1 → ∆4 = (1− λ)EP

{(
Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

))
⊗(

Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

))} (3.6.10)

under SRSWOR and LMS sampling design, and

Σ1 → ∆5 = EP

[{
Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

)
+

χ−1Xiλ

(
EP(XiYi)− EP(Xi)EP(Yi)− Czy

(
(EP(XiZi)− EP(Xi)EP(Zi))×

C−1
zz

))
(EP(Xi))

−1

}
⊗
{
Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

)
+

χ−1Xiλ

(
EP(XiYi)− EP(Xi)EP(Yi)− Czy

(
(EP(XiZi)− EP(Xi)EP(Zi))×

C−1
zz

))
(EP(Xi))

−1

}{
X−1

i EP(Xi)− λ

}]
(3.6.11)

under any HEπPS sampling design with respect to the HS norm a.s. [P]. Here, Czy=EP(Zi −

EP(Zi))⊗(Yi−EP(Yi)) andCzz=EP(Zi−EP(Zi))
T (Zi−EP(Zi)). Thus as ν → ∞, Σ1 → Γ1

with Γ1=∆4 under SRSWOR and LMS sampling design, and Σ1 → Γ1 with Γ1=∆5 under any



100 Chapter 3. Estimators of the mean of infinite dimensional data in finite populations

HEπPS sampling design a.s. [P]. Note that
∑∞

j=1⟨∆4ej , ej⟩=(1−λ)EP
∣∣∣∣Yi−EP(Yi)−Czy((Zi−

EP(Zi))C
−1
zz )||2H <∞, and

∑∞
j=1⟨∆5ej , ej⟩=EP

[∣∣∣∣Yi −EP(Yi)−Czy

(
(Zi −EP(Zi))C

−1
zz

)
+

χ−1Xiλ
{
EP(XiYi)−EP(Xi)EP(Yi)−Czy

(
(EP(XiZi)−EP(Xi)EP(Zi))C

−1
zz

)}
(EP(Xi))

−1
∣∣∣∣2
H

×
{
X−1

i EP(Xi) − λ
}]

< ∞ since Assumptions 3.2.2 and 3.2.3 hold. Then, it can be shown

in a similar way as in the 1st paragraph of this proof that
∑∞

j=1⟨Σ1ej , ej⟩ →
∑∞

j=1⟨∆4ej , ej⟩

under SRSWOR and LMS sampling design, and
∑∞

j=1⟨Σ1ej , ej⟩ →
∑∞

j=1⟨∆5ej , ej⟩ under any

HEπPS sampling design as ν → ∞ a.s. [P]. Further, it can be shown using the same line of

argument as in the 2nd paragraph of this proof that for RHC sampling design,

Σ2 → ∆6 = cEP(Xi)EP

{(
Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

))
⊗(

Yi − EP(Yi)− Czy

(
(Zi − EP(Zi))C

−1
zz

))
X−1

i

} (3.6.12)

with respect to the HS norm, and
∑∞

j=1⟨Σ2ej , ej⟩ →
∑∞

j=1⟨∆6ej , ej⟩ as ν → ∞ a.s. [P]. Thus

Γ2=∆6 in this case.

Recall {ej}∞j=1, {Vi}Ni=1, S1, S2, Σ1,r and Σ2,r from the paragraph preceding the proof

of Proposition 3.2.1 in Section 3.5 and define Wi= (⟨Vi, e1⟩, . . . , ⟨Vi, er⟩) for i=1, . . . , N and

r ≥ 1. Suppose that Ŵ1=
∑

i∈s(Nπi)
−1Wi and W=N−1

∑N
i=1 Wi. Moreover, suppose that

Ŵ2=
∑

i∈s(NXi)
−1GiWi, where Gi is the total of the x values of that randomly formed group

from which the ith population unit is selected in the sample by RHC sampling design (see the

introduction). Let us also assume that Σk,r is a r × r matrix such that ((Σk,r))jl=⟨Σkej , el⟩ for

j, l = 1, . . . , r, k=1, 2 and r ≥ 1. We now state the following lemma.

Lemma 3.6.3. Fix r ≥ 1. Suppose that Assumptions 3.2.1–3.2.3 hold. Then, under SRSWOR and

LMS sampling design, (⟨S1, e1⟩, . . . , ⟨S1, er⟩)
L−→ Nr(0,Γ1,r) as ν → ∞ a.s. [P], where Γ1,r is

a r × r matrix such that ((Γ1,r))jl=⟨Γ1ej , el⟩ for j, l = 1, . . . , r, and Γ1 is as in the statement

of Lemma 3.6.2. Further, if Assumption 3.2.1 holds with 0 ≤ λ < EP(Xi)/b, and Assumptions

3.2.2 and 3.2.3 hold, then, the above result holds under any HEπPS sampling design. Moreover,

if Assumptions 3.2.1–3.2.3 hold, then (⟨S2, e1⟩, . . . , ⟨S2, er⟩)
L−→ Nr(0,Γ2,r) as ν → ∞ under

RHC sampling design a.s. [P]. Here, Γ2,r is a r × r matrix such that ((Γ2,r))jl=⟨Γ2ej , el⟩ for

j, l = 1, . . . , r, and Γ2 is as in the statement of Lemma 3.6.2.

Proof. Note that (⟨S1, e1⟩, . . . , ⟨S1, er⟩)=
√
n(Ŵ1 − W). Let us first consider SRSWOR, LMS

and any HEπPS sampling designs. Note that under the above-mentioned sampling designs,

Σ1,r → Γ1,r as ν → ∞ a.s. [P] because Σ1 → Γ1 under these sampling designs as ν → ∞ a.s.
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[P] in view of Lemma 3.6.2. Moreover, Γ1,r is a n.n.d. matrix since Σ1 is a n.n.d. operator. Now,

consider the case, when Γ1,r is p.d. Then, under the above sampling designs, mΓ1,rmT > 0

for any m ∈ Rr and m ̸= 0, and all sufficiently large ν a.s. [P]. It can be shown that
√
nm(Ŵ1 − W)T

L−→ N(0,mΓ1,rmT ) as ν → ∞ for any m ̸= 0 under these sampling designs

a.s. [P] in the same way as
√
nm1(V̂1 − V)T

L−→ N(0,m1Γ1mT
1 ) as ν → ∞ under each of

the above sampling designs for any m1 ∈ Rp, m1 ̸= 0 and Γ1=limν→∞Σ1 in the proof of

Lemma 2.7.2 in Section 2.7 of Chapter 2. This implies that under these sampling designs,
√
n(Ŵ1 − W)

L−→ Nr(0,Γ1,r) as ν → ∞ a.s. [P].

Next, consider the case, when Γ1,r is a positive semi definite (p.s.d.) matrix. LetA1={m ̸= 0 :

mΓ1,rmT > 0} andA2={m ̸= 0 : mΓ1,rmT = 0}. Then, under the sampling designs mentioned

in the preceding paragraph,
√
nm(Ŵ1 − W)T

L−→ N(0,mΓ1,rmT ) as ν → ∞ for any m ∈ A1

a.s. [P] in the same way as argued above. Next, suppose that P (s, ω) denotes one of these

sampling designs, and Q(s, ω) is a rejective sampling design with inclusion probabilities equal to

those of P (s, ω) (cf. [4]). Note that under Q(s, ω), var(
√
nm(Ŵ1 − W)T )=mΣ1,rmT (1 + h)

(see Theorem 6.1 in [40]) for any ω and m, where h→ 0 as ν → ∞ if
∑N

i=1 πi(1− πi) → ∞

as ν → ∞. Also, note that
∑N

i=1 πi(1 − πi) → ∞ as ν → ∞ under P (s, ω) a.s. [P] because

(3.6.1) in Lemma 3.6.1 holds under P (s, ω). Therefore,
∑N

i=1 πi(1−πi) → ∞ as ν → ∞ under

Q(s, ω) a.s. [P]. Next, note that Σ1,r depends on the sampling design only through the inclusion

probabilities, and Σ1,r → Γ1,r as ν → ∞ under P (s, ω) a.s. [P] as mentioned in the previous

paragraph. Therefore, mΣ1,rmT → 0 as ν → ∞ for any m ∈ A2 under Q(s, ω) a.s. [P]. Hence,
√
nm(Ŵ1 − W)T=op(1) as ν → ∞ for any m ∈ A2 under Q(s, ω) a.s. [P]. Now, it follows

from Lemmas 2 and 3 in [4] that

∑
s∈A

P (s, ω) ≤
∑
s∈A

Q(s, ω) +
∑
s∈S

|P (s, ω)−Q(s, ω)| ≤
∑
s∈A

Q(s, ω)+

(2D(P ||Q))1/2 ≤
∑
s∈A

Q(s, ω) + (2D(P ||R))1/2,
(3.6.13)

where A={s ∈ S : |
√
nm(Ŵ1 − W)T | > ϵ} for ϵ > 0, and R(s, ω) is any other rejective

sampling design. Since P (s, ω) is a high entropy sampling design as discussed earlier in this

proof, there exists a rejective sampling design R(s, ω) such that D(P ||R) → 0 as ν → ∞

a.s. [P]. Then, under P (s, ω),
√
nm(Ŵ1 − W)T=op(1) as ν → ∞ for any m ∈ A2 a.s. [P].

Therefore, under P (s, ω), as ν → ∞,
√
nm(Ŵ1 − W)T

L−→ N(0,mΓ1,rmT ) for any m ̸= 0,

and hence
√
n(Ŵ1 − W)

L−→ Nr(0,Γ1,r) a.s. [P].
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Next, note that (⟨S2, e1⟩, . . . , ⟨S2, er⟩)=
√
n(Ŵ2 − W). Also, note that Σ2,r → Γ2,r as

ν → ∞ a.s. [P] since Σ2 → Γ2 as ν → ∞ a.s. [P] in view of Lemma 3.6.2. Moreover, Γ2,r is

a n.n.d. matrix since Σ2 is a n.n.d. operator. Let us consider the case, when Γ2,r is p.d. Then,

mΓ2,rm
T > 0 for any m ̸= 0 and all sufficiently large ν a.s. [P]. It can be shown that under

RHC sampling design,
√
nm(Ŵ2 − W)T

L−→ N(0,mΓ2,rmT ) as ν → ∞ for any m ̸= 0 a.s.

[P] in the same way as
√
nm1(V̂2 − V)T

L−→ N(0,m1Γ2mT
1 ) as ν → ∞ under RHC sampling

design for any m1 ∈ Rp, m1 ̸= 0 and Γ2=limν→∞Σ2 in the proof of Lemma 2.7.2 in Section 2.7

of Chapter 2. Therefore, under RHC sampling design,
√
n(Ŵ2 − W)

L−→ Nr(0,Γ2,r) as ν → ∞

a.s. [P].

Next, consider the case, when Γ2,r is p.s.d. Let A1={m ̸= 0 : mΓ2,rmT > 0} and A2={m ̸=

0 : mΓ2,rmT = 0}. Then, under RHC sampling design,
√
nm(Ŵ2 − W)T

L−→ N(0,mΓ2,rmT )

as ν → ∞ for any m ∈ A1 a.s. [P] in the same way as above. Under RHC sampling design,

var(
√
nm(Ŵ2 − W)T )=mΣ2,rmT (see [61]) for any ω and m. Note that mΣ2,rmT → 0 as

ν → ∞ for any m ∈ A2 a.s. [P]. Then, under RHC sampling design,
√
nm(Ŵ2 − W)T=op(1)

as ν → ∞ for any m ∈ A2 a.s. [P]. Therefore, under RHC sampling design, as ν → ∞,
√
nm(Ŵ2 − W)T

L−→ N(0,mΓ2,rmT ) for any m ̸= 0, and hence
√
n(Ŵ2 − W)

L−→ Nr(0,Γ2,r)

a.s. [P].

Recall from the proof of Proposition 3.2.1 in Section 3.5 that Πr denotes the orthogonal

projection onto the linear span of {e1, . . . , er}, i.e., Πr(a)=
∑r

j=1⟨a, ej⟩ej for any r ≥ 1 and

a ∈ H. Further, suppose that B1,r={s ∈ S : ||S1 − Πr(S1)||H > ϵ} and B2,r={s ∈ S :

||S2 −Πr(S2)||H > ϵ} for any ϵ > 0. Now, we state the following lemma.

Lemma 3.6.4. Suppose that Assumptions 3.2.1–3.2.3 hold, and P (s, ω) denotes one of SRSWOR

and LMS sampling design. Then, for any ϵ > 0, limr→∞ limν→∞
∑

s∈B1,r
P (s, ω)=0 a.s. [P].

Further, if Assumption 3.2.1 holds with 0 ≤ λ < EP(Xi)/b, and Assumptions 3.2.2 and 3.2.3

hold, then the above result holds under any HEπPS sampling design. Moreover, suppose that

Assumptions 3.2.1–3.2.4 hold, and P (s, ω) denotes RHC sampling design. Then, for any ϵ > 0,

limr→∞ limν→∞
∑

s∈B2,r
P (s, ω)=0 a.s. [P].

Proof. Let us first consider the case, when P (s, ω) is one of SRSWOR, LMS and any HEπPS

sampling designs. Suppose that Q(s, ω) is as described in the 2nd paragraph of the proof of

Lemma 3.6.3. Then, following similar arguments as in the proof of Theorem 6.1 in [40], we can
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show that

E⟨S1, ej⟩2 = (nN−2)

N∑
i=1

⟨Vi − TV πi, ej⟩2(π−1
i − 1)(1 + h) = ⟨Σ1ej , ej⟩(1 + h) (3.6.14)

under Q(s, ω) for any ω and j ≥ 1. Here, h does not depend on {ej}∞j=1, and h → 0 as

ν → ∞ whenever
∑N

i=1 πi(1 − πi) → ∞ as ν → ∞. Recall from the 2nd paragraph in

the proof of Lemma 3.6.3 that
∑N

i=1 πi(1 − πi) → ∞ as ν → ∞ under Q(s, ω) a.s. [P].

It follows from Lemma 3.6.2 that under P (s, ω), Σ1 → Γ1 with respect to the HS norm

and
∑∞

j=1⟨Σ1ej , ej⟩ →
∑∞

j=1⟨Γ1ej , ej⟩ as ν → ∞ a.s. [P]. Therefore, Σ1 → Γ1 and∑∞
j=1⟨Σ1ej , ej⟩ →

∑∞
j=1⟨Γ1ej , ej⟩ as ν → ∞ under Q(s, ω) a.s. [P] because Σ1 depends

on the sampling design only through inclusion probabilities, and P (s, ω) and Q(s, ω) have the

same inclusion probabilities. Thus as ν → ∞, E⟨S1, ej⟩2 → ⟨Γ1ej , ej⟩ for any j ≥ 1, and∑∞
j=1E⟨S1, ej⟩2 →

∑∞
j=1⟨Γ1ej , ej⟩ under Q(s, ω) a.s. [P]. Then, following the same line of

arguments as in the proof of Theorem 1.1 in [54], we can say that

limν→∞
∑

s∈B1,r

Q(s, ω) ≤
∞∑

j=r+1

⟨Γ1ej , ej⟩ϵ−2 (3.6.15)

a.s. [P] for any r ≥ 1. Therefore, limr→∞ limν→∞
∑

s∈B1,r
Q(s, ω)=0 a.s. [P]. Further, it

can be shown that limr→∞ limν→∞
∑

s∈B1,r
P (s, ω)=0 a.s. [P] in the same way as the result

√
nm(Ŵ1 − W)T =op(1) as ν → ∞ under P (s, ω) a.s. [P] is shown in the 2nd paragraph of the

proof of Lemma 3.6.3.

Let us next consider the case, when P (s, ω) is RHC sampling design. Note that

E⟨S2, ej⟩2 = (nγ)(XN−1)
N∑
i=1

(
⟨Vi, ej⟩ − ⟨V /X, ej⟩Xi

)2

X−1
i = ⟨Σ2ej , ej⟩ (3.6.16)

under RHC sampling design for any j ≥ 1 and ω (cf. [61]). Also, note that as ν → ∞,

Σ2 → Γ2 with respect to the HS norm and
∑∞

j=1⟨Σ2ej , ej⟩ →
∑∞

j=1⟨Γ2ej , ej⟩ a.s. [P]

in view of Lemma 3.6.2. Then, under RHC sampling design, as ν → ∞, E⟨S2, ej⟩2 →

⟨Γ2ej , ej⟩ for any j ≥ 1, and
∑∞

j=1E⟨S2, ej⟩2 →
∑∞

j=1⟨Γ2ej , ej⟩ a.s. [P]. Therefore,

limr→∞ limν→∞
∑

s∈B2,r
P (s, ω)=0 a.s. [P] using similar arguments as in the proof of Theorem

1.1 in [54].

Before we state the next lemma, let V ♯
i be one of Yi⊗Zi, Z

T
i Zi, Zi and 1 for i=1, . . . , N . Also,
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let V ♯=N−1
∑N

i=1 V
♯
i , S♯

1=
√
n(
∑

i∈s(Nπi)
−1V ♯

i −V
♯
) and S♯

2=
√
n(
∑

i∈s(NXi)
−1GiV

♯
i −V

♯
).

In this case, we denote the associated norm by || · ||G . Note that || · ||G=the Euclidean norm, when

V ♯
i is one of ZT

i Zi, Zi and 1, and || · ||G=the HS norm, when V ♯
i =Yi ⊗ Zi.

Lemma 3.6.5. Suppose that Assumptions 3.2.1–3.2.4 hold. Then, ||S♯
1||G=Op(1) under SRSWOR,

LMS and any HEπPS sampling designs, and ||S♯
2||G=Op(1) under RHC sampling design as

ν → ∞ a.s. [P].

Proof. Note that {V ♯
i }Ni=1 are elements of either an infinite dimensional separable Hilbert space

or a finite dimensional Euclidean space. Let {e♯j} be an orthonormal basis of that space. Further,

note that N−1
∑N

i=1 ||V
♯
i ||2G=O(1) as ν → ∞ a.s. [P] by SLLN and Assumption 3.2.3. Now,

suppose that P (s, ω) is one of SRSWOR, LMS and any HEπPS sampling designs, and Q(s, ω)

is the corresponding rejective sampling design as described in the 2nd paragraph of the proof of

Lemma 3.6.3. Then, one can show that

E||S♯
1||

2
G = E

(∑
j

〈
S♯
1, e

♯
j

〉2)
= (nN−2)

∑
j

N∑
i=1

〈
V ♯
i − T ♯πi, e

♯
j

〉2

×

(π−1
i − 1)(1 + h)

(3.6.17)

for any ω under Q(s, ω) in the same way as the derivation of E⟨S1, ej⟩2=⟨Σ1ej , ej⟩(1 + h) in

the proof of Lemma 3.6.4. Here, T ♯=
∑N

i=1 V
♯
i (1− πi)

(∑N
i=1 πi(1− πi)

)−1, h does not depend

on {e♯j}, and h→ 0 as ν → ∞ if
∑N

i=1 πi(1−πi) → ∞ as ν → ∞. Note that (3.6.1) in Lemma

3.6.1 holds under Q(s, ω) because (3.6.1) holds under P (s, ω) by Lemma 3.6.1, and P (s, ω) and

Q(s, ω) have the same inclusion probabilities. Then,
∑N

i=1 πi(1− πi) → ∞ as ν → ∞ under

Q(s, ω) a.s. [P]. Therefore, as ν → ∞,

(nN−2)
∑
j

N∑
i=1

〈
V ♯
i − T ♯πi, e

♯
j

〉2

(π−1
i − 1)(1 + h) = (nN−2)×

N∑
i=1

||V ♯
i − T ♯πi||2G(π−1

i − 1)(1 + h) = (nN−2)

[ N∑
i=1

||V ♯
i ||

2
G(π

−1
i − 1)−

||T ♯||2G
N∑
i=1

πi(1− πi)

]
(1 + h) ≤ (nN−2)

N∑
i=1

π−1
i ||V ♯

i ||
2
G(1 + h) = O(1)

(3.6.18)

underQ(s, ω) a.s. [P] sinceN−1
∑N

i=1 ||V
♯
i ||2G=O(1) as ν → ∞ a.s. [P]. Hence, E||S♯

1||2G=O(1)

as ν → ∞ under Q(s, ω) a.s. [P]. Thus ||S♯
1||G=Op(1) as ν → ∞ under Q(s, ω) a.s. [P]. Now,

it can be shown that ||S♯
1||G = Op(1) as ν → ∞ under P (s, ω) a.s. [P] in the same way as the
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result
√
nm(Ŵ1 − W)T=op(1) as ν → ∞ under P (s, ω) a.s. [P] is shown in the 2nd paragraph

of the proof of Lemma 3.6.3.

Next, note that under RHC sampling design, as ν → ∞,

E||S♯
2||

2
G = E

(∑
j

〈
S♯
2, e

♯
j

〉2)
= (nγ)(XN−1)

∑
j

N∑
i=1

(
⟨V ♯

i , e
♯
j⟩−

⟨V ♯
/X, e♯j⟩Xi

)2

X−1
i ≤ (nγ)

∑
j

N−1
N∑
i=1

⟨V ♯
i , e

♯
j⟩

2XX−1
i ≤

(nγ)N−1
N∑
i=1

||V ♯
i ||

2
GXX

−1
i = O(1)

(3.6.19)

a.s. [P] because N−1
∑N

i=1 ||V
♯
i ||2G=O(1) as ν → ∞ a.s. [P], and Assumption 3.2.2 holds.

Also, note that nγ=O(1) as ν → ∞ since Assumption 3.2.4 holds. Therefore, ||S♯
2||G=Op(1) as

ν → ∞ under RHC sampling design a.s. [P].





Chapter 4

Quantile processes and their

applications in finite populations

The estimation of the finite population median instead of the population mean is meaningful,

when the population observations are generated from skewed and heavy-tailed distributions. The

estimation of the population trimmed means, which are constructed based on the population

quantile function, can also be considered for a similar reason. [18], [35], [52], [53], [67], [85], etc.

considered the estimation of the population median, whereas [77] considered the estimation of the

population trimmed means. The estimation of some specific population quantiles (eg., population

quartiles) are also of interest because estimators of population parameters like interquartile range,

quantile based measure of skewness (Bowley’s measure of skewness), etc. can be constructed

based on the estimators of the population quantiles. [35] considered the estimation of the

interquartile range, whereas [77] considered the estimation of the Bowley’s measure of skewness

and several other functions of the population quantiles. The median and the trimmed means in the

population are more robust and resistant to outliers than the population mean. Several problems

due to outliers in sample survey were discussed in detail in [3], [34], [47] and references therein.

Weak convergence of quantiles and qauntile processes were studied in classical set up, when

sample observations are i.i.d. random variables from a probability distribution (see [76], [79],

etc.). It becomes challenging, when we deal with samples drawn from a finite population using

a without replacement sampling design. In this case, we face difficulty as sample observations

may neither be independent nor identical. It becomes more challenging, when we consider

the quantile processes constructed based on estimators other than the sample quantile, namely

107
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the ratio, the difference and the regression estimators of the population quantile. Furthermore,

different quantile processes are considered under different sampling designs unlike in the case of

i.i.d. sample observations.

The weak convergence of several empirical processes were shown in the earlier literature (see

[7], [43] and references therein) under some conditions on sampling designs. These conditions

seem to hold under only SRSWOR, Poisson sampling design and rejective sampling design. There

is no result available in the literature related to the weak convergence of empirical processes under

LMS, πPS, RHC and stratified multistage cluster sampling designs. These sampling designs,

especially stratified multistage cluster sampling designs, are of practical importance in sample

surveys. In this chapter, we show the weak convergence of an empirical process similar to the

Hájek empirical process considered in [7] and [43] under high entropy sampling designs, which

include SRSWOR, LMS and HEπPS sampling designs. We also show the weak convergence of

the above empirical process under RHC and stratified multistage cluster sampling designs.

Asymptotic results related to the weak convergence of empirical processes were applied to

study the asymptotic behaviour of poverty rate (see [7]) and to deal with different regression and

classification problems (see [43]). However, neither [7] nor [43] considered quantiles and quantile

processes in the context of sample survey. [78] proved strong and weak versions of Bahadur type

representations for the sample quantile process under simple random sampling in the presence of

superpopulation model. [26] constructed a quantile process based on the sample quantile, which

is obtained by inverting the Hájek estimator of finite population distribution function under high

entropy sampling designs. There is no available result related to the weak convergence of quantile

processes based on well-known quantile estimators like the ratio (see [67]), the difference (see

[67]), and the regression (see [27] and [70]) estimators, which are constructed using an auxiliary

information. There is also no result available in the literature related to the weak convergence of

a quantile process under RHC and stratified multistage cluster sampling designs. In this chapter,

we establish the weak convergence of the quantile processes, which are constructed based on

the sample quantile as well as the ratio, the difference and the regression estimators of the finite

population quantile, under the aforementioned sampling designs using the weak convergence

of empirical process, Hadamard differentiability of the quantile map and the functional delta

method. The weak convergence of the empirical and the quantile processes are shown under a

probability distribution, which is generated by a sampling design and a superpopulation model

jointly.
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In this chapter, we apply asymptotic results for quantile processes to derive asymptotic

distributions of the smooth L-estimators (see [77]) and the estimators of smooth functions

of population quantiles. We estimate asymptotic variances of these estimators consistently.

Confidence intervals for finite population parameters like the median, the α-trimmed means,

the interquartile range and the quantile based measure of skewness are constructed based on

asymptotic distributions of these estimators.

We also compare several estimators based on their asymptotic distributions. It is shown

that the use of the auxiliary information in the estimation stage may have an adverse effect

on the performances of the smooth L-estimators and the estimators of smooth functions of

population quantiles based on the ratio, the difference and the regression estimators under each

of SRSWOR, LMS, HEπPS and RHC sampling designs. Moreover, each of the aforementioned

estimators may have worse performance under HEπPS and RHC sampling designs, which use

the auxiliary information, than under SRSWOR. In practice, SRSWOR is easier to implement

than the sampling designs that use the auxiliary information. Thus the above result is significant

in view of selecting the appropriate sampling design.

In this chapter, it is further shown that the sample median is more efficient than the sample

mean under SRSWOR, whenever the finite population observations are generated from some

symmetric and heavy-tailed superpopulation distributions with the same superpopulation mean

and median. A similar result is known to hold in the classical set up with i.i.d. sample observations.

However, for the cases of symmetric superpopulation distributions with the same superpopulation

mean and median, it is shown that the GREG estimator of the finite population mean is more

efficient than the sample median under SRSWOR, whenever there is substantial correlation

present between the study and the auxiliary variables. This stands in contrast to what happens in

the case of i.i.d. observations.

In Section 4.1, we give the expressions of the sample quantile and the ratio, the difference

and the regression estimators of the population quantile. In this section, we also construct

several quantile processes based on these estimators. We present asymptotic results related to

the weak convergence of empirical and quantile processes in Sections 4.2 and 4.3 for single

stage and stratified multistage cluster sampling designs. Asymptotic results related to the smooth

L-estimators and the estimators of smooth functions of population quantiles are presented in

Section 4.4. In Section 4.5, we compare different estimators. Some numerical results based on

real data are presented in Section 4.6. Proofs of several results are given in Sections 4.7 and 4.8.
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4.1. Quantile processes based on different estimators

We recall from the introduction that (Yi, Xi) denotes the value of (y, x) for the ith population unit,

i=1, . . . , N , where y is a finite/infinite dimensional study variable, and x is a positive real-valued

size variable. In this chapter, we assume that y is a real-valued study variable. As in Chapter 2,

here also we assume that the covariate z and the size variable x are the same. Recall from the

introduction that the population values {Xi}Ni=1 on x are assumed to be known and utilized to

implement sampling designs as well as to construct estimators. Let Fy,N (t)=
∑N

i=1 1[Yi≤t]/N

be the finite population distribution function of y, where t ∈ R. Then, the finite population pth

quantile of y is defined as Qy,N (p)=inf{t ∈ R : Fy,N (t) ≥ p}, where 0 < p < 1. The HT

estimator
∑

i∈s(Nπi)
−11[Yi≤t] (cf. 2nd row in Table 2.1 in Chapter 2) and the RHC estimator∑

i∈s(NXi)
−1Gi1[Yi≤t] (cf. 3rd row in Table 2.1 in Chapter 2) are well-known design unbiased

estimators of Fy,N (t). Here, πi is the inclusion probability of the ith population unit under

any sampling design P (s), and Gi is the x total of that group of population units formed in

the first step of the RHC sampling design from which the ith population unit is selected in

the sample (see the beginning of Section 2.1 in Chapter 2). A unified way of writing these

estimators is
∑

i∈s d(i, s)1[Yi≤t]. An estimator of Qy,N (p) can be constructed as inf{t ∈ R :∑
i∈s d(i, s)1[Yi≤t] ≥ p} (see [52]). However, inf{t ∈ R :

∑
i∈s d(i, s)1[Yi≤t] ≥ p} is not well

defined, when maxt∈R
∑

i∈s d(i, s)1[Yi≤t]=
∑

i∈s d(i, s) < p for some 0 < p < 1 and s ∈ S.

On the other hand,
∑

i∈s d(i, s)1[Yi≤t] violates the properties of the distribution functions, when

maxt∈R
∑

i∈s d(i, s)1[Yi≤t] > 1 for some s ∈ S. To eliminate these problems, we consider

F̂y(t)=
∑

i∈s d(i, s)1[Yi≤t]/
∑

i∈s d(i, s) (see [26], [52] and [85]) as an estimator of Fy,N (t).

F̂y(t) becomes the Hájek estimator of Fy,N (t) for d(i, s)=(Nπi)−1 (see [41]). Based on F̂y(t),

the sample pth quantile of y is defined as

Q̂y(p) = inf{t ∈ R : F̂y(t) ≥ p}. (4.1.1)

Note that F̂y(t) satisfies all the properties of a distribution function, and maxt∈R F̂y(t)=1 > p

for any 0 < p < 1 and s ∈ S. Thus Q̂y(p) is a well defined estimator of Qy,N (p). The

estimator Q̂y(p) was considered for d(i, s)=(Nπi)−1 in [26], [85], etc. We also consider Q̂y(p)

for d(i, s)=(NXi)
−1Gi under RHC sampling design. Further, we consider some estimators of

Qy,N (p), which are constructed using the auxiliary variable x in the estimation stage. Suppose

that Qx,N (p) and Q̂x(p) are the population and the sample pth quantiles of x, respectively. Then,

the ratio, the difference and the regression estimators of Qy,N (p) are defined as
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Q̂y,RA(p) =
(
Q̂y(p)/Q̂x(p)

)
Qx,N (p),

Q̂y,DI(p) = Q̂y(p) +

(∑
i∈s

d(i, s)Yi

/∑
i∈s

d(i, s)Xi

)
(Qx,N (p)− Q̂x(p)) and

Q̂y,REG(p) = Q̂y(p) + β̂(Qx,N (p)− Q̂x(p)),

(4.1.2)

respectively, where β̂=
∑

i∈s d(i, s)XiYi/
∑

i∈s d(i, s)X
2
i is the estimator of finite population

regression coefficient of y on x through the origin. The estimators Q̂y,RA(p) and Q̂y,DI(p) were

considered in [67] for d(i, s)=(Nπi)−1, whereas Q̂y,REG(p) was considered in [27] and [70].

for d(i, s)=(Nπi)−1. We also consider these estimators for d(i, s)=(NXi)
−1Gi under RHC

sampling design.

Now, suppose that for any 0 < α < β < 1,D[α, β] is the space of all left continuous functions

on [α, β] having right hand limits at each point, and D is the σ-field on D[α, β] generated by

the open balls (ball σ-field) with respect to the sup norm metric. Note that D coincides with

the Borel σ-field on D[α, β] with respect to the Skorohod metric (cf. [6] and [79]). Thus the

quantile processes {
√
n(G(p)−Qy,N (p)) : p ∈ [α, β]} for G(p)=Q̂y(p), Q̂y,DI(p), Q̂y,RA(p)

and Q̂y,REG(p) are random functions in (D[α, β],D). Following the notion of weak convergence

in [6] and [79], we shall show that the above quantile processes converge weakly in (D[α, β],D)

with respect to the sup norm metric (see Sections 4.2 and 4.3). The weak convergence in

(D[α, β],D) with respect to the sup norm metric implies and is implied by the weak convergence

in (D[α, β],D) with respect to the Skorohod metric given that the limiting process has almost

sure continuous paths.

4.2. Weak convergence of quantile processes under single stage sam-

pling designs

As in the earlier chapters, we first consider a superpopulation model such that {(Yi, Xi) : 1 ≤

i ≤ N} are i.i.d. random vectors on some probability space (Ω,F ,P). Also, as in Section 2.2

of Chapter 2 and Section 3.1 of Chapter 3, we consider the function P (s, ω) that is defined on

S × Ω. Recall from these sections that for each s ∈ S, P (s, ω) is a random variable on Ω, and

for each ω ∈ Ω, P (s, ω) is a probability distribution on S. It is to be noted that P (s, ω) is a

sampling design for each ω ∈ Ω. Suppose that A is the power set of S. Then, we consider
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the probability measure P∗(B × E)=
∫
E

∑
s∈B P (s, ω)dP(ω) (see [7] and [43]) defined on the

product space (S × Ω, A×F ), where B ∈ A, E ∈ F and B × E is a cylinder subset of S × Ω.

Recall from Section 2.2 of Chapter 2 and Section 3.1 of Chapter 3 that we denote expectations of

random quantities with respect to P by EP. We also denote expectations of random quantities

with respect to P (s, ω) and P∗ by E and EP∗ , respectively. Also, recall from these sections that

we define our asymptotic framework as follows. Let {Pν} be a sequence of populations with

Nν , nν → ∞ as ν → ∞, where Nν and nν are, respectively, the population and sample sizes

corresponding to the νth population. We suppress the limiting index ν for the sake of notational

simplicity.

We shall first show the weak convergence of the quantile processes introduced in Section

4.1 under high entropy sampling designs. Recall from Section 3.2 in Chapter 3 (see also the

introduction) that a sampling design P (s, ω) is called the high entropy sampling design if

D(P ||R) =
∑
s∈S

P (s, ω) log(P (s, ω)/R(s, ω)) → 0 as ν → ∞ a.s. [P] (4.2.1)

for some rejective sampling design R(s, ω) (for the description of the rejective sampling design,

see the introduction). Some examples of high entropy sampling designs are SRSWOR, RS

sampling design (see [4] and the introduction), LMS sampling design (see Lemma 3.6.1 in

Section 3.6 of Chapter 3), etc.

Suppose that Fy and Fx are superpopulation distribution functions of y and x, respectively.

Further, suppose that Qy(p)=inf{t ∈ R : Fy(t) ≥ p} and Qx(p)=inf{t ∈ R : Fx(t) ≥ p} are

superpopulation pth quantiles of y and x, respectively, and Vi=Ri −
∑N

i=1 Ri/N for i=1, . . . , N ,

where

Ri = (1[Yi≤Qy(p1)], . . . ,1[Yi≤Qy(pk)],1[Xi≤Qx(p1)] . . . ,1[Xi≤Qx(pk)])

for p1, . . . , pk ∈ (0, 1) and k ≥ 1. Moreover, let TV =
∑N

i=1 Vi(1−πi)/
∑N

i=1 πi(1−πi), where

{πi}Ni=1 denote inclusion probabilities. Recall from earlier chapters that all vectors in Euclidean

spaces are taken as row vectors and superscript T is used to denote their transpose. Before, we

state the main result, let us consider the following assumptions.

Assumption 4.2.1. n/N → λ as ν → ∞, where 0 < λ < 1.

Assumption 4.2.2. The inclusion probabilities {πi}Ni=1 are such that the following hold.
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(i) Given any k ≥ 1 and p1, . . . , pk ∈ (0, 1), (n/N2)
∑N

i=1(Vi−TV πi)
T (Vi−TV πi)(π

−1
i −

1) → Γ as ν → ∞ a.s. [P] for some positive definite (p.d.) matrix Γ.

(ii) There exist constantsK1,K2 > 0 such that for all i=1, . . . , N and ν ≥ 1,K1 ≤ Nπi/n ≤

K2 a.s. [P].

Suppose that supp(F )=(a1, a2) is the support (see [26]) of any distribution function F , where

a1=sup{t ∈ R : F (t) = 0} and a2=inf{t ∈ R : F (t) = 1}. Note that −∞ ≤ a1 < a2 ≤ ∞.

Then, we consider the following assumption on superpopulation distributions of y and x.

Assumption 4.2.3. Superpopulation distribution functions Fy of y and Fx of x are continuous

and are differentiable with positive continuous derivatives fy and fx on supp(Fy) ⊆ (−∞,∞)

and supp(Fx) ⊆ (0,∞), respectively.

Similar assumptions like Assumptions 4.2.1 and 4.2.2–(i) are stated and discussed in Chapter

2 (see the discussion related to Assumptions 2.1.1 and 2.1.4 in Section 2.1 of Chapter 2). It

can be shown using SLLN that Assumption 4.2.2-(i) holds under SRSWOR, LMS and any πPS

sampling designs (see Lemma 4.8.10 in Section 4.8). It can also be shown that Assumption

4.2.2-(ii) holds under the aforementioned sampling designs (see Lemma 3.6.1 in Chapter 3).

Assumption 4.2.2-(ii) was considered earlier in sample survey literature (see (C1) in [7] and

Assumption 2–(i) in [85]). Assumption 4.2.3 was considered before by [26] (see A2 in [26]).

Assumptions 4.2.1 and 4.2.2 are required to show the finite dimensional convergence of the

empirical process {
√
n(F̂u(t)− t) : t ∈ [0, 1]} for d(i, s)=(Nπi)−1 under high entropy sampling

designs, where

F̂u(t) =
∑
i∈s

d(i, s)1[Ui≤t]

/∑
i∈s

d(i, s) and Ui = Fy(Yi) (4.2.2)

for i=1, . . . , N and 0 ≤ t ≤ 1. Here, Fy is as in the paragraph preceding Assumption 4.2.1.

On the other hand, Assumptions 4.2.1, 4.2.2-(ii) and 4.2.3 are used to establish the tightness of

this empirical process under the same sampling designs. Based on the weak convergence of this

empirical process, we shall prove the weak convergence of the aforementioned quantile processes

under high entropy sampling designs. Suppose that D̃[0, 1] is the class of all right continuous

functions defined on [0, 1] with finite left limits, and D̃ is the σ-field on D̃[0, 1] generated by

the open balls (ball σ-field) with respect to the sup norm metric. Then, we state the following

proposition.
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Proposition 4.2.1. Suppose that Assumptions 4.2.1 and 4.2.3 hold. Then, under P∗,

{√
n(F̂u(t)− t) : t ∈ [0, 1]

} L−→ H as ν → ∞

in (D̃[0, 1], D̃) with respect to the sup norm metric, for d(i, s)=(Nπi)−1 and any high entropy

sampling design satisfying Assumption 4.2.2, where H is a mean 0 Gaussian process in D̃[0, 1]

with almost sure continuous paths.

The weak convergence of the empirical process mentioned in Proposition 4.2.1 is first shown

under rejective sampling designs by establishing its tightness and finite dimensional convergence.

Then, the weak convergence of this empirical process is shown under high entropy sampling

designs using the fact that any high entropy sampling design can be approximated by a rejective

sampling design in Kullback-Liebler divergence.

[7] and [43] showed the weak convergence of a similar version of the above-mentioned

empirical process under some conditions on sampling designs (e.g., (HT2) in [7], and (F2) and

(F3) in [43]). These conditions hold under very few sampling designs (with fixed sample size)

like SRSWOR and rejective sampling designs. We are able to dispense with those conditions

and show the weak convergence of
{√

n(F̂u(t)− t) : t ∈ [0, 1]
}

for d(i, s)=(Nπi)−1 under any

high entropy sampling design satisfying Assumption 4.2.2. Examples of such a sampling design

are SRSWOR, LMS and HEπPS sampling designs. Recall from the introduction that a sampling

design is called HEπPS sampling design if it is a high entropy as well as a πPS sampling design

(e.g., RS sampling design, rejective sampling design, etc.). In particular, we are able to show the

weak convergence of the aforementioned empirical process under LMS and HEπPS sampling

designs, which are not covered in the earlier literature. Now, we state the following theorem.

Theorem 4.2.1. Fix any 0 < α < β < 1. Suppose that Assumptions 4.2.1 and 4.2.3 hold, and

EP||Wi||2 <∞ for Wi=(Xi, Yi, XiYi, X
2
i ). Then, under the probability distribution P∗,

{
√
n(G(p)−Qy,N (p)) : p ∈ [α, β]} L−→ Q as ν → ∞

in (D[α, β],D) with respect to the sup norm metric, for any high entropy sampling design satis-

fying Assumption 4.2.2, where G(p) denotes one of Q̂y(p), Q̂y,RA(p), Q̂y,DI(p) and Q̂y,REG(p)

with d(i, s)=(Nπi)−1, and Q is a mean 0 Gaussian process in D[α, β] with almost sure continu-

ous path and p.d. covariance kernel
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K(p1, p2) = lim
ν→∞

(n/N2)EP

( N∑
i=1

(ζi(p1)− ζ(p1)− S(p1)πi)×

(ζi(p2)− ζ(p2)− S(p2)πi)(π
−1
i − 1)

)
for p1, p2 ∈ [α, β].

(4.2.3)

Here, ζ(p)=
∑N

i=1 ζi(p)/N , S(p)=
∑N

i=1(ζi(p)− ζ(p))(1− πi)
/∑N

i=1 πi(1− πi), and ζi(p)’s

are as in Table 4.1 below.

TABLE 4.1: Expressions of ζi(p)’s appearing in (4.2.3) and (4.2.5) for different G(p)’s in the
cases of high entropy and RHC sampling designs.

G(p) ζi(p)

Q̂y(p) 1[Yi≤Qy(p)]/fy(Qy(p))

Q̂y,RA(p) 1[Yi≤Qy(p)]/fy(Qy(p))− (Qy(p)/Qx(p))1[Xi≤Qx(p)]/fx(Qx(p))

Q̂y,DI(p) 1[Yi≤Qy(p)]/fy(Qy(p))− (EP(Yi)/EP(Xi))1[Xi≤Qx(p)]/fx(Qx(p))

Q̂y,REG(p) 1[Yi≤Qy(p)]/fy(Qy(p))− (EP(XiYi)/EP(Xi)
2)1[Xi≤Qx(p)]/fx(Qx(p))

As discussed in the beginning of this chapter, the weak convergence of the quantile processes

mentioned in Theorem 4.2.1 are shown under high entropy sampling designs using the weak

convergence of empirical process mentioned in Proposition 4.2.1, Hadamard differentiability

of the quantile map and the functional delta method. The weak convergence of the quantile

process constructed based on the sample quantile for d(i, s)=(Nπi)−1 was considered earlier in

[26] under a high entropy sampling design. However, in [26], the author did not provide much

details of the derivation of the main weak convergence result. Using dominated convergence

theorem (DCT) and Lemma 4.8.10 in Section 4.8, K(p1, p2) in (4.2.3) can be expressed in terms

of superpopulation moments under SRSWOR, LMS and any HEπPS sampling designs as in

Table 4.2 below.

TABLE 4.2: K(p1, p2) in (4.2.3) under different high entropy sampling designs.

Sampling design K(p1, p2)

SRSWOR and
(1− λ)EP

[
ζi(p1)− EP(ζi(p1))

][
ζi(p2)− EP(ζi(p2))

]
LMS

HEπPS

1EP
[
ζi(p1)− EP(ζi(p1)) + λχ−1µ−1

x XiEP
(
(ζi(p1)− EP(ζi(p1)))Xi

)]
×[

ζi(p2)− EP(ζi(p2)) + λχ−1µ−1
x XiEP

(
(ζi(p2)− EP(ζi(p2)))Xi

)]
×[

µxX
−1
i − λ]

1 µx=EP(Xi) and χ=µx − (λEP(Xi)
2/µx).
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Next, we shall show the weak convergence of the quantile processes considered in Section 4.1

under RHC sampling design. Recall from the introduction that in RHC sampling design, the finite

population P is first divided randomly into n disjoint groups of sizes Ñ1 · · · , Ñn, respectively,

by taking a sample of Ñ1 units from N units with SRSWOR, a sample of Ñ2 units from N − Ñ1

units with SRSWOR and so on. Then, one unit is selected in the sample from each of these groups

independently with probability proportional to the size variable x. [66] suggested this sampling

design for constructing the well-known RHC estimator of the population mean. Advantages of

the RHC estimator are discussed in Section 3.1 of Chapter 3. Before, we state the next theorem,

let us consider some assumptions on the superpopulation distribution P.

Assumption 4.2.4. There exists a constant K such that max1≤i≤N Xi/min1≤i≤N Xi ≤ K a.s.

[P].

Assumption 4.2.5. The support of the joint distribution of (Yi, Xi) is not a subset of a straight

line in R2.

As in the earlier chapters, here also we consider the following assumption.

Assumption 4.2.6. For the RHC sampling design, {Ñr}nr=1 are such that

Ñr =


N/n, for r = 1, · · · , n, when N/n is an integer,

⌊N/n⌋, for r = 1, · · · , k, and

⌊N/n⌋+ 1, for r = k + 1, · · · , n, when N/n is not an integer,

(4.2.4)

where k is such that
∑n

r=1 Ñr=N . Here, ⌊N/n⌋ is the integer part of N/n.

Assumption 4.2.4 is equivalent to Assumption 4.2.2–(ii) under any πPS sampling design.

Similar assumptions like Assumptions 4.2.4–4.2.6 are stated and discussed in Chapter 2 (see the

discussion related to Assumptions 2.1.6 and 2.2.1 in Chapter 2). These assumptions are required

to show the finite dimensional convergence of the empirical process {
√
n(F̂u(t)−t)) : t ∈ [0, 1]}

for d(i, s)=(NXi)
−1Gi under RHC sampling design, where Gi’s are as in the 1st paragraph

of Section 4.1. Assumptions 4.2.4 and 4.2.6 are also required to establish the tightness of

this empirical process. As in the case of high entropy sampling designs, here also we shall

show the weak convergence of several quantile processes based on the weak convergence of the

above-mentioned empirical process.
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Proposition 4.2.2. Suppose that EP(Xi)
−1 <∞, and Assumptions 4.2.1 and 4.2.3–4.2.6 hold.

Then, the conclusion of Proposition 4.2.1 holds for d(i, s)=(NXi)
−1Gi and RHC sampling

design.

Theorem 4.2.2. Fix any 0 < α < β < 1. Suppose that EP(Xi)
−1 < ∞, EP||Wi||2 < ∞ for

Wi=(Xi, Yi, XiYi, X
2
i ), and Assumptions 4.2.1 and 4.2.3–4.2.6 hold. Then, the conclusion of

Theorem 4.2.1 holds for d(i, s)=(NXi)
−1Gi and RHC sampling design with p.d. covariance

kernel

K(p1, p2) = lim
ν→∞

nγEP
[
(X/N)

N∑
i=1

(ζi(p1)− ζ(p1))(ζi(p2)− ζ(p2))X
−1
i

]
= cEP(Xi)EP

[(
ζi(p1)− EP(ζi(p1))

)(
ζi(p2)− EP(ζi(p2))

)
X−1

i

]
for p1, p2 ∈ [α, β].

(4.2.5)

Here, γ=
∑n

r=1 Ñr(Ñr − 1)/N(N − 1), c=limν→∞ nγ, and ζi(p)’s are as in Table 4.1 above.

The proof techniques of Proposition 4.2.2 and Theorem 4.2.2 are similar to the proof tech-

niques of Proposition 4.2.1 and Theorem 4.2.1, respectively. It follows from Lemma 2.7.5 in

Section 2.7 of Chapter 2 that c=1− λ for λ−1 an integer, and c=λ⌊λ−1⌋(2− λ⌊λ−1⌋ − λ) when

λ−1 is a non-integer. If we replace Qy,N by Qy in the quantile processes considered in this

section, then the weak convergence of these quantile processes can be shown under high entropy

and RHC sampling designs using the key ideas of the proofs of Theorems 4.2.1 and 4.2.2.

4.3. Weak convergence of quantile processes under stratified

multistage cluster sampling design

Stratified multistage cluster sampling design with SRSWOR is used instead of single stage

sampling designs mentioned in the preceding section, when heterogenity is present in the

population values of (y, x). Let us recall the definition of stratified multistage cluster sampling

design with SRSWOR from the introduction. Suppose that the finite population P is divided into

H strata or subpopulations, where stratum h consists of Mh clusters for h=1, . . . ,H . Further,

the jth cluster in stratum h consists of Nhj units for j=1, . . . ,Mh. For any given h=1, . . . ,H ,

j=1, . . . ,Mh and l=1, . . . , Nhj , we assume that the lth unit from cluster j in stratum h is the ith

unit in the population P , where i=
∑h

h′=1

∑Mh′
j′=1Nh′j′ −

∑Mh
j′=j Nhj′ + l. In stratified multistage
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cluster sampling design with SRSWOR, first a sample sh of mh (< Mh) clusters is selected

from stratum h under SRSWOR for each h. Then, a sample shj of rh (< Nhj) units is selected

from jth cluster in stratum h if it is selected in the sample of clusters sh in the first stage for

h=1, . . . ,H . Thus the resulting sample is s=∪1≤h≤H,j∈shshj . The samplings in two stages are

done independently across the strata and the clusters. Under the above sampling design, the

inclusion probability of the ith population unit is πi=mhrh/MhNhj if it belongs to the jth cluster

of stratum h. Note that stratified multistage cluster sampling design with SRSWOR becomes

stratified sampling design with SRSWOR, when Nhj=1 for any h=1, . . . ,H and j=1, . . . ,Mh.

Also, note that stratified multistage cluster sampling design with SRSWOR becomes multistage

cluster sampling design with SRSWOR, when H=1.

Suppose that (Y ′
hjl, X

′
hjl) denotes the value of (y, x) corresponding to the lth unit from cluster

j in stratum h. Note that given any h, j and l, (Y ′
hjl, X

′
hjl)=(Yi, Xi), where i=

∑h
h′=1

∑Mh′
j′=1Nh′j′−∑Mh

j′=j Nhj′ + l and (Yi, Xi) is the value of (y, x) corresponding to the ith population unit. We

assume that for any given h=1, . . . ,H , {(Y ′
hjl, X

′
hjl) : l = 1, . . . , Nhj , j = 1, . . . ,Mh} are

i.i.d. random vectors defined on (Ω,F ,P) with marginal distribution functions Fy,h and Fx,h,

where Fy,h’s and Fx,h’s are not necessarily identical for varying h. We also assume that the

population observations on (y, x) in any stratum are independent of the observations in other

strata. [35] used a similar superpopulation model set up for studying the asymptotic behavior

of sample quantiles. However, they considered all Fy,h’s to be the same. Note that H , Mh,

Nhj , mh and rh depend on ν, when we consider the sequence of populations {Pν}. However,

for simplicity, we omit ν. As in the cases of single stage sampling designs, here also we shall

show the weak convergence of various quantile processes based on the weak convergence of the

empirical process
{√

n(F̂u(t)− t) : t ∈ [0, 1]
}

for d(i, s)=(Nπi)−1.

First, we consider the case, when H is fixed as ν → ∞ (cf. [10]). In this case, we need

the following assumptions to show that the conclusions of Proposition 4.2.1 and Theorem 4.2.1

hold for stratified multistage cluster sampling design with SRSWOR. Let Nh=
∑Mh

j=1Nhj and

nh=mhrh be the number of population units in stratum h and the number of population units

sampled from stratum h, respectively, for any h=1, . . . ,H .

Assumption 4.3.1.
∑∞

ν=1 exp(−KMh) < ∞, 0 < limν→∞mh/Mh ≤ limν→∞mh/Mh < 1,

limν→∞ nh/n=λh > 0, limν→∞Nh/N=Λh > 0 and 0 < limν→∞min1≤j≤Mh
rh/Nhj ≤

limν→∞ max1≤j≤Mh
rh/Nhj < 1 for any h=1, . . . ,H andK > 0, and max1≤h≤H

∑Mh
j=1N

4
hj/

Mh=O(1) and max1≤h≤H
∑Mh

j=1(Nhj −Nh/Mh)
2/ Mh → 0 as ν → ∞.
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Assumption 4.3.2. For any h=1, . . . ,H , the support of the joint distribution of (Y ′
hjl, X

′
hjl) is

not a subset of a straight line in R2, and EP||W′
hjl||2 <∞, where W′

hjl=(X
′
hjl, Y

′
hjl, X

′
hjlY

′
hjl,

(X ′
hjl)

2).

Assumption 4.3.3. supp(Fy,h)=Cy and supp(Fx,h)=Cx for any h=1, . . . ,H and some open

intervals Cy ⊆ (−∞,∞) and Cx ⊆ (0,∞). Moreover, Fy,h and Fx,h are continuous on R and

are differentiable with positive continuous derivatives fy,h and fx,h on Cy and Cx, respectively,

for any h=1, . . . ,H and ν ≥ 1.

The condition
∑∞

ν=1 exp(−KMh) < ∞ for any h=1, . . . ,H and K > 0 in Assumption

4.3.1 holds, when the number of clusters in each stratum is a strictly increasing function

of ν. This condition implies that M1, . . . ,MH grow infinitely as ν → ∞. The condition

max1≤h≤H
∑Mh

j=1N
4
hj/Mh=O(1) as ν → ∞ in Assumption 4.3.1 holds, when cluster sizes in

any stratum are not arbitrarily large. The condition max1≤h≤H
∑Mh

j=1(Nhj−Nh/Mh)
2/Mh → 0

as ν → ∞ in Assumption 4.3.1 implies that the variation among cluster sizes in each stratum

is negligible. The rest of the conditions in Assumption 4.3.1 are often used in sample survey

literature (see [62], [77] and references therein). Assumptions 4.3.1–4.3.3 are required to estab-

lish the finite dimensional convergence of the empirical process
{√

n(F̂u(t) − t) : t ∈ [0, 1]
}

for d(i, s)=(Nπi)−1 under stratified multistage cluster sampling design with SRSWOR, whereas

Assumptions 4.3.1 and 4.3.3 are required to show the tightness of this empirical process under

the same sampling design.

Next, we consider the case, when H → ∞ as ν → ∞ (cf. [35], [77], etc.). In this case, we

replace Assumption 4.3.1 by Assumption 4.3.4 and Assumption 4.3.2 by Assumption 4.3.5 given

below, and consider some further assumptions to show that the conclusions of Proposition 4.2.1

and Theorem 4.2.1 hold for stratified multistage cluster sampling design with SRSWOR.

Assumption 4.3.4.
∑∞

ν=1 exp(−KH) <∞ for anyK > 0, and max1≤h≤H,1≤j≤Mh
nMhNhj/

mhN =O(1),
∑H

h=1M
4
h/H=O(1) and max1≤h≤H

∑Mh
j=1(Nhj −Nh/Mh)

2/Mh → 0 as ν →

∞.

Next, suppose that Fy,H(t)=
∑H

h=1(Nh/N)Fy,h(t) and Fx,H(t)=
∑H

h=1(Nh/N)Fx,h(t), and

Qy,H and Qx,H are quantile functions corresponding to Fy,H and Fx,H , respectively. Let

R′
hjl = (1[Y ′

hjl≤Qy,H(p1)], . . . ,1[Y ′
hjl≤Qy,H(pk)],1[X′

hjl≤Qx,H(p1)], . . . ,1[X′
hjl≤Qx,H(pk)])
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for any k ≥ 1 and p1, . . . , pk ∈ (0, 1), and Γh=EP(R′
hjl−EP(R′

hjl))
T (R′

hjl−EP(R′
hjl)). Then,

we consider the following assumptions.

Assumption 4.3.5. Given any k ≥ 1 and p1, . . . , pk ∈ (0, 1),
∑H

h=1Nh(Nh − nh)Γh/nhN →

Γ1 and
∑H

h=1NhΓh/N → Γ2 as ν → ∞ for some positive definite matrices Γ1 and Γ2. More-

over,
∑H

h=1

∑Mh
j=1

∑Nhj

l=1 W′
hjl/N → Θ=(Θ1, . . . ,Θ4) and

∑H
h=1

∑Mh
j=1

∑Nhj

l=1 ||W′
hjl||2/N=

O(1) a.s. [P] as ν → ∞, where Θ1 > 0.

Further, suppose that fy,H(t)=dFy,H/dt and fx,H(t)=dFx,H/dt, and consider the following

assumptions.

Assumption 4.3.6. supp(Fy,h)=Cy and supp(Fx,h)=Cx for any h=1, . . . ,H and some open

intervals Cy ⊆ (−∞,∞) and Cx ⊆ (0,∞). Further, there exists a distribution function F̃y with

supp(F̃y)=Cy and positive continuous derivative f̃y such that Fy,H(t) → F̃y(t) for any t ∈ R

and supCy |fy,H(t)− f̃y(t)| → 0 as ν → ∞. There also exists a distribution function F̃x with

supp(F̃x)=Cx and positive continuous derivative f̃x such that Fx,H(t) → F̃x(t) for any t ∈ R

and supCx |fx,H(t)− f̃x(t)| → 0 as ν → ∞.

The condition max1≤h≤H,1≤j≤Mh
nMhNhj/mhN=O(1) as ν → ∞ in Assumption 4.3.4

was considered earlier in the literature (cf. [77]). This condition and Assumption 4.2.1 imply

that cluster sizes in any stratum cannot be arbitrarily large. The condition
∑H

h=1M
4
h/H=O(1)

as ν → ∞ in Assumption 4.3.4 holds, when the number of clusters in any stratum is not

arbitrarily large. Assumption 4.3.6 implies that Fy,H and Fx,H can be approximated by the

distribution functions F̃y and F̃x, respectively, when H → ∞ as ν → ∞. This assumption

also implies that fy,H and fx,H can be approximated uniformly by the density functions of F̃y

and F̃x, respectively, when H → ∞ as ν → ∞. Assumptions 4.3.4 and 4.3.5 are required to

show the finite dimensional convergence of the empirical process
{√

n(F̂u(t)− t) : t ∈ [0, 1]
}

for d(i, s)=(Nπi)−1 under stratified multistage cluster sampling design with SRSWOR, and

Assumptions 4.3.4 and 4.3.6 are required to establish the tightness of this empirical process under

the same sampling design. Now, we state the following results.

Proposition 4.3.1. (i) Suppose that H is fixed as ν → ∞, and Assumptions 4.2.1 and 4.3.1–4.3.3

hold. Then, the conclusion of Proposition 4.2.1 holds for stratified multistage cluster sampling

design with SRSWOR.

(ii) Further, if H → ∞ as ν → ∞, and Assumptions 4.2.1 and 4.3.3–4.3.6 hold, then the same

result holds.
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Theorem 4.3.1. (i) Suppose that H is fixed as ν → ∞, and Assumptions 4.2.1 and 4.3.1–4.3.3

hold. Then, the conclusion of Theorem 4.2.1 holds for stratified multistage cluster sampling

design with SRSWOR with p.d. covariance kernel

K(p1, p2) = lim
ν→∞

(n/N2)
H∑

h=1

Nh(Nh − nh)EP
(
ζ ′hjl(p1)− EP(ζ

′
hjl(p1))

)
×

(
ζ ′hjl(p2)− EP(ζ

′
hjl(p2))

)
/nh for p1, p2 ∈ [α, β].

(4.3.1)

Here, ζ ′hjl(p)’s are as in Table 4.3 below.

(ii) Further, if H → ∞ as ν → ∞, and Assumption 4.2.1 and 4.3.3–4.3.6 hold, then the same

result holds.

TABLE 4.3: Expressions of ζ ′hjl(p)’s appearing in (4.3.1) for different G(p)’s in the case of
stratified multistage cluster sampling design with SRSWOR.

G(p) ζ ′hjl(p)

Q̂y(p) 1[Y ′
hjl≤Qy,H(p)]/fy,H(Qy,H(p))

Q̂y,RA(p)
1[Y ′

hjl≤Qy,H(p)]/fy,H(Qy,H(p))− (Qy,H(p)/Qx,H(p))×
H is fixed 1[X′

hjl≤Qx,H(p)]/fx,H(Qx,H(p))

as ν → ∞
Q̂y,DI(p)

1[Y ′
hjl≤Qy,H(p)]/fy,H(Qy,H(p))− (

∑H
h=1(Nh/N)EP(Y

′
hjl)/

1∑H
h=1(Nh/N)EP(X

′
hjl))1[X′

hjl≤Qx,H(p)]/fx,H(Qx,H(p))

Q̂y,REG(p)
1[Y ′

hjl≤Qy,H(p)]/fy,H(Qy,H(p))− (
∑H

h=1(Nh/N)EP(X
′
hjlY

′
hjl)/∑H

h=1(Nh/N)EP(X
′
hjl)

2)1[X′
hjl≤Qx,H(p)]/fx,H(Qx,H(p))

Q̂y(p) 1[Y ′
hjl≤Qy,H(p)]/fy,H(Qy,H(p))

Q̂y,RA(p)
1[Y ′

hjl≤Qy,H(p)]/fy,H(Qy,H(p))− (Qy,H(p)/Qx,H(p))×
H → ∞ 1[X′

hjl≤Qx,H(p)]/fx,H(Qx,H(p))

as ν → ∞
Q̂y,DI(p)

1[Y ′
hjl≤Qy,H(p)]/fy,H(Qy,H(p))− (2Θ2/

2Θ1)×
1[X′

hjl≤Qx,H(p)]/fx,H(Qx,H(p))

Q̂y,REG(p)
1[Y ′

hjl≤Qy,H(p)]/fy,H(Qy,H(p))− (2Θ3/
2Θ4)×

1[X′
hjl≤Qx,H(p)]/fx,H(Qx,H(p))

2 Θ1, Θ2, Θ3 and Θ4 are as in Assumption 4.3.5 in Section 4.3.

The proof techniques of Proposition 4.3.1 and Theorem 4.3.1 are similar to the proof

techniques of Proposition 4.2.1 and Theorem 4.2.1, respectively. The weak convergence of

the above quantile processes with Qy,N replaced by Qy can be shown using the key ideas

of the proof of Theorem 4.3.1. When H is fixed as ν → ∞, the expression of K(p1, p2)

in (4.3.1) can be further simplified (cf. (4.7.42) in Section 4.7) because Nh/N → Λh and

(n/N2)Nh(Nh−nh)/nh → λΛh(Λh/λλh−1) as ν → ∞ for any h=1, . . . ,H by Assumptions

4.2.1 and 4.3.1.
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4.4. Functions of quantile processes

In this section, we derive the asymptotic normality of the smooth L-estimators as well as the esti-

mators of smooth functions of finite population quantiles, which are based on the sample quantile,

and the ratio, the difference and the regression estimators of the population quantiles, under

sampling designs considered in the preceding two sections. The smooth L-estimators include the

estimators of the population α-trimmed means, whereas the estimators of smooth functions of

population quantiles include the estimators of any specific quantile, the interquartile range and

the quantile based measure of skewness in the population. Note that non smooth L-estimators

are also special cases of these latter estimators. Some asymptotic normality results related to

the estimators of the population quantiles are available in sample survey literature. [53] showed

that the ratio estimator of the population median is asymptotically normal under SRSWOR. [35]

derived the asymptotitc normality of the sample quantile under stratified cluster sampling design

with SRSWOR based on superpopulation model assumptions. [85] derived the asymptotitc

normality of the sample quantile under some conditions on sampling deigns. [18] derived the

asymptotic normality of the sample median under SRSWOR based on superpopulation model

assumptions. [77] derived the asymptotic normality of smooth and non smooth L-estimators,

which are constructed based on the sample quantile, under stratified multistage cluster sampling

design with SRSWOR. However, there is no result present in the existing literature related to

the asymptotic normality of the smooth L-estimators and the estimators of smooth functions of

population quantiles, which are based on the ratio, the difference and the regression estimators of

the population quantile. There is also no result present in the available literature related to the

asymptotic normality of the above estimators under high entropy and RHC sampling designs.

Let us fix 0 < α < β < 1 and consider the finite population parameter
∫
[α,β]Qy,N (p)J(p)dp

for some known smooth function J on [0, 1]. It follows from the definition of Qy,N (p) that the

above parameter coincides with the population α-trimmed mean

τα,N =

(N−⌊Nα⌋−1∑
i=⌊Nα⌋+2

Y(i) + (1− {Nα})(Y(⌊Nα⌋+1) + Y(N−⌊Nα⌋))

)/
N(1− 2α)

when 0 < α < 1/2, β=1 − α and J(p)=1/(1 − 2α), p ∈ [0, 1]. Here, Y(1), . . . , Y(N) are

the ordered population values of y, and [Nα] and {Nα} are, respectively, the integer and

the fractional parts of Nα. Several estimators of
∫
[α,β]Qy,N (p)J(p)dp can be constructed by

plugging Q̂y(p), Q̂y,RA(p), Q̂y,DI(p) and Q̂y,DI(p) into
∫
[α,β]Qy,N (p)J(p)dp. Note that these
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estimators can be expressed as weighted linear combinations of the ordered sample observations

on y, where the weights are mainly generated by the smooth function J . That is why these

estimators are called smooth L-estimators (cf. [77]).

Next, suppose that k ≥ 1, p1, . . . , pk ∈ (0, 1), f : Rk → R is a smooth function, and

f(Qy,N (p1), . . . , Qy,N (pk)) is a finite population parameter. Some examples of such a parame-

ter are given in Table 4.4 below. Several estimators of f(Qy,N (p1), . . . , Qy,N (pk)) can be con-

TABLE 4.4: Examples of f(Qy,N (p1), . . . , Qy,N (pk)).

Parameter k p1, . . . , pk f

Median 1 p1=0.5 f(t)=t
Interquartile

2 p1=0.25, p2=0.75 f(t1, t2)=t2 − t1range
Bowley’s measure

3 p1=0.25, p2=0.5, p3=0.75 f(t1, t2)=(t1 + t3 − 2t2)/(t3 − t1)of skewness

structed by plugging Q̂y(p), Q̂y,RA(p), Q̂y,DI(p) and Q̂y,DI(p) in f(Qy,N (p1), . . . , Qy,N (pk)).

Now, we state the asymptotic normality results for the above estimators.

Theorem 4.4.1. (i) Fix 0 < α < β < 1. Suppose that the conclusion of Theorem 4.2.1 holds and

K(p1, p2) in (4.2.3) is continuous on [α, β]× [α, β]. Then, under P∗,

√
n

(∫
[α,β]

G(p)J(p)dp−
∫
[α,β]

Qy,N (p)J(p)dp

)
L−→ N(0, σ21) and

√
n (f(G(p1), . . . , G(pk))− f(Qy,N (p1), . . . , Qy,N (pk)))

L−→ N(0, σ22) as ν → ∞

(4.4.1)

for any high entropy sampling design, where k ≥ 1, p1, . . . , pk ∈ [α, β], and G(p) is one of

Q̂y(p), Q̂y,RA(p), Q̂y,DI(p) and Q̂y,REG(p) with d(i, s)=(Nπi)−1. Here,

σ21 =

∫ β

α

∫ β

α
K(p1, p2)J(p1)J(p2)dp1dp2, σ

2
2 = a∆aT , (4.4.2)

∆ is a k × k matrix such that

((∆))ij = K(pi, pj) for 1 ≤ i, j ≤ k, and a = lim
ν→∞

∇f(Qy,N (p1), . . . , Qy,N (pk)) (4.4.3)

a.s. [P].

(ii) Further, if the assumptions of Theorem 4.2.2 hold, then the results in (4.4.1) hold for

d(i, s)=(NXi)
−1Gi in the case of RHC sampling design.
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It can be shown using the expressions in Table 4.2 and Assumption 4.2.3 that K(p1, p2) in

(4.2.3) is continuous on [α, β]× [α, β] under SRSWOR, LMS and πPS sampling designs. Next,

we state the following theorem.

Theorem 4.4.2. (i) Fix 0 < α < β < 1. Suppose that H is fixed as ν → ∞, and Assumptions

4.2.1 and 4.3.1–4.3.3 hold, then the results in (4.4.1) of Theorem 4.4.1 hold for d(i, s)=(Nπi)−1=

MhNhj/Nmhrh under stratified multistage cluster sampling design with SRSWOR.

(ii) On the other hand, if H → ∞ as ν → ∞, Assumptions 4.2.1 and 4.3.3–4.3.6 hold, and

K(p1, p2) in (4.3.1) is continuous on [α, β]× [α, β], then the same results hold.

When H → ∞ as ν → ∞ in the case of stratified multistage cluster sampling design with

SRSWOR, it can be shown that K(p1, p2) in (4.3.1) is continuous on [α, β]× [α, β] if the limit

in the expression of K(p1, p2) in (4.3.1) exists uniformly over [α, β]× [α, β].

4.4.1 Estimation of asymptotic covariance kernels and confidence intervals

Suppose that

θ1 =

∫
[α,β]

Qy,N (p)J(p)dp, θ2 = f(Qy,N (p1), . . . , Qy,N (pk)),

θ̂1 =

∫
[α,β]

G(p)J(p)dp and θ̂2 = f(G(p1), . . . , G(pk)),

where G(p) is one of Q̂y(p), Q̂y,RA(p), Q̂y,DI(p) and Q̂y,REG(p). Then,
√
n(θ̂i − θi)

L−→

N(0, σ2i ) for i=1, 2, where σ2i ’s are as in Theorem 4.4.1. Further, suppose that σ̂i
p−→ σi for some

estimator σ̂i of σi, i=1, 2. Then, a 100(1− η)% confidence interval for θi can be constructed as

[θ̂i − Zη/2σ̂i/
√
n, θ̂i + Zη/2σ̂i/

√
n] for i = 1, 2,

where Zη/2 is the (1− η/2)th quantile of the standard normal distribution. We now discuss the

estimation of the asymptotic covariance kernels mentioned in (4.2.3), (4.2.5) and (4.3.1) based

on which consistent estimators of σ2i ’s will be constructed.

Following the approach of [16], K(p1, p2), for d(i, s)=(Nπi)−1, under any high entropy

sampling design (see (4.2.3)) can be estimated by
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K̂(p1, p2) =(n/N2)
∑
i∈s

(ζ̂i(p1)− ζ̂(p1)− Ŝ(p1)πi)×

(ζ̂i(p2)− ζ̂(p2)− Ŝ(p2)πi)(π
−1
i − 1)π−1

i ,

(4.4.4)

where ζ̂(p)=
∑

i∈s(Nπi)
−1ζ̂i(p) and Ŝ(p)=

∑
i∈s(ζ̂i(p)− ζ̂(p))(π−1

i − 1)/
∑

i∈s(1− πi). Here,

ζ̂i(p) is obtained by replacing the superpopulation parameters involved in the expression of ζi(p)

in Table 4.1 by their estimators under high entropy sampling designs (see Table 4.5 below). Note

that
√
n(Q̂y(p + 1/

√
n) − Q̂y(p − 1/

√
n))/2 was considered as an estimator of 1/fy(Qy(p))

earlier in [77].

Next, K(p1, p2), for d(i, s)=(NXi)
−1Gi under RHC sampling design (see (4.2.5)), can be

estimated as

K̂(p1, p2) = nγ(X/N)
∑
i∈s

Gi(ζ̂i(p1)− ζ̂(p1))(ζ̂i(p2)− ζ̂(p2))X
−2
i , (4.4.5)

where ζ̂(p)=
∑

i∈s(NXi)
−1Giζ̂i(p). Here, ζ̂i(p) is obtained by replacing the superpopulation

parameters involved in the expression of ζi(p) in Table 4.1 by their estimators under RHC

sampling design (see Table 4.5 below).

TABLE 4.5: Estimators of various superpopulation parameters involved in the expression of
ζi(p) in Table 4.1 for high entropy and RHC sampling designs.

Parameters Estimators
High entropy sampling designs RHC sampling design

Qy(p) Q̂y(p) with d(i, s)=(Nπi)−1 Q̂y(p) with d(i, s)=(NXi)
−1Gi

Qx(p) Q̂x(p) with d(i, s)=(Nπi)−1 Q̂x(p) with d(i, s)=(NXi)
−1Gi

1/fy(Qy(p))

√
n(Q̂y(p+ 1/

√
n)−

√
n(Q̂y(p+ 1/

√
n)−

Q̂y(p− 1/
√
n))/2 Q̂y(p− 1/

√
n))/2

1/fx(Qy(p))

√
n(Q̂x(p+ 1/

√
n)−

√
n(Q̂x(p+ 1/

√
n)−

Q̂x(p− 1/
√
n))/2 Q̂x(p− 1/

√
n))/2

EP(Yi)
∑

i∈s(Nπi)
−1Yi

∑
i∈s(NXi)

−1GiYi
EP(Xi)

∑
i∈s(Nπi)

−1Xi
∑

i∈sN
−1Gi

EP(XiYi)
∑

i∈s(Nπi)
−1XiYi

∑
i∈sN

−1GiYi
EP(Xi)

2
∑

i∈s(Nπi)
−1X2

i

∑
i∈sN

−1GiXi

Given an estimator K̂(p1, p2) of K(p1, p2), an estimator of σ21 can be constructed as σ̂21

=
∫ β
α

∫ β
α K̂(p1, p2)J(p1)J(p2) dp1dp2, whereas an estimator σ22 can be constructed as σ̂22=â∆̂âT .
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Here, â=∇f(Q̂y(p1), . . . , Q̂y(pk)), k ≥ 1, p1, . . . , pk ∈ [α, β], and ∆̂ is a k × k matrix such

that ((∆̂))ij=K̂(pi, pj) for 1 ≤ i, j ≤ k. In the following theorem, we assert that the above

estimators of σ21 and σ22 are consistent.

Theorem 4.4.3. (i) Fix 0 < α < β < 1. Suppose that the assumptions of Theorem 4.2.1 hold,

K(p1, p2) is as in (4.2.3), and K̂(p1, p2) is as in (4.4.4). Then, under P∗,

σ̂2i
p−→ σ2i as ν → ∞ for i = 1, 2 (4.4.6)

and any high entropy sampling design satisfying Assumption 4.2.2.

(ii) Further, if the assumptions of Theorem 4.2.2 hold, K(p1, p2) is as in (4.2.5), and K̂(p1, p2)

is as in (4.4.5). Then, the result in (4.4.6) hold under RHC sampling design.

Next, for the case of stratified multistage cluster sampling design with SRSWOR ,EP(ζ
′
hjl(p1)−

EP(ζ
′
hjl(p1)))(ζ

′
hjl(p2)−EP(ζ

′
hjl(p2))) in the expression ofK(p1, p2) in (4.3.1) can be estimated

as ∑
j∈sh

∑
l∈shj

MhNhj(ζ̂hjl(p1)− ζ̂h(p1))(ζ̂hjl(p2)− ζ̂h(p2))/mhrhNh,

where ζ̂h(p)=
∑

j∈sh
∑

l∈shj MhNhj ζ̂hjl(p)/mhrhNh, and h=1, . . . ,H . Here, ζ̂hjl(p) is ob-

tained by replacing the superpopulation parameters involved in the expression of ζ ′hjl(p) in Table

4.3 by their estimators as mentioned in Table 4.6 below. Thus an estimator of K(p1, p2) in (4.3.1)

TABLE 4.6: Estimators of various superpopulation parameters involved in the expression of
ζ ′hjl(p) in Table 4.3 for stratified multistage cluster sampling design with SRSWOR.

Parameters Estimators
Qy,H(p) Q̂y(p) with d(i, s)=(Nπi)−1=MhNhj/Nmhrh
Qx,H(p) Q̂x(p) with d(i, s)=(Nπi)−1=MhNhj/Nmhrh

1/fy,H(Qy,H(p))
√
n(Q̂y(p+ 1/

√
n)− Q̂y(p− 1/

√
n))/2

1/fx,H(Qx,H(p))
√
n(Q̂x(p+ 1/

√
n)− Q̂x(p− 1/

√
n))/2∑H

h=1(Nh/N)EP(X
′
hjl) as well as 2Θ1

∑H
h=1

∑
j∈sh,l∈shj MhNhjX

′
hjl/mhrhN∑H

h=1(Nh/N)EP(Y
′
hjl) as well as 2Θ2

∑H
h=1

∑
j∈sh,l∈shj MhNhjY

′
hjl/mhrhN∑H

h=1(Nh/N)EP(X
′
hjlY

′
hjl) as well as 2Θ3

∑H
h=1

∑
j∈sh,l∈shj MhNhjX

′
hjlY

′
hjl/mhrhN∑H

h=1(Nh/N)EP(X
′
hjl)

2 as well as 2Θ4
∑H

h=1

∑
j∈sh,l∈shj MhNhj(X

′
hjl)

2/mhrhN

2 Θ1, Θ2, Θ3 and Θ4 are as in Assumption 4.3.5 in Section 4.3.

under stratified multistage cluster sampling design with SRSWOR is obtained as
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K̂(p1, p2) =(n/N2)

H∑
h=1

(N2
h/nh −Nh)

∑
j∈sh

∑
l∈shj

MhNhj(ζ̂hjl(p1)− ζ̂h(p1))×

(ζ̂hjl(p2)− ζ̂h(p2))/mhrhNh.

(4.4.7)

Given K̂(p1, p2), estimators of σ21 and σ22 can be constructed under stratified multistage cluster

sampling design with SRSWOR in the same way as in the case of single stage sampling designs

discussed in the paragraph preceding Theorem 4.4.3. Now, we state the following theorem.

Theorem 4.4.4. Fix 0 < α < β < 1. Suppose that the assumptions of Theorem 4.3.1 hold,

K(p1, p2) is as in (4.3.1), and K̂(p1, p2) is as in (4.4.7). Then, the result in (4.4.6) of Theorem

4.4.3 hold under stratified multistage cluster sampling design with SRSWOR.

4.5. Comparison of different estimators

4.5.1 Comparison of the estimators of functions of quantiles

In this section, we shall first compare different estimators of the finite population parameter∫
[α,β]Qy,N (p)J(p)dp as well as f(Qy,N (p1), · · · , Qy,N (pk)) (see Section 4.4) under each of

SRSWOR, RHC and any HEπPS sampling designs in terms of their asymptotic variances given

in Theorem 4.4.1. Here, 0 < α < β < 1, k ≥ 1 and p1, . . . , pk ∈ (0, 1). Recall from Section

4.4 that these parameters include the median, the α-trimmed mean, the interquartile range and

the quantile based measure of skewness. Let us assume that P (s, ω) is one of SRSWOR, RHC

and any HEπPS sampling designs. Let us also assume that K1(p1, p2), K2(p1, p2), K3(p1, p2)

and K4(p1, p2) are the asymptotic covariance kernels of the quantile processes constructed based

on Q̂y(p), Q̂y,RA(p), Q̂y,DI(p) and Q̂y,REG(p) under P (s, ω), respectively (see Table 4.2 and

(4.2.5)), and {∆i : 1 ≤ i ≤ 4} is a k × k matrix such that

((∆i))jl = Ki(pj , pl) for 1 ≤ j, l ≤ k and 1 ≤ i ≤ 4. (4.5.1)

Then, we have the following theorem.

Theorem 4.5.1. Suppose that Xi ≤ b a.s. [P] for some b > 0, EP(Xi)
−1 < ∞, Assumption

4.2.1 holds with 0 < λ < EP(Xi)/b, and Assumptions 4.2.4, 4.2.5 and 4.2.6 hold. Then, we have
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the following results.

(i) Under P (s, ω), the asymptotic variance of the estimator of
∫
[α,β]Qy,N (p)J(p)dp based on

the sample quantile is smaller than the asymptotic variances of its estimators based on the ratio,

the difference and the regression estimators of the finite population quantile if and only if

max
2≤i≤4

{∫ β

α

∫ β

α

(
K1(p1, p2)−Ki(p1, p2)

)
J(p1)J(p2)dp1dp2

}
< 0 (4.5.2)

(ii) Under P (s, ω), the asymptotic variance of the estimator of f(Qy,N (p1), · · · , Qy,N (pk))

based on the sample quantile is smaller than the asymptotic variances of its estimators based on

the ratio, the difference and the regression estimators of the finite population quantile if and only

if

max
2≤i≤4

a(∆1 −∆i)a
T < 0, (4.5.3)

where a=∇f(Qy(p1), · · · , Qy(pk)) is the gradient of f at
(
Qy(p1), · · · , Qy(pk)

)
.

Next, we shall compare the performances of each of the estimators of
∫
[α,β]Qy,N (p)J(p)dp

as well as f(Qy,N (p1), · · · , Qy,N (pk)) considered in Section 4.4 under SRSWOR, RHC and

any HEπPS sampling designs in terms of their asymptotic variances (see Theorem 4.4.1). Let us

assume that G(p) is one of Q̂y(p), Q̂y,RA(p), Q̂y,DI(p) and Q̂y,REG(p), K∗
1 (p1, p2), K

∗
2 (p1, p2)

and K∗
3 (p1, p2) denote asymptotic covariance kernels of {

√
n(G(p) − Qy,N (p)) : p ∈ [α, β]}

under SRSWOR, RHC and any HEπPS sampling designs (see Table 4.2 and (4.2.5)), respectively,

and {∆∗
i : 1 ≤ i ≤ 3} are k × k matrices such that

((∆∗
i ))jl = K∗

i (pj , pl) for 1 ≤ j, l ≤ k and 1 ≤ i ≤ 3. (4.5.4)

Then, we have the following theorem.

Theorem 4.5.2. Suppose that Xi ≤ b a.s. [P] for some b > 0, EP(Xi)
−1 < ∞, Assumption

4.2.1 holds with 0 < λ < EP(Xi)/b, and Assumptions 4.2.4, 4.2.5 and 4.2.6 hold. Then, we have

the following results.

(i) The asymptotic variance of the estimator of
∫
[α,β]Qy,N (p)J(p)dp based on G(p) under

SRSWOR is smaller than its asymptotic variance under RHC as well as any HEπPS sampling

design, which uses auxiliary information, if and only if

max
2≤i≤3

{∫ β

α

∫ β

α

(
K∗

1 (p1, p2)−K∗
i (p1, p2)

)
J(p1)J(p2)dp1dp2

}
< 0. (4.5.5)
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(ii) The asymptotic variance of the estimator of f(Qy,N (p1), · · · , Qy,N (pk)) based on G(p)

under SRSWOR is smaller than its asymptotic variance under RHC as well as any HEπPS

sampling design if and only if

max
2≤i≤3

a(∆∗
1 −∆∗

i )a
T < 0, (4.5.6)

where a=∇f(Qy(p1), · · · , Qy(pk)) is the gradient of f at
(
Qy(p1), · · · , Qy(pk)

)
.

The conditions that Xi ≤ b a.s. [P] for some b > 0, and 0 < λ < EP(Xi)/b are discussed

in Chapter 2 (see the discussion related to Assumption 2.2.1 in Chapter 2). Now, we consider

some examples where the conditions (4.5.2) and (4.5.3) hold, and some examples where these

conditions fail to hold. Suppose that Yi’s have a normal distribution with mean µ ∈ {−10 +

j}20j=0 and s.d. σ=1, Xi=eYi for i=1, . . . , N , and λ=0.05. Then, the conditions (4.5.2) and

(4.5.3) are discussed in Table 4.7 below in the cases of various finite population parameters and

sampling designs. Next, we consider some examples where the conditions (4.5.5) and (4.5.6)

hold, and some examples where these conditions fail to hold. Suppose that Yi’s have a normal

distribution with mean µ=10 and s.d. σ ∈ {j/100}10j=1 ∪ {j/10}20j=1, Xi=eYi for i=1, . . . , N ,

and λ=0.05. Then, the conditions (4.5.5) and (4.5.6) are discussed in Table 4.8 below in the cases

of various finite population parameters and their estimators. The above conditions depend on

superpopulation quantiles, moments and densities. In practice, one can check these conditions

by estimating the above-mentioned superpopulation parameters (see Table 4.5 in the preceding

section) based on a pilot survey.

Theorem 4.5.1 shows that in the case of the estimation of
∫
[α,β]Qy,N (p)J(p)dp and f(Qy,N (p1),

· · · , Qy,N (pk)), the use of the auxiliary information in the estimation stage may have an adverse

effect on the performances of their estimators based on the ratio, the difference and the regression

estimators under each of SRSWOR, RHC and any HEπPS sampling designs. This is in striking

contrast to the case of the estimation of the finite population mean, where the use of the auxiliary

information in the estimation stage improves the performance of the GREG estimator under these

sampling designs (see Chapaters 2 and 3). On the other hand, Theorem 4.5.2 implies that the

performance of each of the estimators of the above parameters considered in this chapter may

become worse under RHC and any HEπPS sampling deigns, which use the auxiliary information,

than their performances under SRSWOR.
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TABLE 4.7: Discussion of the conditions (4.5.2) and (4.5.3).

Sampling design
Parameter The condition SRSWOR RHC HEπPS

Median
(4.5.3) holds for µ ≤ −2 & µ ≤ −2 & µ ≤ −2 &

µ ≥ 8 µ ≥ 8 µ ≥ 8
(4.5.3) does not hold for −1 ≤ µ ≤ 7 −1 ≤ µ ≤ 7 −1 ≤ µ ≤ 7

α-trimmed mean (4.5.2) holds for µ=1 µ=1 µ=1
with α=0.1 (4.5.2) does not hold for µ ̸= 1 µ ̸= 1 µ ̸= 1

α-trimmed (4.5.2) holds for µ ≤ −2 & µ ≤ −2 & µ ≤ −2 &
mean with µ ≥ 8 µ ≥ 9 µ ≥ 9
α=0.3 (4.5.2) does not hold for −1 ≤ µ ≤ 7 −1 ≤ µ ≤ 8 −1 ≤ µ ≤ 8

Inter- (4.5.3) holds for µ ≤ −2 & µ ≤ −2 & µ ≤ −2 &
quartile µ ≥ 4 µ ≥ 4 µ ≥ 4
range (4.5.3) does not hold for −1 ≤ µ ≤ 3 −1 ≤ µ ≤ 3 −1 ≤ µ ≤ 3

Bowley’s (4.5.3) holds for µ ≤ −2 & µ ≤ −2 & µ ≤ −2 &
measure µ ≥ 5 µ ≥ 7 µ ≥ 7

of skewness (4.5.3) does not hold for −1 ≤ µ ≤ 4 −1 ≤ µ ≤ 6 −1 ≤ µ ≤ 6

TABLE 4.8: Discussion of the conditions (4.5.5) and (4.5.6).

Estimator based on
Parameter The condition Q̂y(p) Q̂y,RA(p) Q̂y,DI(p) Q̂y,REG(p)

Median
(4.5.6) holds for σ ≥ 0.2 σ ≥ 0.2 σ ≥ 0.2 σ ≥ 0.2

(4.5.6) does not hold for σ ≤ 0.1 σ ≤ 0.1 σ ≤ 0.1 σ ≤ 0.1

α-trimmed (4.5.5) holds for σ ≥ 1.2 σ ≥ 1.3 σ ≥ 1.6 σ ≥ 1.2
mean with (4.5.5) does not hold for σ ≤ 1.1 σ ≤ 1.2 σ ≤ 1.5 σ ≤ 1.1
α=0.1

α-trimmed (4.5.5) holds for σ ≥ 0.2 σ ≥ 0.2 σ ≥ 0.2 σ ≥ 0.2
mean with (4.5.5) does not hold for σ ≤ 0.1 σ ≤ 0.1 σ ≤ 0.1 σ ≤ 0.1
α=0.3
Inter- (4.5.6) holds for σ ≥ 0.06 σ ≥ 0.06 σ ≥ 1.1 σ ≥ 1

quartile (4.5.6) does not hold for σ ≤ 0.05 σ ≤ 0.05 σ ≤ 1 σ ≤ 0.9
range

Bowley’s (4.5.6) holds for σ ≥ 0.03 σ ≥ 0.03 σ ≥ 0.1 0.1 ≤ σ ≤ 0.6
measure & σ ≥ 1.2

of (4.5.6) does not hold for σ ≤ 0.02 σ ≤ 0.02 σ ≤ 0.09 σ ≤ 0.09 &
skewness 0.7 ≤ σ ≤ 1.1

4.5.1.1 Comparison of the estimators of quantile based location, spread and skewness

It follows from Theorem 4.5.1 that in the cases of the median, the interquartile range and the

Bowley’s measure of skewness, the estimator based on the sample median becomes more efficient

than the estimators based on the ratio, the difference and the regression estimators of the finite

population quantile under P (s, ω) if and only if (4.5.3) holds with k, p1, . . . , pk and a as in

Table 4.9 below. Here, P (s, ω) is one of SRSWOR, RHC and any HEπPS sampling designs.

On the other hand, it follows from Theorem 4.5.2 that in the cases of the above parameters
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the performance of the estimator based on G(p) becomes worse under RHC and any HEπPS

sampling deigns, which use the auxiliary information, than its performance under SRSWOR if

and only if (4.5.6) holds with k, p1, . . . , pk and a as in Table 4.9 below. Here, G(p) is one of

Q̂y(p), Q̂y,RA(p), Q̂y,DI(p) and Q̂y,REG(P ).

TABLE 4.9: k, p1, . . . , pk and a in (4.5.3) and (4.5.6) for different parameters.

Parameter k p1, . . . , pk a

Median 1 p1=0.5 1

Interquartile
2 p1=0.25, p2=0.75 (−1, 1)

range
Bowley’s

3 p1=0.25, p2=0.5, p3=0.75
2
(
Qy(p3)−Qy(p2),

measure Qy(p1)−Qy(p3),

of skewness Qy(p2)−Qy(p1)
)/(

Qy(p3)−Qy(p1)
)2

4.5.2 Comparison of the sample mean, the sample median and the GREG

estimator

Here, we compare the GREG estimator, say Ŷ GREG (see [24] and references therein), of the finite

population mean Y =
∑N

i=1 Yi/N , the sample mean y=
∑

i∈s Yi/n, and the sample median Q̂y(0.5)

under SRSWOR in terms of asymptotic variances of
√
n(Ŷ GREG −EP(Yi)),

√
n(y −EP(Yi))

and
√
n(Q̂y(0.5)−Qy(0.5)), when the superpopulation medianQy(0.5) and the superpopulation

mean EP(Yi) are same.

Theorem 4.5.3. Suppose that Qy(0.5)=EP(Yi), and Assumptions 4.2.1 and 4.2.3 hold. Then,

under SRSWOR, the asymptotic variance of the sample median is smaller than that of the sample

mean and the asymptotic variance of the GREG estimator of the mean is smaller than that of the

sample median if and only if

σ2y > 1/4σ2yf
2
y (Qy(0.5)), and (4.5.7)

ρ2xy > (1− λ)−1(1− 1/4σ2yf
2
y (Qy(0.5))), (4.5.8)

respectively. Here, σ2y is the superpopulation variance of y, and ρxy is the superpopulation

correlation coefficient between x and y.

The conditions (4.5.7) and (4.5.8) are discussed below for different superpopulation distribu-

tions of Yi’s and Xi’s, and different values of λ (see Tables 4.10 and 4.11 below). As mentioned
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in the cases of (4.5.2), (4.5.3), (4.5.5) and (4.5.6) in the preceding section, the conditions (4.5.7)

and (4.5.8) can also be checked using a pilot survey.

TABLE 4.10: Discussion of the condition (4.5.7).

Superpopulation distribution of Yi’s The condition (4.5.7) holds iff
Exponential power distribution with 3 α2Γ(3/α) > Γ3(1/α)

location µ ∈ R, scale σ > 0 and shape α > 0

Student’s t-distribution with 3 4Γ2((m+ 1)/2) > (m− 2)πΓ2(m/2)
degrees of freedom m > 2

3 Here, Γ(·) denotes the gamma function.

TABLE 4.11: Discussion of the condition (4.5.8).

Superpopulation Superpopulation
λ

distribution of Yi’s distribution of Xi’s
Normal distribution Any distribution The condition (4.5.8) holds
with mean µ ∈ R supported on for any

and variance σ2 > 0 (0,∞) λ ∈ (0, 1)

Standard Laplace Xi=max{Yi, 0} The condition (4.5.8) holds
distribution for i=1, . . . , N iff λ ∈ (0, 0.25)

Theorem 4.5.3 implies that under SRSWOR, the performance of the sample mean is worse

than that of the sample median and the performance of the sample median is worse than that of

the GREG estimator if and only if (4.5.7) and (4.5.8) hold, respectively. In the case of a finite

population, if the population observations on y are generated from heavy-tailed distributions (e.g.,

exponential power, student’s t, etc.) and SRSWOR is used, the sample median becomes more

efficient than the sample mean. It is well-known that a similar result holds in the classical set up

involving i.i.d. sample observations. However, the GREG estimator of the mean becomes more

efficient than the sample median under SRSWOR, whenever y and x are highly correlated. This

is in striking contrast to what happens in the case of i.i.d. observations.

4.6. Demonstration using real data

In this section, we use the data on irrigated land area for the state of West Bengal in India from

the District Census Handbook (2011) available in Office of the Registrar General and Census

Commissioner, India (https://censusindia.gov.in/nada/index.php/catalog/1362.). In West Bengal,

lands are irrigated by different sources like canals, wells, waterfalls, lakes, etc., and irrigated

land area (in Hectares) in different villages are reported in the above data set. We consider the
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population of 14224 villages having lands irrigated by canals in this state. We use this data set to

demonstrate the accuracy of the asymptotic normal approximations for the distributions of several

estimators of several parameters under single stage sampling designs like SRSWOR, LMS and

RHC sampling designs.

We use the same data set to demonstrate the accuracy of the asymptotic approximations for

the distributions of different estimators of different parameters under stratified multistage cluster

sampling design with SRSWOR. Note that the above-mentioned population can be divided into

18 districts, and every district can further be divided into sub districts consisting of villages. We

consider districts as strata, sub districts as clusters and villages as population units. Boxplots of

number of clusters, number of population units, 4th order moments of cluster sizes, and variance

of cluster sizes in different strata are given in Figure 4.1 below. Descriptive statistics of number of

clusters, number of population units, 4th order moments of cluster sizes and variances of cluster

sizes are given in Table 4.12 below.

10 15 20 25
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●

0 500 1000 1500 2000 2500 3000 3500
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Boxplot of 4th order moments of cluster sizes in different strata

4th order moments
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Boxplot of variance of cluster sizes in different strata

Variance of cluster sizes

FIGURE 4.1: Boxplots of number of clusters, number of population units, maximum cluster
sizes, and variance of cluster sizes in different strata.

We choose the land area irrigated by canals as the study variable y, and the total irrigated

land area as the auxiliary variable x. We are interested in the estimation of the median and the

α-trimmed means of y, where α=0.1 and 0.3. We are also interested in the estimation of the

interquartile range and the Bowley’s measure of skewness of y. For each of the aforementioned
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TABLE 4.12: Descriptive statistics of number of clusters, number of population units, 4th order
moments of cluster sizes and variances of cluster sizes.

1st quartile Median 3rd quartile
Number of clusters 13 18 21

Number of population units 208.5 406 1252

4th order moment
391394.8 5414937 37339619

of cluster sizes
Variance of

114.33 547.91 1269.26
cluster sizes

parameters, we compute relative biases of the estimators, which are based on the sample quantile,

and the ratio, the difference and the regression estimators of the population quantile. We consider

I=1000 samples each of size n=200 and n=500 selected using single stage sampling designs

mentioned in the first paragraph of this section. Further, we consider I=1000 samples each of size

n=108 (a sample of 6 clusters from each stratum and a sample of 1 village from each selected

cluster) and n=216 (a sample of 6 clusters from each stratum and a sample of 2 villages from

each selected cluster) selected using stratified multistage cluster sampling design with SRSWOR.

Suppose that θ̂ is an estimator of the parameter θ, and θ̂k is the estimate of θ computed based on

the kth sample using a sampling design P (s) for k=1, . . . , I . The relative bias of θ̂ under P (s)

(cf. [7]) is computed as

RB(θ̂, P ) =

I∑
k=1

(θ̂k − θ0)/Iθ0, (4.6.1)

where θ0 is the true value of θ in the population. Note that θ0 is known because we have all the

population values available for y and x in the above-mentioned dataset. We use theR software for

drawing samples as well as computing estimators. For sample quantiles, we use weighted.quantile

function in R. The plots of relative biases for different parameters, estimators, sampling designs

and sample sizes are presented in Figures 4.2–4.9 below. Also, boxplots of relative biases for

different parameters and estimators in the cases of single stage sampling designs and stratified

multistage cluster sampling design with SRSWOR are given in Figure 4.10 below.

Next, we compute asymptotic MSEs of the estimators following the procedure described below.

Recall from Section 4.4 the expressions of the asymptotic covariance kernelsK(p1, p2) of several

quantile processes considered in this chapter. Note that K(p1, p2)=limν→∞ EP(σ1(p1, p2)) for

d(i, s)=(Nπi)−1 under high entropy sampling designs, K(p1, p2)=limν→∞ EP(σ2(p1, p2)) for

d(i, s)=(NXi)
−1Gi under RHC sampling design, andK(p1, p2)=limν→∞(n/N2)

∑H
h=1Nh(Nh−

nh)σh(p1, p2)/nh for d(i, s)=(Nπi)−1 under stratified multistage cluster sampling design with
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SRSWOR, where

σ1(p1, p2) = (n/N2)
N∑
i=1

(ζi(p1)− ζ(p1)− S(p1)πi)(ζi(p2)− ζ(p2)− S(p2)πi)×

(π−1
i − 1),

σ2(p1, p2) = (nγ)(X/N)
N∑
i=1

(ζi(p1)− ζ(p1))(ζi(p2)− ζ(p2))/Xi, and

σh(p1, p2) = EP(ζ
′
hjl(p1)− EP(ζ

′
hjl(p1)))(ζ

′
hjl(p2)− EP(ζ

′
hjl(p2)))

(4.6.2)

for h=1, . . . ,H . Here, ζi(p)’s, ζ ′hjl(p)’s, ζ(p), S(p) and γ are as in Sections 4.3 and 4.4, and Nh

and nh are as in the paragraph preceding Assumption 4.3.1 in Section 4.3. Note that ζi(p)’s in

σ1(p1, p2) and σ2(p1, p2) involve superpopulation parameters like EP(Xi), EP(Yi), EP(XiYi),

EP(X
2
i ), fy(Qy(p)) and fx(Qx(p)) (see Table 4.1). We approximateEP(Xi),EP(Yi),EP(XiYi)

and EP(X
2
i ) by their finite population versions X , Y ,

∑N
i=1XiYi/N and

∑N
i=1X

2
i /N , respec-

tively. We also approximate 1/fy(Qy(p)) and 1/fx(Qx(p)) by

√
N(Qy,N (p+ 1/

√
N)−Qy,N (p− 1/

√
N))/2 and

√
N(Qx,N (p+ 1/

√
N)−Qx,N (p− 1/

√
N))/2,

(4.6.3)

respectively, following the ideas in [77]. Next, we approximate the superpopulation covariance

σh(p1, p2) between ζ ′hjl(p1) and ζ ′hjl(p2) by

Mh∑
j=1

Nhj∑
l=1

(ζ ′hjl(p1)− ζ
′
h(p1))(ζ

′
hjl(p2)− ζ

′
h(p2))/Nh, (4.6.4)

where ζ
′
h(p)=

∑Mh
j=1

∑Nhj

l=1 ζ
′
hjl(p)/Nh. Further, we approximate

∑H
h=1(Nh/N)EP(X

′
hjl) (as

well as Θ1),
∑H

h=1(Nh/N)EP(Y
′
hjl) (as well as Θ2),

∑H
h=1(Nh/N) EP(X

′
hjlY

′
hjl) (as well

as Θ3),
∑H

h=1(Nh/N)EP (X ′
hjl)

2 (as well as Θ4), 1/fy,H(Qy,H(p)) and 1/fx,H(Qx,H(p))

involved in the expressions of ζ ′hjl(p)’s (see Table 4.3) in the same way as we approximate

EP(Xi), EP(Yi), EP(XiYi), EP(X
2
i ), fy(Qy(p)) and fx(Qx(p)) in the case of single stage

sampling designs. Let σ̃1(p1, p2), σ̃2(p1, p2) and σ̃h(p1, p2) denote the approximated σ1(p1, p2),

σ2(p1, p2) and σh(p1, p2), respectively. Then, asymptotic MSEs of several estimators of the

parameters considered in this section are computed by replacing K(p1, p2) in the expressions

of σ21 and σ22 (see Theorem 4.4.1) by σ̃1(p1, p2)/n, σ̃2(p1, p2)/n and (1/N2)
∑H

h=1Nh(Nh −

nh)σ̃h(p1, p2)/nh. We approximate the double integral in the expression of σ21 by sum after

dividing [α, 1− α] into 100 sub intervals of equal width.
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Based on the asymptotic MSE, we compute the bias relative to the standard error of the single

sample estimates for the estimator θ̂ of θ under a sampling design P (s) as

I−1
I∑

k=1

(θ̂k − θ0)

/(
nAMSE(θ̂)

)1/2
, (4.6.5)

where AMSE(θ̂) denotes the asymptotic MSE of θ̂ under P (s), and (nAMSE(θ̂))1/2 de-

notes the standard error of the single sample estimates. The plots of ratios of biases and

(n asymptotic MSE)1/2’s for different parameters, estimators, sampling designs and sample sizes

are presented in Figures 4.11–4.18 below. Also, boxplots of ratios of biases and (n asymptotic

MSE)1/2’s for different parameters and estimators in the cases of single stage sampling designs

and stratified multistage cluster sampling design with SRSWOR are given in Figure 4.19 below.

Next, we compute ratios of asymptotic and true MSEs for different parameters, estimators

and sampling designs considered in this section. The true MSE of an estimator θ̂ of θ under a

sampling design P (s) is estimated as

MSE(θ̂, P ) =
I∑

k=1

(θ̂k − θ0)
2/I, (4.6.6)

where θ0 is the true value of θ, and θ̂k is the estimate of θ computed based on the kth sample

using the sampling design P (s) for k=1, . . . , I . The plots of ratios of asymptotic and true MSEs

for different parameters, estimators, sampling designs and sample sizes are presented in Figures

4.20–4.27 below. Also, boxplots of ratios of asymptotic and true MSEs for different parameters

and estimators in the cases of single stage sampling designs and stratified multistage cluster

sampling design with SRSWOR are given in Figure 4.28 below.

Finally, we compute coverage probabilities of nominal 90% and 95% confidence intervals

(see Section 4.4.1) of the parameters discussed in this section. While computing coverage

probabilities, we consider the estimators

σ̂21 =

∫ β

α

∫ β

α
K̂(p1, p2)J(p1)J(p2)dp1dp2 and σ̂22 = â∆̂âT (4.6.7)

discussed in the paragraph preceding Theorem 4.4.3. We compute coverage probabilities of

nominal 90% and 95% confidence intervals of a parameter by taking the proportion of times

confidence intervals constructed based on I=1000 samples include the true value of the parameter.

We also compute the magnitude of the Monte Carlo standard errors of these coverage probabilities.
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The plots of observed coverage probabilities of nominal 90% and 95% confidence intervals for

different parameters, estimators, sampling designs and sample sizes are presented in Figures

4.29–4.44 below. Also, boxplots of observed coverage probabilities of nominal 90% and 95%

confidence intervals for different parameters and estimators in the cases of single stage sampling

designs and stratified multistage cluster sampling design with SRSWOR are given in Figures

4.45 and 4.46 below.
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FIGURE 4.15: Ratios of biases and (n asymptotic MSE)1/2’s for different estimators under
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FIGURE 4.16: Ratios of biases and (n asymptotic MSE)1/2’s for different estimators under
LMS sampling design in the case of n=200.
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FIGURE 4.17: Ratios of biases and (n asymptotic MSE)1/2’s for different estimators under
RHC sampling design in the case of n=200.
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FIGURE 4.18: Ratios of biases and (n asymptotic MSE)1/2’s for different estimators under
SMCSRS in the case of n=108. In this figure, SMCSRS stands for stratified multistage cluster

sampling design with SRSWOR.
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FIGURE 4.20: Ratios of asymptotic and true MSEs of different estimators for n=500 in the case
of SRSWOR.
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FIGURE 4.21: Ratios of asymptotic and true MSEs of different estimators for n=500 in the case
of LMS sampling design.
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FIGURE 4.22: Ratios of asymptotic and true MSEs of different estimators for n=500 in the case
of RHC sampling design.
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FIGURE 4.23: Ratios of asymptotic and true MSEs of different estimators for n=216 in the case
of SMCSRS. In this figure, SMCSRS stands for stratified multistage cluster sampling design

with SRSWOR.
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FIGURE 4.24: Ratios of asymptotic and true MSEs of different estimators for n=200 in the case
of SRSWOR.
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FIGURE 4.25: Ratios of asymptotic and true MSEs of different estimators for n=200 in the case
of LMS sampling design.
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FIGURE 4.26: Ratios of asymptotic and true MSEs of different estimators for n=200 in the case
of RHC sampling design.
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FIGURE 4.27: Ratios of asymptotic and true MSEs of different estimators for n=108 in the case
of SMCSRS. In this figure, SMCSRS stands for stratified multistage cluster sampling design

with SRSWOR.



150 Chapter 4. Quantile processes and their applications in finite populations

S
a
m

p
le

 s
iz

e
=

2
0

0
S

a
m

p
le

 s
iz

e
=

5
0

0

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

Single stage sampling designs

Asymptotic MSE/True MSE

S
a
m

p
le

 s
iz

e
=

1
0

8
S

a
m

p
le

 s
iz

e
=

2
1

6

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

SMCSRS

Asymptotic MSE/True MSE

FIGURE 4.28: Boxplots of ratios of asymptotic and true MSEs for different estimators and
parameters in the cases of single stage sampling designs and SMCSRS. In this figure, SMCSRS

stands for stratified multistage cluster sampling design with SRSWOR.

0
.8

6
0

.8
8

0
.9

0
0

.9
2

0
.9

4

O
b

s
e

rv
e

d
 c

o
v
e

ra
g

e
 p

ro
b

a
b

il
it
y

●

●

●

●

Q̂y(p), SRSWOR Q̂y ,RA(p), SRSWOR Q̂y ,DI(p), SRSWOR Q̂y ,REG(p), SRSWOR

●

α − trimmed mean with α = 0.1

α − trimmed mean with α = 0.3

Median

Interquartile range

Measure of skewness

FIGURE 4.29: Observed coverage probabilities of nominal 90% confidence intervals for n=500
in the case of SRSWOR (the number of simulation iterations is 1000 and the magnitude of the

Monte Carlo standard error for observed coverage probabilities is 0.009).
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FIGURE 4.30: Observed coverage probabilities of nominal 90% confidence intervals for n=500
in the case of LMS sampling design (the number of simulation iterations is 1000 and the

magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.009).
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FIGURE 4.31: Observed coverage probabilities of nominal 90% confidence intervals for n=500
in the case of RHC sampling design (the number of simulation iterations is 1000 and the

magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.009).
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FIGURE 4.32: Observed coverage probabilities of nominal 90% confidence intervals for n=216
in the case of SMCSRS (the number of simulation iterations is 1000 and the magnitude of
the Monte Carlo standard error for observed coverage probabilities is 0.009). In this figure,

SMCSRS stands for stratified multistage cluster sampling design with SRSWOR.
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FIGURE 4.33: Observed coverage probabilities of nominal 95% confidence intervals for n=500
in the case of SRSWOR (the number of simulation iterations is 1000 and the magnitude of the

Monte Carlo standard error for observed coverage probabilities is 0.007).
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FIGURE 4.34: Observed coverage probabilities of nominal 95% confidence intervals for n=500
in the case of LMS sampling design (the number of simulation iterations is 1000 and the

magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.007).

0
.9

2
0

.9
4

0
.9

6
0

.9
8

O
b

s
e

rv
e

d
 c

o
v
e

ra
g

e
 p

ro
b

a
b

il
it
y

●
●

●

●

Q̂y(p), RHC Q̂y ,RA(p), RHC Q̂y ,DI(p), RHC Q̂y ,REG(p), RHC

●

α − trimmed mean with α = 0.1

α − trimmed mean with α = 0.3

Median

Interquartile range

Measure of skewness

FIGURE 4.35: Observed coverage probabilities of nominal 95% confidence intervals for n=500
in the case of RHC sampling design (the number of simulation iterations is 1000 and the

magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.007).
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FIGURE 4.36: Observed coverage probabilities of nominal 95% confidence intervals for n=216
in the case of SMCSRS (the number of simulation iterations is 1000 and the magnitude of
the Monte Carlo standard error for observed coverage probabilities is 0.007). In this figure,

SMCSRS stands for stratified multistage cluster sampling design with SRSWOR.
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FIGURE 4.37: Observed coverage probabilities of nominal 90% confidence intervals for n=200
in the case of SRSWOR (the number of simulation iterations is 1000 and the magnitude of the

Monte Carlo standard error for observed coverage probabilities is 0.009).



4.6. Demonstration using real data 155

0
.8

6
0

.8
8

0
.9

0
0

.9
2

0
.9

4

O
b

s
e

rv
e

d
 c

o
v
e

ra
g

e
 p

ro
b

a
b

il
it
y

●

●

●

●

Q̂y(p), LMS Q̂y ,RA(p), LMS Q̂y ,DI(p), LMS Q̂y ,REG(p), LMS

●

α − trimmed mean with α = 0.1

α − trimmed mean with α = 0.3

Median

Interquartile range

Measure of skewness

FIGURE 4.38: Observed coverage probabilities of nominal 90% confidence intervals for n=200
in the case of LMS sampling design (the number of simulation iterations is 1000 and the

magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.009).
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FIGURE 4.39: Observed coverage probabilities of nominal 90% confidence intervals for n=200
in the case of RHC sampling design (the number of simulation iterations is 1000 and the

magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.009).



156 Chapter 4. Quantile processes and their applications in finite populations

0
.8

6
0

.8
8

0
.9

0
0

.9
2

0
.9

4

O
b

s
e

rv
e

d
 c

o
v
e

ra
g

e
 p

ro
b

a
b

il
it
y

●
●

●

●

Q̂y(p), SMCSRS Q̂y ,RA(p), SMCSRS Q̂y ,DI(p), SMCSRS Q̂y ,REG(p), SMCSRS

●

α − trimmed mean with α = 0.1

α − trimmed mean with α = 0.3

Median

Interquartile range

Measure of skewness

FIGURE 4.40: Observed coverage probabilities of nominal 90% confidence intervals for n=108
in the case of SMCSRS (the number of simulation iterations is 1000 and the magnitude of
the Monte Carlo standard error for observed coverage probabilities is 0.009). In this figure,

SMCSRS stands for stratified multistage cluster sampling design with SRSWOR.
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FIGURE 4.41: Observed coverage probabilities of nominal 95% confidence intervals for n=200
in the case of SRSWOR (the number of simulation iterations is 1000 and the magnitude of the

Monte Carlo standard error for observed coverage probabilities is 0.007).



4.6. Demonstration using real data 157

0
.9

2
0

.9
4

0
.9

6
0

.9
8

O
b

s
e

rv
e

d
 c

o
v
e

ra
g

e
 p

ro
b

a
b

il
it
y

●
●

●

●

Q̂y(p), LMS Q̂y ,RA(p), LMS Q̂y ,DI(p), LMS Q̂y ,REG(p), LMS

●

α − trimmed mean with α = 0.1

α − trimmed mean with α = 0.3

Median

Interquartile range

Measure of skewness

FIGURE 4.42: Observed coverage probabilities of nominal 95% confidence intervals for n=200
in the case of LMS sampling design (the number of simulation iterations is 1000 and the

magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.007).
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FIGURE 4.43: Observed coverage probabilities of nominal 95% confidence intervals for n=200
in the case of RHC sampling design (the number of simulation iterations is 1000 and the

magnitude of the Monte Carlo standard error for observed coverage probabilities is 0.007).
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FIGURE 4.44: Observed coverage probabilities of nominal 95% confidence intervals for n=108
in the case of SMCSRS (the number of simulation iterations is 1000 and the magnitude of
the Monte Carlo standard error for observed coverage probabilities is 0.007). In this figure,

SMCSRS stands for stratified multistage cluster sampling design with SRSWOR.
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FIGURE 4.45: Boxplots of observed coverage probabilities of nominal 90% confidence intervals
for different estimators and parameters in the cases of single stage sampling designs and
SMCSRS. In this figure, SMCSRS stands for stratified multistage cluster sampling design with

SRSWOR.
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FIGURE 4.46: Boxplots of observed coverage probabilities of nominal 95% confidence intervals
for different estimators and parameters in the cases of single stage sampling designs and
SMCSRS. In this figure, SMCSRS stands for stratified multistage cluster sampling design with

SRSWOR.

The results obtained from the above data analysis are summarised as follows.

(i) It follows from Figures 4.2–4.9 above (see also the boxplot in Figure 4.10 above) that

for different parameters, estimators, sampling designs and sample sizes considered in this

section, relative biases are quite close to 0 except for the following cases. Figures 4.6 and

4.7 that for n=200, the estimator of the interquartile range based on difference estimator

under SRSWOR and the estimators of measure of skewness based on ratio, difference and

regression estimators under LMS sampling design have somewhat large negative biases

compared to the other estimators. Also, Figures 4.5 and 4.9 shows that the estimators of

measure of skewness based on ratio, difference and regression estimators under stratified

multistage cluster sampling design with SRSWOR have relatively large negative biases

compared to the other estimators for both n=108 and n=216.

(ii) It can be seen from Figures 4.11–4.18 above (see also the boxplot in Figure 4.19 above)

that for different parameters, estimators, sampling designs and sample sizes considered in

this section, biases relative to (n asymptotic MSE)1/2’s are close to 0.
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(iii) It follows from Figures 4.20–4.27 above (see also the boxplot in Figure 4.28 above) that

ratios of asymptotic and true MSEs for different parameters, estimators and sampling

designs become closer to 1 as the sample size increases from n=200 to n=500.

(iv) Figures 4.29–4.44 above (see also the boxplots in Figures 4.45 and 4.46 above) show that

for different parameters, estimators, sampling designs and sample sizes, observed coverage

probabilities of nominal 90% and 95% confidence intervals are quite close to 90% and

95%, respectively, except for the following case. Observed coverage probability of nominal

95% confidence interval of α-trimmed mean with α=0.1 based on the sample quantile

under SRSWOR and sample size n=200 is 97.2%.

(v) Overall, the asymptotic approximations of the distributions of different estimators of

different parameters considered in this chapter seem to work well in finite sample situations.

Also, the accuracy of the asymptotic approximations increases as the sample size increases.

4.7. Proofs of the main results

Before we give the proof of Proposition 4.2.1, suppose that P (s, ω) denotes a high entropy

sampling design satisfying Assumption 4.2.2, and Q(s, ω) denotes a rejective sampling design

having inclusion probabilities equal to those of P (s, ω). Such a rejective sampling design always

exists (see [4]).

Proof of Proposition 4.2.1. We shall first show that the conclusion of Proposition 4.2.1 holds

for Q(s, ω). Let us define

Fu,N (t) =
N∑
i=1

1[Ui≤t]/N and Un(t) =
√
n
∑
i∈s

(Nπi)
−1(1[Ui≤t] − Fu,N (t)) (4.7.1)

for 0 ≤ t ≤ 1. Then, for d(i, s)=(Nπi)−1, we have

Hn :=
{√

n(F̂u(t)− t) : t ∈ [0, 1]
}
= Zn +

√
n/NWN with Zn =

{
Un(t)

/
∑
i∈s

(Nπi)
−1 : t ∈ [0, 1]

}
andWN =

{√
N(Fu,N (t)− t) : t ∈ [0, 1]

}
.

(4.7.2)

Next, define
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Bu,N (t1, t2) = Fu,N (t2)− Fu,N (t1) and Bn(t1, t2) = Un(t2)−Un(t1) (4.7.3)

for 0 ≤ t1 < t2 ≤ 1. Then, by Lemma 4.8.2 in Section 4.8, we have E
[(
Bn(t1, t2)

)2×(
Bn(t2, t3)

)2] ≤ K1

(
Bu,N (t1, t3)

)2 for all dyadic rational numbers 0 ≤ t1 < t2 < t3 ≤ 1 a.s.

[P], where K1 > 0 is some constant and ν ≥ 1. This further implies that

E
[(
Bn(t1, t2)

)2(
Bn(t2, t3)

)2] ≤ K1

(
Bu,N (t1, t3)

)2 for any 0 ≤ t1 < t2 < t3 ≤ 1 (4.7.4)

a.s. [P], where ν ≥ 1. Suppose that

wn(1/r) = sup
|t−u|≤1/r

|Un(t)−Un(u)| and B = {s ∈ S : wn(1/r) ≥ δ} (4.7.5)

for r=1, 2, . . .. Here, wn(1/r) is the modulus of continuity of {Un(t) : t ∈ [0, 1]}. Then, by

using (4.7.4) above and imitating the proof of Lemma 2.3.1 in [79] (see p. 49), we obtain

∑
s∈B

Q(s, ω) ≤ δ−4

( r∑
j=1

E
{
Bn

(
(j − 1)/r, j/r

)}4
+

K2Bu,N (0, 1) max
1≤j≤r

Bu,N

(
(j − 1)/r, j/r

)) (4.7.6)

a.s. [P] for any δ > 0, r ≥ 1, ν ≥ 1 and some constant K2 > 0. Next, it follows from (4.7.6) that

limν→∞E
{
Bn

(
(j − 1)/r, j/r

)}4 ≤ K3(1/r)
2 (4.7.7)

a.s. [P] for any j=1, . . . , r, r ≥ 1 and some constant K3 > 0 by Lemma 4.8.2 in Section 4.8.

Now, note that {Ui}Ni=1 are i.i.d. uniform random variables supported on (0, 1) since Fy is

continuous by Assumption 4.2.3. Then, Bu,N (t1, t2) → t2 − t1 a.s. [P] by SLLN. Therefore, in

view of (4.7.6) and (4.7.7), we have

limν→∞
∑
s∈B

Q(s, ω) ≤ δ−4(K2/r +K3/r) a.s. [P] (4.7.8)

for any δ > 0 and r ≥ 1. Since,
∑

s∈B Q(s, ω) is bounded, by taking expectation of left hand

side in (4.7.8) w.r.t. P and applying an extended version of Fatou’s lemma, we obtain that

limν→∞P∗{wn(1/r) ≥ δ} ≤ δ−4(K2/r +K3/r) (4.7.9)
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for any δ > 0 and r ≥ 1. This further implies that limν→∞P∗{wn(1/r) ≥ δ} → 0 for any

δ as r → ∞. Then by Theorem 2.3.2 in [79] (see p. 46), {Un : ν ≥ 1} is weakly/relatively

compact in (D̃[0, 1], D̃) with respect to the sup norm metric under P∗. In other words, given any

subsequence {νk}, there exists a further subsequence {νkl} such that EP∗(f(Un)) → E(f(U))

along the subsequence {νkl} for any bounded continuous (with respect to the sup norm metric)

and D̃-measurable function f , and for some random function U in (D̃[0, 1], D̃) (see p. 44 in

[79]).

Now, under Q(s, ω), m(Un(t1), . . . ,Un(tk))
T L−→ N(0,mΓ3mT ) as ν → ∞ a.s. [P] by

Lemma 4.8.1 in Section 4.8, where k ≥ 1, t1, . . . , tk ∈ (0, 1), m ∈ Rk, m ̸= 0 and Γ3 is a p.d.

matrix. Moreover, Γ3=limν→∞ nN−2
∑N

i=1(Ui−TUπi)
T (Ui−TUπi)(π

−1
i −1) a.s. [P], where

Ui=(1[Ui≤t1]−Fu,N (t1), . . . ,1[Ui≤tk]−Fu,N (tk)) and TU=
∑N

i=1 Ui(1−πi)/
∑N

i=1 πi(1−πi).

Note that
∑N

i=1 ||Ui||2/N is bounded. Also, note that Assumption 4.2.2-(ii) holds under Q(s, ω)

because P (s, ω) and Q(s, ω) have same inclusion probabilities, and Assumption 4.2.2-(ii) holds

under P (s, ω). Then, we have

Γ3 = lim
ν→∞

EP(nN
−2

N∑
i=1

(Ui − TUπi)
T (Ui − TUπi)(π

−1
i − 1)) (4.7.10)

by DCT. Further, it follows from DCT that under P∗,

m(Un(t1), . . . ,Un(tk))
T L−→ N(0,mΓ3mT ) for any m ̸= 0, and hence

(Un(t1), . . . ,Un(tk))
L−→ N(0,Γ3)

(4.7.11)

as ν → ∞. Relative compactness and weak convergence of finite dimensional distributions of

{Un : ν ≥ 1} imply that Un
L−→ U as ν → ∞ in (D̃[0, 1], D̃) with respect to the sup norm

metric, for Q(s, ω) under P∗, where U has mean 0 and covariance kernel

lim
ν→∞

EP

(
nN−2

N∑
i=1

(1[Ui≤t1] − Fu,N (t1)−R(t1)πi)×

(1[Ui≤t2] − Fu,N (t2)−R(t2)πi)(π
−1
i − 1)

)
,

(4.7.12)

with R(t)=
∑N

i=1(1[Ui≤t] − Fu,N (t))(1 − πi)/
∑N

i=1 πi(1 − πi). Moreover, it follows from

Theorem 2.3.2 in [79] that U has almost sure continuous paths. Next, note that
∑N

i=1 πi(1 −

πi) → ∞ as ν → ∞ under Q(s, ω) a.s. [P] since Q(s, ω) satisfies Assumption 4.2.2-(ii), and

Assumption 4.2.1 holds. Then, it can be shown using Theorem 6.1 in [40] that under Q(s, ω),
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var(
∑

i∈s(Nπi)
−1) → 0 as ν → ∞ a.s. [P]. Consequently,

∑
i∈s(Nπi)

−1 p−→ 1 as ν → ∞

under P∗. Then, under P∗, Zn=Un/
∑

i∈s(Nπi)
−1 L−→ Z

L
= U as ν → ∞ in (D̃[0, 1], D̃) with

respect to the sup norm metric, for Q(s, ω). This further implies that under P∗, Zn
L−→ U as

ν → ∞ in (D̃[0, 1], D̃) with respect to the Skorohod metric, for Q(s, ω).

Now, it follows from Donsker theorem that under P, WN
L−→W as ν → ∞ in (D̃[0, 1], D̃)

with respect to the Skorohod metric, where W is the standard Brownian bridge in D̃[0, 1] and

has almost sure continuous paths. Hence, under P∗, both Zn and WN are tight in (D̃[0, 1], D̃)

with respect to the Skorohod metric by Theorem 5.2 in [6]. Then, it follows from Lemma B.2

in [8] that under P∗,Hn=Zn +
√
n/NWN is tight in (D̃[0, 1], D̃) with respect to the Skorohod

metric, for d(i, s)=(Nπi)−1 and Q(s, ω) since Assumption 4.2.1 holds. It also follows from (iii)

of Theorem 5.1 in [69] that

m
(
Zn(t1) +

√
n/NWN (t1), . . . ,Zn(tk) +

√
n/NWN (tk)

)T L−→

N(0,m(Γ3 + λΓ4)mT )
(4.7.13)

as ν → ∞ under P∗ for k ≥ 1 and m ̸= 0 because m(Zn(t1), . . . ,Zn(tk))
T L−→ N(0,mΓ3mT )

as ν → ∞ under Q(s, ω) a.s. [P], and
√
n/Nm(WN (t1), . . . ,WN (tk))

T L−→ N(0, λmΓ4mT )

as ν → ∞ under P. Here, Γ4 is a k × k matrix such that

((Γ4))ij = ti ∧ tj − titj for 1 ≤ i < j ≤ k. (4.7.14)

Therefore, under P∗, Hn
L−→ H in (D̃[0, 1], D̃) with respect to the Skorohod metric, for

d(i, s)=(Nπi)−1 and Q(s, ω), whereH is a mean 0 Gaussian process with covariance kernel

lim
ν→∞

EP

(
nN−2

N∑
i=1

(1[Ui≤t1] − Fu,N (t1)−R(t1)πi)×

(1[Ui≤t2] − Fu,N (t2)−R(t2)πi)(π
−1
i − 1)

)
+ λ(t1 ∧ t2 − t1t2) for t1, t2 ∈ [0, 1].

(4.7.15)

We can choose independent random functions, H1,H2 ∈ D̃[0, 1] defined on some probability

space such that H1
L
= U and H2

L
=W. Since U andW have almost sure continuous paths, H1

and H2 have almost sure continuous paths. Hence, H1 +
√
λH2 has almost sure continuous

paths. Next, note that H1 and H2 are mean 0 Gaussian processes because U and W are mean

0 Gaussian processes. Thus H1 +
√
λH2 is a mean 0 Gaussian process. Also, note that the

covariance kernel of H is the sum of covariance kernels of U and
√
λW. Thus the covariance
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kernel of H1 +
√
λH2 is the same as that of H. Therefore, H1 +

√
λH2

L
= H. Hence, H has

almost sure continuous paths. Then, under P∗, Hn
L−→ H in (D̃[0, 1], D̃) with respect to the sup

norm metric, for d(i, s)=(Nπi)−1 and Q(s, ω) by Skorohod representation theorem.

Finally, we shall show that the conclusion of Proposition 4.2.1 holds for the high entropy

sampling design P (s, ω), which satisfies Assumption 4.2.2. Note that for d(i, s)=(Nπi)−1,

EP∗(f(Hn))= EP(
∑

s∈S f(Hn)Q(s, ω)) →
∫
fdPH as ν → ∞ given any bounded continuous

(with respect to the sup norm metric) D̃-measurable function f , where PH is the probability

distribution corresponding toH. Then, it follows from Lemmas 2 and 3 in [4] that∣∣∣∣∑
s∈S

f(Hn)(P (s, ω)−Q(s, ω))

∣∣∣∣ ≤ K2

∑
s∈S

|P (s, ω)−Q(s, ω)|

≤ K2(2D(P ||Q))1/2 ≤ K2(2D(P ||R))1/2,

(4.7.16)

for some constant K2 > 0, where R(s, ω) is a rejective sampling design such that D(P ||R) → 0

as ν → ∞ a.s. [P]. This implies that EP(
∑

s∈S f(Hn)P (s, ω)) →
∫
fdPH as ν → ∞ for

d(i, s)=(Nπi)−1 by DCT, and hence, the conclusion of Proposition 4.2.1 holds for the high

entropy sampling design P (s, ω).

Proof of Theorem 4.2.1. Recall Hn andWn from (4.7.2) in the proof of Proposition 4.2.1, and

suppose that 0 ≤ t1, . . . , tk ≤ 1 for some k ≥ 1. Then, for d(i, s)=(Nπi)−1, we have

m1

(
Hn(t1), . . . ,Hn(tk)

)T
+
√
n/Nm2

(
WN (t1), . . . ,WN (tk)

)T
= m1

(
Hn(t1)−

√
n/NWN (t1), . . . ,Hn(tk)−

√
n/NWN (tk)

)T
+√

n/N(m1 + m2)
(
WN (t1), . . . ,WN (tk)

)T
= m1

(
Zn(t1), . . . ,Zn(t1)

)T
+√

n/N(m1 + m2)
(
WN (t1), . . . ,WN (tk)

)T
(4.7.17)

given any m1,m2 ∈ Rk and m1,m2 ̸= 0, whereZn is as in (4.7.2). Further, suppose that P (s, ω)

denotes a high entropy sampling design satisfying Assumption 4.2.2. Then, it can be shown in

the same way as the derivation of the result in (4.7.13) that under P∗,

m1

(
Zn(t1), . . . ,Zn(t1)

)T
+
√
n/N(m1 + m2)

(
WN (t1), . . . ,WN (tk)

)T L−→

N
(
0,m1Γ3mT

1 + λ(m1 + m2)Γ4(m1 + m2)
T
) (4.7.18)

for P (s, ω). Here, Γ3 is as in (4.7.10), and Γ4 as in (4.7.14). Thus in view of (4.7.17) and

(4.7.18), we have
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(
Hn(t1), . . . ,Hn(tk),

√
n/NWN (t1), . . . ,

√
n/NWN (tk)

)T
L−→ N2k(0,Γ5), for d(i, s) = (Nπi)

−1 and P (s, ω) under P∗, where
(4.7.19)

Γ5 =

Γ3 + λΓ4 λΓ4

λΓ4 λΓ4

 .
The result stated in (4.7.19) implies weak convergence of finite dimensional distributions of the

process (Hn,
√
n/NWN ) for d(i, s)=(Nπi)−1. Recall from the 3rd paragraph in the proof of

Proposition 4.2.1 that under P,

WN =
{√

N(Fu,N (t)− t) : t ∈ [0, 1]
} L−→W (4.7.20)

as ν → ∞ in (D̃[0, 1], D̃) with respect to the Skorohod metric, where W is the standard

Brownian bridge in D̃[0, 1] and has almost sure continuous paths. Then, (Hn,
√
n/NWN ) is

tight in (D̃[0, 1]× D̃[0, 1], D̃ × D̃) with respect to the Skorohod metric, for d(i, s)=(Nπi)−1 and

P (s, ω) because both Hn and
√
n/NWN are tight in (D̃[0, 1], D̃) with respect to the Skorohod

metric, for d(i, s)=(Nπi)−1 and P (s, ω) in view of (4.7.20) and Proposition 4.2.1. Therefore,

under P∗,

(Hn,
√
n/NWN )

L−→ V = (V1,V2) (4.7.21)

as ν → ∞ in (D̃[0, 1]×D̃[0, 1], D̃×D̃) with respect to the Skorohod metric, for d(i, s)=(Nπi)−1

and P (s, ω), where V is a mean 0 Gaussian process in D̃[0, 1] × D̃[0, 1] with almost sure

continuous paths. The covariance kernel of V is obtained from Γ5 above. Next, recall from the

paragraph preceding Assumption 4.2.1 that Fy denotes the superpopulation distribution function

of y. Then, by (4.7.21), continuous mapping theorem and Skorohod representation theorem, we

have

(Hn ◦ Fy,WN ◦ Fy)
L−→ (V1 ◦ Fy,V2 ◦ Fy) as ν → ∞ (4.7.22)

in (D̃(R) × D̃(R), D̃R × D̃R) with respect to the sup norm metric, for d(i, s)=(Nπi)−1 and

P (s, ω). Here, D̃(R) denotes the class of all bounded right continuous functions defined on R

with finite left limits, and D̃R denotes the σ-field on D̃(R) generated by the open balls (ball

σ-field) with respect to the sup norm metric. Note that (V1 ◦ Fy,V2 ◦ Fy) has almost sure

continuous paths because Fy is continuous by Assumption 4.2.3. Let us now consider the quantile
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map

ϕ(F ) = F−1 = Q for any distribution function F, (4.7.23)

where F−1(p)=Q(p)=inf{t ∈ R : F (t) ≥ p} for any 0 < p < 1. Now, suppose that D̃ denotes

the set of distribution functions onR restricted to [Qy(α)−ϵ,Qy(β)+ϵ] for some 0 < α < β < 1

and ϵ > 0, where Qy is the superpopulation quantile function of y. Then, it can be shown in the

same way as the proof of Lemma 3.9.23–(i) in [84] that ϕ: D̃ ⊂ D̃[Qy(α)− ϵ,Qy(β) + ϵ] →

D[α, β] is Hadamard differentiable at Fy tangentially to C[Qy(α)− ϵ,Qy(β) + ϵ]. Note that

Hn ◦ Fy = {
√
n(F̂y(t)− Fy(t)) : t ∈ R} and√

n/NWN ◦ Fy = {
√
n(Fy,N (t)− Fy(t)) : t ∈ R},

(4.7.24)

where F̂y(t)=
∑

i∈s d(i, s)1[Yi≤t]/
∑

i∈s d(i, s) and Fy,N (t)=
∑N

i=1 1[Yi≤t]/N . This is because

Fy is continuous by Assumption 4.2.3. Then by (4.7.22), (4.7.24), functional delta method (see

Theorem 3.9.4 in [84]) and Hadamard differentiability of ϕ, we have

(
{
√
n(Q̂y(p)−Qy(p)) : p ∈ [α, β]}, {

√
n(Qy,N (p)−Qy(p)) : p ∈ [α, β]}

) L−→

(−Ṽ1,−Ṽ2)/fy ◦Qy

(4.7.25)

as ν → ∞ in (D[α, β]×D[α, β],D×D) with respect to the sup norm metric, for d(i, s)=(Nπi)−1

and P (s, ω). Here, fy is the superpopulation density function of y, (Ṽ1, Ṽ2) is a mean 0 Gaussian

process in D[α, β]×D[α, β], and (Ṽ1, Ṽ2)
L
= (V1,V2). Then, by continuous mapping theorem,

we have

{
√
n(Q̂y(p)−Qy,N (p)) : p ∈ [α, β]} L−→ −(Ṽ1 − Ṽ2)/fy ◦Qy = Q (say) (4.7.26)

as ν → ∞ in (D[α, β],D) with respect to the sup norm metric, for d(i, s)=(Nπi)−1 and P (s, ω).

The covariance kernel of Q is obtained from the matrix

[
Ik −Ik

]
Γ5

 Ik

−Ik

 = Γ3.

Here, Ik is the k × k identity matrix.

We shall next show the weak convergence of the quantile processes constructed based on

Q̂y,RA(p), Q̂y,DI(p) and Q̂y,REG(p) in (D[α, β],D) with respect to the sup norm metric, for

d(i, s)=(Nπi)−1 and P (s, ω). Recall Q̂x and Qx,N from Section 4.1, and Qx from the paragraph
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preceding Assumption 4.2.1. Note that

√
n
(
Q̂y,RA(p)−Qy,N (p)

)
=

√
n
(
Q̂y(p)−Qy(p)

)
−
√
n
(
Qy,N (p)−Qy(p)

)
+(

Q̂y(p)/Q̂x(p)
){√

n
(
Qx,N (p)−Qx(p)

)
−
√
n
(
Q̂x(p)−Qx(p)

)}
.

(4.7.27)

First, it can be shown in the same way as the derivation of the results in (4.7.22) and (4.7.25) that

under P∗,
(
{
√
n(F̂y(t) − Fy(t)) : t ∈ R}, {

√
n(Fy,N (t) − Fy(t)) : t ∈ R}, {

√
n(F̂x(t) −

Fx(t)) : t ∈ R}, {
√
n(Fx,N (t) − Fx(t)) : t ∈ R}

)
converges weakly to some mean 0

Gaussian process with almost sure continuous paths as ν → ∞, and hence
(
{
√
n(Q̂y(p) −

Qy(p)) : p ∈ [α, β]}, {
√
n(Qy,N (p) − Qy(p)) : p ∈ [α, β]}, {

√
n(Q̂x(p) − Qx(p)) : p ∈

[α, β]}, {
√
n(Qx,N (p) − Qx(p)) : p ∈ [α, β]}

)
converges weakly to some mean 0 Gaussian

process with almost sure continuous paths as ν → ∞. Then, we have

sup
p∈[α,β]

|Q̂y(p)/Q̂x(p)−Qy(p)/Qx(p)|
p−→ 0 (4.7.28)

as ν → ∞ under P∗. Further, it can be shown in the same way as the derivation of the result in

(4.7.26) that under P∗,

{√
n(Q̂y(p)−Qy,N (p)) +

(
Qy(p)/Qx(p)

)
×

√
n
(
Qx,N (p)− Q̂x(p)

)
: p ∈ [α, β]

} L−→ Q as ν → ∞
(4.7.29)

in (D[α, β],D) with respect to the sup norm metric, for d(i, s)=(Nπi)−1 and P (s, ω). Here, Q

is a mean 0 Gaussian process in D̃[α, β] with almost sure continuous paths. Therefore, in view

of (4.7.27)–(4.7.29),

{√
n(Q̂y,RA(p)−Qy,N (p)) : p ∈ [α, β]

} L−→ Q as ν → ∞ (4.7.30)

in (D[α, β],D) with respect to the sup norm metric, for d(i, s)=(Nπi)−1 and P (s, ω) un-

der P∗. The covariance kernel of Q is obtained from the asymptotic covariance kernel of(
{
√
n(F̂y(t) − Fy(t)) : t ∈ R}, {

√
n(Fy,N (t) − Fy(t)) : t ∈ R}, {

√
n(F̂x(t) − Fx(t)) : t ∈

R}, {
√
n(Fx,N (t)− Fx(t)) : t ∈ R}

)
. Next, note that

√
n
(
Q̂y,DI(p)−Qy,N (p)

)
=

√
n
(
Q̂y(p)−Qy(p)

)
−
√
n
(
Qy,N (p)−Qy(p)

)
+(∑

i∈s
π−1
i Yi

/∑
i∈s

π−1
i Xi

){√
n
(
Qx,N (p)−Qx(p)

)
−
√
n
(
Q̂x(p)−Qx(p)

)} (4.7.31)
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and

√
n
(
Q̂y,REG(p)−Qy,N (p)

)
=

√
n
(
Q̂y(p)−Qy(p)

)
−
√
n
(
Qy,N (p)−Qy(p)

)
+(∑

i∈s
π−1
i XiYi

/∑
i∈s

π−1
i X2

i

){√
n
(
Qx,N (p)−Qx(p)

)
−
√
n
(
Q̂x(p)−Qx(p)

)}
.

(4.7.32)

It can be shown using Theorem 6.1 in [40] and similar arguments in the last paragraph of the

proof of Proposition 4.2.1 that under P (s, ω),

∑
i∈s

(Nπi)
−1Wi −

N∑
i=1

Wi/N
p−→ 0 as ν → ∞ a.s. [P] (4.7.33)

because EP||Wi||2 < ∞. Here, Wi=(Xi, Yi, XiYi, X
2
i ). Since

∑N
i=1 Wi/N → EP(Wi) as

ν → ∞ a.s. [P] by SLLN, we have

∑
i∈s

π−1
i Yi

/∑
i∈s

π−1
i Xi

p−→ EP(Yi)
/
EP(Xi) and

∑
i∈s

π−1
i XiYi

/∑
i∈s

π−1
i X2

i
p−→ EP(XiYi)/EP(Xi)

2

(4.7.34)

as ν → ∞ for P (s, ω) under P∗. Therefore, using (4.7.31), (4.7.32) and similar arguments as in

the case of
{√

n(Q̂y,RA(p)−Qy,N (p)) : p ∈ [α, β]
}

, we can say that under P∗,
{√

n(Q̂y,DI(p)−

Qy,N (p)) : p ∈ [α, β]
}

and
{√

n(Q̂y,REG(p) − Qy,N (p)) : p ∈ [α, β]
}

converge weakly to a

mean 0 Gaussian process with almost sure continuous paths in (D[α, β],D) with respect to the

sup norm metric, for d(i, s)=(Nπi)−1 and P (s, ω).

Before we give the proof of Proposition 4.2.2, recall {Ui}Ni=1 from (4.2.2) and Fu,N (t)

from (4.7.1). Define Ũn(t)=
√
n
∑

i∈s(NXi)
−1Gi(1[Ui≤t] − Fu,N (t)) for 0 ≤ t ≤ 1 and

B̃n(t1, t2)=Ũn(t2)− Ũn(t1) for 0 ≤ t1 < t2 ≤ 1.

Proof of Proposition 4.2.2. Using Lemmas 4.8.3 and 4.8.4 in Section 4.8, it can be shown in the

same way as in the first two paragraphs of the proof of Proposition 3.1 that under P∗, Ũn
L−→ Ũ

as ν → ∞ in (D̃[0, 1], D̃) with respect to the sup norm metric, for RHC sampling design, where

Ũ is a mean 0 Gaussian process in D̃[0, 1] with almost sure continuous paths. Moreover, the

covariance kernel of Ũ is

lim
ν→∞

EP

(
nγ(X/N)

N∑
i=1

(1[Ui≤t1] − Fu,N (t1))(1[Ui≤t2] − Fu,N (t2))X
−1
i

)
. (4.7.35)
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It can be shown that under RHC sampling design,

var

(∑
i∈s

(NXi)
−1Gi

)
= γ

N∑
i=1

(Xi −X)2/NXiX = γ

(
X

N∑
i=1

Xi/N − 1

)
→ 0 (4.7.36)

as ν → ∞ a.s. [P] since nγ → c > 0 by Lemma 2.7.5 in Section 2.7 of Chapter 2, and

Assumptions 4.2.4 and 4.2.6 hold. Consequently, under P∗,
∑

i∈s(NXi)
−1Gi

p−→ 1 as ν → ∞.

Therefore, under P∗,

Z̃n = Ũn

/∑
i∈s

(NXi)
−1Gi

L−→ Z̃
L
= Ũ (4.7.37)

as ν → ∞ in (D̃[0, 1], D̃) with respect to the sup norm metric, for RHC sampling design. Next,

note that

Hn =
{√

n(F̂u(t)− t) : t ∈ [0, 1]
}
= Z̃n +

√
n/NWN , (4.7.38)

for d(i, s)=(NXi)
−1Gi, where WN={

√
N(Fu,N (t)− t) : t ∈ [0, 1]}. Also, note that under P,

WN
L−→W as ν → ∞ in (D̃[0, 1], D̃) with respect to the Skorohod metric by Donsker theorem,

where W is the standard Brownian bridge. Therefore, using the same arguments as in the 3rd

paragraph of the proof of Proposition 3.1, we can show that under P∗, Hn
L−→ H as ν → ∞ in

(D̃[0, 1], D̃) with respect to the sup norm metric, for d(i, s)=(NXi)
−1Gi and RHC sampling

design, whereH is a mean 0 Gaussian process with covariance kernel

lim
ν→∞

EP
(
nγ(X/N)

N∑
i=1

(1[Ui≤t1] − Fu,N (t1))(1[Ui≤t2] − Fu,N (t2))X
−1
i

)
+

λ(t1 ∧ t2 − t1t2),

(4.7.39)

for t1, t2 ∈ [0, 1]. Also,H has almost sure continuous paths. It can be shown using Lemma 4.8.3,

Assumption 4.2.4 and DCT that the expression in (4.7.39) becomes

cEP(Xi)EP

((
1[Ui≤t1] − P(Ui ≤ t1)

)(
1[Ui≤t2] − P(Ui ≤ t2)

)
X−1

i

)
+

λ(t1 ∧ t2 − t1t2),

(4.7.40)

where c=limν→∞ nγ.

Proof of Theorem 4.2.2. The proof follows in view of Proposition 4.2.2 in the same way as the

proof of Theorem 4.2.1 follows in view of Proposition 4.2.1.
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Proof of Proposition 4.3.1. Let us denote the stratified multistage cluster sampling design by

P (s, ω).

(i) Recall Fy,H from the paragraph preceding Assumption 4.3.5, and consider {Ui}Ni=1 as

in (4.2.2) with Fy,H replacing Fy. Also, recall Fu,N (t) and Un(t) from (4.7.1). Note that

Fu,N (t) → t as ν → ∞ a.s. [P] for any t ∈ [0, 1] by Assumption 4.3.3 and SLLN. Therefore,

using Lemmas 4.8.6 and 4.8.7 in Section 4.8, one can show in the same way as in the first two

paragraphs of the proof of Proposition 4.2.1 that under P∗,

Un
L−→ U as ν → ∞ (4.7.41)

in (D̃[0, 1], D̃) with respect to the sup norm metric, for P (s, ω). Here, U is a mean 0 Gaussian

process in D̃[0, 1] with covariance kernel

K1(t1, t2) = λ

H∑
h=1

Λh(Λh/λλh − 1)EP
(
1[Y ′

hjl≤Q̃y,H(t1)]
− P(Y ′

hjl ≤ Q̃y,H(t1))
)
×

(
1[Y ′

hjl≤Q̃y,H(t2)]
− P(Y ′

hjl ≤ Q̃y,H(t2))
) (4.7.42)

for t1, t2 ∈ [0, 1]. Here, Q̃y,H(p)=inf{t ∈ R : F̃y,H(t) ≥ p}, F̃y,H(t)=
∑H

h=1 ΛhFy,h(t), and

λh’s and Λh’s are as in Assumption 4.3.1. Moreover, U has almost sure continuous paths.

Next, it can be shown using Assumption 4.3.1 that var(
∑

i∈s(Nπi)
−1)= o(1), and hence∑

i∈s(Nπi)
−1 p−→ 1 as ν → ∞ under P (s, ω) for any given ω ∈ Ω. Here, πi=mhrh/MhNhj

when the ith population unit belongs to the jth cluster of stratum h. Therefore, it follows from

DCT that under P∗,
∑

i∈s(Nπi)
−1 p−→ 1, and hence under P∗,

Zn = Un

/∑
i∈s

(Nπi)
−1 L−→ Z

L
= U (4.7.43)

as ν → ∞ in (D̃[0, 1], D̃) with respect to the sup norm metric, for the sampling design P (s, ω).

Next, recall WN from the 1st paragraph in the proof of Proposition 4.2.1. Then, using

assumptions Assumptions 4.3.1 and 4.3.3, and Lemma 4.8.8 in Section 4.8, it can be shown that

covP(WN (t1),WN (t2)) =

H∑
h=1

(Nh/N)EP

(
1[Y ′

hjl≤Qy,H(t1)]−

P(Y ′
hjl ≤ Qy,H(t1))

)(
1[Y ′

hjl≤Qy,H(t2)] − P(Y ′
hjl ≤ Qy,H(t2))

)
→

(4.7.44)
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H∑
h=1

ΛhEP

(
1[Y ′

hjl≤Q̃y,H(t1)]
− P(Y ′

hjl ≤ Q̃y,H(t1))

)(
1[Y ′

hjl≤Q̃y,H(t2)]
−

P(Y ′
hjl ≤ Q̃y,H(t2))

)
= K2(t1, t2) (say)

as ν → ∞ for any t1, t2 ∈ [0, 1]. Then, under P, WN
L−→ W as ν → ∞ in (D̃[0, 1], D̃) with

respect to the Skorohod metric by (4.7.44) above and Theorem 3.3.1 in [79] (see p. 109), where

W is a mean 0 Gaussian process in D̃[0, 1] with covariance kernel K2(t1, t2). Also, W has

almost sure continuous paths. Therefore, using similar arguments as in the proof of Proposition

4.2.1, we can say that under P∗,

Hn = Zn +
√
n/NWN = {

√
n(F̂u(t)− t) : t ∈ [0, 1]} L−→ H (4.7.45)

as ν → ∞ in (D̃[0, 1], D̃) with respect to the sup norm metric, for d(i, s)=(Nπi)−1 and P (s, ω),

whereH is a mean 0 Gaussian process in D̃[0, 1] with covariance kernel

K1(t1, t2) + λK2(t1, t2). (4.7.46)

Moreover,H has almost sure continuous paths. This completes the proof of (i).

(ii) Using Hoeffding’s inequality (see [76]), and Assumptions 4.2.1, 4.3.3 and 4.3.4, it can be

shown that Fu,N (t) → t as ν → ∞ a.s. [P] for any t ∈ [0, 1]. Therefore, using Lemmas 4.8.6

and 4.8.7, and the Assumption 4.3.4, one can show in the same way as in (i) that under P∗,

Zn
L−→ U as ν → ∞ (4.7.47)

in (D̃[0, 1], D̃) with respect to the sup norm metric, for P (s, ω), where U is a mean 0 Gaussian

process in D̃[0, 1] with covariance kernel

K1(t1, t2) = lim
ν→∞

λ
H∑

h=1

Nh(Nh − nh)EP
(
1[Y ′

hjl≤Qy,H(t1)]−

P(Y ′
hjl ≤ Qy,H(t1))

)(
1[Y ′

hjl≤Qy,H(t2)] − P(Y ′
hjl ≤ Qy,H(t2))

)
/nhN,

(4.7.48)

for t1, t2 ∈ [0, 1]. Moreover, U has almost sure continuous paths. Next, given any t1, t2 ∈ [0, 1],
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covP(WN (t1),WN (t2)) =

H∑
h=1

(Nh/N)EP
(
1[Y ′

hjl≤Qy,H(t1)]−

P(Y ′
hjl ≤ Qy,H(t1))

)(
1[Y ′

hjl≤Qy,H(t2)] − P(Y ′
hjl ≤ Qy,H(t2))

)
→ K2(t1, t2)

(4.7.49)

as ν → ∞ for some covariance kernel K2(t1, t2) by Assumption 4.3.5. Then, under P,

WN
L−→W as ν → ∞ (4.7.50)

in (D̃[0, 1], D̃) with respect to the Skorohod metric by Theorem 3.3.1 in [79] (see p. 109), where

W is a mean 0 Gaussian process in D̃[0, 1] with covariance kernel K2(t1, t2). Also, W has

almost sure continuous paths. Therefore, using similar arguments as in the proof of Proposition

4.2.1, we can say that under P∗,

Hn = Zn +
√
n/NWN = {

√
n(F̂u(t)− t) : t ∈ [0, 1]} L−→ H as ν → ∞ (4.7.51)

in (D̃[0, 1], D̃) with respect to the sup norm metric, for d(i, s)=(Nπi)−1 and P (s, ω), where H

is a mean 0 Gaussian process in D̃[0, 1] with almost sure continuous paths and p.d. covariance

kernel

K1(t1, t2) + λK2(t1, t2). (4.7.52)

This completes the proof of (ii).

Proof of Theorem 4.3.1. The proof follows in view of Proposition 4.3.1 in the same way as the

proof of Theorem 4.2.1 follows in view of Proposition 4.2.1.

Proof of Theorem 4.4.1. By conclusions of Theorems 4.2.1 and 4.2.2, and continuous mapping

theorem, we have

∫ β

α

√
n(G(p)−Qy,N (p))J(p)dp

L−→
∫ β

α
Q(p)J(p)dp as ν → ∞ (4.7.53)

for high entropy and RHC sampling deigns under P∗. Note that Q(p)J(p) is Riemann integrable

on [α, β] implying Z=
∫ β
α Q(p)J(p)dp=limm→∞m−1

∑m−1
i=0 Q

(
α+ i(β−α)/m

)
J
(
α+ i(β−

α)/m
)

under the aforementioned sampling designs. By DCT, we have
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E(exp(itZ)) = lim
m→∞

exp

{
−m−2

m−1∑
i=0

m−1∑
j=0

K
(
α+ i(β − α)/m,

α+ j(β − α)/m
)
J
(
α+ i(β − α)/m

)
J
(
α+ j(β − α)/m

)
(t2/2)

} (4.7.54)

since Q is a mean 0 Gaussian process in D[α, β] with covariance kernel K(p1, p2). Note that

K(p1, p2) in the case of any high entropy sampling design (see (4.2.3)) is continuous on [α, β]×

[α, β] by the assumption of this theorem, whereas K(p1, p2) in the case of RHC sampling design

(see (4.2.5)) is continuous on [α, β]× [α, β] by Assumption 4.2.3. Then, E(exp(itZ))=exp
(
−

t2
∫ β
α

∫ β
α K(p1, p2)J(p1)J(p2)dp1dp2/2

)
under the above sampling designs since K(p1, p2) is

continuous on [α, β]× [α, β], and hence Riemann integrable on [α, β]× [α, β]. Therefore,

∫ β

α
Q(p)J(p)dp ∼ N(0, σ21), where σ21 =

∫ β

α

∫ β

α
K(p1, p2)J(p1)J(p2)dp1dp2. (4.7.55)

Hence, under P∗,
∫ β
α

√
n(G(p)−Qy,N (p))J(p)dp

L−→ N(0, σ21) as ν → ∞ for high entropy and

RHC sampling deigns.

Next, for any k ≥ 1 and p1, . . . , pk ∈ [α, β], we have

√
n(f(G(p1), . . . , G(pk))− f(Qy,N (p1), . . . , Qy,N (pk))) = aN

√
nTn +

√
nϵ(Tn) (4.7.56)

by delta method, where aN=∇f(Qy,N (p1), . . . , Qy,N (pk)), Tn=G(pk)−Qy,N (p1), . . . , G(pk)−

Qy,N (pk), and ϵ(Tn) → 0 as Tn → 0. It follows from conclusions of Theorems 4.2.1 and 4.2.2

that under P∗

√
nTn

L−→ Nk(0,∆) as ν → ∞ (4.7.57)

for high entropy and RHC sampling deigns, where ∆ is a k×k matrix such that ((∆))ij=K(pi, pj)

for 1 ≤ i, j ≤ k. It can be shown that Qy,N (p) → Qy(p) as ν → ∞ a.s. [P] for any p ∈ (0, 1),

when {(Yi, Xi) : 1 ≤ i ≤ N} are i.i.d. Thus aN → a as ν → ∞ a.s. [P] for some a.

Consequently, under P∗,
√
n(f(G(p1), . . . , G(pk))−f(Qy,N (p1), . . . , Qy,N (pk)))

L−→ N(0, σ22)

as ν → ∞ for the aforesaid sampling designs, where σ22=a∆aT . This completes the proofs of (i)

and (ii).

Proof of Theorem 4.4.2. It can be shown using Assumptions 4.2.1, 4.3.1 and 4.3.3, and Lemma

4.8.8 in Section 4.8 that asymptotic covariance kernels of the quantile processes considered
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in this chapter under stratified multistage cluster sampling design with SRSWOR (see (4.3.1))

are continuous on [α, β] × [α, β], when H is fixed as ν → ∞. Moreover, by the assumption

of this theorem, asymptotic covariance kernels of the aforementioned quantile processes are

continuous on [α, β] × [α, β], when H → ∞ as ν → ∞. Then, the asymptotic normality of∫ β
α

√
n(G(p) − Qy,N (p))J(p)dp for the above sampling design under P∗ can be shown using

similar arguments as in the 1st paragraph of the proof of Theorem 4.4.1.

Next, ifH is fixed as ν → ∞, then it can be shown using A6 thatQy,N (p) → Q̃y,H(p) as ν →

∞ a.s. [P] for any p ∈ (0, 1), where Q̃y,H(p)={t ∈ R : F̃y,H(t) ≥ p}, F̃y,H(t)=
∑H

h=1 ΛhFy,h(t),

and Λh’s are as in Assumption 4.3.1. Further, if H → ∞ as ν → ∞, then it can be shown

using Assumption 4.3.6 that Qy,N (p) → Q̃y(p) as ν → ∞ a.s. [P] for any p ∈ (0, 1),

where Q̃y(p)={t ∈ R : F̃y(t) ≥ p}, and F̃y is as in Assumption 4.3.6. Thus aN → a

as ν → ∞ a.s. [P] for some a, where aN is as in the 2nd paragraph of the proof of Theo-

rem 4.4.1. Then, given any k ≥ 1 and p1, . . . , pk ∈ [α, β], the the asymptotic normality of
√
n(f(G(p1), . . . , G(pk))− f(Qy,N (p1), . . . , Qy,N (pk))) for the above sampling design under

P∗ can be shown using similar arguments as in the 2nd paragraph of the proof of Theorem 4.4.1.

This completes the proofs of (i) and (ii).

Proof of Theorem 4.4.3. (i) We shall prove this theorem using (4.8.6) in Lemma 4.8.5 in Section

4.8. Fix ϵ > 0, and suppose that

Bϵ(s, ω) = {p1, p2 ∈ [α, β] : |K̂(p1, p2)−K(p1, p2)| ≤ ϵ} for s ∈ S and ω ∈ Ω. (4.7.58)

Then, we have

∫ β

α

∫ β

α
|(K̂(p1, p2)−K(p1, p2))J(p1)J(p2)|dp1dp2 ≤ K

( ∫∫
Bϵ(s,ω)

|K̂(p1, p2)−

K(p1, p2)|dp1dp2 +
∫∫

(Bϵ(s,ω))c
|K̂(p1, p2)−K(p1, p2)|dp1dp2

)
≤ K

(
ϵ(β − α)2 +

∫∫
(Bϵ(s,ω))c

|K̂(p1, p2)−K(p1, p2)|dp1dp2
)

(4.7.59)

for some constant K > 0 since J is continuous on [α, β]. Now, let Wn=supp1,p2∈[α,β] |K̂(p1, p2)

−K(p1, p2)|. Then,

∫∫
(Bϵ(s,ω))c

|K̂(p1, p2)−K(p1, p2)|dp1dp2 ≤ (4.7.60)



4.7. Proofs of the main results 175

Wn

∫ β

α

∫ β

α
1[(Bϵ(s,ω))c](p1, p2)dp1dp2.

Further, under a high entropy sampling design,

EP∗

(∫ β

α

∫ β

α
1[(Bϵ(s,ω))c](p1, p2)dp1dp2

)
=

∫ β

α

∫ β

α
P∗(|K̂(p1, p2)−K(p1, p2)|

> ϵ
)
dp1dp2 → 0 as ν → ∞ by DCT since K̂(p1, p2)

p−→ K(p1, p2) as ν → ∞
(4.7.61)

for any p1, p2 ∈ [α, β] under P∗ by (4.8.6) in Lemma 4.8.5 in Section 4.8. Therefore, under P∗,

∫ β

α

∫ β

α
1[(Bϵ(s,ω))c](p1, p2)dp1dp2

p−→ 0, and∫∫
(Bϵ(s,ω))c

|K̂(p1, p2)−K(p1, p2)|dp1dp2
p−→ 0 as ν → ∞

(4.7.62)

for a high entropy sampling design because Wn=Op(1) as ν → ∞ by (4.8.6) in Lemma 4.8.5.

Hence,
∫ β
α

∫ β
α |(K̂(p1, p2) − K(p1, p2)) J(p1)J(p2)|dp1dp2

p−→ 0 as ν → ∞ under P∗. This

completes the proof of the first part of (i). The proof of the other part of (i) follows in a straight

forward way. Also, the proof of (ii) follows exactly the same way as the proof of (i).

Proof of Theorem 4.4.4. The proof follows exactly the same way as the proof of Theorem 4.4.3

in view of Lemma 4.8.9 in Section 4.8.

Proof of Theorem 4.5.1. (i) Suppose that δ21 , δ22 , δ23 and δ24 are the asymptotic variances of

the estimators of
∫ β
α Qy,N (p)J(p)dp based on Q̂y(p), Q̂y,RA(p), Q̂y,DI(p) and Q̂y,REG(p),

respectively, under P (s, ω). Here, P (s, ω) denotes one of SRSWOR, RHC and any HEπPS

sampling designs. It follows from Lemma 4.8.10 in Section 4.8 that Assumption 4.2.2 holds

under SRSWOR and any HEπPS sampling designs by the assumptions of Theorem 4.5.1. Then,

in view of Theorem 4.4.1, we have

δ2i =

∫ β

α

∫ β

α
Ki(p1, p2)J(p1)J(p2)dp1dp2 for 1 ≤ i ≤ 4 (4.7.63)

where Ki(p1, p2)’s are as in the paragraph preceding Theorem 4.5.1. Therefore, the conclusion

of (i) in Theorem 4.5.1 holds in a straightforward way.

(ii) The proof follows exactly the same way as the proof of (i).
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Proof of Theorem 4.5.2. (i) Suppose that η21 , η22 and η23 are the asymptotic variances of the

estimators of
∫ β
α Qy,N (p)J(p)dp based onG(p) under SRSWOR, RHC and any HEπPS sampling

designs, respectively. Here, G(p) denotes one of Q̂y(p), Q̂y,RA(p), Q̂y,DI(p) and Q̂y,REG(p).

Then, in view of Theorem 4.4.1, we have

η2i =

∫ β

α

∫ β

α
K∗

i (p1, p2)J(p1)J(p2)dp1dp2 for 1 ≤ i ≤ 3 (4.7.64)

where K∗
i (p1, p2)’s are as in the paragraph preceding Theorem 4.5.2. Therefore, the conclusion

of (i) in Theorem 4.5.2 holds in a straightforward way.

(ii) The proof follows exactly the same way as the proof of (i).

Proof of Theorem 4.5.3. It follows from (4.7.25) in the proof of Theorem 4.2.1 that under P∗

{
√
n(Q̂y(p)−Qy(p)) :∈ [α, β]} L−→ −Ṽ1/fy ◦Qy (4.7.65)

as ν → ∞ in (D[α, β],D) with respect to the sup norm metric, for d(i, s)=(Nπi)−1 and

SRSWOR. Here, Qy and fy are superpopulation quantile and density functions of y, respectively,

and Ṽ1 is a mean 0 Gaussian process in D[α, β] with covariance kernel

K(p1, p2) = lim
ν→∞

(1− n/N)EP

( N∑
i=1

(1[Yi≤Qy(p1)] − Fy,N (Qy(p1))×

(1[Yi≤Qy(p2)] − Fy,N (Qy(p2))/N

)
+ λ(p1 ∧ p2 − p1p2)

= p1 ∧ p2 − p1p2 for p1, p2 ∈ [α, β].

(4.7.66)

The result in (4.7.65) implies that under P∗

√
n(Q̂y(0.5)−Qy(0.5))

L−→ N(0, σ21) as ν → ∞ (4.7.67)

for d(i, s)=(Nπi)−1 and SRSWOR, where σ21=1/4f2y (Qy(0.5)). Next, it can be shown using

Theorems 1 and 3 in [74] that under SRSWOR,

√
n(y − Y )

L−→ N(0, σ22) and
√
n(Ŷ GREG − Y )

L−→ N(0, σ23) (4.7.68)

as ν → ∞ a.s. [P], where σ22=(1 − λ)σ2y , σ23=(1 − λ)σ2y(1 − ρ2xy), σ
2
y is the superpopulation

variance of y, and ρxy is the superpopulation correlation coefficient between x and y. Further, it
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can be shown in the same way as the proof of the result in (4.7.13) that under P∗,

√
n(y−EP(Yi))

L−→ N(0, σ22+λσ
2
y) and

√
n(Ŷ GREG−EP(Yi))

L−→ N(0, σ23+λσ
2
y) (4.7.69)

as ν → ∞. Therefore, the conclusion of Theorem 4.5.3 holds in a straightforward way in view

of (4.7.67) and (4.7.69).

4.8. Proofs of additional results required to prove the main results

Let us fix k ≥ 1 and p1, . . . , pk ∈ (0, 1), and recall V1, . . . ,VN from the 3rd paragraph in

Section 4.2. Define V̂1=
∑

i∈s(Nπi)
−1Vi. Suppose that P (s, ω) denotes a high entropy sampling

design satisfying Assumption 4.2.2, and Q(s, ω) denotes a rejective sampling design having

inclusion probabilities equal to those of P (s, ω). Recall from the paragraph preceding the proof

of Proposition 4.2.1 that such a rejective sampling design always exists. Now, we state the

following lemma.

Lemma 4.8.1. Fix m ∈ R2k such that m ̸= 0. Suppose that Assumption 4.2.1 holds. Then, under

Q(s, ω) as well as P (s, ω), we have

√
nmV̂

T

1
L−→ N(0,mΓmT ) as ν → ∞ a.s. [P],

where Γ is as mentioned in Assumption 4.2.2-(ii).

Proof. The proof follows exactly the same way as the derivation of the result, which appears in

the proof of Lemma 2.7.2 in Section 2.7 of Chapter 2, that
√
nm1(V̂1 − V)T

L−→ N(0,m1Γ1mT
1 )

as ν → ∞ under each of SRSWOR, LMS and any HEπPS sampling designs for any m1 ∈ Rp,

m1 ̸= 0 and Γ1=limν→∞Σ1.

Next, recall {Ui}Ni=1 from (4.2.2) in Section 4.2, Fu,N (t) and Un(t) from (4.7.1) in Section

4.7, and Bu,N (t1, t2) and Bn(t1, t2) from (4.7.3) in Section 4.7. Now, we state the following

lemma.

Lemma 4.8.2. Suppose that Assumption 4.2.1 holds. Then, there exist constants L1, L2 > 0 such

that under Q(s, ω),

E
[(
Bn(t1, t2)

)2(
Bn(t2, t3)

)2] ≤ L1

(
Bu,N (t1, t3)

)2 a.s. [P]
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for any 0 ≤ t1 < t2 < t3 ≤ 1 and ν ≥ 1, and

limν→∞E
(
Bn(t1, t2)

)4 ≤ L2

(
t2 − t1

)2 a.s. [P]

for any 0 ≤ t1 < t2 ≤ 1.

Proof. Suppose that for i=1, . . . , N , ξi=1, when the ith population unit is included in the sample,

and ξi=0 otherwise. Further, suppose that Sk,N={(i1, . . . , ik) : i1, . . . , ik ∈ {1, 2, . . . , N} and i1,

. . . , ik are all distinct} for k=2, 3, 4. Recall from the proof of the preceding Lemma that under

Q(s, ω),
∑N

i=1 πi(1− πi)/n is bounded away from 0 as ν → ∞ a.s. [P]. Then, it follows from

the proof of Corollary 5.1 in [7] that there exists a constant K1 > 0 such that for all ν ≥ 1

max
(i1,i2)∈S2,N

∣∣E((ξi1 − πi1)(ξi2 − πi2)
)∣∣ < K1n/N

2,

max
(i1,i2,i3)∈S3,N

∣∣E((ξi1 − πi1)(ξi2 − πi2)(ξi3 − πi3)
)∣∣ < K1n

2/N3, and

max
(i1,i2,i3,i4)∈S4,N

∣∣E((ξi1 − πi1)(ξi2 − πi2)(ξi3 − πi3)(ξi4 − πi4)
)∣∣ < K1n

2/N4

(4.8.1)

under Q(s, ω) a.s. [P]. Now, let

Bi = 1[t1<Ui≤t2] −Bu,N (t1, t2), Ci = 1[t2<Ui≤t3] −Bu,N (t2, t3),

αi = Bi(ξi/πi − 1) and βi = Ci(ξi/πi − 1)

for given any i=1, . . . , N and 0 ≤ t1 < t2 < t3 ≤ 1. Then, we have

E
[(
Bn(t1, t2)

)2(
Bn(t2, t3)

)2]
= (n2/N4)E

[ N∑
i=1

α2
i β

2
i +

∑
(i1,i2)∈S2,N

αi1αi2βi1βi2+

∑
(i1,i2)∈S2,N

α2
i1β

2
i2 +

∑
(i1,i2)∈S2,N

α2
i1βi1βi2 +

∑
(i1,i2)∈S2,N

αi1αi2β
2
i2 +

∑
(i1,i2,i3)∈S3,N

α2
i1βi2βi3+

∑
(i1,i2,i3)∈S3,N

αi1αi2β
2
i3 +

∑
(i1,i2,i3,i4)∈S4,N

αi1αi2βi3βi4

]
.

Note thatQ(s, ω) satisfies Assumption 4.2.2–(ii) because P (s, ω) satisfies Assumption 4.2.2–(ii),

and P (s, ω) and Q(s, ω) have the same inclusion probabilities. Then, we have

(n2/N4)E

[ N∑
i=1

α2
i β

2
i

]
= (n2/N4)

N∑
i=1

E(ξi − πi)
4B2

i C
2
i /π

4
i ≤ (4.8.2)
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(K2/N)
N∑
i=1

B2
i C

2
i ≤ K3

(
Bu,N (t1, t3)

)2
a.s. [P] for all ν ≥ 1 and some constants K2,K3 > 0 since Assumption 4.2.1 holds, and

1[t1<Ui≤t2]1[t2<Ui≤t3] =0 for any 0 ≤ t1 < t2 < t3 ≤ 1. Next, suppose that {πi1i2 : 1 ≤ i1 <

i2 ≤ N} are second order inclusion probabilities of Q(s, ω). Then, we note that

(n2/N4)E

[ ∑
(i1,i2)∈S2,N

αi1αi2βi1βi2

]
= (n2/N4)×

∑
(i1,i2)∈S2,N

E

(
(ξi1 − πi1)

2(ξi2 − πi2)
2

)
Bi1Bi2Ci1Ci2/π

2
i1π

2
i2 ≤ (K4/n

2)×

∑
(i1,i2)∈S2,N

(|πi1i2 − πi1πi2 |+ πi1πi2)|Bi1Ci1 ||Bi2Ci2 | ≤ (K5/N
2)×

∑
(i1,i2)∈S2,N

|Bi1Ci1 ||Bi2Ci2 | ≤ K6(Bu,N

(
t1, t3)

)2
(4.8.3)

a.s. [P] for all ν ≥ 1 and some constants K4,K5,K6 > 0 since Assumption 4.2.2-(ii) holds,

E((ξi1 − πi1)
2(ξi2 − πi2)

2)=(πi1i2 − πi1πi2)(1 − 2πi1)(1 − 2πi2) + πi1πi2(1 − πi1)(1 − πi2)

for (i1, i2) ∈ S2,N , and max(i1,i2)∈S2,N

∣∣E((ξi1 − πi1)(ξi2 − πi2)
)∣∣=max(i1,i2)∈S2,N

|πi1i2 −

πi1πi2 | < K1n/N
2 a.s. [P] by (4.8.1). An inequality similar to (4.8.3) holds for (n2/N4)E

[
∑

(i1,i2)∈S2,N
α2
i1
β2i2 ]. Since,

∣∣E((ξi1−πi1)3(ξi2−πi2))∣∣ ≤ 7|πi1i2−πi1πi2 |, inequalities similar

to (4.8.3) also hold for (n2/N4)E [
∑

(i1,i2)∈S2,N
α2
i1
βi1βi2 ] and (n2/N4)E[

∑
(i1,i2)∈S2,N

αi1αi2β
2
i2
].

Note that

E
(
(ξi1 − πi1)

2(ξi2 − πi2)(ξi3 − πi3)
)
= (1− 2πi1)E

(
(ξi1 − πi1)(ξi2 − πi2)×

(ξi3 − πi3)
)
+ πi1(1− πi1)E

(
(ξi2 − πi2)(ξi3 − πi3)

)
for (i1, i2, i3) ∈ S3,N .

Also, note that

max
(i1,i2,i3)∈S3,N

∣∣E((ξi1 − πi1)(ξi2 − πi2)(ξi3 − πi3)
)∣∣ < K1n

2/N3 and

max
(i1,i2,i3,i4)∈S4,N

∣∣E((ξi1 − πi1)(ξi2 − πi2)(ξi3 − πi3)(ξi4 − πi4)
)∣∣ < K1n

2/N4 a.s. [P]

by (4.8.1). Therefore, it can be shown in the same way as in (4.8.2) and (4.8.3) that under

Q(s, ω),

(n2/N4)E

[ ∑
(i1,i2,i3)∈S3,n

α2
i1βi2βi3

]
≤ K7

(
Bu,N (t1, t3)

)2
,



180 Chapter 4. Quantile processes and their applications in finite populations

(n2/N4)E

[ ∑
(i1,i2,i3)∈S3,N

αi1αi2β
2
i3

]
≤ K7

(
Bu,N (t1, t3)

)2 and

(n2/N4)E

[ ∑
(i1,i2,i3,i4)∈S4,N

αi1αi2βi3βi4

]
≤ K7

(
Bu,N (t1, t3)

)2 a.s. [P]

for all ν ≥ 1 and some constant K7 > 0. Hence, there exists a constant K8 > 0 such that

under Q(s, ω), E
[(
Bn(t1, t2)

)2 (
Bn(t2, t3)

)2] ≤ K8

(
Bu,N (t1, t3)

)2 a.s. [P] for any ν ≥ 1 and

0 ≤ t1 < t2 < t3 ≤ 1.

Next, one can shown that

E
(
Bn(t1, t2)

)4
= (n2/N4)E

[ N∑
i=1

α4
i + 2

∑
(i1,i2)∈S2,N

α2
i1α

2
i2+

2
∑

(i1,i2)∈S2,N

α3
i1αi2 + 2

∑
(i1,i2,i3)∈S3,N

α2
i1αi2αi3 +

∑
(i1,i2,i3,i4)∈S4,N

αi1αi2αi3αi4

]
.

It can also be shown in the same way as in (4.8.2) and (4.8.3) that under Q(s, ω),

(n2/N4)E
[ N∑
i=1

α4
i

]
= O(1/n) as ν → ∞ a.s. [P], and

(n2/N4)E
[
2

∑
(i1,i2)∈S2,N

α2
i1α

2
i2 + 2

∑
(i1,i2)∈S2,N

α3
i1αi2 + 2

∑
(i1,i2,i3)∈S3,N

α2
i1αi2αi3+

∑
(i1,i2,i3,i4)∈S4,N

αi1αi2αi3αi4

]
≤ K9

(
Bu,N (t1, t2)

)2 given any ν ≥ 1 a.s. [P]

for some constant K9 > 0. Therefore, under Q(s, ω), limν→∞ E
(
Bn(t1, t2)

)4 ≤ K9

(
t2− t1)

)2
a.s. [P] because Bu,N (t1, t2) → (t2 − t1) a.s. [P] by SLLN. Hence, the result follows.

Next, fix k ≥ 1 and p1, . . . , pk ∈ (0, 1) and define V̂2=
∑

i∈s(NXi)
−1GiVi, where Vi’s are

as in the 3rd paragraph of Section 4.2 and Gi’s are as in the 1st paragraph of Section 4.1. Also,

recall γ from the paragraph preceding the statement of Theorem 4.2.2 in Section 4.2.

Lemma 4.8.3. Fix m ∈ R2k such that m ̸= 0. Suppose that EP(Xi)
−1 <∞, and Assumptions

4.2.1 and 4.2.4–4.2.6 hold. Then, under RHC sampling design, we have

√
nmV̂

T

2
L−→ N(0,mΓ6mT ) as ν → ∞ a.s. [P],

where Γ6=cEP(Xi)EP[(Ri − EP(Ri))
T (Ri − EP(Ri))/Xi], and c=limν→∞ nγ.
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Note that Γ6 is p.d. by Assumption 4.2.5. Also, note that limν→∞ nγ exists by Lemma 2.7.5

in Section 2.7 of Chapter 2.

Proof. The proof follows exactly the same way as the derivation of the result, which appears in

the proof of Lemma 2.7.2 in Section 2.7 of Chapter 2, that
√
nm1(V̂2 − V)T

L−→ N(0,m1Γ2mT
1 )

as ν → ∞ under RHC sampling design for any m1 ∈ Rp, m1 ̸= 0 and Γ2=limν→∞Σ2.

Before we state the next result, recall {Ui}Ni=1 from (4.2.2) in Section 4.2, and Fu,N (t) from

(4.7.1) andBu,N (t1, t2) from (4.7.3) in Section 4.7. Define Ũn(t)=
√
n
∑

i∈s(NXi)
−1Gi(1[Ui≤t]−

Fu,N (t)) for 0 ≤ t ≤ 1 and B̃n(t1, t2)=Ũn(t2)− Ũn(t1) for 0 ≤ t1 < t2 ≤ 1.

Lemma 4.8.4. Suppose that Assumptions 4.2.4 and 4.2.6 hold. Then, there exist constants

L1, L2 > 0 such that under RHC sampling design,

E
[(
B̃n(t1, t2)

)2(
B̃n(t2, t3)

)2] ≤ L1

(
Bu,N (t1, t3)

)2 a.s. [P]

for any 0 ≤ t1 < t2 < t3 ≤ 1 and ν ≥ 1, and

limν→∞E
(
B̃n(t1, t2)

)4 ≤ L2

(
t2 − t1

)2 a.s. [P]

for any 0 ≤ t1 < t2 ≤ 1.

Proof. Recall from Section 4.2 that RHC sampling design is implemented in two steps. In the first

step, the entire population is randomly divided into n groups, say P1, . . . ,Pn of sizes Ñ1 · · · , Ñn

respectively. Then, in the second step, a unit is selected from each group independently. For

each r=1, . . . , n, the qth unit from Pr is selected with probability X ′
qr/Qr, where X ′

qr is the x

value of the qth unit in Pr and Qr=
∑Ñr

q=1X
′
qr. Let E1 and E2 denote design expectations with

respect to the 1st and the 2nd steps, respectively. Suppose that (yr, xr) is the value of (y, x)

corresponding to the rth unit in the sample for r=1, . . . , n. Further, suppose that zr=Fy(yr) for

r=1, . . . , n, where Fy is the superpopulation distribution function of y. Define

αr = Qr(1[t1<zr≤t2] −Bu,N (t1, t2))/xr and βr = Qr(1[t2<zr≤t3] −Bu,N (t2, t3))/xr

for 0 ≤ t1 < t2 < t3 ≤ 1 and r=1, . . . , n. Note that Ũn(t)=
√
n
∑

i∈s(NXi)
−1Gi(1[Ui≤t] −

Fu,N (t))=
√
n
∑n

r=1Qr(1[zr≤t] − Fu,N (t))/Nxr. Then, we have
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E
[(
B̃n(t1, t2)

)2(
B̃n(t2, t3)

)2]
= (n2/N4)E1E2

[ n∑
r=1

α2
rβ

2
r +

∑
(r1,r2)∈S2,n

αr1αr2βr1βr2+

∑
(r1,r2)∈S2,n

α2
r1β

2
r2 +

∑
(r1,r2)∈S2,n

α2
r1βr1βr2 +

∑
(r1,r2)∈S2,n

αr1αr2β
2
r2 +

∑
(r1,r2,r3)∈S3,n

α2
r1βr2βr3

+
∑

(r1,r2,r3)∈S3,n

αr1αr2β
2
r3 +

∑
(r1,r2,r3,r4)∈S4,n

αr1αr2βr3βr4

]
,

where Sk,n={(r1, . . . , rk) : r1, . . . , rk ∈ {1, 2, . . . , n} and r1, . . . , rk are all distinct} for k=

2, 3, 4. Suppose that for i=1, . . . , N ,

ξir =


1, when the ith population unit is selected in the rth group Pr, and

0, otherwise.

Note that by Assumption 4.2.4, max1≤i≤N Xi/min1≤i≤N Xi ≤ K1 a.s. [P] for all ν ≥ 1 and

some constant K1 > 0. Also, note that nmax1≤r≤n Ñr/N ≤ 2 for all ν ≥ 1 because {Ñr}nr=1

are as in page 484 of [66]. Recall Bi and Ci from the proof of Lemma 4.8.2. Then, we have

(n2/N4)E1

[ n∑
r=1

E2(α
2
rβ

2
r )

]
= (n2/N4)E1

[ n∑
r=1

( N∑
i=1

B2
i C

2
i ξir/X

3
i

)
Q3

r

]
≤

(K1)
3(n2/N4)E1

[ n∑
r=1

( N∑
i=1

B2
i C

2
i ξir

)
Ñ3

r

]
≤ (K2/N)

[ N∑
i=1

B2
i C

2
i E1

( n∑
r=1

ξir

)]

= (K2/N)

[ N∑
i=1

B2
i C

2
i

]
≤ K3

(
Bu,N (t1, t3)

)2
(4.8.4)

a.s. [P] for all ν ≥ 1 and some constants K2,K3 > 0 since
∑n

r=1 ξir=1 for any 1 ≤ i ≤ N .

Next, recall S2,N from the proof of Lemma 4.8.2 and note that

(n2/N4)E1

[ ∑
(r1,r2)∈S2,n

E2(αr1αr2βr1βr2)

]
= (n2/N4)×

E1

[ ∑
(r1,r2)∈S2,n

E2(αr1βr1)E2(αr2βr2)

]
= (n2/N4)E1

[ ∑
(r1,r2)∈S2,n( ∑

(i1,i2)∈S2,N

Bi1Ci1Bi2Ci2ξi1r1ξi2r2/Xi1Xi2

)
Qr1Qr2

]
≤ (K1)

2(n2/N4)×

E1

[ ∑
(r1,r2)∈S2,n

( ∑
(i1,i2)∈S2,N

|Bi1Ci1 ||Bi2Ci2 |ξi1r1ξi2r2
)
Nr1Nr2

]
≤

(4.8.5)
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K4

N∑
i1=1

|Bi1Ci1 |
N∑

i2=1

|Bi2Ci2 |/N(N − 1) ≤ K5

(
Bu,N (t1, t3)

)2
a.s. [P] for all ν ≥ 1 and some constants K4,K5 > 0 since units are selected from Pr1 and Pr2

independently, {Ñr}nr=1 are as in page 484 of [66], and E1(ξi1r1ξi2r2)=Nr1Nr2/N(N − 1) for

any (r1, r2) ∈ S2,n and (i1, i2) ∈ S2,N . It can be shown that an inequality similar to (4.8.5) holds

for each of (n2/N4)E1E2[
∑

(r1,r2)∈S2,n
α2
r1β

2
r2 ], (n

2/N4)E1E2[
∑

(r1,r2)∈S2,n
α2
r1βr1βr2 ] and

(n2/N4)E1E2[
∑

(r1,r2)∈S2,n
αr1αr2β

2
r2 ]. Note that

E1(ξi1r1ξi2r2ξi3r3) = Nr1Nr2Nr3/(N(N − 1)(N − 2))

for (r1, r2, r3) ∈ S3,n and (i1, i2, i3) ∈ S3,N , and
∑

(r1,r2,r3)∈S3,n
Nr1Nr2Nr3/N(N−1)(N−2)

is bounded. Also, note that

E1(ξi1r1ξi2r2ξi3r3ξi4r4) = (Nr1Nr2Nr3Nr4)/N(N − 1)(N − 2)(N − 3)

for (r1, r2, r3, r4) ∈ S4,n and (i1, i2, i3, i4) ∈ S4,N , and
∑

(r1,r2,r3,r4)∈S4,n
Nr1Nr2Nr3Nr4/N(N−

1)(N − 2)(N − 3) is bounded. Then, it can be shown in the same way as in (4.8.4) and (4.8.5)

above that

(n2/N4)E1E2

[ ∑
(r1,r2,r3)∈S3,n

α2
r1βr2βr3

]
≤ K6

(
Bu,N (t1, t3)

)2
,

(n2/N4)E1E2

[ ∑
(r1,r2,r3)∈S3,n

αr1αr2β
2
r3

]
≤ K6

(
Bu,N (t1, t3)

)2 and

(n2/N4)E1E2

[ ∑
(r1,r2,r3,r4)∈S4,n

αr1αr2βr3βr4

]
≤ K6

(
Bu,N (t1, t3)

)2 a.s. [P]

for all ν ≥ 1 and some constant K6 > 0. Thus

E
[(
B̃n(t1, t2)

)2(
B̃n(t2, t3)

)2] ≤ K7

(
Bu,N (t1, t3)

)2a.s.[P]

for all ν ≥ 1 and some constant K7 > 0.

Next, note that

E
(
B̃n(t1, t2)

)4
= (n2/N4)E1E2

[ n∑
r=1

α4
r + 2

∑
(r1,r2)∈S2,n

α2
r1α

2
r2+
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2
∑

(r1,r2)∈S2,n

α3
r1αr2 + 2

∑
(r1,r2,r3)∈S3,n

α2
r1αr2αr3 +

∑
(r1,r2,r3,r4)∈S4,n

αr1αr2αr3αr4

]
.

It can be shown in the same way as in (4.8.4) and (4.8.5) above that

(n2/N4)E1E2

[ n∑
r=1

α4
r

]
= O(1/n) as ν → ∞ a.s. [P], and (n2/N4)×

E1E2

[
2

∑
(r1,r2)∈S2,n

α2
r1α

2
r2 + 2

∑
(r1,r2)∈S2,n

α3
r1αr2 + 2

∑
(r1,r2,r3)∈S3,n

α2
r1αr2αr3+

∑
(r1,r2,r3,r4)∈S4,n

αr1αr2αr3αr4

]
≤ K8

(
Bu,N (t1, t2)

)2 given any ν ≥ 1 a.s. [P]

for some constant K8 > 0. Therefore, limν→∞E
(
B̃n(t1, t2)

)4 ≤ K8

(
t2 − t1

)2 a.s. [P] since

Bu,N (t1, t2)→ (t2 − t1) as ν → ∞ a.s. [P] by SLLN.

Next, we state the following lemma, which is required to prove Theorem 4.4.3.

Lemma 4.8.5. (i) Fix 0 < α < β < 1. Suppose that the assumptions of Theorem 4.2.1 hold,

K(p1, p2) is as in (4.2.3) in Section 4.2, and K̂(p1, p2) is as in (4.4.4) in Section 4.4.1. Then,

under P∗,

sup
p1,p2∈[α,β]

|K̂(p1, p2)−K(p1, p2)| = Op(1) and K̂(p1, p2)
p−→ K(p1, p2) as ν → ∞ (4.8.6)

for any p1, p2 ∈ [α, β] and high entropy sampling design satisfying Assumption 4.2.2.

(ii) Further, if the assumptions of Theorem 4.2.2 hold, K(p1, p2) is as in (4.2.5) in Section 4.2,

and K̂(p1, p2) is as in (4.4.5) in Section 4.4.1. Then, the above results hold under RHC sampling

design.

Proof. (i) Let us first consider a high entropy sampling design P (s, ω) satisfying Assumption

4.2.2, and a rejective sampling design Q(s, ω) having inclusion probabilities equal to those of

P (s, ω). Since, K(p1, p2) in (4.2.3) in Section 4.2 and K̂(p1, p2) in (4.4.4) in Section 4.4.1

depend on P (s, ω) only through its inclusion probabilities, and P (s, ω) and Q(s, ω) have equal

inclusion probabilities, it is enough to show that the results in (4.8.6) hold for Q(s, ω). The

results in (4.8.6) holds for P (s, ω) in the same way as the conclusion of Proposition 4.2.1 holds

for P (s, ω) in Section 4.7. We shall first show that under P∗,

sup
p1,p2∈[α,β]

|K̂(p1, p2)−K(p1, p2)| = Op(1) as ν → ∞ for Q(s, ω).
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It can be shown in the same way as the derivation of the result in (4.7.25) in Section 4.7 that

under P∗, {
√
n(Q̂y(p)−Qy(p)) : p ∈ [α/2, (1+β)/2]} converges weakly to a mean 0 Gaussian

process as ν → ∞ in (D[α/2, (1 + β)/2],D) with respect to the sup norm metric, for Q(s, ω).

Consequently,

sup
p∈[α/2,(1+β)/2]

|
√
n(Q̂y(p)−Qy(p))| = Op(1) (4.8.7)

as ν → ∞ under P∗ by continuous mapping theorem. Then, under P∗, we have

sup
p∈[α,β]

|
√
n(Q̂y(p+ 1/

√
n)− Q̂y(p− 1/

√
n))/2| = Op(1) as ν → ∞ for Q(s, ω)

since α− 1/
√
n ≥ α/2 and β + 1/

√
n ≤ (1 + β)/2 for all sufficiently large ν, and fy ◦Qy is

bounded away from 0 on [α/2, (1 + β)/2] by Assumption 4.2.3. Here, we recall from Table 4.5

in Section 4.4.1 that
√
n(Q̂y(p+ 1/

√
n)− Q̂y(p− 1/

√
n))/2 is the estimator of 1/fy(Qy(p)).

Similarly, under P∗,

sup
p∈[α,β]

|
√
n(Q̂x(p+ 1/

√
n)− Q̂x(p− 1/

√
n))/2| = Op(1) as ν → ∞ for Q(s, ω).

It further follows from (4.7.28) and (4.7.34) in the proof of Theorem 4.2.1 in Section 4.7 that

under P∗,

sup
p∈[α,β]

|Q̂y(p)/Q̂x(p)−Qy(p)/Qx(p)|
p−→ 0,

∑
i∈s

π−1
i Yi

/∑
i∈s

π−1
i Xi

p−→ EP(Yi)

/
EP(Xi)

and
∑
i∈s

π−1
i XiYi

/∑
i∈s

π−1
i X2

i
p−→ EP(XiYi)

/
EP(X

2
i ) as ν → ∞ for Q(s, ω).

Similarly, it can be shown that under P∗,

∑
i∈s

(1− πi)

/ N∑
i=1

πi(1− πi)
p−→ 1 as ν → ∞ for Q(s, ω).

Consequently, under P∗,

sup
p1,p2∈[α,β]

|K̂(p1, p2)−K(p1, p2)| = Op(1) as ν → ∞ for Q(s, ω).

This completes the proof of the first result in (4.8.6) for Q(s, ω).

Next, if we establish that under P∗,
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K̂(p1, p2)− K̃(p1, p2)
p−→ 0 and K̃(p1, p2)

p−→ K(p1, p2)

as ν → ∞ for Q(s, ω) and any p1, p2 ∈ [α, β], then the result

K̂(p1, p2)
p−→ K(p1, p2) as ν → ∞ for Q(s, ω) and any p1, p2 ∈ [α, β] under P∗

will follow. Here,

K̃(p1, p2) = (n/N2)
∑
i∈s

(ζi(p1)− ζ(p1)−S(p1)πi)(ζi(p2)− ζ(p2)−S(p2)πi)(π
−1
i − 1)π−1

i .

Note that

K̃(p1, p2)− (n/N2)
N∑
i=1

(ζi(p1)− ζ(p1)− S(p1)πi)(ζi(p2)− ζ(p2)− S(p2)πi)(π
−1
i − 1)

p−→ 0 as ν → ∞ for any p1, p2 ∈ [α, β] under P∗

in the same way as the derivation of the result
∑

i∈s(Nπi)
−1 p−→ 1 for Q(s, ω) under P∗ in the

proof of Proposition 4.2.1 (see the last few lines in 2nd paragraph of the proof of Proposition

4.2.1 in Section 4.7). Also, note that (n/N2)
∑N

i=1(ζi(p1)− ζ(p1)−S(p1)πi)(ζi(p2)− ζ(p2)−

S(p2)πi)(π
−1
i −1) has a deterministic limit a.s. [P] for any p1, p2 ∈ [α, β] in view of Assumption

4.2.2-(i). Further,

EP

(
lim
ν→∞

(n/N2)
N∑
i=1

(ζi(p1)− ζ(p1)− S(p1)πi)(ζi(p2)− ζ(p2)− S(p2)πi)(π
−1
i − 1)

)
= K(p1, p2) for any p1, p2 ∈ [α, β]

in view of Assumption 4.2.2-(ii) and DCT. Therefore, as ν → ∞,

(n/N2)
N∑
i=1

(ζi(p1)− ζ(p1)− S(p1)πi)(ζi(p2)− ζ(p2)− S(p2)πi)(π
−1
i − 1) → K(p1, p2)

a.s. [P], and hence K̃(p1, p2)
p−→ K(p1, p2) under P∗ for any p1, p2 ∈ [α, β].

Next, let us fix ν ≥ 1, t > 0, δ > 0 and p ∈ [α, β]. Then, we have

{√
n|Q̂y(p)−Qy(p)| ≤ t and

∑
i∈s

(1[Yi≤Qy(p)+t/
√
n] − 1[Yi≤Qy(p)−t/

√
n])/Nπi (4.8.8)
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≤ δ

}
⊆
{
|
∑
i∈s
1[Yi≤Q̂y(p)]

/Nπi −
∑
i∈s
1[Yi≤Qy(p)]/Nπi| ≤ δ

}
.

Further, one can show that under P∗,

∑
i∈s

(1[Yi≤Qy(p)+t/
√
n] − 1[Yi≤Qy(p)−t/

√
n])

/
Nπi−

Fy,N (Qy(p) + t/
√
n) + Fy,N (Qy(p)− t/

√
n)

p−→ 0 as ν → ∞

in the same way as the derivation of the result
∑

i∈s(Nπi)
−1 p−→ 1 for Q(s, ω) under P∗ in the

proof of Proposition 4.2.1. Moreover, under P, Fy,N (Qy(p)+t/
√
n)−Fy,N (Qy(p)−t/

√
n)

p−→ 0

as ν → ∞ by Chebyshev’s inequality and Assumption 4.2.3. Thus as ν → ∞

∑
i∈s

(1[Yi≤Qy(p)+t/
√
n] − 1[Yi≤Qy(p)−t/

√
n])/Nπi

p−→ 0 under P∗. (4.8.9)

Moreover, it follows from (4.8.7) above that as ν → ∞,

√
n|Q̂y(p)−Qy(p)| = Op(1) under P∗. (4.8.10)

Therefore, using (4.8.8), (4.8.9) and (4.8.10) above, one can show that

∑
i∈s
1[Yi≤Q̂y(p)]

/
Nπi −

∑
i∈s
1[Yi≤Qy(p)]

/
Nπi

p−→ 0 as ν → ∞ under P∗.

Now, suppose that pn=p+ c/
√
n for c ∈ R. Then, we have

Qy(pn) = Qy(p) + (c/
√
n)(1/fy(Qy(ϵn)))

by Taylor expansion, where ϵn → p as ν → ∞. Thus one can show that as ν → ∞,

√
n(F̂y(Qy(pn))− F̂y(Qy(p))− Fy(Qy(pn)) + p)

p−→ 0 under P∗

in the same way as the derivation of the result
∑

i∈s(Nπi)
−1 p−→ 1 for Q(s, ω) under P∗ in the

proof of Proposition 4.2.1. Further, it can be shown that

Q̂y(p)−Qy(p) = (p− F̂y(Qy(p)))/fy(Qy(p)) + op(1/
√
n) as ν → ∞ under P∗.

Similarly, we have
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Q̂y(pn)−Qy(pn) = (pn − F̂y(Qy(pn)))/fy(Qy(pn)) + op(1/
√
n) as ν → ∞ under P∗.

Therefore,

√
n(Q̂y(p+ 1/

√
n)− Q̂y(p− 1/

√
n))/2

p−→ 1/fy(Qy(p)) as ν → ∞ under P∗.

Similarly,

∑
i∈s
1[Xi≤Q̂x(p)]

/Nπi −
∑
i∈s
1[Xi≤Qx(p)]/Nπi

p−→ 0 and

√
n(Q̂x(p+ 1/

√
n)− Q̂x(p− 1/

√
n))/2

p−→ 1/fx(Qx(p)) as ν → ∞ under P∗.

Hence, under P∗, K̂(p1, p2) − K̃(p1, p2)
p−→ 0 as ν → ∞ for Q(s, ω) and any p1, p2 ∈ [α, β].

This completes the proof of (i). The proof of (ii) follows exactly the same way as the proof of

(i).

Next, suppose that P (s, ω) denotes the stratified multistage cluster sampling design with

SRSWOR mentioned in Section 4.3. Fix k ≥ 1 and p1, . . . , pk ∈ (0, 1). Recall R′
hjl from the

paragraph preceding Assumption 4.3.5. Define

V′
hjl = R′

hjl − R̄′ and V̂3 =
H∑

h=1

∑
j∈sh

∑
l∈shj

MhNhjV′
hjl/mhrhN

for h=1, . . . ,H , j=1, . . . ,Mh and l=1, . . . , Nhj , where R̄′=
∑H

h=1

∑Mh
j=1

∑Nhj

l=1 R′
hjl/N . Now,

we state the following lemma.

Lemma 4.8.6. (i) Fix m ∈ R2k such that m ̸= 0. Suppose that H is fixed as ν → ∞, and

Assumptions 4.2.1, 4.3.1 and 4.3.3 hold. Then, under P (s, ω),

√
nmV̂

T

3
L−→ N(0, λmΓ7mT ) as ν → ∞ a.s. [P]

for some p.d. matrix Γ7, where λ is as in Assumption 4.2.1.

(ii) Further, if H → ∞ as ν → ∞, and Assumptions 4.2.1 and 4.3.3–4.3.5 hold, then the same

result holds.
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Proof. Note that

√
nmV̂

T

3 =
√
n

H∑
h=1

∑
j∈sh

∑
l∈shj

MhNhjV′
hjlm

T /mhrhN =
H∑

h=1

Th (say).

(i) We shall first show that Th=
√
n
∑

j∈sh
∑

l∈shj MhNhjV′
hjlmT /mhrhN is asymptotically

normal under two stage cluster sampling design with SRSWOR for each h=1, . . . ,H . Then, the

asymptotic normality of
∑H

h=1 Th follows from the independence of {Th}Hh=1. For establishing

the asymptotic normality of Th, we shall use Theorem 2.1 in [62].

Let Θh=
∑

j∈sh
∑Nhj

l=1 V′
hjlmT /

√
mh for h=1, . . . ,H . Note that Θh/

√
mh is the HT estima-

tor of
∑Mh

j=1

∑Nhj

l=1 V′
hjlmT /Mh under SRSWOR. Also, note that Assumption 4.2.2-(ii) holds triv-

ially under SRSWOR. It follows from Assumptions 4.2.1 and 4.3.1 that
∑Mh

j=1 |
∑Nhj

l=1 V′
hjlmT |2+δ/

Mh=O(1) as ν → ∞ for any 0 < δ ≤ 2 and ω ∈ Ω.

Now, it can be shown that var(Θh)=σ2h,1 − σ2h,2 + σ2h,3. Here,

σ2h,1 = (1− fh)

Mh∑
j=1

N2
hj

(
(R̄′

hj − R̄′
)mT

)2
/(Mh − 1),

σ2h,2 = 2(1− fh)Nh

(
(R̄′

h − R̄′
)mT

) Mh∑
j=1

Nhj

(
(R̄′

hj − R̄′
)mT

)
/Mh(Mh − 1)

and σ2h,3 = (1− fh)N
2
h

(
(R̄′

h − R̄′
)mT

)2
/Mh(Mh − 1)

with fh=mh/Mh, R̄′
hj=
∑Nhj

l=1 R′
hjl/Nhj and R̄′

h=
∑Mh

j=1

∑Nhj

l=1 R′
hjl /Nh. Next, we note that

σ2h,1 = (1− fh)

( Mh∑
j=1

N2
hj

(
R̄′
hjm

T
)2 − 2

(
R̄′mT

) Mh∑
j=1

N2
hj

(
R̄′
hjm

T
)
+

Ñh(R̄
′mT

)2)/
(Mh − 1),

(4.8.11)

where Ñh=
∑Mh

j=1N
2
hj . Let us consider the first term on the right hand side of (4.8.11). Using

Assumptions 4.2.1 and 4.3.1, and Hoeffding’s inequality, it can be shown that

(1− fh)

Mh∑
j=1

N2
hj

(
(R̄′

hjm
T )2 − EP(R̄

′
hjm

T )2
)
/(Mh − 1) → 0 as ν → ∞ a.s. [P].

Further, we have
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(1− fh)

Mh∑
j=1

N2
hjEP(R̄

′
hjm

T )2/(Mh − 1) = (1− fh)(Nhσ̃
2
h + Ñhµ

2
h)/(Mh − 1),

where σ̃2h=EP
[(

R′
hjl − EP(R′

hjl)
)
mT ]2=mΓhmT (recall Γh from the paragraph preceding As-

sumption 4.3.5) and µh=EP (R′
hjlmT ). Thus

(1− fh)

Mh∑
j=1

N2
hj(R̄

′
hjm

T )2/(Mh − 1) = (1− fh)(Nhσ̃
2
h + Ñhµ

2
h)/(Mh − 1)+ o(1) (4.8.12)

as ν → ∞ a.s. [P]. Using similar arguments, we can say that

σ2h,1 = (1− fh)(Nhσ̃
2
h + Ñh(µh − µ̃)2)/(Mh − 1) + o(1),

σ2h,2 = 2(1− fh)N
2
h(µh − µ̃)2/Mh(Mh − 1) + o(1) and

σ2h,3 = (1− fh)N
2
h(µh − µ̃)2/Mh(Mh − 1) + o(1) as ν → ∞ a.s. [P],

where µ̃=
∑H

h=1 Λhµh (recall Λh’s from Assumption 4.3.1). Then, we have

var(Θh) = (1− fh)Nhσ̃
2
h/(Mh − 1) + o(1) (4.8.13)

as ν → ∞ a.s. [P] by Assumption 4.3.1.

Next, recall Fy,H(t) and Fx,H(t) from the paragraph preceding Assumption 4.3.5. It can be

shown that

sup
t∈R

|Fy,H(t)− F̃y,H(t)| → 0 and sup
t∈R

|Fx,H(t)− F̃x,H(t)| → 0 as ν → ∞ (4.8.14)

by Assumption 4.3.1, where F̃y,H(t)=
∑H

h=1 ΛhFy,h(t) and F̃x,H(t)=
∑H

h=1 ΛhFx,h(t). Then, it

follows from Lemma 4.8.8 that

Qy,H(pr) → Q̃y,H(pr) as ν → ∞ for any r = 1, . . . , k, (4.8.15)

where Q̃y,H(p)=inf{t ∈ R : F̃y,H(t) ≥ p}. Similarly,

Qx,H(pr) → Q̃x,H(pr) as ν → ∞ for any r = 1, . . . , k, (4.8.16)

where Q̃x,H(p)=inf{t ∈ R : F̃x,H(t) ≥ p}. Let
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R̃hjl =

(
1[Y ′

hjl≤Q̃y,H(p1)]
, . . . ,1[Y ′

hjl≤Q̃y,H(pk)]
,1[X′

hjl≤Q̃x,H(p1)]
, . . . ,1[X′

hjl≤Q̃x,H(pk)]

)
,

where (Y ′
hjl, X

′
hjl) is as in the second paragraph of Section 4.3. Then,

σ̃2h = mΓhmT → mEP
(
R̃hjl − EP(R̃hjl))

T (R̃hjl − EP(R̃hjl)
)
mT

as ν → ∞ for any h=1, . . . ,H in view of Assumption 4.3.3. Moreover,EP
(
R̃hjl−EP(R̃hjl))

T×

(R̃hjl − EP(R̃hjl)
)

is a p.d. matrix because Assumption 4.3.2 holds. Therefore,

limν→∞((Mh − 1)/Mh)var(Θh) > 0 a.s. [P]

by (4.8.13) above and Assumption 4.3.1. Hence, one can show that

(Θh − E(Θh))/
√
var(Θh)

L−→ N(0, 1) as ν → ∞ under SRSWOR a.s. [P]

in the same way as the derivation of the result, which appears in the proof of Lemma 2.7.2 in

Section 2.7 of Chapter 2, that
√
nm1(V̂1 − V)T

L−→ N(0,m1Γ1mT
1 ) as ν → ∞ under SRSWOR

for any m1 ∈ Rp, m1 ̸= 0 and Γ1=limν→∞Σ1. Thus the condition C1 of Theorem 2.1 in [62]

holds a.s. [P].

Next, suppose that V′
hj=
∑Nhj

l=1 V′
hjl/Nhj . Note that for any h=1, . . . ,H ,

∑Nhj

l=1

(
(V′

hjl −

V′
hj)mT

)2
/Nhj are independent bounded random variables for 1 ≤ j ≤Mh. Then, by Assump-

tions 4.2.1 and 4.3.1, and Hoeffding’s inequality, we have

Mh∑
j=1

(N2
hj/rh)(1/mh)

[ Nhj∑
l=1

(
(V′

hjl−V′
hj)m

T
)2
/Nhj

]
= (1/rhmh)

Mh∑
j=1

Nhj(Nhj −1)σ̃2h+o(1)

as ν → ∞ a.s. [P]. Thus

limν→∞
[ Mh∑
j=1

(N2
hj/rh)(1/mh)

{ Nhj∑
l=1

(
(V′

hjl − V′
hj)m

T
)2
/Nhj

}]2
> 0

a.s. [P]. Further, in view of Assumption 4.3.1, we have

[ Mh∑
j=1

(N4
hj/r

2
h)(1/Mh)

{ Nhj∑
l=1

(
(V′

hjl − V′
hj

)
mT
)2
/Nhj

}2]
≤ K
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for all sufficiently large ν and some constant K > 0 a.s. [P]. Therefore,

lim
ν→∞

[ Mh∑
j=1

(N4
hj/r

2
h)(Mh/mh)

3

{ Nhj∑
l=1

(
(V′

hjl − V′
hj)m

T
)2/

Nhj

}2]/
[ Mh∑

j=1

(N2
hj/rh)(Mh/mh)

{ Nhj∑
l=1

(
(V′

hjl − V′
hj)m

T
)2/

Nhj

}]2
= 0

a.s. [P] by Assumption 4.3.1. Thus the condition C2 of Theorem 2.1 in [62] holds a.s. [P] by

Assumption 4.3.1 and Proposition 4.1 in [62].

The condition C3 of Theorem 2.1 in [62] holds for any ω ∈ Ω by (b) of Proposition 2.3 in [62]

since SRSWOR is used to select samples from clusters in the 1st stage and from population units

of the selected clusters in the 2nd stage. Therefore, the conditions C1, C2 and C3 of Theorem 2.1

in [62] hold a.s. [P]. Hence, by Theorem 2.1 in [62], we have

(
√
nh/Nh)(N/

√
n)(Th − E(Th))/(var((

√
nh/Nh)(N/

√
n)Th))1/2

L−→ N(0, 1) (4.8.17)

as ν → ∞ under two stage cluster sampling design with SRSWOR a.s. [P] for any h=1, . . . ,H .

Now,

var((
√
nh/Nh)(N/

√
n)Th) =

Mh∑
j=1

c̃hj
(
(R̄′

hj − R̄′
)mT

)2 − c̃h
(
(R̄′

h −NhR̄′
/Mh)mT

)2
+

Mh∑
j=1

d̃hj

Nhj∑
l=1

(
(R′

hjl − R̄′
hj)m

T
)2
,

where

c̃hj = (N/Nh)
2(nh/n)chj , d̃hj = (N/Nh)

2(nh/n)dhj , and c̃h = (N/Nh)
2(nh/n)ch.

Here,

chj = chN
2
hj/Mh, dhj = nMh(1− fhj)N

2
hj/mhrh(Nhj − 1)N2,

ch = nM3
h(1− fh)/mh(Mh − 1)N2, fh = mh/Mh, and fhj = rh/Nhj .

It can be shown using Hoeffding’s inequality that

var((
√
nh/Nh)(N/

√
n)Th) = (1− nh/Nh)σ̃

2
h + o(1) as ν → ∞ a.s. [P].
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Therefore, using (4.8.17) above and Assumption 4.3.1, it can be shown that

H∑
h=1

Th =
H∑

h=1

(Th − E(Th))
L−→ N(0,∆2) as ν → ∞ a.s. [P].

Here,

∆2 = lim
ν→∞

H∑
h=1

nNh(Nh − nh)σ̃
2
h/nhN

2 = lim
ν→∞

H∑
h=1

nNh(Nh − nh)mΓhmT /nhN
2

= λ

H∑
h=1

Λh(Λh/λλh − 1)EP
(
R̃hjlmT − EP(R̃hjlmT )

)2
= λmΓ7mT > 0

with Γ7=
∑H

h=1 Λh(Λh/λλh − 1)EP
(
R̃hjl − EP(R̃hjl))

T (R̃hjl − EP(R̃hjl)
)
. This completes

the proof of (i).

(ii) Since, population units are sampled independently across the strata in P (s, ω), asymptotic

normality of
∑H

h=1 Th under P (s, ω) follows by applying Lyapunov’s central limit theorem

(CLT) to independent random variables {Th}Hh=1. Note that for any δ > 0, we have

|Th|2+δ ≤ ϵ(ν)(mh/
√
n)2+δ

by Assumption 4.3.4, where ϵ(ν) does not depend on s and ω, and ϵ(ν)=O(1) as ν → ∞.

Therefore, under P (s, ω),

H∑
h=1

E|Th|2+δ ≤ ϵ(ν)(H/n1+δ/2)

H∑
h=1

M2+δ
h /H = O(n−δ/2)

as ν → ∞ for any 0 < δ ≤ 2 and ω ∈ Ω. Hence, under P (s, ω),
∑H

h=1E|Th −E(Th)|2+δ → 0

as ν → ∞ for any 0 < δ ≤ 2 and ω ∈ Ω.

Next, we have

H∑
h=1

var(Th) =
H∑

h=1

Mh∑
j=1

chj
(
(R̄′

hj − R̄′
)mT

)2 − H∑
h=1

ch
(
(R̄′

h −NhR̄′
/Mh)mT

)2
+

H∑
h=1

Mh∑
j=1

dhj

Nhj∑
l=1

(
(R′

hjl − R̄′
hj)m

T
)2

= ∆2
1 −∆2

2 +∆2
3 (say).

Now, it can be shown using Assumptions 4.2.1 and 4.3.4, and Hoeffding’s inequality that
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∆2
1 −∆2

2 +∆2
3 =

H∑
h=1

ch(Ñh −N2
h/Mh)(µh − µ∗)2/Mh +

H∑
h=1

nMhÑhσ̃
2
h/

mhrhN
2 −

H∑
h=1

nNhσ̃
2
h/N

2 + o(1) as ν → ∞ a.s. [P],

(4.8.18)

in the same way as the derivation of the result in (4.8.12). Here, µ∗=
∑H

h=1 Nhµh/N . The first

term on the right hand side of (4.8.18) converges to 0 as ν → ∞ by Assumption 4.2.1 and

Assumption 4.3.4. Moreover, we have

H∑
h=1

nMhÑhσ̃
2
h/mhrhN

2 −
H∑

h=1

nNhσ̃
2
h/N

2

= (n/N2)
H∑

h=1

Mh(Ñh −N2
h/Mh)σ̃

2
h/mhrh + (n/N2)

H∑
h=1

Nh(Nh − nh)σ̃
2
h/nh.

(4.8.19)

The first term on the right hand side of (4.8.19) converges to 0 and

(n/N2)

H∑
h=1

Nh(Nh − nh)σ̃
2
h/nh = λ

H∑
h=1

Nh(Nh − nh)σ̃
2
h/nhN + o(1) as ν → ∞

by Assumption 4.3.4. Therefore,

∆2
1 −∆2

2 +∆2
3 = λ

H∑
h=1

Nh(Nh − nh)σ̃
2
h/nhN + o(1),

and hence
H∑

h=1

var(Th) = ∆2
1 −∆2

2 +∆2
3 → λmΓ1mT > 0

as ν → ∞ a.s. [P] for some p.d. matrix Γ1 in view of Assumption 4.3.5. Here, Γ1 is as in Assump-

tion 4.3.5. Thus the Lyapunov’s condition
∑H

h=1E|Th−E(Th)|2+δ/(
∑H

h=1 var(Th))1+δ/2 → 0

as ν → ∞ for some δ > 0, holds under P (s, ω) a.s. [P]. Consequently,
∑H

h=1 Th
L−→

N(0, λmΓ6mT ) as ν → ∞ a.s. [P] with Γ7=Γ1. This completes the proof of (ii).

Next, consider {Ui}Ni=1 as in (4.2.2) in Section 4.2 with Fy,H replacing Fy. Also, consider

Bu,N (t1, t2) and Bn(t1, t2) as in (4.7.3) in Section 4.7. Now, we state the following lemma.

Lemma 4.8.7. (i) Suppose that H is fixed as ν → ∞, and Assumptions 4.2.1, 4.3.1 and 4.3.3

hold. Then, under P (s, ω),
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E
[(
Bn(t1, t2)

)2(
Bn(t2, t3)

)2] ≤ L1

(
Bu,N (t1, t3)

)2 a.s. [P]

for any 0 ≤ t1 < t2 < t3 ≤ 1, ν ≥ 1 and some constant L1 > 0, and

limν→∞E
(
Bn(t1, t2)

)4 ≤ L2(t2 − t1)
2 a.s. [P]

for any 0 ≤ t1 < t2 ≤ 1 and some constant L2 > 0.

(ii) Further, if H → ∞ as ν → ∞, and Assumptions 4.2.1, 4.3.3 and 4.3.4 hold, then the

same results hold.

Proof. Recall Y ′
hjl from the 2nd paragraph in Section 4.3. Let us define U ′

hjl=Fy,H(Y ′
hjl) for any

given h=1, . . . ,H , j=1, . . . ,Mh and l=1, . . . , Nhj . Consider Fu,N (t) and Un(t) as in (4.7.1) in

Section 4.7. Recall from Section 4.3 that given any h, j and l, Y ′
hjl=Yi for some i ∈ {1, . . . , N}.

Also, recall from Section 4.3 that under P (s, ω), the inclusion probability of the ith population

unit is πi=mhrh/MhNhj if it belongs to the jth cluster of the hth stratum. Then, we have

Un(t)=
√
n
∑H

h=1

∑
j∈sh

∑
l∈shj MhNhj

(
1[U ′

hjl≤t] − Fu,N (t)
)
/mhrhN .

Now, suppose that for h=1, . . . ,H , j=1, . . . ,Mh and l=1, . . . , Nhj ,

ξhjl =


1, if the lth unit of the jth cluster in the hth stratum is selected in the sample, and

0, otherwise.

Then, we have

Zn(t) = (
√
n/N)

H∑
h=1

Mh∑
j=1

Nhj∑
l=1

(
(MhNhjξhjl/mhrh)− 1

)(
1[Z′

hjl≤t] − Fz,N (t)
)
.

Further, suppose that

α̃h =

Mh∑
j=1

Nhj∑
l=1

(
(MhNhjξhjl/mhrh)− 1

)
Āhjl and

β̃h =

Mh∑
j=1

Nhj∑
l=1

(
(MhNhjξhjl/mhrh)− 1

)
B̄hjl

for h=1, . . . ,H and 0 ≤ t1 < t2 < t3 ≤ 1, where Āhjl=1[t1<Z′
hjl≤t2] −Bz,N (t1, t2) and
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B̄hjl=1[t2<Z′
hjl≤t3] − Bz,N (t2, t3). Now, let us define Sk,H={(h1, . . . , hk) : h1, . . . , hk ∈

{1, 2, . . . ,H} and h1, . . . , hk are all distinct} for k=2, 3, 4. Then, we have

E
[(
Bn(t1, t2)

)2(
Bn(t2, t3)

)2]
= (n2/N4)E

[ H∑
h=1

α̃2
hβ̃

2
h+∑

(h1,h2)∈S2,H

α̃2
h1
β̃2h2

+
∑

(h1,h2)∈S2,H

α̃2
h1
β̃h1 β̃h2 +

∑
(h1,h2)∈S2,H

α̃h1α̃h2 β̃
2
h2
+

∑
(h1,h2)∈S2,H

α̃h1α̃h2 β̃h1 β̃h2 +
∑

(h1,h2,h3)∈S3,H

α̃2
h1
β̃h2 β̃h3+

∑
(h1,h2,h3)∈S3,H

α̃h1α̃h2 β̃
2
h3

+
∑

(h1,h2,h3,h4)∈S4,H

α̃h1α̃h2 β̃h3 β̃h4

]
.

(4.8.20)

(i) Suppose that αhjl=
(
(MhNhjξhjl/mhrh)−1

)
Āhjl, βhjl=

(
(MhNhjξhjl/mhrh)−1

)
B̄hjl,

α∗
hj=
∑Nhj

l=1 αhjl and β∗hj=
∑Nhj

l=1 βhjl for h=1, . . . ,H , j=1, . . . ,Mh, l=1, . . . , Nhj and 0 ≤ t1 <

t2 < t3 ≤ 1. Then, we have α̃h=
∑Mh

j=1 α
∗
hj and β̃h=

∑Mh
j=1 β

∗
hj . Now, let us consider the first

term on right hand side of (4.8.20). Further, suppose that Sk,h={(j1, . . . , jk) : j1, . . . , jk ∈

sh and j1, . . . , jk are all distinct}, k=2, 3, 4, 1 ≤ h ≤ H . Then, we have

(n2/N4)

H∑
h=1

E(α̃2
hβ̃

2
h) = (n2/N4)

H∑
h=1

E

[ Mh∑
j=1

(α∗
hjβ

∗
hj)

2 +
∑

(j1,j2)∈S2,h

(α∗
hj1β

∗
hj2)

2

+
∑

(j1,j2)∈S2,h

(α∗
hj1)

2β∗hj1β
∗
hj2 +

∑
(j1,j2)∈S2,h

α∗
hj1α

∗
hj2(β

∗
hj2)

2+

∑
(j1,j2)∈S2,h

α∗
hj1α

∗
hj2β

∗
hj1β

∗
hj2 +

∑
(j1,j2,j3)∈S3,h

(α∗
hj1)

2β∗hj2β
∗
hj3+

∑
(j1,j2,j3)∈S3,h

α∗
hj1α

∗
hj2(β

∗
hj3)

2 +
∑

(j1,j2,j3,j4)∈S4,h

α∗
hj1α

∗
hj2β

∗
hj3β

∗
hj4

]
.

(4.8.21)

Next, consider the first term on the right hand side of (4.8.21). Suppose that Sk,hj={(l1, . . . , lk) :

l1, . . . , lk ∈ {1, . . . , Nhj} and l1, . . . , lk are all distinct}, k=2, 3, 4, j=1, . . . ,Mh and 1 ≤ h ≤

H . Then, we have

(n2/N4)

H∑
h=1

E

[ Mh∑
j=1

(α∗
hjβ

∗
hj)

2

]
= (n2/N4)

H∑
h=1

E

[ Mh∑
j=1

( Nhj∑
l=1

(αhjlβhjl)
2

+
∑

(l1,l2)∈S2,hj

(αhjl1βhjl2)
2 +

∑
(l1,l2)∈S2,hj

(αhjl1)
2βhjl1βhjl2

+
∑

(l1,l2)∈S2,hj

αhjl1αhjl2(βhjl2)
2 +

∑
(l1,l2)∈S2,hj

αhjl1αhjl2βhjl1βhj2+

(4.8.22)
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∑
(l1,l2,l3)∈S3,hj

(αhjl1)
2βhjl2βhjl3 +

∑
(l1,l2,l3)∈S3,hj

αhjl1αhjl2(βhjl3)
2

+
∑

(l1,l2,l3,l4)∈S4,hj

αhjl1αhjl2βhjl3βhjl4

)]
.

Now, consider the first term on the right hand side of (4.8.22). Note that N/n=O(1) and

N/n=O(1) and max1≤h≤H,1≤j≤Mh
(nMhNhj/rhmhN)=O(1) as ν → ∞ by Assumptions

4.2.1 and 4.3.1. Then, we have

(n2/N4)
H∑

h=1

Mh∑
j=1

Nhj∑
l=1

E(αhjlβhjl)
2 = (n2/N4)

H∑
h=1

Mh∑
j=1

Nhj∑
l=1

E
(
(MhNhjξhjl/mhrh)

− 1
)4
Ā2

hjlB̄
2
hjl ≤ (K1/N

2)
H∑

h=1

Mh∑
j=1

Nhj∑
l=1

(
1[t1<Z′

hjl≤t2] +Bz,N (t1, t2)

)
×(

1[t2<Z′
hjl≤t3] +Bz,N (t2, t3)

)
≤ K2

(
Bz,N (t1, t3)

)2
(4.8.23)

a.s. [P] for all ν ≥ 1 and some constants K1,K2 > 0. Inequalities similar to (4.8.23) can be

shown to hold for the other terms on the right hand side of (4.8.22). Thus

(n2/N4)
H∑

h=1

Mh∑
j=1

E(α∗
hjβ

∗
hj)

2 ≤ K3

(
Bz,N (t1, t3)

)2 (4.8.24)

a.s. [P] for any 0 ≤ t1 < t2 < t3 ≤ 1, ν ≥ 1 and some constant K3 > 0. Inequalities similar

to (4.8.24) can also be shown to hold for the other terms on the right hand side of (4.8.21).

Therefore,

(n2/N4)
H∑

h=1

E(α̃2
hβ̃

2
h) ≤ K4

(
Bz,N (t1, t3)

)2 (4.8.25)

a.s. [P] for any 0 ≤ t1 < t2 < t3 ≤ 1, ν ≥ 1 and some constant K4 > 0. Furthermore,

inequalities similar to (4.8.25) can be shown to hold for the other terms on the right hand side

of (4.8.20). Consequently, E
[(
Bn(t1, t2)

)2(
Bn(t2, t3)

)2] ≤ K5

(
Bz,N (t1, t3)

)2 a.s. [P] for any

0 ≤ t1 < t2 < t3 ≤ 1, ν ≥ 1 and some constant K5 > 0. Moreover, it can be shown in the same

way that limν→∞E
(
Bn(u, t)

)4 ≤ K6(t−u)2 a.s. [P] for any 0 ≤ u < t ≤ 1 and some constant

K6 > 0 because Bz,N (u, t) → (t− u) as ν → ∞ a.s. [P] by Assumption 4.3.3 and SLLN. This

completes the proof of (i).

(ii) It follows from Assumptions 4.2.1 and 4.3.4 that N/n=O(1) and max1≤h≤H,1≤j≤Mh

(nMhNhj/rhmhN)=O(1) as ν → ∞. Then the proof of the result in (ii) follows the same way

as the proof of the result in (i).
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Next, recall λh’s from Assumption 4.3.1, Fy,H and Qy,H from the paragraph preceding

Assumption 4.3.5 and F̃y from Assumption 4.3.6. Let us define Q̃y(p)=inf{t ∈ R : F̃y(t) ≥ p}

for 0 < p < 1. Also, recall F̃y,H and Q̃y,H from the paragraph containing (4.8.14)–(4.8.16) in

the proof of (i) in Lemma 4.8.6. Then, we state the following lemma.

Lemma 4.8.8. (i) Suppose that H is fixed as ν → ∞, and Assumptions 4.3.1 and 4.3.3 hold.

Then, for any 0 < α < β < 1,

sup
p∈[α,β]

|Qy,H(p)− Q̃y,H(p)| → 0 as ν → ∞.

(ii) Further, suppose that H → ∞ as ν → ∞, and Assumptions 4.3.3, 4.3.4 and 4.3.6 hold. Then,

for any 0 < α < β < 1,

sup
p∈[α,β]

|Qy,H(p)− Q̃y(p)| → 0 as ν → ∞.

Proof. (i) Note that the inverse of Fy,H |Cy , say F−1
y,H : (0, 1) → Cy, exists and is differentiable

by Assumption 4.3.3, and F−1
y,H(p)=Qy,H(p) for any 0 < p < 1. Also, note that the inverse

of F̃y,H |Cy , say F̃−1
y,H : (0, 1) → Cy, exists and is differentiable, and F̃−1

y,H(p)=Q̃y,H(p) for any

0 < p < 1. Clearly, Q̃y,H is uniformly continuous on [α/2, (1 + β)/2]. Then, given any ϵ > 0

there exists a δ > 0 such that

|Q̃y,H(p1)− Q̃y,H(p2)| ≤ ϵ, whenever |p1 − p2| ≤ δ and p1, p2 ∈ [α/2, (1 + β)/2].

Now, it follows that

sup
p∈[α,β]

|p− F̃y,H(Qy,H(p))| = sup
p∈[α,β]

|Fy,H(Qy,H(p))− F̃y,H(Qy,H(p))| → 0

as ν → ∞. This further implies that

sup
p∈[α,β]

|p− F̃y,H(Qy,H(p))| ≤ min{α/2, (1− β)/2, δ}

for all sufficiently large ν. Therefore,

α/2 ≤ F̃y,H(Qy,H(p)) ≤ (1 + β)/2 for all p ∈ [α, β]

and all sufficiently large ν. Hence,
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sup
p∈[α,β]

|Qy,H(p)− Q̃y,H(p)| = sup
p∈[α,β]

|Q̃y,H(F̃y,H(Qy,H(p)))− Q̃y,H(p)| ≤ ϵ

for all sufficiently large ν. This completes the proof of (i). The proof of (ii) follows exactly the

same way as the proof of (i).

Next, we state the following lemma, which is required to prove Theorem 4.4.4.

Lemma 4.8.9. Fix 0 < α < β < 1. Suppose that the assumptions of Theorem 4.3.1 hold,

K(p1, p2) is as in (4.3.1) in Section 4.4, and K̂(p1, p2) is as in (4.4.7) in Section 4.4.1. Then, the

results in (4.8.6) of Lemma 4.8.5 hold under stratified multistage cluster sampling design with

SRSWOR.

Proof. The proof follows exactly the same way as the proof of (i) in Lemma 4.8.5 for the cases,

when H is fixed as ν → ∞ and H → ∞ as ν → ∞.

In the following lemma, we demonstrate some situations, when Assumption 4.2.2–(i) holds.

Recall from the paragraph preceding Assumption 4.2.1 in Section 4.2 that Qy(p)=inf{t ∈ R :

Fy(t) ≥ p} and Qx(p)=inf{t ∈ R : Fx(t) ≥ p} are superpopulation pth quantiles of y and x,

respectively, and Vi=Ri −
∑N

i=1 Ri/N for i=1, . . . , N , where

Ri =
(
1[Yi≤Qy(p1)], . . . ,1[Yi≤Qy(pk)],1[Xi≤Qx(p1)] . . . ,1[Xi≤Qx(pk)]

)
for p1, . . . , pk ∈ (0, 1) and k ≥ 1. Then, we state the following lemma.

Lemma 4.8.10. Suppose that Assumptions 4.2.1, 4.2.4 and 4.2.5 hold. Then, Assumption 4.2.2–(i)

holds under SRSWOR and LMS sampling design. Moreover, if Xi ≤ b a.s. [P] for some b > 0,

EP(Xi)
−1 <∞, Assumption 4.2.1 holds with 0 < λ < EP(Xi)/b, and Assumption 4.2.5 holds,

then Assumption 4.2.2–(i) holds under any πPS sampling design.

Proof. Given any k ≥ 1 and p1, . . . , pk ∈ (0, 1) let us denote (1/N2)
∑N

i=1(Vi−TV πi)
T (Vi−

TV πi)(π
−1
i −1) by ΣN . Here, TV =

∑N
i=1 Vi(1−πi)/

∑N
i=1 πi(1−πi), and the πi’s are inclusion

probabilities. Note that

nΣN = (1− n/N)

( N∑
i=1

VT
i Vi/N −V

T
V

)
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under SRSWOR. Then,

nΣN → (1− λ)EP(Ri − EP(Ri))
T (Ri − EP(Ri)) as ν → ∞ a.s. [P] (4.8.26)

by Assumption 4.2.1 and SLLN. Note that EP(Ri −EP(Ri))
T (Ri −EP(Ri)) is p.d. by Assump-

tion 4.2.5. Thus A4.2.2–(i) holds under SRSWOR.

Next, suppose that Σ(1)
N and Σ

(2)
N denote (1/N2)

∑N
i=1(Vi − TV πi)

T (Vi − TV πi)(π
−1
i −

1) under LMS sampling design and SRSWOR, respectively, and {π(1)i }Ni=1 denote inclusion

probabilities of LMS sampling design. Then, it follows from the proof of Lemma 2.7.1 in Section

2.7 of Chapter 2 that

max
1≤i≤N

|Nπ(1)i /n− 1| → 0 as ν → ∞ a.s. [P] (4.8.27)

It can be shown using this latter result that n(Σ(1)
N − Σ

(2)
N ) → 0 as ν → ∞ a.s. [P]. Therefore,

Assumption 4.2.2–(i) holds under LMS sampling design in view of (4.8.26).

Next, under any πPS sampling design (i.e., a sampling design with πi=nXi/
∑N

i=1Xi), we

have

lim
ν→∞

nΣN = EP
[{

Ri − EP(Ri) + λχ−1µ−1
x CxrXi

}T×{
Ri − EP(Ri) + λχ−1µ−1

x CxrXi

}{
µx/Xi − λ

}]
a.s. [P]

(4.8.28)

by SLLN because EP(Xi)
−1 < ∞ and Assumption 4.2.1 holds. Here, µx=EP(Xi), χ=µx −

λ(EP(Xi)
2/µx) and Cxr=EP[(Ri −EP(Ri))Xi]. The matrix on the right hand side of (4.8.28)

is p.d. because Xi ≤ b a.s. [P] for some b > 0, Assumption 4.2.5 holds and Assumption 4.2.1

holds with 0 < λ < EP(Xi)/b. Thus Assumption 4.2.2–(i) holds under any πPS sampling

design. This completes the proof of the lemma.



Chapter 5

Regression analysis and related

estimators in finite populations

In finite population problems, least square (LS) regression is used in the construction of several

estimators (see [35], [19], [24], etc.). Some examples of these estimators are the GREG and

the ratio estimators of the finite population mean (see Section 2.1 in Chapter 2). The GREG

estimator is often considered for estimating the finite population mean because it turns out to

be more efficient than several other estimators of the mean under various sampling designs (see

Sections 2.1 and 2.2 in Chapter 2). Least square type regression analysis is also used for studying

several estimators under sampling designs, which use the auxiliary information. Some examples

of those sampling designs are πPS, LMS and RHC sampling designs (see the introduction).

[56], [37], [23], [81], [82], etc. considered quantile (QR) and robust regression in the context

of sample survey. However, asymptotic behavior of the estimators obtained from these regression

methods has not been studied in the above-mentioned articles, when the sample observations are

drawn from a finite population using some sampling design. For i.i.d. sample observations, these

estimators were studied in details in the earlier literature (see [46], [39], [50], [51], [59], [33], [21],

[49], [42] etc.). It becomes challenging to show Bahadur type representations and asymptotic

normality of these estimators, when the sample observations may neither be independent nor

identical.

In this chapter, we construct estimators in regression analysis by optimizing convex loss

functions. Examples of such estimators include estimators in regression methods like LS,

asymmetric least square (ALS), truncated least square (TLS), least absolute deviation (LAD),

201
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QR or asymmetric least absolute deviation, etc. Bahadur type representations of these estimators

are shown under a probability distribution generated by a sampling design and a superpopulation

model. Asymptotic distributions of the above-mentioned estimators are then derived using these

Bahadur type representations.

QR and TLS regression are used to construct estimators of the finite population mean.

Asymptotic results related to regression analysis are applied to check whether a subset of the

auxiliary variables has any influence on the study variable. Moreover, QR and ALS regression

are used for detecting the heteroscedasticity present in the finite population observations.

Large sample comparisons of different estimators are carried out based on their asymptotic

distributions. From these comparisons, we observe that HEπPS (see the introduction) and

RHC sampling designs, which use the auxiliary information, sometimes may have an adverse

effect on the performances of different estimators in regression analysis as well as different

regression estimators of the finite population mean. We also observe that the estimators of the

finite population mean constructed based on QR and TLS regression become more efficient than

the GREG estimator under several sampling designs, whenever superpopulations satisfying linear

models are considered, and errors in the linear models are generated from symmetric heavy-tailed

superpopulation distributions (e.g., Laplace, Student’s t, etc.).

In Section 5.1, estimators in regression analysis are constructed. Various asymptotic properties

of these estimators are studied in Section 5.2. Covariance estimation for estimators in regression

analysis is discussed in Section 5.3. Different applications of regression analysis in finite

populations are discussed in Sections 5.4, 5.5 and 5.6. We make some remarks on our major

findings in Section 5.7. The proofs of several results are given in Sections 5.8 and 5.9.

5.1. Regression analysis by minimizing loss functions in finite popu-

lation

Suppose that y is a real-valued study variable and z is a Rd-valued (d ≥ 1) covariate. Recall

from the introduction that (Yi, Zi, Xi) is the value of (y, z, x) for the ith population unit, where

i=1, . . . , N , and x is a positive real-valued size variable. Also, recall from the introduction that

the population total of z and the population values of x are assumed to be known. Moreover, z is

used to construct estimators, and x is used to implement sampling designs as well as to construct
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estimators. As in the earlier chapters, here also we consider all vectors in Euclidean spaces as

row vectors and use superscript T to denote their transpose.

Suppose that Wi=(Zi, Xi) for i=1, . . . , N and ρ : R→ R is a strictly convex function. Then,

we define an estimator in regression analysis under a sampling design P (s) as

θ̂n = (α̂n, β̂n) = arg min
(α,β)∈Rd+2

∑
i∈s

d(i, s)ρ(Yi − α− βW T
i ), (5.1.1)

where {d(i, s) : i ∈ s} are sampling design weights for the sampling design P (s). Note that in the

case of z=x, we take Wi=Zi=Xi for i=1, . . . , N . There is a unique solution to the minimization

problem mentioned in (5.1.1) for any given s ∈ S almost surely, when ρ is strictly convex, and

the population values {(Yi,Wi) : 1 ≤ i ≤ N} is a sample from some absolutely continuous

distribution. Some examples of θ̂n are given in Table 5.1 below. We consider d(i, s)=π−1
i under

TABLE 5.1: Examples of θ̂n.

Regression procedure ρ(t)

LS regression t2

ALS regression |p− 1[t<0]|t2 for any fixed p ∈ (0, 1)

TLS regression
t21[|t|≤K]/2 +K

(
|t| −K/2

)
1[|t|>K]

for any fixed K > 0

LAD regression |t|
QR |t|+ (2p− 1)t for any fixed p ∈ (0, 1)

high entropy sampling designs and d(i, s)=GiX
−1
i under RHC sampling design. Here, {πi}Ni=1

are inclusion probabilities of high entropy sampling designs, and Gi is the x total of that group

of population units formed in the first step of the RHC sampling design from which the ith

population unit is selected in the sample (see the beginning of Section 2.1 in Chapter 2). It is to

be noted that θ̂n can be viewed as an estimator of

θN = (αN , βN ) = arg min
(α,β)∈Rd+2

N∑
i=1

ρ(Yi − α− βW T
i ). (5.1.2)

This is because
∑

i∈s d(i, s)ρ(Yi−α−βW T
i ) is the HT estimator of

∑N
i=1 ρ(Yi−α−βW T

i ) for

d(i, s)=π−1
i , and

∑
i∈s d(i, s)ρ(Yi−α−βW T

i ) is the RHC estimator of
∑N

i=1 ρ(Yi−α−βW T
i )

for d(i, s)=GiX
−1
i .
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5.2. Asymptotic behavior of estimators in regression analysis

In this section, we shall study the asymptotic behavior of θ̂n for a general ρ under RHC and

any high entropy sampling designs. In Chapter 2, we have derived the asymptotic distribution

of β̂n for ρ(t)=t2 under RHC and several high entropy sampling designs in the case of z=x.

We consider the asymptotic framework discussed in the earlier chapters. That is, we assume

that {Pν} is a sequence of populations with Nν , nν → ∞ as ν → ∞, where Nν and nν are,

respectively, the population and the sample sizes corresponding to the νth population. As in

the preceding chapters, here also we suppress the limiting index ν for the sake of notational

simplicity. Moreover, we consider the following assumption mentioned in the earlier chapters

(see Assumption 2.1.1 in Chapter 2, Assumption 3.2.1 in Chapter 3 and Assumption 4.2.1 in

Chapter 4).

Assumption 5.2.1. n/N → λ as ν → ∞, where 0 ≤ λ < 1.

As in Chapters 2–4, we consider a superpopulation model, where {(Yi,Wi) : 1 ≤ i ≤ N} are

i.i.d. random vectors on (Ω,F ,P) with some absolutely continuous distribution function. Also,

as in Section 2.2 of Chapter 2, Section 3.1 of Chapter 3 and Section 4.2 of Chapter 4, we consider

the function P (s, ω) that is defined on S × Ω. Recall from these sections that for each s ∈ S,

P (s, ω) is a random variable on Ω, and for each ω ∈ Ω, P (s, ω) is a probability distribution on

S . It is to be noted that P (s, ω) is a sampling design for each ω ∈ Ω. Moreover, as in Section 4.2

of Chapter 4, we consider the probability measure P∗(B ×E)=
∫
E

∑
s∈B P (s, ω)dP(ω) defined

on the product space (S × Ω, A×F ), where B ∈ A, E ∈ F and B × E is a cylinder subset of

S × Ω. Here, A is the power set of S . As in Section 4.2 of Chapter 4, we denote expectations of

random quantities with respect to P (s, ω), P and P∗ by E, EP and EP∗ , respectively.

Note that ρ has left hand as well as right hand derivatives at all t ∈ R because ρ is convex on

R. Also, note that ρ is differentiable at all but at most countably many real numbers. Suppose

that ρ+(t) denotes the right hand derivative of ρ at t. Let us also suppose that ρ′(t) denotes the

derivative of ρ at t, when ρ is differentiable at t. Then, we define a function ψ : R → R as

follows.

ψ(t) =


ρ′(t), when ρ is differentiable at t,

ρ+(t), otherwise.
(5.2.1)

Note that ψ(t)=ρ′(t) if ρ is differentiable at all t ∈ R. One can also consider the left hand

derivative of ρ(t), say ρ−(t), in order to define ψ. Then, the results stated in the following



5.2. Asymptotic behavior of estimators in regression analysis 205

Theorems will remain the same. Let us also define

θ = arg min
(α,β)∈Rd+2

EP
(
ρ(Yi − α− βW T

i )
)
, and (5.2.2)

ϵi = Yi − θVT
i and ϕ(t,Wi) = EP

(
ψ(ϵi − t)|Wi

)
(5.2.3)

for i=1, . . . , N and t ∈ R, where Vi=(1,Wi). Next, we consider the following assumptions on

superpopulation distribution P.

Assumption 5.2.2. ρ is such that EP
(
ψ(ϵi)

)4
< ∞ and sup

{
EP
(
ψ(ϵi − uVT

i /
√
n + h) −

ψ(ϵi − uVT
i /

√
n− h)

)
/h : 0 < h ≤ δ

}
<∞ for any given u ∈ Rd+2 and some δ > 0. Further,

EP
(
ψ(ϵi + h)− ψ(ϵi)

)2=o(1), and EP
(
ψ(ϵi + h)− ψ(ϵi)

)4=O(1), when h→ 0 as ν → ∞.

Assumption 5.2.3. ρ is such that ϕ(t,Wi) is differentiable with respect to t, ϕ′(t,Wi) is continu-

ous with respect to t and supt∈R |ϕ′(t,Wi)| exists for any given ω ∈ Ω and i=1, . . . , N , where

ϕ′(t,Wi) denotes the derivative of ϕ(t,Wi) with respect to t. Moreover,EP
(
supt∈R |ϕ′(t,Wi)|

)2
<∞.

Assumption 5.2.4. The distribution of Wi is supported on a compact set inRd+1 and EP(Yi)
4 <

∞. Moreover, Σ=EP
(
− ϕ′(0,Wi)VT

i Vi

)
is a positive definite (p.d.) matrix.

Since (Yi,Wi) has absolutely continuous distribution function, Assumptions 5.2.2, 5.2.3 and

5.2.4 hold for different choices of ρ in Table 5.1 in Section 5.1 under some weak regularity

conditions as follows.

(i) For ρ(t)=t2 (LS regression), we have ψ(t)=2t and ϕ(t,Wi)=2(EP(ϵi|Wi)− t) given any

i=1, . . . , N . Thus in this case, Assumptions 5.2.2 and 5.2.3 hold, whenever EP(ϵi)
4 <∞. Also,

the condition that Σ=EP
(
−ϕ′(0,Wi)VT

i Vi

)
is a p.d. matrix, which appears in Assumption 5.2.4,

holds trivially in this case.

(ii) For ρ(t)=|p − 1[t<0]|t2 (ALS regression), we have ψ(t)=2(1 − 2p)t1[t<0] + 2pt and

ϕ(t,Wi)= 2(1− 2p)EP
(
(ϵi − t)1[ϵi<t]

∣∣Wi

)
+ 2p

(
EP(ϵi|Wi)− t

)
given any i=1, . . . , N . Then,

the assumptions discussed in (i) above hold in this case ifEP(ϵi)
4 <∞, F (t,Wi) is differentiable

with respect to t and f(t,Wi) is continuous with respect to t for any given ω ∈ Ω, and p+ (1−

2p)F (θVT
i ,Wi) > 0 a.s. [P]. Here, F (t,Wi) and f(t,Wi), respectively, denote the conditional

distribution and the conditional density functions of Yi given Wi.

(iii) For ρ(t)=t21[|t|≤K]/2+K
(
|t|−K/2

)
1[|t|>K] (TLS regression), we haveψ(t)=t1[|t|≤K]+

K1[t>K]−K1[t<−K] and ϕ(t,Wi)=K
(
1−F (t+θVT

i +K,Wi)
)
−KF (t+θVT

i −K,Wi)+
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∫ t+θVT
i +K

t+θVT
i −K

(y−t−θVT
i )f(y,Wi)dy given any i=1, . . . , N . Therefore, the assumptions discussed

in (i) hold in this case, whenever F (t,Wi) is differentiable with respect to t and f(t,Wi) is

continuous with respect to t for any given ω ∈ Ω, and F (θVT
i +K,Wi)−F (θVT

i −K,Wi) > 0

a.s. [P].

(iv) For ρ(t)=|t|+ (2p− 1)t (QR), we have ψ(t)=2(p− 1[t<0]) and ϕ(t,Wi)=2
(
p− F (t+

θVT
i ,Wi)

)
given any i=1, . . . , N . Assumption 5.2.2 holds in this case, whenever EP

(
supt∈R

f(t,Wi)
)
<∞. Further, in this case, Assumption 5.2.3 is equivalent to Assumption 5.2.5 below.

Moreover, the condition that Σ is p.d. holds if f(θVT
i ,Wi) > 0 a.s. [P].

Assumption 5.2.5. F (t,Wi) is differentiable with respect to t, f(t,Wi) is continuous with

respect to t and supt∈R f(t,Wi) exists for any given ω ∈ Ω and i=1, . . . , N . Moreover,

EP
(
supt∈R f(t,Wi)

)2
<∞.

Assumptions 5.2.1–5.2.4 are required to show that the results similar to (3.3) and (3.4) in

[51] (see Lemmas 5.9.1 and 5.9.3 in Section 5.9) hold under rejective sampling designs (see

[40]). Based on these results, we shall show the Bahadur type representation and the asymptotic

normality of θ̂n for d(i, s)=π−1
i under high entropy sampling designs. Recall from Section 3.2

of Chapter 3 that a sampling design P (s, ω) is called high entropy sampling design, when

D(P ||R) =
∑
s∈S

P (s, ω) log(P (s, ω)/R(s, ω)) → 0 as ν → ∞ a.s. [P] (5.2.4)

for some rejective sampling design R(s, ω) (for the description of the rejective sampling design,

see the introduction). Some examples of high entropy sampling designs are SRSWOR, RS

sampling design (see the introduction), LMS sampling design (see Lemma 3.6.1 in Section 3.6 of

Chapter 3), etc.

Next, suppose that Hi=ψ(ϵi)Vi for i=1, . . . , N . Further, suppose that TH=
∑N

i=1 Hi(1 −

πi)/
∑N

i=1 πi(1− πi). Then, we consider the following assumption.

Assumption 5.2.6. The inclusion probabilities {πi}Ni=1 are such that the following hold.

(i) There exist constants K1,K2 > 0 such that for any i=1, . . . , N and all sufficiently large ν,

K1 ≤ Nπi/n ≤ K2 a.s. [P].

(ii) The matrices (n/N2)
∑N

i=1(Hi − THπi)
T (Hi − THπi)(π

−1
i − 1) → Γ as ν → ∞ a.s. [P],

where Γ is a p.d. matrix.
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A similar assumption like Assumption 5.2.6 is stated and discussed in Chapter 4 (see the

discussion related to Assumption 4.2.2 in Section 4.2 of Chapter 4). It can be shown that

Assumption 5.2.6-(i) holds under SRSWOR, LMS and any πPS sampling designs (see Lemma

3.6.1 in Chapter 3). It can also be shown using SLLN that Assumption 5.2.6-(ii) holds under

the aforementioned sampling designs (see Lemma 5.9.5 in Section 5.9). Like Assumptions

5.2.1–5.2.4, Assumption 5.2.6 is also required to prove the results stated in Lemmas 5.9.1 and

5.9.3 in Section 5.9. Now, we state the following theorems.

Theorem 5.2.1. Suppose that Assumptions 5.2.1–5.2.4 hold. Then, under the probability distri-

bution P∗, as ν → ∞,

θ̂n − θN =

[∑
i∈s

d(i, s)ψ(ϵi)Vi/N −
N∑
i=1

ψ(ϵi)Vi/N

]
Σ−1 + op(1/

√
n) and (5.2.5)

θ̂n − θ =

[∑
i∈s

d(i, s)ψ(ϵi)Vi/N

]
Σ−1 + op(1/

√
n) (5.2.6)

for any high entropy sampling design satisfying Assumption 5.2.6, and d(i, s)=π−1
i .

Theorem 5.2.2. Suppose that Assumptions 5.2.1–5.2.4 hold. Then, under the probability distri-

bution P∗, as ν → ∞,

√
n
(
θ̂n − θN

) L−→ Nd+2

(
0,Σ−1ΓΣ−1

)
and (5.2.7)

√
n
(
θ̂n − θ

) L−→ Nd+2

(
0,∆

)
(5.2.8)

for any high entropy sampling design satisfying Assumption 5.2.6, and d(i, s)=π−1
i , where ∆=

Σ−1ΓΣ−1 + λΣ−1EP
(
ψ2(ϵi)VT

i Vi

)
Σ−1.

Bahadur type representations of θ̂n (see Theorem 5.2.1 above) are first shown under rejective

sampling designs using the idea of the proof of the result (3.11) in [51]. Then, these results are

shown under high entropy sampling designs using the fact that any high entropy sampling design

can be approximated by a rejective sampling design in Kullback-Liebler divergence. On the other

hand, the asymptotic normality results of θ̂n (see Theorem 5.2.2 above) are shown based on the

results stated in Theorem 5.2.1 and the existing asymptotic normality results for the HT estimator.

Next, we shall show that asymptotic results similar to Theorems 5.2.1 and 5.2.2 hold under

RHC sampling design. Recall from the introduction that in RHC sampling design, P is first
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divided randomly into n disjoint groups of sizes Ñ1 · · · , Ñn, respectively, by taking a sample of

Ñ1 units from N units with SRSWOR, a sample of Ñ2 units from N − Ñ1 units with SRSWOR

and so on. Then, one unit is selected in the sample from each of these groups independently with

probability proportional to the size variable x. As in the earlier chapters, here also we consider

the following assumption.

Assumption 5.2.7. For the RHC sampling design, {Ñr}nr=1 are such that

Ñr =


N/n, for r = 1, · · · , n, when N/n is an integer,

⌊N/n⌋, for r = 1, · · · , k, and

⌊N/n⌋+ 1, for r = k + 1, · · · , n, when N/n is not an integer,

(5.2.9)

where k is such that
∑n

r=1 Ñr=N . Here, ⌊N/n⌋ is the integer part of N/n.

We also consider the following assumptions.

Assumption 5.2.8. max1≤i≤N Xi/ min1≤i≤N Xi=O(1) as ν → ∞ a.s. [P].

Assumption 5.2.9. The matrix Γ∗=EP(Xi)EP
{(

Hi −XiEP(Hi)/EP(Xi)
)T (Hi −XiEP(Hi)/

EP(Xi)
)
X−1

i

}
is a p.d. matrix.

Assumption 5.2.8 is stated and discussed in Chapters 2 and 3 (see Assumption 2.1.3 of Chapter

2 and Assumption 3.2.2 of Chapter 3). Similar kind of assumptions as Assumption 5.2.9 are

often used in asymptotic analysis (see [50], [51], etc.). Assumptions 5.2.7–5.2.9 are required

to show that the results similar to (3.3) and (3.4) in [51] hold under RHC sampling design (see

the proof of Theorem 5.2.3 in Section 5.8). As in the case of high entropy sampling designs,

here also we shall show the Bahadur type representation and the asymptotic normality of θ̂n for

d(i, s)=GiX
−1
i under RHC sampling design based on the aforementioned results.

Theorem 5.2.3. Suppose that Assumptions 5.2.1–5.2.4 and 5.2.7–5.2.9 hold. Then, under the

probability distribution P∗, as ν → ∞,

θ̂n − θN =

[∑
i∈s

d(i, s)ψ(ϵi)Vi/N −
N∑
i=1

ψ(ϵi)Vi/N

]
Σ−1 + op(1/

√
n) and (5.2.10)

θ̂n − θ =

[∑
i∈s

d(i, s)ψ(ϵi)Vi/N

]
Σ−1 + op(1/

√
n) (5.2.11)
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for RHC sampling design, and d(i, s)=GiX
−1
i .

Theorem 5.2.4. Suppose that Assumptions 5.2.1–5.2.4 and 5.2.7–5.2.9 hold. Then, under the

probability distribution P∗, as ν → ∞,

√
n
(
θ̂n − θN

) L−→ Nd+2

(
0, cΣ−1Γ∗Σ−1

)
and (5.2.12)

√
n
(
θ̂n − θ

) L−→ Nd+2

(
0,∆∗) (5.2.13)

for RHC sampling design, and d(i, s)=GiX
−1
i , where c=limν→∞ nγ, γ=

∑n
r=1 Ñr(Ñr−1)/N(N−

1) and ∆∗=cΣ−1Γ∗Σ−1 + λΣ−1EP
(
ψ2(ϵi)VT

i Vi

)
Σ−1.

The proof techniques of Theorems 5.2.3 and 5.2.4 are similar to the proof techniques of

Theorems 5.2.3 and 5.2.4, respectively. It follows from Lemma 2.7.5 in Section 2.7 of Chapter 2

that c=1 for λ=0, c=1 − λ for λ−1 an integer, and c=λ⌊λ−1⌋(2 − λ⌊λ−1⌋ − λ) when λ−1 is a

non-integer.

5.2.1 Comparison of θ̂n under different sampling designs

In this section, we shall first compare the performance of the estimator θ̂n for a general ρ

under SRSWOR, LMS, RHC and any HEπPS sampling designs in terms of asymptotic total

variances (traces of asymptotic covariance matrices) of
√
n(θ̂n − θN ) under these sampling

designs. Recall from the introduction that a sampling design is called HEπPS sampling design if

it is a high entropy as well as a πPS sampling design (e.g., RS sampling). We shall carry out the

above-mentioned comparison under superpopulations satisfying the linear model

Yi = θVT
i + ϵi with EP(ψ(ϵi)) = 0 and EP

(
ψ(ϵi)

)2
> 0 (5.2.14)

for i=1, · · · , N , where Vi=(1,Wi), and {ϵi}Ni=1 are independent of {Wi}Ni=1.

Theorem 5.2.5. Suppose that Xi ≤ b a.s. [P] for some b > 0, EP(Xi)
−2 <∞, Assumption 5.2.1

holds with 0 ≤ λ < EP(Xi)/b, and Assumptions 5.2.2–5.2.4 and 5.2.7–5.2.9 hold. Then, the

asymptotic total variance of
√
n(θ̂n − θN ) under SRSWOR is the same as that of

√
n(θ̂n − θN )

under LMS sampling design. Further, the asymptotic total variance of
√
n(θ̂n − θN ) under

SRSWOR is smaller than the asymptotic total variances of
√
n(θ̂n − θN ) under RHC and any
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HEπPS sampling designs (which use auxiliary information) if and only if

tr

[(
EP(VT

i Vi)

)−1

EP

(
(µxX

−1
i − 1)VT

i Vi

)(
EP(VT

i Vi)

)−1]
> 0, (5.2.15)

where tr denotes the trace, and µx=EP(Xi).

The conditions that Xi ≤ b a.s. [P] for some b > 0, and 0 < λ < EP(Xi)/b are discussed in

Chapter 2 (see the discussion related to Assumption 2.2.1 in Chapter 2). The condition in (5.2.15)

is an algebraic necessary and sufficient condition. This condition depends neither on the choice

of ρ nor on the superpopulation distribution of ϵ′is. This condition involves superpopulation

moments. In practice one can check the above-mentioned condition based on a pilot survey by

estimating these superpopulation moments. However, in pilot surveys, the sample size sometimes

may not be large enough to reliably estimate these superpopulation moments. Using (5.2.15),

several statistical agencies and social-science pollsters can improve the sampling design of

recurrently performed surveys. In Table 5.2 below, we consider some cases where this condition

holds, and some cases where this condition does not hold. Theorem 5.2.5 implies that the use of

the auxiliary information in the design stage may have an adverse effect on the performance of

θ̂n.

TABLE 5.2: Discussion of the condition in (5.2.15).

w=(z, x) Superpopulation distributions of Wi’s The condition in (5.2.15)

w=z=x

Xi’s have log-normal
holds for any parameter values

distribution
Xi’s have Pareto distribution fails to hold for

with shape α and scale σ 3 ≤ α ≤ 6 & σ=1

z ̸= x

holds for 6 ≤ α < 10
Xi’s have Pareto distribution & σ=1

with shape α and scale σ, and Zi=log(Xi) fails to hold for
2 < α < 5 & σ=1

Now we try to demonstrate the result stated in Theorem 5.2.5 using synthetic data. For this,

we choose N=5000 and consider the population values {(Yi, Xi) : 1 ≤ i ≤ N} generated

from the linear model Yi=1000 +Xi + ϵi for i=1, . . . , N . Here, Xi’s and ϵi’s are independently

generated from the standard log-normal and the standard normal distributions, respectively. Note

that in this case, we have Wi=Zi=Xi for any given i. We also consider the population values

{(Yi,Wi) : 1 ≤ i ≤ N} generated from the linear model Yi=1000+Zi+Xi+ ϵi for i=1, . . . , N .

Here, we generate Xi’s from the Pareto distribution with shape=3 and scale=1, and choose
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Zi=log(Xi) for i=1, . . . , N . Then, we generate ϵi’s independently of the Xi’s from the standard

normal distribution.

From each of the above data sets, we draw I=1000 samples each of size n=100 using

SRSWOR, LMS, RS and RHC sampling designs. Based on these samples, we compare the

performance of θ̂n under the aforementioned sampling designs in terms of relative efficiencies.

We carry out this comparison for each of LS, TLS and LAD regression techniques in the cases of

both the data sets. We consider RS sampling design since it is a HEπPS sampling design, and it is

easier to implement than other HEπPS sampling designs. Suppose that P1(s) and P2(s) denote

any two sampling designs. Then, the relative efficiency of θ̂n under P1(s) compared to θ̂n under

P2(s) is defined as

RE(θ̂n, P1|θ̂n, P2) =MSE(θ̂n, P2)/MSE(θ̂n, P1),

where MSE(θ̂n, P )=I−1
∑I

l=1 ||θ̂n,l − θN ||2 is the MSE of θ̂n under any sampling design

P (s). Here, θ̂n,l is an estimate of θN based on the lth sample, l=1, . . . , I . We say that θ̂n under

P1(s) is more efficient than under P2(s) if RE(θ̂n, P1|θ̂n, P1) > 1. We use the R software for

drawing samples as well as computing estimators. The conclusions drawn from the above data

analysis are summarized as follows.

(i) For each of LS, TLS and LAD regression methods, θ̂n has lower MSE under SRSWOR

than under LMS, RS and RHC sampling designs (see Table 5.3 below) in the case of the first

data set.

(ii) In the case of the second data set, θ̂n has lower MSE under RS sampling design than

under SRSWOR, LMS, and RHC sampling designs (see Table 5.4 below) for each of the above

regression techniques.

(iii) The condition in (5.2.15) holds for the linear model Yi=1000 +Xi + ϵi, whereas it fails

to hold for the linear model Yi=1000 + Zi + Xi + ϵi (see Table 5.2 above). Thus the above

empirical results corroborate the theoretical result stated in Theorem 5.2.5.

Next, we try to demonstrate the result stated in Theorem 5.2.5 using real data. For this, as

in Section 3.3.2 of Chapter 3, here also we consider Electricity Customer Behaviour Trial data

available in Irish Social Science Data Archive (ISSDA, https://www.ucd.ie/issda/ ). Recall from

Section 3.3.2 that in this data set, we have electricity consumption of Irish households from

14th July in 2009 to 31st December in 2010. Electricity consumption of these households were
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TABLE 5.3: Relative efficiencies of θ̂n for the synthetic data set generated from the linear
model Yi=1000 +Xi + ϵi. Here, Xi’s and ϵi’s are independently generated from the standard

log-normal and the standard normal distributions, respectively.

Regression
Relative efficiency

technique

LS

RE(θ̂n, SRSWOR | θ̂n, LMS) 1.054569

RE(θ̂n, SRSWOR | θ̂n, RS) 2.844394

RE(θ̂n, SRSWOR | θ̂n, RHC) 2.897122

LAD

RE(θ̂n, SRSWOR | θ̂n, LMS) 1.096166

RE(θ̂n, SRSWOR | θ̂n, RS) 2.844734

RE(θ̂n, SRSWOR | θ̂n, RHC) 3.028323

TLS

RE(θ̂n, SRSWOR | θ̂n, LMS) 1.106733

RE(θ̂n, SRSWOR | θ̂n, RS) 1.356747

RE(θ̂n, SRSWOR | θ̂n, RHC) 1.65992

TABLE 5.4: Relative efficiencies of θ̂n for the synthetic data set generated from the linear
model Yi=1000 + Zi +Xi + ϵi. , Here, Xi’s are generated from the Pareto distribution with
shape=3 and scale=1, and Zi=log(Xi). ϵi’s are generated from the standard normal distribution

independent of the Xi’s.

Regression
Relative efficiency

technique

LS

RE(θ̂n, RS | θ̂n, LMS) 3.972501

RE(θ̂n, RS | θ̂n, SRSWOR) 3.697424

RE(θ̂n, RS | θ̂n, RHC) 1.015652

LAD

RE(θ̂n, RS | θ̂n, LMS) 3.888212

RE(θ̂n, RS | θ̂n, SRSWOR) 4.094494

RE(θ̂n, RS | θ̂n, RHC) 1.148761

TLS

RE(θ̂n, RS | θ̂n, LMS) 3.751654

RE(θ̂n, RS | θ̂n, SRSWOR) 4.789821

RE(θ̂n, RS | θ̂n, RHC) 1.125117

measured (in kWh) at the end of every half an hour during the entire time period mentioned

above. We choose the mean electricity consumption in December of 2010 as the study variable y,

and the mean electricity consumption in December of 2009 as both the covariate z and the size

variable x. We have N=5092 households for which electricity consumption data are available

during December of both 2009 and 2010. The scatter plot in Figure 5.1 below shows that y is ap-

proximately linearly related to x in this data set. Based on this data, we compare the performance

of θ̂n under SRSWOR, LMS, RS and RHC sampling designs in the same way as in the case
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FIGURE 5.1: Scatter plot between y and x for the real data set consisting of mean electricity
consumption in December of 2009 and 2010.

of synthetic data. We also approximate the superpopulation moments in (5.2.15) by their corre-

sponding finite population moments based on all the population values in the above data set, and

compute C1=tr
[
(
∑N

i=1 V
T
i Vi/N)−1

(∑N
i=1 V

T
i Vi(XX

−1
i −1)/N

)
(
∑N

i=1 V
T
i Vi/N)−1

]
. From

this analysis, we observe that C1 > 0. Further, for each of LS, TLS and LAD regression methods,

θ̂n has lower MSE under SRSWOR than under LMS, RS and RHC sampling designs (see Table

5.5 below). Thus the above empirical results are consistent with the asymptotic result stated in

Theorem 5.2.5.

5.3. Covariance estimation for estimators in regression analysis

It follows from Theorem 5.2.2 that under P∗, as ν → ∞,

√
n
(
θ̂n − θN

) L−→ Nd+2

(
0,Σ−1ΓΣ−1

)
and

√
n
(
θ̂n − θ

) L−→ Nd+2

(
0,∆

)
(5.3.1)

for d(i, s)=π−1
i , and any high entropy sampling design satisfying Assumption 5.2.6. Here,

Γ1=Σ−1ΓΣ−1, Σ is as in Assumption 5.2.4, and Γ is as in Assumption 5.2.6–(ii). Further, we
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TABLE 5.5: Relative efficiencies of θ̂n for the real data set consisting of mean electricity
consumption in December of 2009 and 2010.

Regression
Relative efficiency

December

technique in 2010

LS

RE(θ̂n, SRSWOR | θ̂n, LMS) 1.025963

RE(θ̂n, SRSWOR | θ̂n, RS) 1.401591

RE(θ̂n, SRSWOR | θ̂n, RHC) 6.972742

LAD

RE(θ̂n, SRSWOR | θ̂n, LMS) 1.507617

RE(θ̂n, SRSWOR | θ̂n, RS) 6.439307

RE(θ̂n, SRSWOR | θ̂n, RHC) 2.245872

TLS

RE(θ̂n, SRSWOR | θ̂n, LMS) 1.024037

RE(θ̂n, SRSWOR | θ̂n, RS) 5.860129

RE(θ̂n, SRSWOR | θ̂n, RHC) 5.303686

have

∆ = Σ−1ΓΣ−1 + λΣ−1EP
(
ψ2(ϵi)VT

i Vi

)
Σ−1 and

Here, Vi=(1,Wi) and ϵi=Yi−θVT
i . Recall from Assumption 5.2.4 that Σ=EP

(
−ϕ′(0,Wi)VT

i Vi

)
,

where ϕ′(0,Wi)=∂ϕ(t,Wi)/∂t|t=0 for ϕ(t,Wi)=EP
(
ψ(ϵi−t)|Wi

)
. We estimate ϕ(t,Wi) under

any high entropy sampling design by

ϕ̂1(t,Wi) =
∑
j∈s

π−1
j

d+1∏
k=1

Kh

(
Wik −Wjk

) ∫
R

ψ(y1 − θ̂nVT
i − t)×

Kh(y1 − Yj)dy1

/∑
j∈s

π−1
j

d+1∏
k=1

Kh

(
Wik −Wjk

) (5.3.2)

for any given i=1, . . . , N , where Wik and Wjk are kth components of Wi and Wj , respectively,

Kh(t)=K(t/h)/h, K(t) is a bounded continuous density function, and h > 0 is the smoothing

parameter. Here, θ̂n is as defined in (5.1.1) in Section 5.1 for d(i, s)=π−1
i . Note that ϕ̂1(t,Wi)

is a Nadaraya-Watson type estimator of the conditional mean EP
(
ψ(ϵi − t)|Wi

)
. Now, if we

assume that
∫
R
ψ(hy1 − t)K(y1)dy1 is differentiable with respect to t, then an estimator of

ϕ′(0,Wi) can be obtained as

ϕ̂′1(0,Wi) = ∂ϕ̂1(t,Wi)/∂t|t=0 =
∑
j∈s

π−1
j

d+1∏
k=1

Kh

(
Wik −Wjk

)
× (5.3.3)
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{
∂

(∫
R

ψ(y1 − θ̂nVT
i − t)Kh(y1 − Yj)dy1

)/
∂t

∣∣∣∣
t=0

}/
∑
j∈s

π−1
j

d+1∏
k=1

Kh

(
Wik −Wjk

)
.

Thus an estimator of Σ under any high entropy sampling design can be constructed by

Σ̂1 = −
∑
i∈s

π−1
i ϕ̂′1(0,Wi)VT

i Vi/N. (5.3.4)

Note that Σ̂1 is a HT type estimator of Σ. Also, note that for different choices of ρ in Table 5.1,

ϕ̂′1(0,Wi) becomes as in Table 5.6 below. Thus Σ̂1 does not depend on the smoothing parameter

h and the density function K(t) for ρ as mentioned in 2nd row of Table 5.6, whereas Σ̂1 depends

on h and K(t) for ρ as mentioned in 3rd, 4th and 5th rows of Table 5.6. Now, following the

approach of [16], Γ can be estimated under any high entropy sampling design by

Γ̂ = (n/N2)
∑
i∈s

(Ĥi − T̂Hπi)
T (Ĥi − T̂Hπi)(π

−1
i − 1)π−1

i , (5.3.5)

where

T̂H =
∑
i∈s

Ĥi(π
−1
i − 1)

/∑
i∈s

(1− πi), and

Ĥi = ψ(ϵ̂i)Vi and ϵ̂i = Yi − θ̂nVT
i for any i ∈ s.

We also estimate EP
(
ψ2(ϵi)VT

i Vi

)
in the expression of ∆ by

∑
i∈s π

−1
i ψ2(ϵ̂i)VT

i Vi/N . There-

TABLE 5.6: Expressions of ϕ̂′1(0,Wi) for different ρ as mentioned in Table 5.1.

ρ(t) ϕ̂′1(0,Wi)

t2 −2

|p− 1[t<0]|t2 for any fixed p ∈ (0, 1)
−2

(
(1− 2p)

(∑
j∈s π

−1
j

∏d+1
k=1Kh

(
Wik −Wjk

)
×∫ θ̂nVT

i
−∞ Kh(y1 − Yj)dy1

)/
∑

j∈s π
−1
j

∏d+1
k=1Kh

(
Wik −Wjk

))
− 2p

t21[|t|≤K]/2 +K
(
|t| −K/2

)
1[|t|>K] −

(∑
j∈s π

−1
j

∏d+1
k=1Kh

(
Wik −Wjk

)
×

for any fixed K > 0
∫ θ̂nVT

i +K

θ̂nVT
i −K

Kh(y1 − Yj)dy1
)/∑

j∈s π
−1
j

∏d+1
k=1Kh

(
Wik −Wjk

)
|t|+ (2p− 1)t for any fixed p ∈ (0, 1)

−2
(∑

j∈s π
−1
j

∏d+1
k=1Kh

(
Wik −Wjk

)
×

Kh(θ̂nVT
i − Yj)

)/∑
j∈s π

−1
j

∏d+1
k=1Kh

(
Wik −Wjk

)
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fore, estimators of Γ1=Σ−1ΓΣ−1 and ∆ are obtained as

Γ̂1 = Σ̂−1
1 Γ̂Σ̂−1

1 and ∆̂ = Γ̂1 + (n/N)Σ̂−1
1

(∑
i∈s

π−1
i ψ2(ϵ̂i)VT

i Vi/N

)
Σ̂−1
1 . (5.3.6)

Next, it follows from Theorem 5.2.4 that under P∗, as ν → ∞,

√
n
(
θ̂n − θN

) L−→ Nd+2

(
0, cΣ−1Γ∗Σ−1

)
and

√
n
(
θ̂n − θ

) L−→ Nd+2

(
0,∆∗) (5.3.7)

for d(i, s)=GiX
−1
i , and RHC sampling design. Here, Γ∗

1=cΣ−1Γ∗Σ−1, Γ∗ is as in Assumption

5.2.9, c=limν→∞ nγ, and γ=
∑n

r=1 Ñr(Ñr − 1)/N(N − 1) with Ñr being the size of the rth

group formed randomly in RHC sampling design (see the paragraph following Theorem 5.2.2).

Further, we have

∆∗ = cΣ−1Γ∗Σ−1 + λΣ−1EP
(
ψ2(ϵi)VT

i Vi

)
Σ−1.

Under RHC sampling design, we estimate Σ by

Σ̂2 = −
∑
i∈s

(NXi)
−1Giϕ̂

′
2(0,Wi)VT

i Vi, (5.3.8)

where ϕ̂′2(0,Wi) is defined in the same way as ϕ̂′1(0,Wi) with π−1
i replaced by GiX

−1
i . Note

that Σ̂2 is a RHC type estimator of Σ. As in the case of Σ̂1, Σ̂2 does not depend on h and K(t)

for ρ as mentioned in 2nd row of Table 5.6, and Σ̂2 depends on h and K(t) for ρ as mentioned in

3rd, 4th and 5th rows of Table 5.6. Next, Γ∗ can be estimated under RHC sampling design by

Γ̂∗ = (X/N)
∑
i∈s

GiX
−2
i Ĥ

T
i Ĥi − (Ĥ)T Ĥ, (5.3.9)

where

Ĥ =
∑
i∈s

(NXi)
−1GiĤi, and Ĥi = ψ(ϵ̂i)Vi and ϵ̂i = Yi − θ̂nVT

i for any i ∈ s.

Here, θ̂n is as defined in (5.1.1) in Section 5.1 for d(i, s)=GiX
−1
i . We also estimateEP

(
ψ2(ϵi)VT

i Vi

)
in the expression of ∆∗ by

∑
i∈s(NXi)

−1Giψ
2(ϵ̂i)VT

i Vi. Therefore, estimators of Γ∗
1=cΣ−1Γ∗Σ−1

and ∆∗ are obtained as
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Γ̂∗
1 = nγΣ̂−1

2 Γ̂∗Σ̂−1
2 and ∆̂∗ = Γ̂∗

1 + (n/N)×

Σ̂−1
2

(∑
i∈s

(NXi)
−1Giψ

2(ϵ̂i)VT
i Vi

)
Σ̂−1
2 ,

(5.3.10)

We shall now show that Γ̂1, ∆̂, Γ̂∗
1 and ∆̂∗ are consistent estimators of Γ1, ∆, Γ∗

1 and ∆∗,

respectively. Let us first consider the following assumptions.

Assumption 5.3.1. h→ 0 and nhd+1 → ∞ as ν → ∞.

Assumption 5.3.2. The density function K(t) is such that
∫
R
K4(t)dt <∞ and

∫
R
tK(t)dt=0.

Moreover, ∂
( ∫
R
ψ(hy1 − y2 − t)K(y1)dy1

)
/∂t|t=0 is continuous with respect to y2.

Assumption 5.3.1 is often considered in the literature for asymptotic analysis. The condition

that ∂
( ∫
R
ψ(hy1 − y2 − t)K(y1)dy1

)
/∂t|t=0 is continuous with respect to y2, which appears

in Assumption 5.3.2, holds for different ρ in Table 5.6 because K(t) is a continuous density

function. Assumptions 5.3.1 and 5.3.2 are required to show the consistency of the asymptotic

covariance matrices of θ̂n.

Theorem 5.3.1. (i) Suppose that Assumptions 5.2.1–5.2.4 and 5.2.7–5.3.2 hold. Then, under the

probability distribution P∗, as ν → ∞, Γ̂1
p−→ Γ1 for any high entropy sampling design satisfying

Assumption 5.2.6, and Γ̂∗
1

p−→ Γ∗
1 for RHC sampling design.

(ii) Further, suppose that Assumptions 5.2.1–5.2.4 and 5.2.7–5.3.2 hold. Then, under the prob-

ability distribution P∗, as ν → ∞, ∆̂
p−→ ∆ for any high entropy sampling design satisfying

Assumption 5.2.6, and ∆̂∗ p−→ ∆∗ for RHC sampling design.

5.4. Regression estimators of the population mean and their com-

parison

The GREG estimator of the finite population mean Y =
∑N

i=1 Yi/N can be expressed as Ŷ GREG=

θ̂nVT , where θ̂n is obtained from LS regression, and V=
∑N

i=1 Vi/N for Vi=(1,Wi). This

motivates us to construct alternative estimators of Y based on QR and TLS regression. The

estimators obtained from QR and TLS regression depends on p andK (see Table 5.1), respectively,

where p ∈ (0, 1) and K > 0. A special case of θ̂n(p) is the estimator θ̂n(0.5), which is obtained

from LAD regression. For convenience, we shall denote these estimators by θ̂n(p) and θ̂n(K).
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The finite population parameter θN in (5.1.2) also depends on p for QR and therefore will be

denoted by θN (p). Now, we define

Ŷ QR =
(
θ̂n(p1), . . . , θ̂n(pl), θ̂n(0.5), θ̂n(1− p1), . . . , θ̂n(1− pl)

)
H1VT and

Ŷ TLS = θ̂n(K)VT
,

(5.4.1)

where l ≥ 0, p1, . . . , pl ∈ (0, 0.5),H1=[m1l⊠Id+2
... (1−2lm)Id+2

...m1l⊠Id+2]
T ,m=0 for l=0

and 0 < m < 1/2l for l ≥ 1, 1l is a 1× l vector with all the elements equal to 1, and ⊠ denotes

the Kronecker product. Since θ̂n(p) is an estimator of θN (p) (see Section 5.1), Ŷ QR can be

viewed as an estimator of
(
θN (p1), . . . ,θN (pl),θN (0.5),θN (1− p1), . . . ,θN (1− pl)

)
H1VT .

Now, suppose that {(Yi,Wi) : 1 ≤ i ≤ N} are generated from the linear model

Yi = θVT
i + ϵi, (5.4.2)

where {ϵ}Ni=1 are independent of {Wi}Ni=1 and are generated from some symmetric distri-

bution with EP(ϵi)=0. Then it can be shown that
(
θN (p1), . . . ,θN (pl),θN (0.5),θN (1 −

p1), . . . ,θN (1 − pl)
)
H1VT is close to Y for large N . Thus Ŷ QR can be considered as an

estimator of Y . For a similar reason, Ŷ TLS can also be considered as an estimator of Y . Some

special cases of Ŷ QR are

θ̂n(0.5)V
T and

(
0.25θ̂n(0.25) + 0.5θ̂n(0.5) + 0.25θ̂n(0.75)

)
V

T
.

For superpopulations satisfying the linear model in (5.4.2), we have shown that the GREG

estimator under SRSWOR has the lowest asymptotic variance among the HT, the Hájek, the ratio,

the product and the GREG estimators under SRSWOR, LMS, RHC and any HEπPS sampling

designs (see Sections 2.1 and 2.2 of Chapter 2). In this section, we shall compare Ŷ GREG,

Ŷ QR and Ŷ TLS (see Section 5.4) under SRSWOR, LMS, RHC and any HEπPS sampling

designs based on the asymptotic distributions of
√
n(Ŷ GREG − EP(Yi)),

√
n(Ŷ QR − EP(Yi))

and
√
n(Ŷ TLS − EP(Yi)) under these sampling designs. We shall carry out the aforementioned

comparison under the linear model in (5.4.2). Suppose that ϵi’s in this linear model have a

positive continuous density function fϵ. Further, suppose that l ≥ 0, p1, . . . , pl ∈ (0, 0.5),

(q1, . . . , q2l+1)=(p1, . . . , pl, 0.5, 1− p1, . . . , 1− pl), D is a (2l+ 1)× (2l+ 1) matrix such that

((D))ij=qi ∧ qj − qiqj for 1 ≤ i, j ≤ 2l + 1, and
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ξ =
(
m/fϵ(Qϵ(p1)), . . . ,m/fϵ(Qϵ(pl)), (1− 2lm)/fϵ(Qϵ(0.5)),

m/fϵ(Qϵ(1− p1)), . . . ,m/fϵ(Qϵ(1− pl))
)
.

(5.4.3)

where Qϵ(p) is the pth quantile of ϵi. Then, we state the following theorem.

Theorem 5.4.1. Suppose that Xi ≤ b a.s. [P] for some b > 0, EP(Xi)
−2 < ∞, Assumption

5.2.1 holds with 0 ≤ λ < EP(Xi)/b, and Assumptions 5.2.7 and 5.2.8 hold. Then, under

any of SRSWOR, LMS, RHC and any HEπPS sampling designs, the asymptotic variance of
√
n(Ŷ QR − EP(Yi)) becomes smaller than the asymptotic variance of

√
n(Ŷ GREG − EP(Yi))

if and only if

σ2ϵ > ξDξT , (5.4.4)

the asymptotic variance of
√
n(Ŷ TLS − EP(Yi)) becomes smaller than the asymptotic variance

of
√
n(Ŷ GREG − EP(Yi)) if and only if

σ2ϵ >
(
K2P(|ϵi| > K) + EP(ϵi)

21[|ϵi|≤K]

)/(
P(|ϵi| ≤ K)

)2
, and (5.4.5)

the asymptotic variance of
√
n(Ŷ QR − EP(Yi)) becomes smaller than the asymptotic variance

of
√
n(Ŷ TLS − EP(Yi)) if and only if

(
K2P(|ϵi| > K) + EP(ϵi)

21[|ϵi|≤K]

)/(
P(|ϵi| ≤ K)

)2
> ξDξT , (5.4.6)

where σ2ϵ is the superpopulation variance of ϵi’s.

The conditions in (5.4.4), (5.4.5) and (5.4.6) are algebraic necessary and sufficient conditions.

These conditions involve superpopulation moments, quantiles and density function. In practice,

one can check these conditions by estimating the above-mentioned parameters based on a pilot

survey. For l=0 and K=1, we consider some cases where these conditions hold, and some cases

where these conditions do not hold (see Tables 5.7, 5.8 and 5.9 below). Theorem 5.4.1 shows

that Ŷ QR as well as Ŷ TLS is more efficient than Ŷ GREG, whenever ϵi’s are generated from

heavy-tailed distributions (e.g., Laplace, Student’s t, etc.).

Under the linear model in (5.4.2), it is shown in Chapter 2 that Ŷ GREG has the same asymp-

totic distribution around Y under SRSWOR and LMS sampling designs. It is also shown in

Chapter 2 that RHC and HEπPS sampling designs, which use the auxiliary information, have an
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TABLE 5.7: Discussion of the condition in (5.4.4).

Superpopulation
The condition in (5.4.4)

distribution of ϵi’s
Exponential power

* holds iff α2Γ(3/α) > Γ3(1/α)distribution with location µ=0,
scale σ > 0 and shape α > 0

Student’s t-distribution * holds iff 4Γ2((r + 1)/2) >
with degrees of freedom (df) r > 2 (r − 2)πΓ2(r/2)

* Here, Γ(·) denotes the gamma function.

TABLE 5.8: Discussion of the condition in (5.4.5).

Superpopulation
The condition in (5.4.5)

distribution of ϵi’s
Standard Laplace distribution holds

Student’s t-distribution
holds

with df r=3, 4 & 5

Standard normal distribution does not hold

TABLE 5.9: Discussion of the condition in (5.4.6).

Superpopulation
The condition in (5.4.6)

distribution of ϵi’s
Standard Laplace distribution holds

Student’s t-distribution
does not hold

with df r=3, 4 & 5

Standard normal distribution does not hold

adverse effect on the performance of Ŷ GREG. In the next theorem, we shall show that a similar

result holds for Ŷ QR and Ŷ TLS .

Theorem 5.4.2. Suppose that the assumptions of Theorem 5.4.1 hold. Then, the asymptotic

distribution of each of
√
n(Ŷ QR−EP(Yi)) and

√
n(Ŷ TLS−EP(Yi)) is the same under SRSWOR

and LMS sampling designs. Further, the asymptotic variance of each of
√
n(Ŷ QR − EP(Yi))

and
√
n(Ŷ TLS −EP(Yi)) under SRSWOR is smaller than its asymptotic variance under RHC as

well as any HEπPS sampling design, which uses the auxiliary information.

Theorem 5.4.2 implies that the use of the auxiliary information in the design stage has an

adverse effect on the performance of Ŷ QR and Ŷ TLS .

As in Section 5.2.1, here also we try to demonstrate the results stated in Theorems 5.4.1 and

5.4.2 using synthetic and real data. For this, we consider z=x, and generate N=5000 population

values on (y, x) from the linear model Yi=1000 + Xi + ϵi for i=1, . . . , N . Here, Xi’s are

generated from the standard log-normal distribution, and ϵi’s are generated independently of the



5.4. Regression estimators of the population mean and their comparison 221

Xi’s from the standard normal, the Student’s t (with df 3) and the standard Laplace distributions.

Based on these data sets, we compare Ŷ QR, Ŷ TLS and Ŷ GREG under SRSWOR, LMS, RS and

RHC sampling designs in the same way as in Section 5.2.1. We consider Ŷ QR for l=0, and

Ŷ TLS for K=1. The relative efficiency of an estimator Ŷ 1 of Y under a sampling design P1(s)

compared to another estimator Ŷ 2 under another sampling design P2(s) is defined as

RE(Ŷ 1, P1|Ŷ 2, P2) =MSE(Ŷ 2, P2)/MSE(Ŷ 1, P1),

where MSE(Ŷ k, Pk)=I−1
∑I

l=1(Ŷ kl − Y )2 is the MSE of Ŷ k under Pk(s) for k=1, 2. Here,

Ŷ k1 is an estimate of Y based on the kth estimator and the lth sample, k=1, 2, l=1, . . . , I=1000.

The conclusions drawn from the above data analysis are summarized in Table 5.10 below (for

further details, see Tables 5.11–5.13 below). We observe that the empirical results stated in Table

5.10 corroborate the theoretical results stated in Theorems 5.4.1 and 5.4.2.

TABLE 5.10: Most efficient regression estimators of Y in terms of relative efficiencies.

Superpopulation
Most efficient estimators

Conditions
distribution of ϵi’s in (5.4.4)–(5.4.6)

Standard normal distribution Ŷ GREG under SRSWOR None of these holds

Student’s t-distribution with df=3 Ŷ TLS under SRSWOR
(5.4.4) & (5.4.5) hold

but (5.4.6) does not hold

Standard Laplace distribution Ŷ QR under SRSWOR All of these hold

Next, we carry out the above comparison based on the real data set considered in Sec-

tion 5.2.1. We also approximate the superpopulation parameters in the conditions (5.4.4)–

(5.4.6) for l=0 and K=1 based on all the population values in this real data set. Note that

for l=0, we have ξDξT=1/4f2ϵ (0). Then, we approximate σ2ϵ , 1/4f2ϵ (0) and
(
P(|ϵi| > 1) +

EP(ϵi)
21[|ϵi|≤1]

)/(
P(|ϵi| ≤ 1)

)2 by

C2 =

N∑
i=1

e2i,1/N, C3 = 1

/
4

( N∑
i=1

K(ei,2/h)/Nh

)2

and

C4 =

( N∑
i=1

1[|ei,3|>1] +
N∑
i=1

e2i,31[|ei,3|≤1]

)/
N

( N∑
i=1

1[|ei,3|≤1]/N

)2

,

respectively, where {ei,1}Ni=1, {ei,2}Ni=1 and {ei,3}Ni=1 are the residuals obtained from LS, LAD

and TLS regression, respectively, and
∑N

i=1K(ei,2/h)/Nh is the kernel density estimator of

fϵ(0). We choose K(t) to be the uniform density function 1[−1,1](t) and h by means of leave

one out cross validation. We compute C2, C3 and C4 based on LS, LAD and TLS regression,
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respectively, because σ2ϵ , 1/4f2ϵ (0) and
(
P(|ϵi| > 1) + EP(ϵi)

21[|ϵi|≤1]

)/(
P(|ϵi| ≤ 1)

)2 are

involved in the asymptotic variances of Ŷ GREG, Ŷ QR (for l=0) and Ŷ TLS (forK=1), respectively.

From the above analysis, we observe that C2 > C4 > C3. Moreover, Ŷ QR under SRSWOR has

the lowest MSE among all the estimators and the sampling designs considered here (see Table

5.14 below). Thus the above empirical results are consistent with the asymptotic results stated in

Theorems 5.4.1 and 5.4.2.

TABLE 5.11: Relative efficiencies of the regression estimators of Y for the synthetic data
set generated from the linear model Yi=1000 +Xi + ϵi. Here, ϵi’s have the standard normal

distribution.

RE(Ŷ GREG, SRSWOR | Ŷ TLS , SRSWOR) 1.079478

RE(Ŷ GREG, SRSWOR | Ŷ QR, SRSWOR) 1.523295

RE(Ŷ GREG, SRSWOR | Ŷ QR, LMS) 1.563709

RE(Ŷ GREG, SRSWOR | Ŷ TLS , LMS) 1.118407

RE(Ŷ GREG, SRSWOR | Ŷ GREG, LMS) 1.011407

RE(Ŷ GREG, SRSWOR | Ŷ QR, RS) 4.233067

RE(Ŷ GREG, SRSWOR | Ŷ TLS , RS) 2.774588

RE(Ŷ GREG, SRSWOR | Ŷ GREG, RS) 2.173338

RE(Ŷ GREG, SRSWOR | Ŷ QR, RHC) 4.04144

RE(Ŷ GREG, SRSWOR | Ŷ TLS , RHC) 2.550825

RE(Ŷ GREG, SRSWOR | Ŷ GREG, RHC) 2.166384

TABLE 5.12: Relative efficiencies of the regression estimators of Y for the synthetic data set
generated from the linear model Yi=1000 +Xi + ϵi. Here, ϵi’s have the t distribution with df 3.

RE(Ŷ TLS , SRSWOR | Ŷ QR, SRSWOR) 1.14752

RE(Ŷ TLS , SRSWOR | Ŷ GREG, SRSWOR) 1.88136

RE(Ŷ TLS , SRSWOR | Ŷ QR, LMS) 1.28922

RE(Ŷ TLS , SRSWOR | Ŷ TLS , LMS) 1.0916

RE(Ŷ TLS , SRSWOR | Ŷ GREG, LMS) 1.924977

RE(Ŷ TLS , SRSWOR | Ŷ QR, RS) 3.535446

RE(Ŷ TLS , SRSWOR | Ŷ TLS , RS) 2.008073

RE(Ŷ TLS , SRSWOR | Ŷ GREG, RS) 5.03639

RE(Ŷ TLS , SRSWOR | Ŷ QR, RHC) 3.760415

RE(Ŷ TLS , SRSWOR | Ŷ TLS , RHC) 1.973055

RE(Ŷ TLS , SRSWOR | Ŷ GREG, RHC) 5.661026
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TABLE 5.13: Relative efficiencies of the regression estimators of Y for the synthetic data set
generated from the linear model Yi=1000 + Xi + ϵi. Here, ϵi’s have the standard Laplace

distribution.

RE(Ŷ QR, SRSWOR | Ŷ TLS , SRSWOR) 1.125307

RE(Ŷ QR, SRSWOR | Ŷ GREG, SRSWOR) 1.690677

RE(Ŷ QR, SRSWOR | Ŷ QR, LMS) 1.013656

RE(Ŷ QR, SRSWOR | Ŷ TLS , LMS) 1.153869

RE(Ŷ QR, SRSWOR | Ŷ GREG, LMS) 1.738247

RE(Ŷ QR, SRSWOR | Ŷ QR, RS) 1.865937

RE(Ŷ QR, SRSWOR | Ŷ TLS , RS) 2.9604

RE(Ŷ QR, SRSWOR | Ŷ GREG, RS) 3.974535

RE(Ŷ QR, SRSWOR | Ŷ QR, RHC) 1.837466

RE(Ŷ QR, SRSWOR | Ŷ TLS , RHC) 3.073856

RE(Ŷ QR, SRSWOR | Ŷ GREG, RHC) 4.074943

TABLE 5.14: Relative efficiencies of the regression estimators of Y for the real data set
consisting of mean electricity consumption in December of 2009 and 2010.

Relative efficiency
December

in 2010

RE(Ŷ QR, SRSWOR | Ŷ TLS , SRSWOR) 1.170082

RE(Ŷ QR, SRSWOR | Ŷ GREG, SRSWOR) 1.922412

RE(Ŷ QR, SRSWOR | Ŷ QR, LMS) 1.070182

RE(Ŷ QR, SRSWOR | Ŷ TLS , LMS) 1.298114

RE(Ŷ QR, SRSWOR | Ŷ GREG, LMS) 2.100872

RE(Ŷ QR, SRSWOR | Ŷ QR, RS) 2.793544

RE(Ŷ QR, SRSWOR | Ŷ TLS , RS) 3.231571

RE(Ŷ QR, SRSWOR | Ŷ GREG, RS) 4.081814

RE(Ŷ QR, SRSWOR | Ŷ QR, RHC) 2.43444

RE(Ŷ QR, SRSWOR | Ŷ TLS , RHC) 3.142127

RE(Ŷ QR, SRSWOR | Ŷ GREG, RHC) 3.402416

5.5. Variable selection and related tests in sample survey

As discussed in Section 5.1, in sample survey, the auxiliary variables in w=(z, x) are used to

construct estimators and to implement sampling designs. Therefore, it becomes significant to

determine the variables in w, which have influence on the study variable y. In this section, we
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shall discuss a variable selection method based on LS regression under RHC and any high entropy

sampling designs. The estimator in LS regression can be expressed as

θ̂n = (α̂n, β̂n) with α̂n = Ŷ − β̂nŴ
T
, β̂n = ŜwyŜ

−1
ww,

Ŷ =
∑
i∈s

d(i, s)Yi

/∑
i∈s

d(i, s), Ŵ =
∑
i∈s

d(i, s)Wi

/∑
i∈s

d(i, s),

Ŝww =

(∑
i∈s

d(i, s)W T
i Wi

/∑
i∈s

d(i, s)

)
− Ŵ

T
Ŵ and

Ŝwy =

(∑
i∈s

d(i, s)YiWi/
∑
i∈s

d(i, s)

)
− Ŷ Ŵ .

(5.5.1)

Now, suppose that the population values {(Yi,Wi) : 1 ≤ i ≤ N} are generated from a

superpopulation satisfying the linear model

Yi = θVT
i + ϵi with EP(ϵi|Wi) = 0, (5.5.2)

where Vi=(1,Wi). One can carry out a step-wise selection of variables under high entropy

and RHC sampling designs as follows. Suppose that θj+1 is the (j + 1)th component of θ

and wj is the jth component of w for j=1, . . . , d + 1. Then, H0,j : θj+1=0 is tested against

HA,j : θj+1 ̸= 0 based on the asymptotic distribution of
√
n(θ̂n,j+1 − θj+1) in the first step of

the variable selection method for all j=1, . . . , d+ 1. Here, θ̂n,j+1 is the (j + 1)th component of

θ̂n, and θ̂n is the estimator obtained from LS regression. If the asymptotic p-value corresponding

to the test H0,k : θk+1=0 is the largest among the asymptotic p-values corresponding to the

above-mentioned tests, and it exceeds a certain threshold C (e.g., 0.01 or 0.05), then wk is

dropped from the model. In the second step, the same procedure is followed with all the auxiliary

variables except wk. This step-wise selection of variables is continued until the maximum p-value

at any step becomes less than the threshold C. In any given step, a large sample test for the

hypothesis H0,j : θj+1=0 is constructed based on the test statistic

χn,j = (
√
nθ̂n,j+1)

2/ÂV
(√
n(θ̂n,j+1 − θj+1)

)
, (5.5.3)

where ÂV
(√
n(θ̂n,j+1−θj+1)

)
is a consistent estimator of the asymptotic variance of

√
n(θ̂n,j+1−

θj+1) for j=1, . . . , d+ 1. It follows from the asymptotic distribution of
√
n(θ̂n − θ) under high

entropy and RHC sampling designs (see Theorems 5.2.2 and 5.2.4) that under H0,j and these

sampling designs, the asymptotic distribution of χn,j is central chi-square with df 1 given any j.

The variable selection method described above can also be carried out based on LAD regression
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under the assumption that the conditional distribution of ϵi given Wi is symmetric about 0.

We shall now demonstrate the variable selection method described above using synthetic

data. For this, we choose N=5000 and consider the population values {(Yi,Wi) : 1 ≤ i ≤ N}

generated from the linear models Yi=1000+Zi+Xi+ ϵi and Yi=1000+Xi+ ϵi for i=1, . . . , N .

Here, we independently generate Zi’s and Xi’s from the standard normal and the standard log-

normal distributions, respectively. Then, we generate ϵi’s independently of the (Zi, Xi)’s from

the standard normal distribution. From each of these data sets, we draw 1000 samples each of

size n=100 using SRSWOR. Based on these samples, we carry out variable selection using LS

regression for C=0.05 as discussed in the preceding paragraph. The conclusions drawn from the

above data analysis are summarized as follows.

(i) For the data set generated from the first linear model, the variables z and x are always

selected.

(ii) For the data set generated from the second linear model, although x is always selected, z

is selected only 46 times out of 1000 repetitions.

Next, we consider the mean electricity consumption in the summer months (viz. June, July

and August) of 2009 and 2010 from the Electricity Customer Behaviour Trial data (see Section

5.2.1), and demonstrate the variable selection method based on this data set. We choose the mean

electricity consumption in the summer months of 2010 as the study variable y, the mean electricity

consumption in July of 2009 as the first covariate z1, and the mean electricity consumption in

August of 2009 as the second covariate z2. We have N=5372 households for which electricity

consumption data are available during July and August of 2009 and all the summer months of

2010. Note that we have w=(z1, z2) in this case. Scatter plots in Figures 5.2 and 5.3 below

show that y is approximately linearly related to each of z1 and z2 in this data set. Also, the

finite population linear regression coefficient of y on z1 and that of y on z2 are 0.282 and 0.665,

respectively. We observe that z1 is selected 650 times and z2 is selected 840 times out of 1000

times, when we perform the numerical experiment discussed in the preceding paragraph.

5.6. Detection of heteroscedasticity in finite populations

The presence of heteroscedasticity has an important influence on the performance of different

estimators in sample survey. For instance, under superpopulations satisfying heteroscedastic linear
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FIGURE 5.2: Scatter plot between y and z1 for the real data set consisting of mean electricity
consumption in the summer months of 2009 and 2010.
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FIGURE 5.3: Scatter plot between y and z2 for the real data set consisting of mean electricity
consumption in the summer months of 2009 and 2010.

models, the performance of the GREG estimator of the finite population mean under different

sampling designs depends on the degree of heteroscedasticity (see Chapter 3). Therefore, it
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is important to detect heteroscedasticity present in the data. [51] constructed statistical test

for detecting heteroscedasticity based on QR in the classical set up involving i.i.d. sample

observations. In this section, we shall construct similar tests under RHC and any high entropy

sampling designs. Suppose that the population values {(Yi,Wi) : 1 ≤ i ≤ N} are generated

from a superpopulation satisfying the linear model

Yi = θVT
i + (1 + ηW T

i )ϵi, (5.6.1)

where η ∈ Rd+1, Vi=(1,Wi), and {ϵi}Ni=1 are i.i.d. random variables independent of {Wi}Ni=1.

This type of linear model was considered earlier in [51]. Under this linear model, one may be

interested to check whether η=0. Note that the linear model in (5.6.1) can be expressed as

Yi = θ(p)VT
i + (1 + ηW T

i )ϵi(p), (5.6.2)

where θ(p)=θ + (Qϵ(p), Qϵ(p)η), Qϵ(p) is the pth quantile of ϵi, and ϵi(p)=ϵi −Qϵ(p). Thus,

if l ≥ 2 and p1, . . . , pl ∈ (0, 1), we have

η = 0 ⇔ θ(p1)A
T = · · · = θ(pl)A

T for A = [0T
... Id+1]. (5.6.3)

Now, suppose that H2=B ⊠AT with B being a l × (l − 1) matrix such that

((B))ij =


1, if j = i and 1 ≤ i ≤ l − 1,

−1, if j = i− 1 and 2 ≤ i ≤ l,

0, otherwise .

(5.6.4)

Here, ⊠ denotes the Kronecker product. Then, for the diagnosis of heteroscedasticity present in

the finite population observations, one can test the hypothesis (cf. [51])

H0 :
(
θ(p1), . . . ,θ(pl)

)
H2 =

(
(θ(p1)− θ(p2))A

T , (θ(p2)− θ(p3))A
T ,

. . . , (θ(pl−1)− θ(pl))A
T
)
= 0.

(5.6.5)

A large sample test for the hypothesis mentioned above can be constructed based on the test

statistic

χn = n
(
θ̂n(p1), . . . , θ̂n(pl)

)
H2

[
HT

2 V̂ H2

]−1
HT

2

(
θ̂n(p1), . . . , θ̂n(pl)

)T
, (5.6.6)
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where γ̂n(p) is obtained from QR method, and V̂ is a consistent estimator of the asymptotic

covariance matrix of
√
n
(
θ̂n(p1) − θ(p1), . . . , θ̂n(pl) − θ(pl)

)
. It follows from the proofs of

Theorems 5.2.2 and 5.2.4 that under high entropy and RHC sampling designs, the asymptotic

distribution of
√
n
(
θ̂n(p1)− θ(p1), . . . , θ̂n(pl)− θ(pl)

)
is normal with mean 0 and some p.d.

covariance matrix. Hence, under H0 and aforementioned sampling designs, the asymptotic

distribution of χn is central chi-square with df (l − 1)(d+ 1).

The detection of heteroscedasticity can also be carried out based on the estimator obtained

from ALS regression in the same way as above. For ALS regression, the pth quantile of ϵi, Qϵ(p),

in (5.6.2) is replaced by the pth expectile of ϵi, µϵ(p), which is obtained by solving the equation

(see [60])

µϵ(p)− EP(ϵi) = ((2p− 1)/(1− p))

(∫ ∞

µϵ(p)
(t− µϵ(p))dFϵ(t)

)
, (5.6.7)

where Fϵ(t) is the distribution function of ϵi.

Now, we demonstrate the detection of heteroscedasticity discussed above based on synthetic

data. For this, we choose N=5000 and generate the population values {(Yi, Xi) : 1 ≤ i ≤ N}

from the heteroscedastic linear model Yi=1000 +Xi + ϵi(1 +Xi) and the homoscedastic linear

model Yi=1000 + Xi + ϵi for i=1, . . . , N . Here, Xi’s and ϵi’s are independently generated

from the standard log-normal and the standard normal distributions, respectively. Note that we

have Wi=Zi=Xi for any given i. From these data sets, we draw I=1000 samples each of size

n=100 using SRSWOR. Based on these samples, we perform the statistical tests discussed in the

preceding paragraphs at 5% level. We choose l=3, and p1=0.25, p2=0.5 and p3=0.75 in the cases

of QR as well as ALS regression. For both the regression methods, we construct V̂ in the same

way as the consistent estimator of the asymptotic covariance matrix of θ̂n(p) (see Section 5.3).

It follows from Section 5.3 that V̂ depends on some smoothing parameter h and some density

function K(t). We choose K(t) to be the uniform density function 1[−1,1](t) and h by means of

leave one out cross validation. Then, we compute proportions of times the tests reject the null

hypothesis. The conclusions drawn from the above data analysis are summarized as follows.

(i) For the data set generated from the heteroscedastic model, the proportion of times the test

based on QR reject the null hypothesis is 0.586, and the proportion of times the test based on

ALS regression reject the null hypothesis is 0.59.
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(ii) However, for the data set generated from the homoscedastic model, these proportions

drop down to 0.048 and 0.042, respectively.

Next, based on the real data set considered in Section 5.2.1, we compute these proportions in

the same way as in the case of synthetic data. The scatter plot in Figure 5.1 in Section 5.2.1 shows

that there is heteroscedasticity present in this data set. We observe that for the above data set, the

proportion of times the test based on QR reject the null hypothesis is 0.386, and the proportion of

times the test based on ALS regression reject the null hypothesis is 0.414.

5.7. Concluding remarks

LS regression is extensively used to construct several estimators of finite population parameters.

However, the use of regression methods like ALS, TLS, LAD, QR, etc. has been limited in the

construction of different estimators in sample survey. Also, in the case of finite populations,

large sample theory for the estimators obtained from different regression methods has not been

adequately developed. In this chapter, asymptotic behavior of the estimators obtained from the

above regression techniques is studied under high entropy and RHC sampling designs. Also,

estimators of the finite population mean are constructed based on quantile and TLS regression.

These estimators are then compared with the GREG estimator of the finite population mean,

which is constructed using LS regression, based on their asymptotic distributions under several

sampling designs.

As pointed out in the beginning of this chapter, it becomes challenging to derive different

asymptotic results for the estimators obtained from various regression procedures, when the

sample observations are neither independent nor identical. In this chapter, these results are first

derived under rejective sampling designs using consistency and asymptotic normality of the HT

estimator under these sampling designs following the ideas in [40] and [4]. Then, these results

are derived under a high entropy sampling design using the fact that any high entropy sampling

design can be approximated by a rejective sampling design in Kullback-Liebler divergence. Thus

high entropy sampling designs play an important role in the study of the asymptotic behavior

of the above-mentioned estimators, when the sample observations are neither independent nor

identical.

It follows from the results discussed in Sections 5.2.1 and 5.4 that different estimators in

regression analysis as well as different regression estimators of the finite population mean have
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the same performance under SRSWOR and LMS sampling designs. It also follows that these

estimators sometimes may have worse performance under HEπPS and RHC sampling designs,

which use the auxiliary information, than under SRSWOR. In practice, SRSWOR is easier to

implement than the sampling designs that use the auxiliary information. Thus the above results

are significant in view of selecting the appropriate sampling design.

As mentioned in the introduction and Section 5.4, the GREG estimator is more efficient than

several other estimators (e.g., HT, RHC, ratio, product, etc.) of the finite population mean (see

Chapter 2). However, it follows from an important result in Section 5.4 that the estimators of the

finite population mean constructed based on quantile and TLS regression become more efficient

than the GREG estimator under several sampling designs, whenever superpopulations satisfying

linear models are considered, and errors in the linear models are generated from symmetric

heavy-tailed superpopulation distributions like Laplace, Student’s t, etc.

As discussed in Section 5.1, in sample survey, auxiliary variables are used to construct

estimators and to implement sampling designs. Thus it becomes important to identify those

auxiliary variables, which have more influence on the study variable than the others. On the

other hand, heteroscedasticity influences the performance of the GREG estimator of the finite

population mean under several sampling designs. In Chapter 3, it is shown that if the degree

of heteroscedasticity present in linear regression models is not very large, then RHC and any

HEπPS sampling designs, which use the auxiliary information, may have an adverse effect

on the performance of the GREG estimator. It is also shown in Chapter 3 that if the degree of

heteroscedasticity present in linear regression models is sufficiently large, then the aforementioned

sampling designs improve the performance of the GREG estimator (see Theorem 3.2.3 in Chapter

3). Therefore, it also becomes important to detect heteroscedasticity present in the data. Variable

selection and detection of heteroscadasticity were carried out in the earlier literature based on

different regression techniques in the classical set up involving i.i.d. sample observations. In this

chapter, we describe a variable selection method that uses the asymptotic results related to LS

regression under high entropy and RHC sampling designs derived in this chapter. Under these

sampling designs, we also construct a statistical test for detecting heteroscadasticity present in

the data based on quantile regression.
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5.8. Proofs of the main results

Suppose that

Mn(u) =
√
n
∑
i∈s

π−1
i Viψ1

(
ϵi − uVT

i /
√
n
)
/N and

Ln(u) =Mn(u)−Mn(0)− EP∗(Mn(u)−Mn(0))

for any given u ∈ Rd+2, where ψ is as in (5.2.1) and ϵi is as in (5.2.3), and Vi=(1,Wi). Let us

also suppose that P (s, ω) denotes a high entropy sampling design satisfying Assumption 5.2.6,

and Q(s, ω) denotes a rejective sampling design having inclusion probabilities equal to those of

P (s, ω). Such a rejective sampling design always exists (see [4]). Now, we give the proofs of the

theorems.

Proof of Theorem 5.2.1. We shall first show that the result stated in (5.2.5) in Theorem 5.2.1

holds for the rejective sampling design Q(s, ω) and d(i, s)=π−1
i . It is to be noted that L(θ)=∑

i∈s π
−1
i ρ(Yi − θVT

i ) is a convex function of θ because ρ is a convex function. Therefore,

∇L(θ̂n)=0 for θ̂n = (α̂n, β̂n) = argmin(α,β)∈Rd+2

∑
i∈s π

−1
i ρ(Yi − α − βW T

i ) if L(θ) is

differentiable at θ=θ̂n. Here, ∇L denotes the gradient of L. Recall from the paragraph containing

(5.2.1) in Section 5.2 that ρ is differentiable at all but countably many t ∈ R. Let {tl} be the real

numbers, where ρ is not differentiable. Since (Yi,Wi)’s have absolutely continuous distribution,

we can say that a.s. [P],

ϵi− ûnVT
i /

√
n− tl = Yi− θ̂nVT

i − tl ̸= 0 for any i = 1, . . . , N, s ∈ S, ν ≥ 1 and l = 1, 2 . . . ,

where ûn=
√
n(θ̂n − θ). Hence, a.s. [P], ρ is differentiable at Yi − θ̂nVT

i for any 1 ≤ i ≤ N ,

s ∈ S and ν ≥ 1. Thus a.s. [P],

(
√
n/N)∇L(θ̂n) = −

√
n
∑
i∈s

π−1
i Viψ(Yi − θ̂nVT

i )/N

= −
√
n
∑
i∈s

π−1
i Viψ(ϵi − ûnVT

i /
√
n)/N = 0

for any s ∈ S and ν ≥ 1. This is because ψ(t)=ρ′(t), when ρ is differentiable at t (recall from

the paragraph containing (5.2.1) in Section 5.2). Then, we have under P∗, as ν → ∞,

Mn(ûn) =
√
n
∑
i∈s

π−1
i Viψ(ϵi − ûnVT

i /
√
n)/N = op(1) (5.8.1)
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for Q(s, ω). Now, using (5.8.1), Lemma 5.9.3, and similar arguments as in the proof of Theorem

3.1 in [51], we can say that under P∗, as ν → ∞, ûn=Op(1) for Q(s, ω). Then, using (5.9.14) in

the proof of Lemma 5.9.3, one can show that under P∗, as ν → ∞,Mn(ûn)−Mn(0)+ûnΣ=op(1)

for Q(s, ω). This result and (5.8.1) above further imply that under P∗, as ν → ∞,

Mn(0)− ûnΣ = op(1) (5.8.2)

for Q(s, ω). Therefore, under P∗, as ν → ∞,

θ̂n − θ =

[∑
i∈s

π−1
i ψ(ϵi)Vi

/
N

]
Σ−1 + op(1/

√
n) (5.8.3)

for Q(s, ω). One can similarly show that under P, as ν → ∞,

θN − θ =

[ N∑
i=1

ψ(ϵi)Vi

/
N

]
Σ−1 + op(1/

√
n). (5.8.4)

Hence, using (5.8.3) and (5.8.4), we can say that (5.2.5) in the statement of Theorem 5.2.1 holds

for Q(s, ω) and d(i, s)=π−1
i .

Now, we shall show that (5.2.5) in the statement of Theorem 5.2.1 holds for high entropy

sampling design P (s, ω) (which satisfies Assumption 5.2.6) and d(i, s)=π−1
i . Suppose that

S1 =

{
s ∈ S :

√
n

∣∣∣∣∣∣∣∣θ̂n − θN −
(∑

i∈s
π−1
i ψ(ϵi)Vi/N −

N∑
i=1

ψ(ϵi)Vi/N

)
Σ−1

∣∣∣∣∣∣∣∣ > δ

}

for any given δ > 0. Then, for any ω ∈ Ω and ν ≥ 1,

∣∣∣∣ ∑
s∈S1

(
P (s, ω)−Q(s, ω)

)∣∣∣∣ ≤∑
s∈S

∣∣∣∣P (s, ω)−Q(s, ω)

∣∣∣∣ ≤ D(P ||Q) ≤ D(P ||R)

by Lemmas 2 and 3 in [4], where R(s, ω) is such a rejective sampling design that D(P ||R) → 0

as ν → ∞ a.s. [P]. Therefore,

∑
s∈S1

(
P (s, ω)−Q(s, ω)

)
→ 0 as ν → ∞ a.s. [P], and hence

EP

[ ∑
s∈S1

(
P (s, ω)−Q(s, ω)

)]
→ 0 as ν → ∞

by DCT. Now, since
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EP

[ ∑
s∈S1

Q(s, ω)

]
= P∗

[√
n

∣∣∣∣∣∣∣∣θ̂n − θN −
(∑

i∈s
π−1
i ψ(ϵi)Vi/N−

N∑
i=1

ψ(ϵi)Vi/N

)
Σ−1

∣∣∣∣∣∣∣∣ > δ

]
→ 0 as ν → ∞ for any given δ > 0,

EP

[ ∑
s∈S1

P (s, ω)

]
→ 0 as ν → ∞ for any given δ > 0.

Thus (5.2.5) in the statement of Theorem 5.2.1 holds for high entropy sampling design P (s, ω)

and d(i, s)=π−1
i because P (s, ω) and Q(s, ω) have same inclusion probabilities. Similarly,

(5.2.6) in the statement of Theorem 5.2.1 holds for P (s, ω) and d(i, s)=π−1
i based on the result

stated in (5.8.3).

Proof of Theorem 5.2.2. It is enough to show that the results stated in (5.2.7) and (5.2.8) in

Theorem 5.2.1 hold for the rejective sampling design Q(s, ω) and d(i, s)=π−1
i . Then, these

results hold for high entropy sampling design P (s, ω) (which satisfies Assumption 5.2.6) and

d(i, s)=π−1
i in the same way as (5.2.5) and (5.2.6) in Theorem 5.2.1 hold for P (s, ω) and

d(i, s)=π−1
i in the 2nd paragraph of the proof of Theorem 5.2.1. Let us fix m ∈ Rd+2 such that

m ̸= 0. Then, it follows from Lemma 5.9.2 in Section 5.9 that under Q(s, ω), as ν → ∞,

√
nm
[∑

i∈s
π−1
i ψ(ϵi)Vi/N −

N∑
i=1

ψ(ϵi)Vi/N

]T
L−→ N(0,mΓmT ) (5.8.5)

a.s. [P]. Then, using DCT, one can show that under P∗, as ν → ∞,

√
nm
[∑

i∈s
π−1
i ψ(ϵi)Vi/N −

N∑
i=1

ψ(ϵi)Vi/N

]T
L−→ N(0,mΓmT ) (5.8.6)

for Q(s, ω). It also follows from the 1st paragraph in the proof of Theorem 5.2.1 that (5.2.5) in

the statement of Theorem 5.2.1 holds for Q(s, ω) and d(i, s)=π−1
i . Therefore, using (5.8.6), we

can say that under P∗, as ν → ∞,

√
nm
(
θ̂n − θN

)T L−→ N

(
0,m

(
Σ−1ΓΣ−1

)
mT

)
(5.8.7)

for Q(s, ω) and any given m ̸= 0. Thus (5.2.7) in the statement of Theorem 5.2.2 holds for

Q(s, ω) and d(i, s)=π−1
i .
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Next, it follows from the paragraph containing (5.9.17) and (5.9.18) in the proof of Lemma

5.9.3 in Section 5.9 that EP(ψ(ϵi)Vi)=0. Then, under P, as ν → ∞,

√
Nm

[ N∑
i=1

ψ(ϵi)Vi/N

]T
L−→ N

(
0,mEP

(
(ψ2(ϵi)VT

i Vi

)
mT
)

(5.8.8)

by CLT. Now, using (5.8.5), (5.8.8), Assumption 5.2.1, and (iii) of Theorem 5.1 in [69], one can

show that under P∗, as ν → ∞,

√
nm
[∑

i∈s
π−1
i ψ(ϵi)Vi/N

]T
L−→ N

(
0,m

(
Γ + λEP

(
(ψ2(ϵi)VT

i Vi

))
mT

)
(5.8.9)

for Q(s, ω). Therefore, it follows from (5.8.3) that under P∗, as ν → ∞,

√
nm
(
θ̂n − θ

) L−→ N
(
0,m∆mT

)
(5.8.10)

for Q(s, ω) and any given m ̸= 0. Thus (5.2.8) in the statement of Theorem 5.2.2 holds for

Q(s, ω) and d(i, s)=π−1
i .

Proof of Theorem 5.2.3. Let us first define H̃ij=
(
ψ(ϵi−uVT

i /
√
n)−ψ(ϵi)

)
Vij for i=1, . . . , N

and j=1, . . . , d + 2, where Vij is the jth component of Vi. Then, note that (cf. [20], [66], cf.

[61], etc.) given any ω ∈ Ω and j=1, . . . , d+ 2, under RHC sampling design,

var

(√
n
∑
i∈s

(NXi)
−1GiH̃ij

)
= (nγ)

[
X

N∑
i=1

(H̃ij)
2/NXi −

( N∑
i=1

H̃ij/N

)2]
, (5.8.11)

where X=
∑N

i=1Xi/N , γ=
∑n

r=1 Ñr(Ñr − 1)/N(N − 1), and {Ñr}nr=1 are as in the paragraph

preceding Assumption 5.2.8. Since nγ → c as ν → ∞ for some c ≥ 1− λ > 0 by Lemma 2.7.5

in Section 2.7 of Chapter 2, it can be shown using (5.8.11) and Assumption 5.2.8 that given any

j=1, . . . , d+ 2, under RHC sampling design,

var

(√
n
∑
i∈s

(NXi)
−1GiH̃ij

)
≤ K1

N∑
i=1

(H̃ij)
2/N (5.8.12)

for all sufficiently large ν and some constant K1 > 0 (may depend on ω) a.s. [P]. Now, if we

consider Mn(u) and Ln(u) as mentioned in the paragraph preceding Lemma 5.9.1 with π−1
i

replaced by GiX
−1
i , then using (5.8.12), it can be shown in the same way as the proof of Lemma

5.9.1 that the result stated in (5.9.1) in Lemma 5.9.1 holds for RHC sampling design. Next, it
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follows from Lemma 5.9.4 that for any given j=1, . . . , d+ 2, under RHC sampling design, as

ν → ∞,

√
nej
[∑

i∈s
(NXi)

−1Giψ(ϵi)Vi −
N∑
i=1

ψ(ϵi)Vi/N

]T
L−→ N(0, ejΓ∗eTj ) (5.8.13)

a.s. [P], where {ej : 1 ≤ j ≤ d+ 2} are canonical basis vectors of Rd+2. Then, using DCT, one

can show that for any given j=1, . . . , d+ 2, under P∗, as ν → ∞,

√
nej
[∑

i∈s
(NXi)

−1Giψ(ϵi)Vi −
N∑
i=1

ψ(ϵi)Vi/N

]T
=

√
n

[∑
i∈s

π−1
i ψ(ϵi)Vij/N −

N∑
i=1

ψ(ϵi)Vij/N

]
= Op(1)

(5.8.14)

for RHC sampling design. Now, if Mn(u) is considered as in the paragraph preceding Lemma

5.9.1 with π−1
i replaced by GiX

−1
i , then using (5.8.14), one can show in the same way as the

proof of Lemma 5.9.3 that (5.9.12) in Lemma 5.9.3 holds for RHC sampling design. Thus (5.2.10)

and (5.2.11) in the statement of Theorem 3 hold for RHC sampling design and d(i, s)=GiX
−1
i

in the same way as (5.2.5) and (5.2.6) in the statement of Theorem 5.2.1 hold for the rejective

sampling design Q(s, ω) and d(i, s)=π−1
i in the 1st paragraph of the proof of Theorem 1 above.

Proof of Theorem 5.2.4. Using Lemma 5.9.4, one can show that the conclusion of Theorem

5.2.4 holds for RHC sampling design and d(i, s)=GiX
−1
i in the same way as the conclusion of

Theorem 5.2.2 holds for the rejective sampling design Q(s, ω) and d(i, s)=π−1
i (see the proof of

Theorem 5.2.2 above).

Proof of Theorem 5.2.5. Let us denote the asymptotic covariance matrices of
√
n(θ̂n − θN )

under SRSWOR, LMS, RHC and any HEπPS sampling by ΓSRS , ΓLMS , ΓRHC and ΓHEπPS ,

respectively. It follows from (5.2.7) in Theorem 5.2.2, (5.2.12) in Theorem 5.2.4, and the proof

of Lemma 5.9.5 in Section 5.9 that

ΓSRS = ΓLMS = (1− λ)EP(ψ(ϵi))
2Σ−1EP(VT

i Vi)Σ
−1,

ΓRHC = cµxEP(ψ(ϵi))
2Σ−1EP(VT

i ViX
−1
i )Σ−1 and

ΓHEπPS = EP(ψ(ϵi))
2Σ−1EP(VT

i Vi)(µxX
−1
i − λ)Σ−1,

where
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µx = EP(Xi),Σ = −∂
(
EP
(
ψ(ϵi − t)

))/
∂t

∣∣∣∣
t=0

× EP(VT
i Vi) and c = lim

ν→∞
nγ.

Thus the result that the asymptotic total variance of
√
n(θ̂n − θN ) under SRSWOR is the same

as that of
√
n(θ̂n − θN ) under LMS sampling design follows. Next, we have

tr(ΓRHC − ΓSRS) = Ktr

[(
EP(VT

i Vi)

)−1

EP

((
cµxX

−1
i − (1− λ)

)
VT
i Vi

)
×(

EP(VT
i Vi)

)−1]
≥ K(1− λ)tr

[(
EP(VT

i Vi)

)−1

EP

((
µxX

−1
i − 1

)
VT
i Vi

)
×(

EP(VT
i Vi)

)−1]
for some K > 0 because c ≥ 1− λ by Lemma 2.7.5 in Section 2.7 of Chapter 2. Moreover, we

have

tr(ΓHEπPS − ΓSRS) = Ktr

[(
EP(VT

i Vi)

)−1

EP

((
µxX

−1
i − 1

)
VT
i Vi

)(
EP(VT

i Vi)

)−1]
.

Therefore, tr(ΓSRS) < min{tr(ΓRHC), tr(ΓHEπPS)} if and only if the condition in (5.2.15)

holds. This completes the proof of the theorem.

Proof of Theorem 5.3.1. (i) We shall first show that under P∗, as ν → ∞, Γ̂1
p−→ Γ1 for the

rejective sampling design Q(s, ω), where Q(s, ω) is as mentioned in the paragraph preceding

the proof of Theorem 5.2.1. Then, this result will hold for high entropy sampling design P (s, ω)

(which satisfies Assumption 5.2.6) in the same way as (5.2.5) in Theorem 5.2.1 holds for P (s, ω)

and d(i, s)=π−1
i in the 2nd paragraph of the proof of Theorem 5.2.1 above. In order to show that

under P∗, Γ̂1
p−→ Γ1 as ν → ∞ for Q(s, ω), we need to first show that under P∗,

Σ̂1
p−→ Σ as ν → ∞

for Q(s, ω). Let us define

Σ̃1 = −
∑
i∈s

π−1
i ϕ′(0,Wi)VT

i Vi/N and Σ∗
1 = −

N∑
i=1

ϕ′(0,Wi)VT
i Vi/N

. We establish the consistency of Σ̂1 by showing that as ν → ∞, Σ̂1− Σ̃1
p−→ 0 and Σ̃1−Σ∗

1
p−→ 0

under P∗ for Q(s, ω), and Σ∗
1

p−→ Σ under P.
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The result

Σ∗
1

p−→ Σ as ν → ∞ under P

holds by weak law of large numbers since EP||ϕ′(0,Wi)VT
i Vi||| < ∞ by Assumptions 3

and 4. Next, note that the (j, l)th element of Σ̃1 is ((Σ̃1))jl= −
∑

i∈s π
−1
i ϕ′(0,Wi)VijVil/N

for j, l=1, . . . , d + 2. Then, it follows from Theorem 6.1 in [40] that given any ω ∈ Ω and

j, l=1, . . . , d+ 2, under Q(s, ω),

nvar

(
((Σ̃1))jl

)
= (n/N2)

[ N∑
i=1

(ϕ′(0,Wi)VijVil)
2(π−1

i − 1)−

( N∑
i=1

ϕ′(0,Wi)VijVil(1− πi)

)2/ N∑
i=1

πi(1− πi)

]
(1 + e),

(5.8.15)

where e → 0 if
∑N

i=1 πi(1 − πi) → ∞ as ν → ∞. Recall from the proof of Lemma 5.9.1

that under Q(s, ω),
∑N

i=1 πi(1 − πi) → ∞ as ν → ∞ a.s. [P]. Therefore, using (5.8.15) and

Assumption 5.2.6–(i), we can show that given any j, l=1, . . . , d+ 2, under Q(s, ω),

nvar

(
((Σ̃1))jl

)
≤ (n/N2)

N∑
i=1

(ϕ′(0,Wi)VijVil)
2π−1

i ≤

K1

N∑
i=1

(ϕ′(0,Wi)VijVil)
2/N

(5.8.16)

for all sufficiently large ν and some constant K1 > 0 (may depend on ω) a.s. [P]. Now,∑N
i=1(ϕ

′(0,Wi)VijVil)
2/N=O(1) as ν → ∞ a.s. [P] by SLLN since EP(ϕ

′(0,Wi)VijVil)
2 <

∞ by Assumptions 3 and 4. Thus under Q(s, ω),

((Σ̃1))jl − ((Σ∗
1))jl

p−→ 0 as ν → ∞ a.s. [P]

for any given j, l=1, . . . , d+ 2. Using DCT, one can then show that under P∗,

Σ̃1 − Σ∗
1

p−→ 0 as ν → ∞ for Q(s, ω).

Next, suppose that

ξ(y2) = ∂

(∫
R

ψ(hy1 − y2 − t)K(y1)dy1

)
/∂t|t=0

for y2 ∈ R. Then, we have
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ϕ̂′(0,Wi) =
∑
j∈s

π−1
j

d+1∏
k=1

Kh

(
Wik −Wjk

)
ξ(θ̂nVT

i − Yj)

/∑
j∈s

π−1
j

d+1∏
k=1

Kh

(
Wik −Wjk

)
for any given i=1, . . . , N . Let us define

ϕ̃′(0,Wi) =
∑
j∈s

π−1
j

d+1∏
k=1

Kh

(
Wik −Wjk

)
ξ(θVT

i − Yj)

/∑
j∈s

π−1
j

d+1∏
k=1

Kh

(
Wik −Wjk

)

for i=1, . . . , N . Now, suppose that u=(1,u1), where u1 ∈ Rd+1 and u ∈ Rd+2. Further, suppose

that u1k is the kth component of u1 for k=1, . . . , d+ 1. Then, it can be shown in the same way

as in the preceding paragraph that under P∗, as ν → ∞,

sup
||u||≤K1

∣∣∣∣ϕ̃′(0,u1)−
N∑
j=1

d+1∏
k=1

Kh

(
u1k −Wjk

)
ξ(θuT − Yj)

/ N∑
j=1

d+1∏
k=1

Kh

(
u1k −Wjk

)∣∣∣∣ p−→ 0

for Q(s, ω). It can also be shown that under P,

sup
||u||≤K1

∣∣∣∣ N∑
j=1

d+1∏
k=1

Kh

(
u1 −Wjk

)
ξ(θuT − Yj)

/ N∑
j=1

d+1∏
k=1

Kh

(
u1k −Wjk

)
− ϕ′(0,u1)

∣∣∣∣ p−→ 0

as ν → ∞, and under P∗,

sup
||u||≤K1

∣∣ϕ̃′(0,u1)− ϕ̂′(0,u1)
∣∣ p−→ 0 as ν → ∞ for Q(s, ω).

Moreover, under P∗, as ν → ∞,
∑

i∈s π
−1
i ||Vi||2/N=Op(1) for Q(s, ω). Thus under P∗, as

ν → ∞,

||Σ̃1 − Σ̂1|| ≤
∑
i∈s

π−1
i |ϕ̂′(0,Wi)− ϕ′(0,Wi)|||Vi||2/N ≤

sup
||u||≤K1

|ϕ̂′(0,u1)− ϕ′(0,u1)|
∑
i∈s

π−1
i ||Vi||2/N

p−→ 0

for Q(s, ω). Therefore, under P∗, as ν → ∞, Σ̂1
p−→ Σ, and hence Σ̂−1

1
p−→ Σ−1 for Q(s, ω).

Next, note that we have

Γ̂ = (n/N2)

[∑
i∈s

Ĥ
T
i Ĥi(π

−1
i − 1)π−1

i − (5.8.17)
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(∑
i∈s

Ĥ
T
i (π

−1
i − 1)

∑
i∈s

Ĥi(π
−1
i − 1)

)/∑
i∈s

(1− πi)

]
,

where Ĥi=ψ(ϵ̂i)Vi for any given i ∈ s. The first term on the right hand side of (5.8.17) can be

expressed as

(n/N2)

[∑
i∈s

Ĥ
T
i Ĥi(π

−1
i − 1)π−1

i

]
=

(n/N2)

[∑
i∈s

(
ψ2(ϵ̂i)− ψ2(ϵi)

)
VT
i Vi(π

−1
i − 1)π−1

i

]
+

(n/N2)

[∑
i∈s

HT
i Hi(π

−1
i − 1)π−1

i

]
,

(5.8.18)

where Hi=ψ(ϵi)Vi for i=1, . . . , N . One can show that

(n/N2)

[∑
i∈s

HT
i Hi(π

−1
i − 1)π−1

i −
N∑
i=1

HT
i Hi(π

−1
i − 1)

]
p−→ 0

as ν → ∞ under P∗ for Q(s, ω) in the same way as Σ̃1 − Σ∗
1

p−→ 0 as ν → ∞ under P∗ for

Q(s, ω) in the 2nd paragraph of this proof. Moreover, we have∣∣∣∣∣∣∣∣(n/N2)

[∑
i∈s

(
ψ2(ϵ̂i)− ψ2(ϵi)

)
VT
i Vi(π

−1
i − 1)π−1

i

]∣∣∣∣∣∣∣∣ ≤
(n/N2)

[(
max
1≤i≤N

|ψ2(ϵ̂i)− ψ2(ϵi)|
)∑

i∈s
||Vi||2(π−1

i − 1)π−1
i

]
.

(5.8.19)

Using (5.8.3) and (5.8.4) in the proof of Theorem 5.2.1 above, one can show that under P∗, as

ν → ∞, (
max
1≤i≤N

|ψ2(ϵ̂i)− ψ2(ϵi)|
)

p−→ 0 for Q(s, ω)

. Therefore, using Assumption 5.2.4, it can be shown in the same way as in the 2nd paragraph of

this proof that both the right hand side of (5.8.19) converges to 0 in probability under P∗. Hence,

it follows from (5.8.18) that under P∗, as ν → ∞,

(n/N2)

[∑
i∈s

Ĥ
T
i Ĥi(π

−1
i − 1)π−1

i −
N∑
i=1

HT
i Hi(π

−1
i − 1)

]
p−→ 0

for Q(s, ω). Similarly, one can show that under P∗, as ν → ∞,

(n/N2)

[{∑
i∈s

Ĥ
T
i (π

−1
i − 1)

∑
i∈s

Ĥi(π
−1
i − 1)

}/∑
i∈s

(1− πi)−
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{ N∑
i=1

Hi(1− πi)
N∑
i=1

Hi(1− πi)

}/ N∑
i=1

πi(1− πi)

]
p−→ 0

for Q(s, ω). Thus

Γ̂− (n/N2)

[ N∑
i=1

HT
i Hi(π

−1
i − 1)−

{ N∑
i=1

HT
i (1− πi)

N∑
i=1

Hi(1− πi)

}/ N∑
i=1

πi(1− πi)

]
p−→ 0,

and hence Γ̂
p−→ Γ as ν → ∞ under P∗ for Q(s, ω) by Assumption 5.2.6–(ii). Therefore, under

P∗, as ν → ∞,

Γ̂1
p−→ Γ1 for the rejective sampling design Q(s, ω).

Next, the result, Γ̂∗
1

p−→ Γ∗
1 as ν → ∞ for RHC sampling design under P∗, will follow in the same

way as the above result.

(ii) The proof follows exactly the same way as the proof of (i).

Proof of Theorem 5.4.1. Let us first assume that ρ(t)=t2 or t21[|t|≤K]/2 +K(|t| −K)1[|t|>K]

for t ∈ R and K > 0. Note that

√
n(Ŷ GREG − EP(Yi)) =

√
n(θ̂n − θ)VT

+
√
nθ(V − EP(Vi))

T and
√
n(Ŷ TLS − EP(Yi)) =

√
n(θ̂n(K)− θ)VT

+
√
nθ(V − EP(Vi))

T

where Vi=(1,Wi), and θ̂n and θ̂n(K) are the estimators obtained from LS and TLS regression,

respectively. Since {ϵi}Ni=1 in (5.4.2) are generated from some symmetric distribution with

EP(ϵi)=0, we have EP
(
ψ(ϵi)

)
=0 for the above choices of ρ. Further, Assumptions 5.2.2–5.2.4

hold for these ρ’s because ϵi’s in (5.4.2) have a positive continuous density function. Then, it can

be shown in the same way as the proof of the result in (5.8.9) that under P∗, as ν → ∞,

√
n(Ŷ GREG − EP(Yi))

L−→ N(0,∆1) and
√
n(Ŷ TLS − EP(Yi))

L−→ N(0,∆2)

for d(i, s)=π−1
i and SRSWOR, LMS and HEπPS sampling designs, and

√
n(Ŷ GREG − EP(Yi))

L−→ N(0,∆∗
1) and

√
n(Ŷ TLS − EP(Yi))

L−→ N(0,∆∗
2)

for d(i, s)=GiX
−1
i and RHC sampling design. Here, we have
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∆1 =

(
a
(
Γ2/4 + λσ2ϵEP(VT

i Vi)
)
aT
)
+ λθcovP(Vi)θ

T

∆2 =

(
a
(
δ2ϵΓ3 + λθ2

ϵδ
2
ϵEP(VT

i Vi)
)
aT
)
+ λθcovP(Vi)θ

T

∆∗
1 =

(
a
(
Γ∗
2/4 + λσ2ϵEP(VT

i Vi)
)
aT
)
+ λθcovP(Vi)θ

T and

∆∗
2 =

(
a
(
δ2ϵΓ

∗
3 + λθ2

ϵδ
2
ϵEP(VT

i Vi)
)
aT
)
+ λθcovP(Vi)θ

T ,

where a is a 1×(d+2) vector with first entry equals to 1 and other entries equal to 0, σ2ϵ =EP(ϵi)
2,

θ2
ϵ=
(
K2P(|ϵi| > K) + EP(ϵi)

21[|ϵi|≤K]

)
, δ2ϵ =

(
P(|ϵi| ≤ K)

)−2,

Γ2 = lim
ν→∞

(n/N2)

N∑
i=1

(Li,1 − TL,1πi)
T (Li,1 − TL,1πi)(π

−1
i − 1) and

Γ3 = lim
ν→∞

(n/N2)
N∑
i=1

(Li,2 − TL,2πi)
T (Li,2 − TL,2πi)(π

−1
i − 1) a.s. [P], and

Γ∗
2 = cEP(Xi)EP

(
LT
i,1Li,1X

−1
i

)
= 4cσ2ϵEP(Xi)EP

(
ViViX

−1
i

)
and

Γ∗
3 = cEP(Xi)EP

(
LT
i,2Li,2X

−1
i

)
= cθ2

ϵEP(Xi)EP
(
VT
i ViX

−1
i

)
.

Here, Li,1=2ϵiVi and Li,2=
(
K1[ϵi>K] − K1[ϵi<−K] + ϵi1[|ϵi|≤K]

)
Vi for i=1, . . . , N , TL,k

=
∑N

i=1 Li,k(1−πi)/
∑N

i=1 πi(1−πi) for k=1, 2, and c=limν→∞ nγ (see Theorem 5.2.4). More-

over, it can be shown in the same way as the proof of Lemma 5.9.5 in Section 5.9 that

Γ2 =


4(1− λ)σ2ϵEP(VT

i Vi) under SRSWOR and LMS sampling designs, and

4σ2ϵEP(VT
i Vi)(EP(Xi)X

−1
i − λ) under any HEπPS sampling design,

(5.8.20)

and

Γ3 =


(1− λ)θ2

ϵEP(VT
i Vi) under SRSWOR and LMS sampling designs, and

θ2
ϵEP(VT

i Vi)(EP(Xi)X
−1
i − λ) under any HEπPS sampling design.

(5.8.21)

Let us next assume that ρ(t)=|t|+ (2p− 1)t for t ∈ R and p ∈ (0, 1). Note that the linear

model in (5.4.2) can be expressed as

Yi = θ(p)VT
i + ϵi(p) for i = 1, . . . , N,
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where θ(p)=θ+(Qϵ(p), 0, . . . , 0),Qϵ(p) is the superpopulation pth quantile of ϵi’s, and ϵi(p)=ϵi−

Qϵ(p). Also, note that EP
(
ψ(ϵi(p))

)
=2EP

(
p− 1[ϵi(p)≤0]

)
=0. Let us recall (q1, . . . , q2l+1) from

Section 5.4. Now, since ϵi’s have a symmetric distribution about 0, we have

√
n(Ŷ QR − EP(Yi)) =

√
n
(
θ̂n(q1)− θ(q1), . . . , θ̂n(q2l+1)− θ(q2l+1)

)
H1VT

+(
θ(q1), . . . ,θ(q2l+1)

)
H1

(
V − EP(Vi)

)T
,

where H1 is as defined in the paragraph containing (5.4.1) in Section 5.4. Further, Assumptions

5.2.2–5.2.4 hold for the above-mentioned ρ because ϵi’s have a positive continuous density

function. Then, it can be shown in the same way as the proof of the result in (5.8.9) that under

P∗, as ν → ∞,
√
n(Ŷ QR − EP(Yi))

L−→ N(0,∆3)

for d(i, s)=π−1
i and SRSWOR, LMS and HEπPS sampling designs, and

√
n(Ŷ QR − EP(Yi))

L−→ N(0,∆∗
3)

for d(i, s)=GiX
−1
i and RHC sampling design. Here, we have

∆3 =

(
(ξ ⊗ a)

(
Γ4/4 + λD ⊗ EP(VT

i Vi)
)
(ξ ⊗ a)T

)
+ λθcovP(Vi)θ

T and

∆∗
3 =

(
(ξ ⊗ a)

(
Γ∗
4/4 + λD ⊗ EP(VT

i Vi)
)
(ξ ⊗ a)T

)
+ λθcovP(Vi)θ

T ,

whereD and ξ are as defined in Section 5.4. ⊗ denotes the Kronecker product, Γ4=limν→∞(n/N2)

×
∑N

i=1(Li,3 − TL,3πi)
T (Li,3 − TL,3πi)(π

−1
i − 1) a.s. [P], TL,3=

∑N
i=1 Li,3(1 − πi)/

∑N
i=1

πi(1− πi), and Γ∗
4=cEP(Xi)EP

(
LT
i,3Li,3X

−1
i

)
. Here,

Li,3 = 2

(
Vi(p1 − 1[ϵi(p1)<0]), . . . ,Vi(pl − 1[ϵi(pl)<0]),Vi(0.5− 1[ϵi(0.5)<0]),

Vi(1− p1 − 1[ϵi(1−p1)<0]), . . . ,Vi(1− pl − 1[ϵi(1−pl)<0])

)
for i=1, . . . , N . Moreover, it can be shown in the same way as the proof of Lemma 5.9.5 in

Section 5.9 that

Γ4 =


(1− λ)EP(LT

i,3Li,3) under SRSWOR and LMS sampling designs, and

EP(LT
i,3Li,3)(EP(Xi)X

−1
i − λ) under any HEπPS sampling design.

(5.8.22)
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In view of (5.8.20), (5.8.21) and (5.8.22), it follows that

∆1−∆3 =


σ2ϵ − ξDξT under SRSWOR and LMS sampling designs, and

(σ2ϵ − ξDξT )EP(Xi)EP(X
−1
i ) under any HEπPS sampling design,

(5.8.23)

∆1 −∆2 =


σ2ϵ − θ2

ϵδ
2
ϵ under SRSWOR and LMS sampling designs, and

(σ2ϵ − θ2
ϵδ

2
ϵ )EP(Xi)EP(X

−1
i ) under any HEπPS sampling design,

(5.8.24)

and

∆2 −∆3 =


θ2
ϵδ

2
ϵ − ξDξT under SRSWOR and LMS sampling designs, and

(θ2
ϵδ

2
ϵ − ξDξT )EP(Xi)EP(X

−1
i ) under any HEπPS

sampling design.

(5.8.25)

It also follows that

∆∗
1 −∆∗

3 = (σ2ϵ − ξDξT )(cEP(Xi)EP(X
−1
i ) + λ) under RHC sampling design,

∆∗
1 −∆∗

2 = (σ2ϵ − θ2
ϵδ

2
ϵ )(cEP(Xi)EP(X

−1
i ) + λ) under RHC sampling design, and

∆∗
2 −∆∗

3 = (θ2
ϵδ

2
ϵ − ξDξT )(cEP(Xi)EP(X

−1
i ) + λ) under RHC sampling design.

Therefore, the conclusion of Theorem 5.4.1 holds.

Proof of Theorem 5.4.2. It follows from the 1st paragraph in the proof of Theorem 5.4.1 that

the asymptotic distribution of
√
n(Ŷ TLS − EP(Yi)) is the same under SRSWOR and LMS

sampling designs. Further, it follows from the 1st paragraph in the proof of Theorem 5.4.1 that

the asymptotic variance of
√
n(Ŷ TLS − EP(Yi)) under SRSWOR is smaller than its asymptotic

variance under RHC as well as any HEπPS sampling design because EP(Xi)EP(Xi)
−1 > 1 and

c ≥ 1− λ (see 2.7.5 in Section 2.7 of Chapter 2).

It follows from the 2nd paragraph in the proof of Theorem 5.4.1 that the asymptotic distribution

of
√
n(Ŷ QR − EP(Yi)) is the same under SRSWOR and LMS sampling designs. Further, it

follows from the 2nd paragraph in the proof of Theorem 5.4.1 that the asymptotic variance of
√
n(Ŷ QR −EP(Yi)) under SRSWOR is smaller than its asymptotic variance under RHC as well

as any HEπPS sampling design.
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5.9. Proofs of additional results required to prove the main results

In this section, we state and prove some lemmas, which will be required to prove the theorems in

this chapter. Let us first recall expressions for Mn(u) and Ln(u) from the paragraph preceding

the proof of Theorem 5.2.1 in Section 5.8. Next, suppose that P (s, ω) denotes a high entropy

sampling design satisfying Assumption 5.2.6, and Q(s, ω) denotes a rejective sampling design

having inclusion probabilities equal to those of P (s, ω). Recall from the paragraph preceding the

proof of Theorem 5.2.1 in Section 5.8 that such a rejective sampling design always exists. Now,

we state the following lemma.

Lemma 5.9.1. Suppose that Assumptions 5.2.1, 5.2.2 and 5.2.4 hold. Then, for any K > 0,

under the probability distribution P∗,

sup
||u||≤K

||Ln(u)|| = op(1) as ν → ∞ (5.9.1)

for the rejective sampling design Q(s, ω).

Proof. We write the proof using similar arguments in the proof of Lemma 4.1 in [5]. Note that

Ln(u)=L∗
n(u) + L̃n(u), where

L∗
n(u) =Mn(u)−Mn(0)− (M̃n(u)− M̃n(0)) with

M̃n(u) =
√
n

N∑
i=1

Viψ1

(
ϵi − uVT

i /
√
n
)
/N, and

L̃n(u) = M̃n(u)− M̃n(0)− EP(M̃n(u)− M̃n(0)).

Suppose that Vij and uj are the jth components of Vi and u, respectively, for j=1, . . . , d + 2.

Further, suppose that

C =

{
u ∈ Rd+2 : max

1≤j≤d+2
|uj | ≤ K

}
for some K > 0,

and {ej : 1 ≤ j ≤ d+ 2} is the canonical basis of Rd+2. Also, recall from the proof of Theorem

5.2.3 that

H̃ij =
(
ψ(ϵi − uVT

i /
√
n)− ψ(ϵi)

)
Vij
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for i=1, . . . , N and j=1, . . . , d+ 2. Now, fix u ∈ C. Then, it follows from Theorem 6.1 in [40]

that given any ω ∈ Ω and j=1, . . . , d+ 2, under Q(s, ω),

var

(
L∗
n(u)e

T
j

)
= var

(√
n
∑
i∈s

π−1
i H̃ij

/
N

)
=

(n/N2)

[ N∑
i=1

(H̃ij)
2(π−1

i − 1)−
( N∑

i=1

H̃ij(1− πi)

)2/ N∑
i=1

πi(1− πi)

]
(1 + e),

(5.9.2)

where e → 0 if
∑N

i=1 πi(1 − πi) → ∞ as ν → ∞. Note that Q(s, ω) satisfies Assumption

5.2.6–(i) since P (s, ω) and Q(s, ω) have same inclusion probabilities, and P (s, ω) satisfies

Assumption 5.2.6–(i). Then, under Q(s, ω),
∑N

i=1 πi(1 − πi) → ∞ as ν → ∞ a.s. [P] by

Assumption 5.2.1. Therefore, using (5.9.2), one can show that given any j=1, . . . , d+ 2, under

Q(s, ω),

var

(√
n
∑
i∈s

π−1
i H̃ij

/
N

)
≤ (n/N2)

N∑
i=1

(H̃ij)
2π−1

i ≤ K1

N∑
i=1

(H̃ij)
2/N (5.9.3)

for all sufficiently large ν and some constant K1 > 0 (may depend on ω) a.s. [P]. Next, there

exists a constant K2 such that max1≤i≤N ||Vi|| ≤ K2 a.s. [P] by Assumption 5.2.4. Since, ψ is

a non-decreasing function, we have

N∑
i=1

EP(H̃ij)
2/N = EP

{(
ψ(ϵi − uVT

i /
√
n)− ψ(ϵi)

)2
V 2
ij

}
≤ K2

2×

EP
(
ψ(ϵi +KK2

√
d+ 2/

√
n)− ψ(ϵi −KK2

√
d+ 2/

√
n)
)2 → 0.

(5.9.4)

as ν → ∞ by Assumption 5.2.2. Hence, by Markov inequality, we have
∑N

i=1(H̃ij)
2/N

p−→ 0 as

ν → ∞ under P for any j=1, . . . , d+ 2. This result and (5.9.3) imply that under P∗,

var

(√
n
∑
i∈s

π−1
i H̃ij

/
N

)
p−→ 0 as ν → ∞ (5.9.5)

for the rejective sapling design Q(s, ω) and any j=1, . . . , d+ 2. Suppose that

Sj = {s ∈ S :
√
n|
∑
i∈s

π−1
i H̃ij −

N∑
i=1

H̃ij |/N > δ}

for any given δ > 0 and j=1, . . . , d+ 2. Then, (5.9.5) implies that under P,
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∑
s∈Sj

Q(s, ω) ≤ var
(√
n
∑
i∈s

π−1
i H̃ij/N

)
/δ2

p−→ 0 as ν → ∞

for δ > 0 and j=1, . . . , d+2. Since,
∑

s∈Sj
Q(s, ω) is bounded, we have EP

(∑
s∈Sj

Q(s, ω)
)
=

P∗{√n|∑i∈s π
−1
i H̃ij −

∑N
i=1 H̃ij |/N > δ

}
→ 0 as ν → ∞. In other words, under P∗, as

ν → ∞,

L∗
n(u)e

T
j =

√
n

(∑
i∈s

π−1
i H̃ij −

N∑
i=1

H̃ij

)
/N

p−→ 0 (5.9.6)

for Q(s, ω) and any given j=1, . . . , d + 2. Next, recall L̃n(u) from the 1st paragraph of this

proof and note that

varP

(
L̃n(u)eTj

)
= varP

(√
n

N∑
i=1

H̃ij/N

)
≤ (n/N)

N∑
i=1

EP(H̃ij)
2/N → 0

as ν → ∞ under P by (5.9.4) and Assumption 5.2.1. Therefore, under P, as ν → ∞, L̃n(u)eTj
p−→

0. Hence, under P∗, as ν → ∞,

Ln(u)eTj = L∗
n(u)e

T
j + L̃n(u)eTj

p−→ 0 (5.9.7)

for Q(s, ω) and any given j=1, . . . , d+ 2.

Now, we consider the cube

Ca = {u ∈ Rd+2 : max
1≤j≤d+2

|uj | ≤ ([1/a] + 1)aK} for any given a > 0,

and decompose it into the cubes with vertices (r1aK, . . . , rd+2aK), where rj=0,±1, . . . ,

±([1/a] + 1) for j=1, . . . , d + 2. Let Ca be the collection of all such cubes. Suppose that

for any C∗
a ∈ Ca, u∗ denotes the lowest vertex of C∗

a. We say that a vertex v of any cube in Rd+2

is its lowest vertex if vj ≤ wj for all j=1 . . . , d+ 2 and any other vertex w of that cube. Note

that u∗ ∈ Ca for any given C∗
a ∈ Ca. Then, it follows in the same way as the derivation of the

result in (5.9.7) that under P∗, as ν → ∞,

max
C∗
a∈Ca

|Ln(u∗)eTj |
p−→ 0 (5.9.8)

for Q(s, ω) and any given j=1, . . . , d+ 2. Next, note that
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sup
u∈C

∣∣Ln(u)eTj
∣∣ ≤ sup

u∈Ca

∣∣Ln(u)eTj
∣∣ ≤ max

C∗
a∈Ca

sup
u∈C∗

a

∣∣(Ln(u)− Ln(u∗)
)
eTj
∣∣+

max
C∗
a∈Ca

∣∣Ln(u∗)eTj
∣∣ (5.9.9)

for any given j=1, . . . , d+ 2. Also, note that

sup
u∈C∗

a

∣∣(Ln(u)− Ln(u∗)
)
eTj
∣∣ ≤ √

n

{∑
i∈s

π−1
i

(
ψ(ϵi − u∗VT

i /
√
n+

KaSi/
√
n)− ψ(ϵi − u∗VT

i /
√
n−KaSi/

√
n)

)
|Vij |

}/
N+

√
nEP∗

{∑
i∈s

π−1
i

(
ψ(ϵi − u∗VT

i /
√
n+KaSi/

√
n)−

ψ(ϵi − u∗VT
i /

√
n−KaSi/

√
n)

)
|Vij |

}/
N

(5.9.10)

for any given C∗
a ∈ Ca because ψ is a non-decreasing function. Here, Si=

∑d+2
j=1 |Vij | for

i=1, . . . , N . It can be shown in the same way as the derivation of the result in (5.9.7) that under

P∗, as ν → ∞,

√
n
{∑

i∈s
π−1
i

(
ψ(ϵi − u∗VT

i /
√
n+KaSi/

√
n)− ψ(ϵi − u∗VT

i /
√
n−

KaSi/
√
n)
)
|Vij |

}/
N −

√
nEP∗

{∑
i∈s

π−1
i

(
ψ(ϵi − u∗VT

i /
√
n+KaSi/

√
n)−

ψ(ϵi − u∗VT
i /

√
n−KaSi/

√
n)
)
|Vij |

}/
N

p−→ 0

for Q(s, ω) and any given C∗
a ∈ Ca. Now given any δ > 0, we have KK2a

√
d+ 2/

√
n ≤ δ for

all sufficiently large ν. Then, it follows from Assumptions 2 and 4 that as ν → ∞

√
nEP∗

{∑
i∈s

π−1
i

(
ψ(ϵi − u∗VT

i /
√
n+KaSi/

√
n)−

ψ(ϵi − u∗VT
i /

√
n−KaSi/

√
n)

)
|Vij |

}/
N

=
√
n

N∑
i=1

EP

{(
ψ(ϵi − u∗VT

i /
√
n+KaSi/

√
n)−

ψ(ϵi − u∗VT
i /

√
n−KaSi/

√
n)

)
|Vij |

}/
N

≤ K2

√
nEP

(
ψ(ϵi − u∗VT

i /
√
n+KK2a

√
d+ 2/

√
n)−

ψ(ϵi − u∗VT
i /

√
n−KK2a

√
d+ 2/

√
n)

)

(5.9.11)
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≤ KK2
2a

√
d+ 2 sup

{
EP

(
ψ(ϵi − u∗VT

i /
√
n+ h)−

ψ(ϵi − u∗VT
i /

√
n− h)

)/
h : 0 < h ≤ δ

}
= aO(1)

under Q(s, ω) for any given C∗
a ∈ Ca. Therefore, it follows from (5.9.10) that under P∗, as

ν → ∞,

sup
u∈C∗

a

∣∣(Ln(u)− Ln(u∗)
)
eTj
∣∣ = aOp(1)

for Q(s, ω) and any given C∗
a ∈ Ca. Hence, using (5.9.8) and (5.9.9), one can show that under

P∗, as ν → ∞, supu∈C
∣∣Ln(u)eTj

∣∣=aOp(1) for Q(s, ω), and any given a > 0 and j=1, . . . , d+2.

On taking a→ 0, we obtain that under P∗, as ν → ∞,

sup
||u||≤K

∣∣Ln(u)eTj
∣∣ ≤ sup

u∈C

∣∣Ln(u)eTj
∣∣ = op(1)

for Q(s, ω) and any given j=1, . . . , d + 2. Then the proof of the result in (5.9.1) follows in a

straight-forward way.

Next, suppose that Ĥ1=
∑

i∈s(Nπi)
−1Hi and H=

∑N
i=1 Hi/N , where Hi=ψ(ϵi)Vi for i=

1, . . . , N . Then, we state the following lemma.

Lemma 5.9.2. Fix m ∈ Rd+2 such that m ̸= 0. Suppose that Assumption 5.2.1 holds. Then,

under Q(s, ω), we have
√
nm
(
Ĥ1 − H

)T L−→ N(0,mΓmT ) as ν → ∞ a.s. [P], where Γ is as

mentioned in Assumption 5.2.6-(ii).

Proof. The proof follows exactly the same way as the derivation of the result, which appears in

the proof of Lemma 2.7.2 in Section 2.7 of Chapter 2, that
√
nm1(V̂1 − V)T

L−→ N(0,m1ΓmT
1 )

as ν → ∞ under each of SRSWOR, LMS and any HEπPS sampling designs for any m1 ∈ Rp,

m1 ̸= 0 and Γ=limν→∞Σ.

Lemma 5.9.3. Suppose that Assumptions 5.2.1–5.2.4 hold. Then, given any δ > 0, there exist ζ1,

ζ2 and ν0 such that

P∗
{

inf
||u||≥ζ2

||Mn(u)|| < ζ1

}
< δ for all ν ≥ ν0 (5.9.12)

and the rejective sampling design Q(s, ω).

Proof. Recall ϕ from (5.2.3) in Section 5.2. Then, we note that under Q(s, ω),
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EP∗
(
Mn(u)−Mn(0)

)
=

√
n

N∑
i=1

EP

{(
ψ(ϵi − uVT

i /
√
n)− ψ(ϵi)

)
Vi

}/
N

=
√
nEP

{(
ϕ(uVT

1 /
√
n,W1)− ϕ(0,W1)

)
V1

}
= EP

{
ϕ′(ξ1,W1)uVT

1 V1

} (5.9.13)

by Taylor expansion and Assumption 5.2.3. Here, ξ1 lies between 0 and uVT
1 /

√
n. This implies

that

|ξ1| ≤ |uVT
1 |/

√
n ≤ ||u||||V1||/

√
n.

Now, if we fix any K > 0, then |ξ1| → 0 uniformly over {u ∈ Rd+2 : ||u|| ≤ K} as ν → ∞ a.s.

[P] by Assumption 5.2.4. By Assumption 5.2.3, ϕ′(t,W1) is continuous, and hence uniformly

continuous on [−δ1, δ1] for any given ω ∈ Ω and any δ1 > 0. Therefore,

sup
||u||≤K

|ϕ′(ξ1,W1)− ϕ′(0,W1)| → 0 as ν → ∞ a.s. [P].

Moreover, for any ν ≥ 1,

sup
||u||≤K

|ϕ′(ξ1,W1)− ϕ′(0,W1)| ≤ 2 sup
t∈R

|ϕ′(t,W1)| and EP
(
sup
t∈R

|ϕ′(t,W1)|
)2
<∞

by Assumption 5.2.3. Hence,

sup
||u||≤K

||EP
{
ϕ′(ξ1,W1)uVT

1 V1

}
− EP

{
ϕ′(0,W1)uVT

1 V1

}
|| → 0 as ν → ∞

by Assumption 5.2.4 and DCT. Thus sup||u||≤K ||EP∗
(
Mn(u)−Mn(0)

)
+ uΣ|| → 0 as ν → ∞

by Assumption 5.2.4. This result and Lemma 5.9.1 imply that under P∗, as ν → ∞,

sup
||u||≤K

||Mn(u)−Mn(0) + uΣ|| = op(1) (5.9.14)

for Q(s, ω) and any K > 0.

Next, it follows from Lemma 5.9.2 that for any given j=1, . . . , d + 2, under Q(s, ω), as

ν → ∞,

√
nej
[∑

i∈s
π−1
i ψ(ϵi)Vi/N −

N∑
i=1

ψ(ϵi)Vi/N

]T
L−→ N(0, ejΓeTj ) (5.9.15)
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a.s. [P], where {ej : 1 ≤ j ≤ d+ 2} are canonical basis vectors of Rd+2. Then, using DCT, one

can show that for any given j=1, . . . , d+ 2, under P∗, as ν → ∞,

√
nej
[∑

i∈s
π−1
i ψ(ϵi)Vi/N −

N∑
i=1

ψ(ϵi)Vi/N

]T
=

√
n

[∑
i∈s

π−1
i ψ(ϵi)Vij/N −

N∑
i=1

ψ(ϵi)Vij/N

]
= Op(1)

(5.9.16)

for Q(s, ω), where Vij is the jth component of Vi. Moreover, we have

varP

(√
n

N∑
i=1

ψ(ϵi)Vij/N

)
≤ (n/N)EP

(
ψ(ϵi)Vij

)2
= O(1) (5.9.17)

as ν → ∞ for any j=1, . . . , d + 2 by Assumptions 5.2.2 and 5.2.4. One can also show that

EP
(
ψ(ϵi)Vi

)
=EP

(
ψ(Yi − θVT

i )Vi

)
=0 because (Yi, Zi, Xi) have absolutely continuous distri-

bution and ρ(t) is differentiable at all but at most countably many t. Therefore, under P∗, as

ν → ∞,

√
n
∑
i∈s

π−1
i ψ(ϵi)Vij/N = Op(1) for any j = 1, . . . , d+ 2, and hence ||Mn(0)|| = Op(1)

for Q(s, ω). This implies that given any δ, there exist ν0 ∈ N and K1 > 0 such that

P∗{||Mn(0)|| > K1

}
< δ/2 for all ν ≥ ν0. (5.9.18)

Now, suppose that λ1 is the minimum eigenvalue of Σ. Let us choose ζ1 > 0 and ζ2 > 0 such

that ζ2 > 2K1/λ1 and ζ1 < K1/2. Further, suppose that ζ3=ζ1ζ2. Then, we have

P∗
{

inf
||u||=ζ2

(
−Mn(u)uT ) < ζ3

}
≤ P∗

{
inf

||u||=ζ2

(
−Mn(u)uT ) < ζ3,

inf
||u||=ζ2

(
−Mn(0)uT + uΣuT

)
≥ 2ζ3

}
+ P∗

{
inf

||u||=ζ2

(
−Mn(0)uT+

uΣuT
)
< 2ζ3

}
.

(5.9.19)

Further, we have

P∗
{

inf
||u||=ζ2

(
−Mn(u)uT ) < ζ3, inf

||u||=ζ2

(
−Mn(0)uT + uΣuT

)
≥ 2ζ3

}
≤ P∗

{
sup

||u||=ζ2

(
(Mn(u)−Mn(0))uT + uΣuT

)
≥ ζ3

}
≤

(5.9.20)
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P∗
{

sup
||u||=ζ2

||(Mn(u)−Mn(0) + uΣ|| ≥ ζ1

}
→ 0

as ν → ∞ by (5.9.14). Next, it follows that

P∗
{

inf
||u||=ζ2

(
−Mn(0)uT + uΣuT

)
< 2ζ3

}
≤ P∗

{
inf

||u||=ζ2

(
−Mn(0)uT

)
+ ζ22λ1 < 2ζ3

}
≤ P∗

{
− ζ2||Mn(0)|| < 2ζ3 − ζ22λ1

}
≤

P∗
{
||Mn(0)|| > K1

}
< δ/2,

(5.9.21)

for all ν ≥ ν0 by (5.9.18). Thus, one can choose ν0 large enough such that

P∗
{

inf
||u||=ζ2

(
−Mn(u)uT ) < ζ3

}
< δ (5.9.22)

for all ν ≥ ν0 by (5.9.19), (5.9.20) and (5.9.21). Next, note that

−Mn(τu1)uT
1 ≥ −Mn(u1)uT

1 (5.9.23)

for any given τ ≥ 1 and u1 ∈ Rd+2. Now, if ||u|| ≥ ζ2 and u1=ζ2u/||u||, then ||u1||=ζ2 and

u=τu1 with τ=||u||/ζ2 ≥ 1. Then, using (5.9.22) and (5.9.23), one can show that

P∗
{

inf
||u||≥ζ2

||Mn(u)|| < ζ1

}
≤ P∗

{
inf

||u||≥ζ2

(
−Mn(u)uT

)
ζ2/||u|| <

ζ1ζ2

}
≤ P∗

{
inf

||u1||=ζ2

(
−Mn(u1)uT

1

)
< ζ3

}
< δ

(5.9.24)

for all ν ≥ ν0. Hence, the result in (5.9.12) holds.

Next, suppose that Ĥ2=
∑

i∈s(NXi)
−1GiHi, where Hi=ψ(ϵi)Vi for i=1, . . . , N , and Gi’s

are as in the paragraph containing (5.1.1) and (5.1.2) in Section 5.1. Recall from the paragraph

preceding Lemma 5.9.2 that H=
∑N

i=1 Hi/N . Also, recall from the statement of Theorem 5.2.4

that γ=
∑n

r=1 Ñr(Ñr − 1)/N(N − 1) with Ñr being the size of the ith group formed randomly

in RHC sampling design. Now, we state the following lemma.

Lemma 5.9.4. Fix m ∈ Rd+2 such that m ̸= 0. Suppose that Assumptions 5.2.1 and 5.2.7–5.2.9

hold. Then, under RHC sampling design, we have
√
nm
(
Ĥ2 − H

)T L−→ N(0, cmΓ∗mT ) as

ν → ∞ a.s. [P], where Γ∗ is as mentioned in Assumption 5.2.9 and c=limν→∞ nγ.

Note that the limit limν→∞ nγ exists by Lemma 2.7.5 in Section 2.7 of Chapter 2.
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Proof. The proof follows exactly the same way as the derivation of the result, which appears in

the proof of Lemma 2.7.2 in Section 2.7 of Chapter 2, that
√
nm1(V̂2 − V)T

L−→ N(0,m1Γ2mT
1 )

as ν → ∞ under RHC sampling design for any m1 ∈ Rp, m1 ̸= 0 and Γ2=limν→∞Σ2.

Next, we show that Assumption 5.2.6–(ii) holds under SRSWOR, LMS and any πPS sampling

designs. Recall ψ from (5.2.1), and ϵi from (5.2.3). Also, recall from the paragraph preceding

Assumption 5.2.6 that Hi=ψ(ϵi)Vi for i=1, . . . , N , and TH=
∑N

i=1 Hi(1−πi)/
∑N

i=1 πi(1−πi).

Here, Vi=(1,Wi). Now, we state the following lemma.

Lemma 5.9.5. Suppose that Assumptions 5.2.1 and 5.2.8 hold, and EP||Hi||2 < ∞. Then,

Assumption 5.2.6–(ii) holds under SRSWOR and LMS sampling designs. Moreover, if Xi ≤ K

a.s. [P] for some 0 < K < ∞, EP(Xi)
−2 < ∞, and Assumption 5.2.1 holds with 0 ≤ λ <

EP(Xi)/K, then Assumption 5.2.6–(ii) holds under any πPS sampling design.

Proof. Let us denote (1/N2)
∑N

i=1(Hi −THπi)
T (Hi −THπi)(π

−1
i − 1) by ΣN . Here, πi’s are

inclusion probabilities. Note that

nΣN = (1− n/N)

( N∑
i=1

HT
i Hi/N − HTH

)
with H =

N∑
i=1

Hi/N

under SRSWOR. Then,

nΣN → (1− λ)EP(Hi − EP(Hi))(Hi − EP(Hi)) as ν → ∞ a.s. [P] (5.9.25)

by Assumption 5.2.1 and SLLN. Note that EP(Hi − EP(Hi))(Hi − EP(Hi)) is p.d. because

{(Yi,Wi) : 1 ≤ i ≤ N} have absolutely continuous distribution. Thus Assumption 5.2.6–(ii)

holds under SRSWOR.

Next, suppose that Σ(1)
N and Σ

(2)
N denote (1/N2)

∑N
i=1(Hi − THπi)

T (Hi − THπi)(π
−1
i −

1) under LMS sampling design and SRSWOR, respectively, and {π(1)i }Ni=1 denote inclusion

probabilities of LMS sampling design. Then, we have

π
(1)
i = (n− 1)/(N − 1) +

(
Xi

/ N∑
i=1

Xi

)
((N − n)/(N − 1)) and

π
(1)
i − n/N = −(N − n)(N(N − 1))−1(Xi/X − 1).

(5.9.26)

Further,
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|π(1)i − n/N |
n/N

=
N − n

n(N − 1)

∣∣∣∣Xi

X
− 1

∣∣∣∣ ≤ N − n

n(N − 1)

(
max1≤i≤N Xi

min1≤i≤N Xi
+ 1

)
.

Therefore,

max
1≤i≤N

|Nπ(1)i /n− 1| → 0 as ν → ∞ a.s. [P] (5.9.27)

by Assumption 5.2.8. Now, it can be shown using the result in (5.9.27) that n(Σ(1)
N − Σ

(2)
N ) → 0

as ν → ∞ a.s. [P]. Therefore, Assumption 5.2.6–(ii) holds under LMS sampling design in view

of (5.9.25).

Next, under any πPS sampling design, we have

lim
ν→∞

nΣN = EP
[{

Hi + χ−1µ−1
x (λEP(HiXi)− EP(Hi)µx)Xi

}T×{
Hi + χ−1µ−1

x (λEP(HiXi)− EP(Hi)µx)Xi

}{
µx/Xi − λ

}]
a.s. [P]

(5.9.28)

by Assumption 5.2.1 and SLLN. Here, µx=EP(Xi) and χ=µx − λ(EP(Xi)
2/µx). The matrix

on the right hand side of (5.9.28) is p.d. because Xi ≤ K a.s. [P] for some 0 < K < ∞,

Assumption 5.2.1 holds with 0 < λ < EP(Xi)/K, and {(Yi,Wi) : 1 ≤ i ≤ N} have absolutely

continuous distribution. Thus Assumption 5.2.6–(ii) holds under any πPS sampling design. This

completes the proof of the lemma.
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