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Abstract

Construction of Mutually Unbiased Bases (MUBs) is a very challenging combinatorial prob-
lem in the domain of quantum information theory with several long standing open questions.
In the language of quantum information theory, two orthonormal bases in the d-dimensional
complex Hilbert space Cd, {|e1⟩ , . . . |ed⟩} and {|f1⟩ , . . . |fd⟩} are called Mutually Unbiased
if we have

|⟨ei|fj⟩| =
1√
d
, ∀i, j ∈ {1, 2, . . . , d}.

Similarly, some r orthonormal bases are called Mutually Unbiased Bases (MUBs) if they
are pairwise Mutually Unbiased. Reaching the upper bound on this r is believed to be an
extremely challenging problem for more than half a century. Because of the difficulties to
construct significantly large number of MUBs, the problem is relaxed and the concept of
Approximate Mutually Unbiased Bases (AMUBs) had been introduced by Klappenecker,
Rötteler, Shparlinski and Winterhof in 2005. In this case the inner product of two vectors
drawn from two different bases is relaxed, instead of being exactly 1√

d
.

In the initial contribution of our thesis, we provide a method to construct upto (
√
d+ 1)

many AMUBs in dimension d = q2, where q is a positive integer. In particular, when d

is of the form (4x)2 where x is a prime, we obtain (
√
d
4

+ 1) many Approximate Mutually
Unbiased Bases (ARMUBs) such that for any two vectors v1, v2 belonging to different bases,
|⟨v1|v2⟩| ≤ 4√

d
.

The above results are then improved as well as generalized significantly with several
constructions exploiting the more involved combinatorial structures such as Resolvable Block
Designs (RBDs). We first explain the generic idea of our strategy in relating the RBDs
with MUBs/ARMUBs, which are sparse (the basis vectors have small number of non-zero
co-ordinates). To be specific, we present an infinite family of ⌈

√
d⌉ many ARMUBs for

dimension d = q(q + 1), where q ≡ 3 mod 4 and it is a prime power, such that for any two
vectors v1, v2 belonging to different bases, | ⟨v1|v2⟩ | < 2√

d
. We also analyze certain specific

cases, such as d = sq2, where q is a prime power and sq ≡ 0 mod 4.

We continue to improve our results in this direction and formalize the definition of ap-
proximate MUBs with more restrictions. We propose the concept of Almost Perfect MUBs
(APMUB), where we restrict the absolute value of inner product | ⟨v1|v2⟩ | to be two-valued,

one being zero and the other ≤ 1+O(d−λ)√
d

, such that λ > 0 and the numerator 1+O(d−λ) ≤ 2.
We show that for a general composite dimension d = k × s, k, s ∈ N, with k ≤ s ≤ 4k,
one can construct at least N(s) + 1 many APMUBs, where N(s) is the number of Mutually
Orthogonal Latin Squares (MOLS) of order s. Even when restricted to Rd, we can construct
similar number of real APMUBs, whenever real Hadamard matrix of order k can be con-
structed. Further, if s = q, where q power of prime, we have N(q) = q − 1, which enable
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us to construct q ∼ O(
√
d) many APMUBs. More appropriate and novel combinatorial

designs are presented in this regard which extend this to composite dimension of the form
d = (q − e)(q + f), e, f ∈ N, with 0 ≤ f ≤ e and q some power of prime. We also show that
our result has important implications towards Bi-angular vectors.

With the understanding of APMUBs, we revisit a larger class of AMUBs, and improve
the results further in terms of larger classes for composites that are not prime powers, and
for both real and complex. The technique is more generalized in terms of exploring novel
instances of RBDs that provide improved results.

Finally a heuristic framework is presented to search for AMUBs with significantly good
parameters and experimental outcomes of the computer programs are studied. Given a
non-prime dimension d, we note the closest prime d′ > d and form d′ + 1 MUBs through
the existing methods. Then our proposed idea considers two parts. First we apply basis
reduction techniques (that are well studied in Machine Learning literature) in obtaining
the initial solutions. Then we exploit the steepest ascent kind of search to improve the
results further. The efficacy of our technique is shown through construction of AMUBs in
dimensions d = 6, 10, 46 from d′ = 7, 11 and 47 respectively. From a more generic view,
this approach considers approximately solving a challenging (where efficient deterministic
algorithms are not known) mathematical problem in discrete domain through state-of-the-
art heuristic ideas.

To summarize, in this thesis we exploit several involved combinatorial techniques in a
disciplined manner and also a heuristic to construct approximate MUBs.
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Chapter 1

Introduction

Mutually Unbiased Bases (MUBs) are important objects in various areas of Mathematics
and Computer Science. The idea was initially described in [85] more than six decades back.
The motivation was related to unitary operator bases and the work also considers maximum
degree of incompatibility. Later in [52] such objects were used for state determination. Fur-
ther it was noted that MUBs are directly related to Quantum Key Distribution (QKD) [10],
in particular for the six-state scenario [19]. As it is well known that QKD is an integral part
of Quantum Cryptology, the application of MUBs could be underlined immediately. For
example, one may refer to [2] where certain connections between MUBs and Quantum Ran-
dom Access Codes are noted. Other than the applications in the broad field of information
theory, there are very interesting unsolved questions in this domain. For example, it is still
open for more than half a century that exactly how many MUBs are there in the dimension
six. While, the lower bound three could be achieved, no better result is known given that
the upper bound is seven. To explain these in more details, let us formalize a few definitions
in this regard. We begin with the notations from quantum information theory, and later
move towards the combinatorial domain.

1.1 Presenting the problem

One can relate ‘ket’ with a unit vector, that can be written as |v⟩. Such a vector belongs
to some complex vector space, say V and physically can be understood as a quantum bit
or qubit. One can define the inner product between two d-dimensional complex vectors
|u⟩ = (u1, . . . , ud) , |v⟩ = (v1, . . . , vd) as ⟨u|v⟩ = u1v

∗
1 + . . . + udv

∗
d, where v∗i is complex

conjugate of vi. This produces a complex number. The modulus of a complex number
z = x + iy is

√
x2 + y2. This relates to the angle between two vectors, where the modulus

of ⟨u|v⟩, denoted by |⟨u|v⟩| gives the cosine of the angle between |u⟩ and |v⟩. Here, |u⟩ and
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|v⟩ are the unit vectors, and the angle lies between
[
0, π

2

]
. With this as background, let us

present the definition of MUBs.

Definition 1.1.1. Two orthonormal bases in the d-dimensional complex Hilbert space Cd,
{|e1⟩ , . . . , |ed⟩} and {|f1⟩ , . . . , |fd⟩} are called Mutually Unbiased if

|⟨ei|fj⟩| =
1√
d
, ∀i, j ∈ {1, 2, . . . , d}.

Similarly, some r orthonormal bases are called Mutually Unbiased Bases (MUBs) if they are
pairwise Mutually Unbiased.

An example will be useful here for d = 2. Consider the bases

M0 = {|0⟩, |1⟩} ,

M1 =

{
|0⟩ + |1⟩√

2
,
|0⟩ − |1⟩√

2

}
,

M2 =

{
|0⟩ + i|1⟩√

2
,
|0⟩ − i|1⟩√

2

}
if you consider two vectors |u⟩ , |v⟩ from a specific basis Mi, then naturally |⟨u|v⟩| = 0. On
the other hand, if |u⟩ is from Mi, and |v⟩ is from Mj, with i ̸= j, then |⟨u|v⟩| = 1√

2
.

Now the question is how many such MUBs can be constructed for a dimension d. It was
noted in [99] that for a dimension d, it is possible to construct at most (d+ 1) MUBs. This
bound can be achieved when d is a prime power [99], that has been proved in a constructive
manner later [79]. A simplified proof of this, based on the estimation of exponential sums,
was presented in [60]. Another important idea of proof, using maximally commuting bases
of orthogonal unitary matrices, was presented in [6].

On the other hand, the construction methods cannot reach the upper bound when d
is not a prime power. Given any d = pk11 p

k2
2 . . . pkrr , in the form of its prime factorization,

construction methods are known to obtain

νd =

(
min

i∈{1,...,r}
pkii

)
+ 1

many MUBs. This is the lower bound and νd is much less than d + 1 in many cases. Even
after significant efforts in this direction for more than half a century, there is no evidence of
beating the lower bound for the non prime power cases, and thus this problem remains quite
interesting. One may refer to [64, Problem 13], where this question takes a place among
the important open problems in quantum information theory. In fact there are a series of
papers related to the case of d = 6 = 2 · 3. As per the lower bound, 2 + 1 = 3 MUBs could
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be constructed. However, the upper bound is 6 + 1 = 7. Thus there is a gap and even
this specific problem of dimension d = 6 is considered to be one of the most sought after
questions in the domain of quantum information [81].

We like to clarify here the situation that there are cases where the lower bound of MUBs
is strictly greater than νd, but the known constructions cannot reach d + 1 for a dimension
d. Consider d as a perfect square written as d = s2, where s is any positive integer. This
construction [98] is based on Mutually Orthogonal Latin Squares (MOLS), and consider that
there are N(s) such objects for a dimension s. Then one may construct N(s)+2 many MUBs
for the dimension d. Let us take an example with s = 26, i.e., d = s2 = 262 = 22 · 132. In
this case, the lower bound νd = 22 + 1 = 5. However, the number of MOLS is N(26) ≥ 4. In
this method, the number of MUBs generated will be at least 4 + 2 = 6 which is greater than
νd = 5. To explain more such cases, note that N(s) ≥ 6, for s ≥ 76. For all d = s2 = (2p)2,
where p is a prime and s = 2p ≥ 76, we have νd = 5. However, the construction using MOLS
will always provide at least N(s) + 2 = 6 + 2 = 8 many MUBs.

From the above discussions, it is very clear that there are immense difficulties to construct
increasing the number of MUBs, if not elusive. In this direction, the problem is comparatively
simplified and the concept of Approximate Mutually Unbiased Bases (AMUBs) had been
introduced in [61]. Here, the inner product of two vectors drawn from two different bases is
relaxed, instead of being fixed to a single point. Note that we consider the approximation
allowing the inner product for vectors coming from two different bases, but do not allow any
relaxation inside a base. That is, the bases are always orthonormal in our study. We may
define it formally as follows.

Definition 1.1.2. A set of r orthonormal bases Bi, 1 ≤ i ≤ r of Cd are defined as β-AMUBs
(Approximate MUBs) if for two vectors v1 ∈ Bi1 and v2 ∈ Bi2 (i1 ̸= i2),

|⟨v1|v2⟩| ≤
β√
d
.

The domain of AMUBs has not been explored in-depth so far. In this thesis, our main
motivation is to exploit combinatorial objects such as Hadamard matrices, Mutually Or-
thogonal Latin Squares (MOLS), Resolvable Block Designs (RBDs) etc. towards various
construction techniques of AMUBs. Some computer-based heuristic searches in conjunction
with dimension reduction techniques have also been studied towards the end. With this
introduction, let us present the organization of the thesis and its contributions. Detailed
background related to this topic will be explained in Chapter 2.
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1.2 Thesis Plan

Chapter 3 presents the first contributory work of this thesis. In this initial effort, a construc-
tion method is described to obtain at most (

√
d + 1) many AMUBs in dimension d = q2,

where q is any positive integer. For q ≡ 0 mod 4, we obtain Approximate Real MUBs
(ARMUBs) assuming that a Hadamard matrix of order q exists. In this effort, we further
characterize the inner product values between the elements of two different bases. Given a

prime x, when d is of the form (4x)2, we obtain (
√
d
4

+ 1) many ARMUBs such that for any
two vectors v1, v2 belonging to different bases, |⟨v1|v2⟩| ≤ 4√

d
. This work has been published

in [67].

The results of Chapter 3 are then improved and generalized in Chapter 4. We propose
various constructions exploiting involved combinatorial structures such as RBDs. First the
generic construction idea is presented to relate the RBDs with MUBs/ARMUBs. We like to
highlight that in these cases the basis vectors have small number of non-zero co-ordinates,
i.e., the constructed bases are sparse. We take up specific parameters for which one can
demonstrate new classes and improved results. In particular, we present an infinite family
of ⌈

√
d⌉ many ARMUBs for dimensions of the form d = q(q + 1), where q is a prime power

and q ≡ 3 mod 4. In this case, for any two vectors v1, v2 belonging to different bases,
| ⟨v1|v2⟩ | < 2√

d
. We also analyze different cases such as d = sq2, where q is a prime power

and sq ≡ 0 mod 4. The work of this chapter is published in [65].

Next we formalize the definition of approximate MUBs with more restrictions in Chap-
ter 5. We propose the concept of Almost Perfect MUBs (APMUBs), where the absolute

value of inner product | ⟨v1|v2⟩ | is two-valued, one being zero and the other ≤ 1+O(d−λ)√
d

,

such that λ > 0 and the numerator 1 + O(d−λ) ≤ 2. In this process, the vectors that we
construct have important features, that large number of its components are zero (we already
pointed this out) and the non-zero components are of equal magnitude. The techniques are
sharpened exploiting combinatorial structures related to Resolvable Block Designs (RBDs).
For a composite dimension d = k · s, k ≤ s ≤ 4k, one can construct at least N(s) + 1 many
APMUBs, where N(s) is the number of Mutually Orthogonal Latin Squares (MOLS) of
order s. We also consider the cases when each component of the vectors are real, producing
similar number of real APMUBs, whenever real Hadamard matrix of order k are available.
Moreover, when s = q, where q is a prime power, we obtain N(q) = q − 1. This helps
to construct q ∼ O(

√
d) many APMUBs. This technique is further extended to composite

dimension of the form d = (q − e)(q + f), e, f ∈ N, with 0 ≤ f ≤ e and a prime power q.
Such cases are at least as dense as the prime numbers in the set of positive integers. These
results are of importance in producing Bi-angular vectors. The APMUBs, so constructed in
Cd or Rd, provide sets of Bi-angular vectors which are of the order of O(d3/2) in numbers
(here the upper bound is O(d2)). These results are presented in [68].
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We further investigate a less restrictive, i.e., a more generalized class of AMUBs in
Chapter 6, considering broader aspects over the results of Chapter 4. Broader classes of
non-prime power composite dimensions are studied in this chapter for both real and complex
AMUBs. Instead of constant block sizes, here we consider various values and thus consider
several novel instances of RBDs suitable in this direction. These results are presented in [66].

We also explore a heuristic framework to search for AMUBs with significantly good
parameters in Chapter 7. Note that these are not APMUBs as explained in the previous
chapters. However, we obtain some interesting parameters when we compare them with
AMUBs as presented in Chapters 3, 4. Here, instead of combinatorial techniques, heuristics
are implemented and experimental outcomes of certain computer programs are reported.
Given a non-prime dimension d, we first consider the closest prime d′ > d and form d′ + 1
MUBs through the existing methods [79, 60, 6]. Then our proposed idea considers two
techniques one after the other. First we apply basis reduction techniques from Machine
Learning literature in obtaining the initial solutions. Then we exploit the steepest ascent
kind of search to improve the results further. The experimental outcome is presented through
construction of AMUBs for the dimensions d = 6, 10, 46 from d′ = 7, 11 and 47 respectively.
This technique provides a generic framework in construction of AMUBs heuristically. In fact,
this approach attempts to solve a challenging (where efficient deterministic algorithms are
not known) mathematical problem approximately in discrete domain through state-of-the-art
heuristic ideas. The results of this chapter got published in [28].

Chapter 8 concludes the thesis with a summary of the results and several directions to-
wards the open questions that might be interesting for future research efforts. In summary,
we exploit several involved combinatorial techniques in a disciplined manner to construct
Approximate MUBs. The constructions are based on simpler to more complicated combina-
torial objects. Towards the end, we also explore certain heuristics and computer programs
are executed to perform different experiments. Our constructions have applications in the
broad area of quantum information. Several open questions are presented that could be
important research problems in future.

1.3 Prerequisites

It is assumed that the reader is familiar with undergraduate level combinatorics, linear alge-
bra and abstract algebra. We will present more details regarding the more involved algebraic
and combinatorial structures in Chapter 2. Basic understanding of computer algorithms are
necessary to understand the methodologies. The details of heuristics and basis reduction
kinds of techniques will also be explained in Chapter 2 to follow the thesis. There is no
requirement to have any background on Mutually Unbiased Bases (MUBs). We will develop
the background with sufficient details in the following sections and introduce the ideas one
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by one, as and when required.

1.4 Conclusion

We have introduced the outline of the problem in this section. First we explain the MUBs
and then pointed out that such constructions are quite hard for the dimensions which are
not prime powers. That is the reason, certain approximations are necessary that may be
useful for the application domain related to quantum information theory. Further, the
relationship of MUBs with several combinatorial structures such as resolvable block designs
are so intriguing that these problems are independently of theoretical interest. In this regard,
certain relaxations over the MUBs are already considered and there are limited research
efforts in the domain of Approximate MUBs. We consider this problem in a more detailed
and disciplined manner, and propose a structure called Almost Perfect MUBs. In this thesis
we provide several novel results in that direction. In the following chapter, we present the
background material that would be helpful to understand the contributory sections of this
thesis.

12



Chapter 2

Background

In this chapter we provide a brief introduction to existing research in the related areas and
identify how our work fits in that framework. In the context of MUBs, a basis can be
represented as a unitary matrix. That is, each row will be a unit vector. For dimension d,
there will be d many components in the vector, and in our analysis those will be complex
numbers. We will have d such orthonormal vectors. Such d rows will form a unitary matrix.

Let us now refer to the example in the previous chapter for d = 2, where we have
considered:

M0 = {|0⟩, |1⟩} ,

M1 =

{
|0⟩ + |1⟩√

2
,
|0⟩ − |1⟩√

2

}
,

M2 =

{
|0⟩ + i|1⟩√

2
,
|0⟩ − i|1⟩√

2

}
.

Generally, the qubit |0⟩ is represented as

[
1
0

]
and |1⟩ can be represented as

[
0
1

]
.

That is, following the literature, we work with column vectors. However, for our purpose to
connect a vector with a row, we will interpret |0⟩ as

[
1 0

]
and |1⟩ as

[
0 1

]
.

Thus, we obtain M
(2)
0 =

[
1 0
0 1

]
. Note that while considering the MUBs, we can

always consider the identity matrix as one basis. In this manner, we will have, M
(2)
1 =[

1√
2

1√
2

1√
2

− 1√
2

]
= 1√

2

[
1 1
1 −1

]
and M

(2)
2 =

[
1√
2

i√
2

1√
2

− i√
2

]
= 1√

2

[
1 i
1 −i

]
. For notational

convenience in this chapter, we add a super-script in the first bracket to identify the di-
mension. One may note that M

(2)
1 is the well known Hadamard matrix of dimension 2 and
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referred to as H2 in literature1. A general construction of Hadamard matrices H2i can be
seen as H2 ⊗H2i−1 , where ⊗ is the tensor (Kronecker) product.

One can now check that if two different vectors from a matrix Mi are considered, they
are orthonormal, i.e., the inner product will become zero. On the other hand, if one vector
is chosen from Mi and the other from Mj, with i ̸= j, then the inner product will produce

the value 1√
2
. That is for dimension d = 2, M

(2)
0 ,M

(2)
1 ,M

(2)
2 are three MUBs. It is easy to

see that if one considers any unitary matrix U of dimension 2, then UM
(2)
0 , UM

(2)
1 , UM

(2)
2

will also be a set of three MUBs.

Note that for d = 3, 4, 5, one can construct 4, 5, 6 many MUBs respectively. As it is
discussed earlier, for any dimension d, the upper bound is d + 1 [99, 79, 60, 6]. The upper
bound can be achieved for any prime power, and thus it works for 3, 4, 5.

An example for four MUBs for d = 3 are as follows:

M
(3)
0 =

 1 0 0
0 1 0
0 0 1

, M
(3)
1 = 1√

3

 1 1 1
ω2 1 ω
ω2 ω 1

,

M
(3)
2 = 1√

3

 1 1 1
1 ω ω2

1 ω2 ω

, M
(3)
3 = 1√

3

 1 1 1
ω ω2 1
ω 1 ω2

.

Let us also present a set of five MUBs for d = 4:

M
(4)
0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, M
(4)
1 = 1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

, M
(4)
2 = 1

2


1 −1 −i −i
1 −1 i i
1 1 i −i
1 1 −i i

,

M
(4)
3 = 1

2


1 −i −i −1
1 −i i 1
1 i i −1
1 i −i 1

, M
(4)
4 = 1

2


1 −i −1 −i
1 −i 1 i
1 i −1 i
1 i 1 −i

.

We like to point out that M
(4)
1 = H22 = H2 ⊗ H2, a Hadamard matrix. Note that

the matrices M
(4)
2 ,M

(4)
3 and M

(4)
4 too can be seen as complex Hadamard matrices with the

normalizing 1√
d

taken out.

1Since we are working with unitary matrices, we have included the 1√
d
for dimension d in this discussion.

However, many authors defined Hadamard matrices without the normalizing factor.
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2.1 MUBs and Hadamard matrices

Before proceeding, let us now explain a little bit more about unitary matrices. A unitary
matrix U is a square one whose inverse is equal to its conjugate transpose (U †); that is
U †U = UU † = UU−1 = I. One can verify that the rows (or columns) of U form an
orthonormal basis of Cd with respect to the usual inner product. In fact, unitary matrices
are the complex analog of real orthogonal matrices. Two simple examples of unitary matrices

in dimensions 2 and 3 are 1
2

[
1 + i −1 + i
1 + i 1 − i

]
, 1
2

 1 −i −1 + i
i 1 1 + i

1 + i −1 + i 0

 respectively.

We have already discussed that each MUB in the space Cd consists of d orthogonal unit
vectors which, collectively, can be thought of as a unitary d×d matrix. Two (or more) MUBs
thus correspond to two (or more) unitary matrices, one of which can always be mapped to
the identity I of the space Cd, using a unitary transformation. For example, suppose we
have r many MUBs {M1,M2,M3, . . . ,Mr} in Cd where r ≤ d + 1 and also we can thought
them as a r numbers of d× d unitary matrices. If we multiply M−1

1 to each of the matrices
at right, then one can obtain {I,M2M

−1
1 ,M3M

−1
1 , . . . ,MrM

−1
1 } as the transformed set of

MUBs. As the inverse of any unitary matrix is equal to its conjugate transpose, to obtain
MjM

−1
i , for i ̸= j, we are considering inner products of each row of the two matrices in

the set of MUBs. Thus, the modulus of each element of the product matrix will be 1√
d
.

Taking 1√
d

common, the modulus of each of the elements will be 1, i.e., we will have complex
Hadamard matrices. The result will be similar if we multiply the inverse from the left too.
Let us explain this with the following example with three matrices, which are MUBs, but
none of them is Hadamard.

M1 = 1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 ,M2 = 1√
2


1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

 ,M3 = 1√
2


1 1 0 0
0 0 1 1
0 0 1 −1
1 −1 0 0

.

Consider the multiplication by the inverse of M1 from the left hand side. Here M1 =
M †

1 = M−1
1 . Then we obtain:

H1 = M−1
1 M2 = M †

1M2 = 1
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

 = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


and
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H2 = M−1
1 M3 = M †

1M3=
1
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




1 1 0 0
0 0 1 1
0 0 1 −1
1 −1 0 0

 = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
−1 1 1 −1


as Hadamard matrices. As the examples contain real values only, the notation † works as
simple transpose here. This is one relationship between MUBs and Hadamard matrices that
we described. It is well known that Hadamard matrices have extremely rich combinatorial
structures. In our contributory sections, we will use Hadamard matrices towards several
kinds of constructions.

Definition 2.1.1 (Weighing matrix). A square matrix of order d and weight w is called a

(complex) weighing matrix, denoted by W (w, d), if its elements belong to the set
{

0, exp(iθ)√
w

}
with θ ∈ R, and it satisfies W (w, d)†W (w, d) = I. If the elements are confined to the set{

0,± 1√
w

}
, it becomes a real weighing matrix.

The use of complex weighing matrices in quantum error correcting codes has been ex-
plored in [41]. Furthermore, the connection between real weighing matrices and classical
codes are also investigated, as evident from the studies such as [34, 54, 55, 4], which also
delve into applications involving spherical codes [74]. For more analysis, one can refer to [62]
and the references therein. This background is required to relate one of our constructions in
Chapter 5.

2.2 Challenges in composite (but non prime power)

dimensions

As we have already discussed, the smallest integer where the challenge appears is for d = 6.
The lower bound provides the 3 MUBs that can be constructed and the upper bound is
6 + 1 = 7.

Let us quickly provide an outline how one can construct the three MUBs of dimension
6. We already described M

(2)
0 ,M

(2)
1 ,M

(2)
2 as above for dimension 2. Similarly, consider the

four MUBs of dimension 3, which are M
(3)
0 ,M

(3)
1 ,M

(3)
2 ,M

(3)
3 . Now the matrices M

(2)
i1

⊗M
(3)
j1

,

M
(2)
i2

⊗M
(3)
j2

, M
(2)
i3

⊗M
(3)
j3

will be three MUBs of dimension 6, where i1, i2, i3 ∈ {0, 1, 2} are
distinct and j1, j2, j3 ∈ {0, 1, 2, 3} are distinct as well. It should be noted that if we consider

M
(2)
i1
,M

(3)
j1

as identity matrices of dimensions 2, 3 respectively, then M
(2)
i1

⊗M
(3)
j1

will also be
an identity matrix of dimension 6. This actually outlines the proof of the minimum bound
νd. It has been shown that for any d = pk11 p

k2
2 . . . pkrr , expressed in the form of its prime

factorization, one can construct νd =

(
min

i∈{1,...,r}
pkii

)
+ 1 many MUBs. The method should
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start from pkss + 1 many MUBs for dimension pkss , where the minimum is for i = s. It is
evident that any pkii > pkss , for i ̸= s and thus for the dimension pkii we will have pkii +1 many
MUBs, which is larger than pkss + 1. Now for the r prime powers, we need to choose distinct
matrices and get the tensor product of them to obtain each matrix of degree d. This way we
can construct pkss + 1 MUBs for dimension d.

However, even after very serious research efforts, the question remains unsolved whether
the upper bound can be reached for composite (non prime power) dimensions. It is thus
clearly understood that for composite numbers which are not prime powers, obtaining a
conclusion is elusive [64, Problem 13]. In fact, this specific problem of dimension d = 6 is a
celebrated open question in quantum information [81]. One may refer to [32] and references
therein to have an idea that how the numerical methods work towards obtaining approximate
solutions. This also motivates our work that the approximate solutions are important while
considering the MUBs. Our work in this thesis shows how combinatorial structures can
be exploited to construct such approximate MUBs, with certain guarantees regarding the
deviation from the exact ones. Our work in Chapter 3 considers Hadamard matrices for
the constructions. However, more involved combinatorial structures are exploited in the
following two chapters, namely Chapters 4, 5. In this direction, let us briefly explain the
basics of Resolvable Block Design (RBD) in the following section (Section 2.3). We have
also considered some numerical techniques in Chapter 7 of this thesis. That involves a
heuristic framework exploiting certain basis reduction techniques that are frequently applied
in Machine Learning literature. The background required there is briefly presented in that
chapter itself in Section 7.1.2.

2.3 Basics of Resolvable Block Design

Let us now explain the combinatorial object that we relate to construct (approximate) MUBs.
The notations for combinatorial designs are borrowed from [93, Chapter 1].

Definition 2.3.1. A design can be expressed as a pair (X,A) such that the following prop-
erties are satisfied.

1. X is a set of elements, called points, and

2. A is a collection of non-empty subsets of X, called blocks.

A design is called simple, if there is no repeated block in A. In this chapter, we will
restrict our analysis to simple designs only.

Definition 2.3.2. A parallel class in design (X,A) is a subset of disjoint blocks in A whose
union is X. For a design (X,A), if A can be partitioned into r ≥ 1 parallel classes, called
resolution, then the design (X,A) is called Resolvable Block Design (RBD).
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For example, consider the combinatorial design (X,A1) and (X,A2) with

� X = {1, 2, 3, 4, 5, 6, 7, 8},

� A1 = {(1, 2), (2, 3, 4), (5, 6, 7), (1, 8, 6), (2, 5), (6, 7), (2, 6, 8)} and

� A2 = {(1, 2, 3), (2, 4, 6), (3, 5, 8), (6, 8), (1, 7), (4, 5, 7)}.

Then (X,A2) is a resolvable design since A2 = P1 ∪ P2 where P1 = {(1, 2, 3), (6, 8), (4, 5, 7)}
and P2 = {(1, 7), (2, 4, 6), (3, 5, 8)} form two parallel classes consisting of disjoint sets whose
union is set X. We say P1 and P2 form resolutions of A2. However, the design (X,A1) is
not resolvable as such resolutions are not possible in this case.

Definition 2.3.3. A Balanced Incomplete Block Design (BIBD) is a design (X,A), with
parameters {v, k, λ} ∈ N and v > k ≥ 2 and λ ≥ 1 such that the following properties are
satisfied:

1. |X| = v,

2. each block contains exactly k points, and

3. every pair of distinct points is contained in exactly λ blocks.

The third property relates to balancedness. It can be shown that every point occurs

in exactly r = λ(v−1)
k−1

blocks and a BIBD has exactly b = vr
k

= λ(v2−v)
k2−k blocks. A (v, k, λ)-

BIBD (X,A) is resolvable if A has at least one resolution. Note that, the design (X,A2)
has resolution and hence it is a RBD. However, it is not a BIBD as properties 2, 3 are not
satisfied.

The necessary condition for (v, k, λ)-BIBD to be resolvable is b ≥ v+r−1 or equivalently
r ≥ k+λ. A Resolvable (v, k, λ)-BIBD is called Affine Resolvable (ARBIBD) if b = v+r−1
or equivalently r = k+λ. Further, any two blocks from different parallel classes of ARBIBD
have exactly k2

v
points in common.

An Affine Plane of order q is an example of (q2, q, 1)-ARBIBD. The construction of such
Affine Planes are known only when q is some power of a prime. A finite projective plane of
order q is an example of (q2 + q+ 1, q+ 1, 1)-BIBD. Finite projective planes are equivalent to
finite affine planes and vice versa. Detailed understanding on these structures are presented
in [93, Chapters 2, 5]. Another important and related combinatorial structure in this regard
is the set of Mutually Orthogonal Latin Squares that we will explain next.
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2.4 Mutually Orthogonal Latin Square (MOLS)

A Latin Square of order s is an s×s array, and a cell of the array consists of a single element
from a set Y , such that |Y | = s. Every row of the Latin Square is a permutation of the
elements of set Y and every column of the Latin square is also permutation of the elements
from the set Y . For more details one may refer to [93, Definition 6.1] as well as [1, Example
1.1]. A pair of Latin Squares (L1, L2) of same order and having entries from same set Y
(or, a different set having same number of elements) is called Mutually Orthogonal, if in the
ordered pair {(Y, Y )} = {((L1)ij, (L2)ij)}, every pair x, y ∈ Y appears exactly once. That is,
if two of the Latin Squares are superimposed, and the resulting entries in each cell is written
as ordered pairs, then every x, y ∈ Y appears exactly once in the cell. Further, if there is
a set of w many Latin Squares, say {L1, L2, . . . , Lw}, each of order s, such that, every pair
of Latin Squares is orthogonal, then the set is called Mutually Orthogonal Latin Square of
order s, which we denote as w-MOLS(s).

Let N(s) denote the maximal value of w such that, there are w many MOLS of order
s [1, 30], [93, Chapter 6]. While using the numerical values of N(s), in subsequent examples
in this paper, we will use the currently known values of N(s) from [1, Table 3.87, page 176].
Note that these are not always the actual values of N(s) (except when s is some power
prime or of small order) as the exact value of N(s) is still an open question in most of the
cases. It is known that, N(s) ≤ s− 1, ∀ s. When this bound is attained, we say that there
is a complete set of Mutually Orthogonal Latin Squares of order s. The construction for
complete sets of MOLS(s) is known when s is some power of prime [93, Section 6.4]. When
s is not a power of prime, N(s) is much smaller than s− 1. A table with the largest known
values for w is presented in [1] for s < 10000.

It is known that there exists a constant n0, such that for all s ≥ n0, we have, N(s) ≥
1
3
s

1
91 [29], which was later improved by Wilson [97] to N(s) ≥ s

1
17 . Further, it was shown

in [98, Section 4] that the exponent can be lower bounded by 1
14.8

. One may note that
N(s) → ∞ as s → ∞ in general, but for the cases only when s is some power of prime
then N(s) = s− 1, else it is considerably small. In this regard, one may also note that the
Affine Planes of order q are equivalent to (q − 1) MOLS(q) [93, Theorem 6.32]. For a brief
survey on construction of MOLS, one may refer to [30]. In this direction we like to explain
the following construction.

2.4.1 Combinatorial Construction of MUBs in Square Dimension

One important combinatorial construction of Mutually Unbiased Bases (MUBs) is given
in [98], where it has been shown that k = w + 2 MUBs can be constructed in any square
dimension d = s2 provided there exists w Mutually Orthogonal Latin Squares (MOLS) of
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order s. The construction offered, broadly uses design-theoretic (combinatorial) objects viz.,
(k, s)-nets and generalized Hadamard matrices of size s. This construction obtains more
number of mutually orthogonal bases in non-prime-power dimensions as compared to prime-
power dimensions.

For this, let us explain Nets described as incidence vectors, which satisfies the conditions
similar to MUBs. Consider a collection of k MUBs in Cd as

Bl = {|ψl1⟩ , |ψl2⟩ , . . . , |ψld⟩}; 1 ≤ l ≤ k.

We have,
| ⟨ψli|ψlj⟩ |2 = δij; ∀ 1 ≤ l ≤ k, ∀ 1 ≤ i, j ≤ d (2.1)

and,

| ⟨ψli|ψmj ⟩ |2 =
1

d
; ∀ 1 ≤ l < m ≤ k, ∀ 1 ≤ i ≤ j ≤ d (2.2)

Now we take a collection of incidence vectors that satisfy “similar” conditions. A (column)
vector, m = (m[1], . . . ,m[d])T of size d is an incidence vector if its entries are either 0 or 1.
The Hamming weight of m is the number of 1’s, and denoted as s. With this background
on incidence vectors, we define nets as follows.

Definition 2.4.1. Let {m11, . . . ,m1s,m21, . . . ,m2s, . . . ,mk1, . . . ,mks} be a collection of ks
incidence vectors of size d = s2 that are partitioned into k blocks, where each block has s
incidence vectors. Consider the i-th incidence vector in the l-th block, mli.For1 ≤ l ≤ k, 1 ≤
i ≤ s, such a collection form a (k, s)−net if,

mT
limlj = 0;∀ 1 ≤ l ≤ k;∀ 1 ≤ i ̸= j ≤ s (2.3)

mT
limmj = 1;∀ 1 ≤ l ̸= m ≤ s;∀ 1 ≤ i, j ≤ s (2.4)

Example 2.4.1. Let d = s2 = 22 with s = 2, we have k = 3 blocks. The incidence vectors
for (3, 2)-net are,

m11 m12 m21 m22 m31 m32

1 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 1 0

Table 2.1: Incidence vectors for (3, 2)-net.
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Now let us elaborate generalized Hadamard matrices. Consider an s× s matrix

H =


h11 h12 . . . h1s
h21 h22 . . . h2s
...

... . . .
...

hs1 hs2 . . . hss

 ,

with entries hij ∈ C. This is called a generalized Hadamard matrix with all entries have mod-
ulus 1 and HH† = s1s. Note that generalized Hadamard matrices exist for any dimension
s. For example, one may consider a Fourier matrix such that,

DFT
(s)
k,l = (e

2iπ
s )kl; k, l = 0, 1, 2, . . . , s− 1,

i.e., each entry is an s-th root of unity.

Now let us explain the construction through embedding. Let m ∈ {0, 1}d be an incidence
vector of Hamming weight s and an arbitrary vector h ∈ Cs. Then the “embedding of h
into Cd controlled by m”, denoted by h ↑ m, is the following vector in Cd:

h ↑ m =
s∑
r=1

h[r] |jr⟩ , (2.5)

where h[r] is the r-th entry of h, and |jr⟩ is the jr-th standard basis of Cd. Informally, h ↑ m
is the first non-zero entry of m being replaced by the first entry of h, the second non-zero
entry of m replaced by the second entry of h, and so on.

Example 2.4.2. m =



1
0
1
0
0
0
0
0
1


∈ {0, 1}9, h =

 1
ω
ω2

 ∈ C3. Therefore, h ↑ m =



1
0
ω
0
0
0
0
0
ω2


∈ C9.

The construction of MUBs using these combinatorial structures (as defined above) is
summarized in the following theorem.

Theorem 2.4.1. Let {m11, . . . ,m1s,m21, . . . ,m2s, . . . ,mk1, . . . ,mks} be a (k, s)−net and H
an arbitrary generalized Hadamard matrix of order s. Then the k mutually orthogonal bases
in Cd are

Bi =

{
1√
s

(hl ↑ mij)|1 ≤ l ≤ s; 1 ≤ j ≤ s

}
, 1 ≤ i ≤ k.
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The idea of constructing MUBs using the (k, s)-nets (described in terms of incidence
vectors) provides an equivalence of the nets to MOLS as noted below.

Fact 2.4.1. The existence of w-MOLS is equivalent to the existence of an (k, s)-net with
k = w + 2.

2.5 References to some Mathematical Tools

Various mathematical tools have been used to construct MUBs, among which noteworthy
being the use of finite fields [99, 60] and maximal set of commuting bases [6]. For dimensions
which are not power of primes, constructing large number of MUBs still remains elusive. This
is the reason, various kinds of Approximate MUBs have been constructed using character
sums over Galois Rings or Galois Fields [86, 61, 96, 23, 91, 71, 101].

When MUBs are constructed over Rd, we get Real MUBs. They have interesting con-
nections with Quadratic Forms [22], Association Schemes [70, 35], Equi-angular Lines, Equi-
angular Tight Frames over Rd [14], Representation of Groups [44], Mutually Unbiased Real
Hadamard Matrices, Bi-angular vectors over Rd [49, 59, 12] and Codes [20]. As we have noted
out earlier, large number of Real MUBs are non-existent for most of the dimensions [18]. In
fact only for d = 4s, s > 1, we have d/2 + 1 many MUBs, whereas for most of the dimen-
sions d, which are not perfect square, we have at best only 2 Real MUBs [18]. In view of
this, attempts have been made to construct Approximate Real MUBs (ARMUBs) which are
available in literature [101], other than our works in this thesis.

Various efforts have been made to explore connections between MUBs and geometrical
objects such as polytopes and projective planes [7, 9, 84, 83, 3]. Since the known methods for
the construction of MUBs provides complete sets only when d is some power of prime, there
are conjectures related to the existence of complete sets of MUBs and finite projective plane,
which are also currently known to exist only for prime power orders. If d = pn1

1 p
n2
2 . . . pns

s ,
then the lower bound on the number of MUBs is pnr

r + 1 where pnr
r = min{pn1

1 , p
n2
2 , . . . , p

ns
s }.

Thus, constructing a large number of MUBs for any composite dimension has proven to be
elusive even over Cd. In fact, the number of such bases is very small when we consider the
problem over the real vector space Rd (see [18]).

2.6 Brief review of known constructions of Approxi-

mate MUBs

Various authors had shown existence and construction of set of orthonormal basis that does
not exactly satisfy the criteria of MUB where | ⟨u|v⟩ | = 1√

d
when |u⟩ and |v⟩ are vectors
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from different basis. In order to relax this condition, Approximate MUBs have been defined

differently in literature like | ⟨ψli|ψmj ⟩ | ≤
1+o(1)√

d
, or 2+o(1)√

d
, or O

(
1√
d

)
, or O

(
log d√
d

)
, or O

(
1
4√
d

)
(for example see [61, 86]). Most authors considered | ⟨ψli|ψmj ⟩ | ≤

1+o(1)√
d

or O
(

1√
d

)
as the

definition for AMUB. Hence to have uniformity and for ease of comparing the different
approximations, we write | ⟨ψli|ψmj ⟩ | ≤

β√
d
. Thus knowing the value of β, one can easily

get its estimate of closeness to MUBs for the particular d. Further in this thesis we have
introduced the notion of β-AMUB if | ⟨ψli|ψmj ⟩ | ≤ β√

d
, where β is some small constant

usually ≤ 2 which we define formally in next chapter. We subsequently demonstrate that
our combinatorial method produces O(

√
d) many β-AMUB for almost all composite d. The

concept of β-AMUB also enable us to define and analyze concept of Almost Perfect AMUBs
(APMUBs) in Chapter 5.

The first important work on AMUBs are by Klappenecker et al [61]. The authors con-
structed Approximate SIC-POVM using the complete set of MUBs. Since complete set of
MUBs are known only for prime powers, for the non-prime powers they first constructed
large set of Approximate MUBs, which then can be used to construct Approximate SIC-
POVM. In this process they showed that [61, Theorem 11]] for all d, one can construct d
many bases such that

| ⟨ψli|ψmj ⟩ | = O(d−
1
3 ) ⇒ β = O(d

1
6 )

and can construct dt, t ≥ 2 many bases such that

| ⟨ψli|ψmj ⟩ | = O(d−
1
4 ) ⇒ β = O(d

1
4 ),

where w|ψli⟩ and |ψmj ⟩ are basis vectors from different bases. Naturally β increases if the
number of AMUBs increase. Finally in [61] this was improved for the dimensions of the form
d = p− 1, where p is some prime. It was shown that there exists d+ 1 bases such that

| ⟨ψli|ψmj ⟩ | ≤
1√
d

+ O(d−1) i.e., β = 1 + O(d−
1
2 ).

The results for all d have been improved in [86, Theorem 1], where a finite field based
construction showed that for all d there are d many AMUBs such that

| ⟨ψli|ψmj ⟩ | ≤
(

2√
π

+ O
(
log−1 d

))( log d

d

) 1
2

i.e., β = O(
√

log d).

This was further improved in the same paper using construction based on elliptic curves [86,
Theorem 2] where the construction gave pt−1, t ≥ 2 where p is a prime such that

√
n− 1 ≤√

p ≤
√
n+ 1. The result shows

| ⟨ψli|ψmj ⟩ | ≤
2t+ O(d−

1
2 )√

d
= O(d−

1
2 ) ⇒ β = 2t+ O(d−

1
2 ).
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These are the important results applicable for all dimensions [86] and we briefly recollect
the construction which gives above two results. First the construction using finite field
improves the bound on | ⟨ψli|ψmj ⟩ |, from O(d−

1
3 ) to O(d−

1
2

√
log d). This construction is

motivated from the known construction of a set of d + 1 MUBs in Cd for d = p, a power of
prime, using Gaussian sums [60] for p ≥ 3. This can be described as,

|ψhk ⟩ =
1
√
p

(
ep(hu

2 + ku)

)p
u=1

; 1 ≤ h, k ≤ p,

where em(x) = e2πix/m. Here d = p a prime number and evaluating above expression for
u = 1 to p, gives p components of |ψhk ⟩ which is kth basis vectors of hth basis. The B0 being
a standard orthonormal basis i.e., ψ0

j = (δju)
p
u=1, is clearly mutually unbiased with each |ψhk ⟩

above. Additive characters over an arbitrary finite field can be implemented to extend this
construction to an arbitrary prime power d = pr. However, this method cannot be applicable
to composite d which is not power of some prime as we don’t have finite filed corresponding
to such a d. Hence the authors [86] consider the following modification shows β = O(

√
log d).

For this let h, k, d ∈ Z+ and a prime p ≥ d and consider,

Sh,k(p, d) =
d∑

u=1

ep(hu
2)ed(ku)

Lemma 2.6.1. For d ∈ Z+ and a prime p ≥ d we have,

max
0≤k≤d−1

max
1≤h≤p−1

|Sh,k(p, d)| ≤
(

2√
π

+ O(
1

log p
)

)√
p log p

Let p be the smallest such prime p ≥ d. By Prime Number Theorem there is a prime
p = O(d) . Now define the basis as follows,

Bl = {ul1, . . . ,uld};uli =
1√
d

(
ep(fu

2)ed(iu)

)d
u=1

; 1 ≤ f ≤ d (2.6)

The set of AMUBs obtained through this construction is presented in the theorem below
in [86].

Theorem 2.6.1. The standard basis B0 and the d bases Bf ; 1 ≤ f ≤ d as given by 2.6 are
orthonormal and also satisfy,

| ⟨uli|umj ⟩ | ≤
(

2√
π

+ O(
1

log d
)

)√
log d

d
⇒ β = O(

√
log d),
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where 0 ≤ f ̸= g ≤ d and 1 ≤ i, j ≤ d. This result is further improved using a new
construction based on elliptic curves, in the same paper [86], where the bound is rendered

as O(d−
1
2 ). Following we reproduce important steps in it.

2.6.1 Construction based on Elliptic Curve

We refer to [89] and the references therein for technical details of elliptic curves. Consider a
finite field Fp of prime order p > 3, and an elliptic curve E defined over Fp by the following
affine Weierstrass equation,

Y 2 = X3 + aX + b; a, b ∈ Fp,

such that 4a3 + 27b2 ̸= 0. The cardinality d = #E(Fp) satisfies the Hasse-Weil inequality,

|d− p− 1| ≤ 2
√
p

where E(Fp) forms an Abelian group.

Each polynomial f ∈ Fp(ε) can be uniquely represented as f(X, Y ) = u(X) + v(x)Y ,
where u(X), v(X) ∈ Fp(X) are polynomials as well. Note that, deg(f) = max(2 deg(u), 3 +
2 deg(v)) with the degree of zero polynomial being −∞.

For 2 ≤ t ≤ d− 1, the set of polynomials of degree at most n with f(0, 0) = 0, is denoted
by Ft. The following lemma and theorem presents the AMUBs with an improved bound on
the inner product, obtained using elliptic curves.

Lemma 2.6.2. The cardinality of Ft is |Ft| = pt−1.

For E(Fp) being an Abelian group, let χ denote the corresponding character group. Now
for a polynomial f ∈ Fp[ε] define the set,

Bf = {vfx : x ∈ χ} (2.7)

where for each character x ∈ χ, the vector vfx is given by,

vfx =
1√
d

(
eP (f(P ))x(P )

)
P∈E

(2.8)

where f(O) = 0, O being the point at infinity for O(Fp), termed as the neutral point.

Theorem 2.6.2. For 2 ≤ t ≤ d− 1, the standard basis and the pt−1 sets, Bf = {vfx : x ∈ χ}
with f ∈ Ft are orthonormal and satisfy,
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| ⟨vfx|v
g
ψ⟩ | ≤

2t+ (2t+ 1)d−
1
2

√
d

⇒ β = 2t+ O(d−
1
2 )

where f, g ∈ Fn, f ̸= g and x, ψ ∈ χ.

Note that, for every prime p > 3, each integer d in the Hasse-Weil interval [p+1−2
√
p, p+

1+2
√
p] is the cardinality of some elliptic curve over Fp. Further, Cramér’s conjecture ([33])

shows that the distance between the dth and (d+ 1)th primes, i.e., pd and pd+1 is,

pd+1 − pd = O((log pd)
2).

Under this conjecture, every d ∈ Z+ represents the cardinality of an elliptic curve defined
over a finite field. However, finding such an elliptic curve poses a potential problem. Indeed
the probability of an integer d not being in an interval of the Hasse-Weil type for some prime
p is very small. Few important things to be noted in [86] are as follows.

1. The minimum possible value of t is 2, corresponding to which β = 4+O(d−
1
2 ), where one

would obtain about n AMUBs. For t > 2 the β would be larger. Thus β = 4 +O(d−
1
2 )

is minimum possible, which for large d approaches 4.

2. Since
√
n− 1 ≤ √

p ≤
√
n+ 1, one can have (n+ 1− 2

√
n) ≤ p ≤ (n+ 1 + 2

√
n). Thus

for t = 2, the number of AMUBs would be equal to p which can be less than n, as the
lower bound for p is n − 2

√
n + 1. Thus in order to obtain n many AMUBs, we may

have to choose t = 3, which will give p2 MUBS but will worsen the β = 6 + O(d−
1
2 ).

3. Since all the components of each basis vectors consist of element on unit circle on
complex plain, except the computational basis, the sparsity would be zero for all the
AMUBs, except the computational basis.

4. This also implies that there is no possibility of obtaining real AMUBs using this con-
struction as all the components of the basis vectors are product of Character of group
elements and element on unit circle on the complex plain.

5. For constructing the AMUBs in Cd, one has to find an elliptic curve E over finite filed
Fp, where p is a prime order p > 3, and the set of Fp rational points have cardinality d.
For every prime p > 3, for every integer d in Hasse-Weil interval [p+1−2

√
p, p+1+2

√
p]

there exists certain elliptic curve over Fp with cardinality d. However, there may not
be computationally efficient methods to find such elliptic curve for a given d. Thus
constructing such a large set of AMUBs using this construction method appears to be
an expensive proposition.
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6. Using unconditional result on the gap of primes, this method may not succeed to
obtain a large set of AMUBs for n many dimensions ≤ d, where n = O(d

25
36

+ϵ). Here
ϵ > 0. However, assuming Cramér’s conjecture [33] on the gap of primes, which says
pn+1 − pn = O(log2 pn), the construction will provide a large set of AMUB for all d.

2.6.2 Other constructions of AMUBs for certain specific dimen-
sions

In pursuit of better constructions of AMUBs, various authors have given other results, but
they are not generic in nature, but rather for specific dimension. Some of them we summaries
below. In the following, AMUBs are defined strictly when β = 1 + O(d−

1
2 ).

In [71, Theorem 3.1], construction of AMUBs has been presented using Galois rings. The
idea helps in constructing q + 1 many AMUBs for dimension d = q(q − 1), where q is some
power of prime where

| ⟨ψli|ψmj ⟩ | ≤
1

q − 1
⇒ β = 1 + O(d−

1
2 ).

The techniques include tensor products of MUBs and AMUBs. In fact, it has been shown in
[71, Lemma 3.2] that tensor procdut of two AMUBs produces an AMUB in higher dimension.

In [23], AMUBs are constructed using orthogonality of character sum over Finite Fields
for dimensions that are certain prime powers, i.e., d = pm over Cd. Particularly when p = 2.
It is to be noted that for such d there are well known constructions of compete set of MUBs
itself. Hence they do not appear to be of any greater interest.

In [96], the authors provided construction for d+ 1 or d+ 2 many AMUBs over Cd when
d = q−1 and q is a prime power. Thus it shows that one can obtain more than d+1 AMUBs
with β = 1 + O(d−

1
2 ), where as maximum only d + 1 many MUBs are possible for any d.

The method employed mixed character sum of certain special functions over finite fields. In
[96, Theorem 3.2], q many AMUBs could be constructed when d = q − 1, where

| ⟨ψli|ψmj ⟩ | =
1 +

√
d

d
or 0 ⇒ β = 1 + O(d−

1
2 ).

Note that here that the there is equality in above relationship for value of | ⟨ψli|ψmj ⟩ | when

the vectors are from different bases. Since ∆ = {0, 1+
√
d

d
} is just two valued, that satisfies

the condition of APMUB that we explain in detail in Chapter 5. The authors further showed
[96, Theorem 3.5] that q + 1 AMUBs exist when d = q − 1 where

| ⟨ψli|ψmj ⟩ | =

√
d+ 1

d
or

1

d
⇒ β = 1 + O(d−

1
2 ).
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Again note that, there is equality in the above relationship for the value of | ⟨ψli|ψmj ⟩ | when

vectors are from different bases. However, here ∆ = {0, 1
d
,
√
d+1
d

} is three valued and this is
not APMUB, although the AMUBs are of very good quality.

In [91], the authors have shown the construction of AMUBs using Gauss sum over Frobe-
nius Rings. In [91, Lemma 3.2], for any positive integer, one can construct p many AMUBs
over Cϕ(n) where p is the smallest prime divisors of n and ϕ(n) is the Euler function. Here

| ⟨ψli|ψmj ⟩ | ≤
1√
d

(
+

n− d√
d(
√
n+

√
d)

)
⇒ β = 1 + O(d−

1
2 ).

The asymptotic form of β is derived assuming ϕ(n) ≈ O(n). Note that number of MUBs
is equal to the smallest prime divisor of n, which is restrictive and would be small even for
d = pm, for m ≥ 2, as in such cases complete MUBs are known.

2.7 Conclusion

Towards concluding this background section, let us present certain salient features of all the
above constructions.

1. All of the methods are based on the some kind of mix of exponential sum and characters
of Abelian groups.

2. All the construction produces Complex AMUBs, i.e., the basis vectors are over Cd.

3. The sparsity of all the basis constructed is zero, except the computational basis.

4. Though there are several combinatorial constructions of MUBs, but the corresponding
techniques are not exploited for the AMUBs.

5. All the construction focus on the bounds of | ⟨ψli|ψmj ⟩ |, which is characterized with β,
but the idea of two-valued spectra as we present in Chapter 5 has not been explored.

6. Most of the constructions produce good quality AMUBs, only for certain specific forms
of dimensions like d = p− 1, q+ 1, q etc., except for certain generalization in [86]. This
we extend to a great extent in this thesis.

Generally, for d = q − 1, where q is some power of prime, there are d or d + 1 AMUBs
[61, 96] where β = 1 +O(d−λ) for λ > 0. The other known cases, when β is of this form, for
d = q(q − 1), the number of AMUBs are O(

√
d) and for d = ϕ(n) the number of AMUBs is

equal to the smallest prime divisor of n, which is always less than
√
n when n is not prime
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number [91]. Towards improving these results, in subsequent chapters we show that for all

composite d = k × s, when |s − k| < d
1
2 , one can construct more that

√
d many AMUBs

with β = 1 + O(d−λ) for λ > 0. Thus, effectively we are able to construct such AMUBs for
a very large set of dimensions d, and can also construct the real ones (ARMUBs) for such
d’s whenever real Hadamard matrices of order k or of order s are available. Further all these
AMUBs constructed using RBDs are very sparse, i.e., basis vectors have very few non-zero
components.
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Chapter 3

On Approximate Real MUBs in
Square Dimensions

As we have discussed, construction of Mutually Unbiased Bases (MUBs) is a very chal-
lenging combinatorial problem in quantum information theory with several long standing
open questions in this domain. With certain relaxations, the object Approximate Mutually
Unbiased Bases (AMUBs) has been defined in this context. In this chapter we provide a
method to construct up to (

√
d+1) many AMUBs in dimension d = q2, where q is a positive

integer. Our result is particularly important when q ≡ 0 mod 4, as we obtain Approximate
Real MUBs (ARMUBs) assuming the cases where a Hadamard matrix of order q exists. In
this construction, we also characterize the inner product values between the elements of two
different bases. In particular, when d is of the form (4x)2 where x is a prime, we obtain

(
√
d
4

+ 1) many ARMUBs such that for any two vectors v1, v2 belonging to different bases,
|⟨v1|v2⟩| ≤ 4√

d
.

3.1 Introduction

Let us refer to Definition 1.1.1 in Chapter 1 first for a quick recapitulation of MUBs. For a
dimension d, it is well known that there can be at most (d+ 1) MUBs [39]. This bound can
be achieved when d is a prime power. However, the result is not settled for the other cases.
Given any d and its prime factorization d = pk11 p

k2
2 . . . pkrr , there exists a construction method

to obtain νd =
(
mini∈[1,...,r]p

ki
i

)
+ 1 MUBs. Thus, this is a lower bound. For example, when

d = 24x2, for some large prime x, then the lower bound will be 24 + 1 = 17 only.

When d is not a prime power, the maximum possible number of MUBs are not known,
although there has been progress in obtaining more than νd MUBs for certain special values
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of d. In [98], it was shown that k = w + 2 mutually unbiased bases can be constructed in
any square dimension d = q2 provided that there are w Mutually Orthogonal Latin Squares
(MOLS) of order q. The asymptotic result of [98] states that one can obtain at least q

1
14.8

MUBs in dimension d = q2, for all q but with finitely many exceptions. For example, the
construction gives at least 8 MUBs for dimensions d = q2 when q = 76, and higher values
are not known due to difficulty in obtaining larger sets of MOLS.

Because of the difficulties in increasing the number of MUBs and proving upper bounds,
there is a motivation to work on the the concept of Approximate Mutually Unbiased Bases,
where the inner product of two vectors drawn from two different bases is upper bounded by
some value. In this direction the works of [61, 86] are very important, the latest of which
provided the following construction [86, Theorem 2].

Fact 3.1.1. For any d, there are py−1 orthonormal bases for any positive integer y indexed
as Bi, where p is a prime satisfying

√
d − 1 ≤ √

p ≤
√
d + 1, such that for any two vectors

v1 ∈ Bi1 and v2 ∈ Bi2 (i1 ̸= i2), one can obtain |⟨v1|v2⟩| ≤
2y+ 2y+1√

d√
d

.

This result provides an important construction of Approximate Mutually Unbiased Bases.
However, it should be noted that the vectors in the bases due to this construction are
inherently complex in nature. Thus it is interesting to explore some novel construction
method when one considers only the real components. This is what we propose in this chapter
(our work of [67]), and present a combinatorial construction to obtain (

√
d+1) Approximate

Real Mutually Unbiased Bases (ARMUBs) when d = (4r)2. In [98], on assuming assume
the widely accepted conjecture that for any integer n ≡ 0 mod 4 there exists an n × n
real Hadamard matrix. The maximum number of Real MUBs known for this form of d is
≈ d

1
29.6 [98] for sufficiently large values of d.

Let us now define ARMUBs formally.

Definition 3.1.1. A set of k orthonormal bases Bi, 0 ≤ i ≤ k−1 of Rd are called β-ARMUBs
if for two vectors v1 ∈ Bi1 and v2 ∈ Bi2 (i1 ̸= i2), |⟨v1|v2⟩| ≤ β√

d
.

In this direction we use elementary combinatorial and number-theoretic techniques to
describe the construction method of obtaining a total of γ + 2 many ∆(q, γ)-ARMUBs for
any d = q2 with q ≡ 0 mod 4. Let us now define ∆(q, γ).

Definition 3.1.2. Let Zq be the addition modulo q group consisting of the elements {0, 1, . . . ,
q − 1} and iZq be the subgroup of Zq generated by the element i ∈ Zq. Let γ ≤ q − 1 where
γ is a positive integer. Then we denote

∆(q, γ) = max
1≤i≤γ

|Zq|
|iZq|

.

Here |S| denotes the cardinality of a set S .
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In fact our construction forms a discrete spectrum with respect to the inner product of
vectors from different bases, where the inner product values are all integer multiples of 1√

d
.

Thus, one may note that if d = q2 = (4x)2, where x is a large prime, then the generic lower
bound will provide only 24 + 1 = 17 MUBs, and the bound due to [98] will provide around

(4x)
1

14.8 MUBs. The results of [61, 86] will provide py−1 AMUBs where
√
p ∈ [

√
d−1,

√
d+1]

with the upper bound on the magnitude of inner products between vectors from different

bases being at most
2y+ 2y+1√

d√
d

. For y = 3, one can obtain more than d AMUBs with maximum

inner product between two vectors from two bases having at most
6+ 7√

d√
d

magnitude. However
these AMUBs are inherently complex.

In this context, if we set γ = x−1 then we have ∆(q, x−1) = 4 and thus we get (
√
d
4

+ 1)
many bases where the inner product value will at most be 4√

d
. That is, the magnitude of

the inner product values will be i√
d
, i ∈ {0, 1, 2, 3, 4}.

Let us explain the development in terms of real MUBs a little more. In the latest version
of the paper [18], towards a construction of real MUBs for d = 4is2, only the work of [98]
has been referred. The result is as follows:

“If d = 4is2, where s is any positive integer, then the number of MUBs is ≥
MOLS(2is)+2, provided that there exists a Hadamard matrix of order 2is, where
MOLS(m) denotes the maximum number of MOLS of order m.”

As it is pointed out in [98], the construction gives at least 8 MUBs for dimensions d = q2

when q ≥ 76.

In our case, we depend on the famous conjecture on construction of real Hadamard
matrices. It is stated in [21]:

“The Hadamard conjecture asserts that a Hadamard matrix exists of every order
divisible by 4. The smallest multiple of 4 for which no such matrix is currently
known is 668, the value 428 having been settled only in 2005 [58].”

These are the real Hadamard matrices and hence according to our construction, we will have

(
√
d
4

+ 1) Real Approximate MUBs. For q = 76, our result provides 20 ARMUBs. As the
value of x increases, the number of 4-ARMUBs increases polynomially (at most 14-th power)
compared to the results in [98].
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3.2 Our Construction

Let us first describe the construction method. Then we will prove the related properties in
Lemma 3.2.1 and Theorem 3.2.1. We also present certain examples to explain this construc-
tion.

Construction 3.2.1.

1. First we choose an arbitrary orthonormal basis of Rd to begin with. For simplicity, let us
consider the computational basis states Id = {|0⟩ , |1⟩ , . . . , |d− 1⟩}. Here |i⟩ is a vector
from the standard basis of unit vectors of Rd where the vector |i⟩ =

[
0, . . . , 1, 0, . . . , 0

]
has the value 1 in the i-th position (we start with the zero-th one) and 0 in all other
positions.

2. Next we form (γ + 2) sets S0, . . . , Sγ, Sq, 1 ≤ γ ≤ q − 1 defined as follows.

(a) Each set Si is a partition of Id into q subsets Si,j, j ∈ {0, 1, . . . , q − 1}, each
containing q vectors.

(b) For any two subsets Si1,j1 and Si2,j2, i1 ̸= i2, the number of common vectors is
upper bounded by ∆(q, γ).

These sets can be defined in many ways. Here we show one method of construction.

Si,j =
{
si,jt = |qt+ (it+ j) mod q⟩t∈{0,1,...,q−1}

}
, 0 ≤ i ≤ γ, 0 ≤ j ≤ q − 1 (3.1)

Sq,j =
{
|qj + t⟩0≤t≤q−1

}
(3.2)

Here note that Sq is defined differently from Si, i < q. Moreover the construction for
the sets Si, i < q cannot be extended beyond q − 1 as that would lead to repetition
because ((q + l)t+ j) mod q = (lt+ j) mod q.

3. Next we choose a q × q matrix H, expressed as H[i, j], 0 ≤ i, j ≤ q − 1, with the
following properties

(a) The magnitude of all entries of the matrix is 1√
q
.

(b) For any two rows i1 and i2 with i1 ̸= i2, we have
∑q−1

t=0 (H[i1, t] ·H[i2, t]) = 0.

One should note here that any normalized Hadamard matrix satisfies these properties.
The first property of the matrix H is needed to maintain that the inner product of two
vectors from the formed bases are a multiple of 1√

d
.

4. Finally, we form a basis Bi corresponding to each set Si in the following manner.
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� Corresponding to each set Si,j = {si,jt }0≤t≤q−1 we form Bi,j = {bi,jt }0≤t≤q−1 con-
sisting of q pairwise orthogonal vectors as

bi,jt =

q−1∑
u=0

H[t, u]si,ju .

Finally we define Bi = {Bi,j}0≤j≤q−1. The second property of H is needed to
ensure that the vectors of Bi,j, which are all different combinations of the elements
of Si,j are all pairwise orthogonal in nature. This is essential in making Bi an
orthonormal basis of Rd. The proofs are explained in Theorem 3.2.1.

� The resultant bases Bi thus consist of the vectors {bi,jt }0≤j,t≤q−1.

Let us first formally analyze the sets Si, 0 ≤ i ≤ γ and Sq.

Lemma 3.2.1. The set Si = {Si,0, . . . , Si,d−1} is a disjoint partition of Id = |k⟩d−1
k=0 with

every set Si,j containing q =
√
d elements. Furthermore, for any two sets Si1,j1 and Si2,j2

with i1 ̸= i2 there are at most ∆(q, γ) elements in Si1,j1 ∩ Si2,j2.

Proof. We first show that Si is indeed a partition of Id. In this regard, refer to item 1 of
Construction 3.2.1. Consider two non-negative integers a ̸= b. For the two vectors, |a⟩ , |b⟩,
we have ⟨a|b⟩ = 0 ∀a ̸= b. Therefore, it is sufficient to show that the d vectors of Si are
different elements of Id. This is trivially true for Sd. For any i ∈ {0, . . . , γ}, let us consider
two different vectors si,j1t1 = si,j2t2 . That is (j1, t1) ̸= (j2, t2). Then

qt1 + (it1 + j1) mod q = qt2 + (it2 + j2) mod q.

This can only be true if t1 = t2 = t (say). Then we have

qt+ (it+ j1) mod q = qt+ (it+ j2) mod q

=⇒ qt+ it+ j1 = qt+ it+ j2 + qz =⇒ j1 = j2 + qz

This can only happen if z = 0 and thus j1 = j2, which is a contradiction.

Now let us observe the situation when i1 ̸= i2. Then the number of common elements in
two vectors si1,j1t1 and si2,j2t2 is equal to the number of pairs (t1, t2) for which we have

qt1 + (i1t1 + j1) mod q = qt2 + (i2t2 + j2) mod q. (3.3)

Again for all such solutions we will have t1 = t2 = t (say). Let us assume without loss of
generality that i1 > i2. Then the solution to Equation (3.3) is same as the solution to

qt+ (i1t+ j1) mod q = qt+ (i2t+ j2) mod q

=⇒ (i1 − i2)t ≡ (j2 − j1) mod q

=⇒ αt ≡ β mod q, 0 ≤ t ≤ q − 1
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The values (αt) mod q form the subgroup αZq generated by α of Zq. Then if β ∈ αZq
then the number of values of t for which this equation is satisfied is same as |Zq |

|αZq | . Now if we

have i ≤ γ then so is i1 − i2.

For the pairs Sq,j1 and Si,j2 , i ̸= q the situation is simpler. In Sq,j1 the elements are
|qj + t⟩ , 0 ≤ t ≤ q − 1. By definition in Si,j2 there is only one element in the range |qj⟩ to
|qj + q − 1⟩. This completes the proof.

Let us now consider an example with d = (12)2. If we form γ (3 ≤ γ ≤ 5) bases then
∆(12, γ) = 4. However, if we consider 6 ≤ γ ≤ 11, then ∆(12, γ) = 6.

Suppose we take γ = 5 and consider the sets S0,1 and S5,1. Then the number of duplicates
is equivalent to the number of solutions for 5t ≡ 0 mod 12, which is satisfied for only t = 0.
Indeed the two sets are

(i) S0,1 = {|1⟩ , |13⟩ , |25⟩ , |37⟩ , |49⟩ , |61⟩ , |73⟩ , |85⟩ , |97⟩ , |109⟩ , |121⟩ , |133⟩},

(ii) S5,1 = {|1⟩ , |18⟩ , |35⟩ , |40⟩ , |57⟩ , |62⟩ , |79⟩ , |84⟩ , |101⟩ , |118⟩ , |123⟩ , |140⟩},

and the only element common is |1⟩.
On the other hand if we look at S0,2 and S4,2 then the number of common elements

increase, as the the equation 4t ≡ 0 mod 12 has four solutions, 0, 3, 6 and 9. The elements
of the sets are

(i) S0,2 = {|2⟩ , |14⟩ , |26⟩ , |38⟩ , |50⟩ , |62⟩ , |74⟩ , |86⟩ , |98⟩ , |110⟩ , |122⟩ , |134⟩},

(ii) S4,2 = {|2⟩ , |18⟩ , |34⟩ , |38⟩ , |54⟩ , |70⟩ , |74⟩ , |90⟩ , |106⟩ , |110⟩ , |126⟩ , |142⟩}.

In this case the common elements are |2⟩ , |38⟩ , |74⟩ and |110⟩.
Having described the properties of the set Si, we now complete the construction of the

∆(q, γ)-ARMUBs.

Theorem 3.2.1. Consider that d = q2, where q ≡ 0 mod 4 and a q × q Hadamard Matrix
exists. Further, consider the (γ + 2) orthonormal bases Bi = {bi,jt }0≤j,t<q, as described in
Construction 3.2.1. Then they form ∆(q, γ)-ARMUBs, i.e., for any two vectors bi1,j1t1 and

bi2,j2t2 belonging to two different bases (i1 ̸= i2) we have

|
〈
bi1,j1t1

∣∣bi2,j2t2

〉
| ∈
{

i√
d

: i = 0, 1, . . . ,∆(q, γ)

}
.

Proof. Let us first show that each of the set of vectors Bi are all indeed orthonormal bases.
The vectors of a basis Bi are designed in the following way. The sets {Si,j}0≤j≤q−1 contain q
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vectors from Id each. Each set Si,j is converted to Bi,j where each vector in Bi,j is a different
combination of the vectors in Si,j, formed using the Hadamard matrix as

bi,jt =

q−1∑
u=0

H[t, u]si,ju ,

and Bi = {Bi,j}0≤j≤q−1. Now since Si,j1∩Si,j2 = {ϕ} for all j1 ̸= j2 there is no common vector
from Id between any two vectors of Bi, b

i,j1
t1 and bi,j2t2 with j1 ̸= j2 and thus

〈
bi,j1t1

∣∣bi,j2t2

〉
= 0.

Now let us consider two vectors from the same set Bi,j, b
i,j
t1 and bi,jt2 . Then we have

〈
bi,jt1
∣∣bi,jt2 〉 =

〈
q−1∑
u=0

H[t1, u]si,ju

∣∣∣∣∣
q−1∑
u=0

H[t2, u]si,ju

〉

=

q−1∑
u1=0

q−1∑
u2=0

H[t1, u1]H[t2, u2]
〈
si,ju1
∣∣si,ju2〉

=

q−1∑
u=0

H[t1, u]H[t2, u]
〈
si,ju1
∣∣si,ju2〉 [as

〈
si,ju1
∣∣si,ju2〉 = 0 ∀ u1 ̸= u2]

=

q−1∑
u=0

H[t1, u]H[t2, u]

Now we know from the property of Hadamard matrices that the sum of position-wise product
of any two rows is zero. Which implies

〈
bi,jt1
∣∣bi,jt2 〉 = 0. This implies the d vectors in Bi are

all orthogonal to each other and thus Bi, 0 ≤ i ≤ q are all orthonormal bases.

Let us now consider the dot product between any two vectors taken from different Bases
Bi1 and Bi2 . When i1 ̸= i2 we have

〈
bi1,j1t1

∣∣bi2,j2t2

〉
=

〈
q−1∑
u=0

H[t1, u]si1,j1u

∣∣∣∣∣
q−1∑
u=0

H[t2, u]si2,j2u

〉

=

q−1∑
u=0

q−1∑
j=0

〈
H[t1, u]si1,j1u

∣∣H[t2, u]si2,j2v

〉
=⇒ |

〈
bi1,j1t1

∣∣bi2,j2t2

〉
| ≤

q−1∑
u=0

q−1∑
j=0

〈
si1,j1u√
q

∣∣∣∣si2,j2v√
q

〉
≤ |Si1,j1 ∩ Si2,j2|

q

=
∆(q, γ)√

d
(from Lemma 3.2.1).

As all the values ⟨H[t1, u]si1,j1u |H[t2, u]si2,j2v ⟩ are integer multiple of 1√
d
, it implies that〈

bi1,j1t1

∣∣bi2,j2t2

〉
is an integer multiple of 1√

d
. This completes the proof.
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Remark 3.2.1.

1. Once we have a set Si,j we denote its element as si,jt , 0 ≤ t ≤ q − 1 before applying
the Hadamard matrices to form the bases. Note that Si,j is in fact an unordered set
and si,jt is an ordering of the elements. As it can be observed from Theorem 3.2.1,
the particular ordering does not affect the upper bound on the magnitude of the dot
products across bases, however as we shall see with an example the exact spectrum is
indeed dependent on this ordering.

2. For any d = q2, corresponding to any two different sets Si1,j2 and Si2,j2 one can use
two different q × q Hadamard Matrices as it does not affect any of the constraints.
However, it will affect the spectrum and it is an interesting problem to observe how
much the spectrum can be smoothened with the choice of these matrices.

Finally we show two examples of the final dot product values, assuming that only a single
Hadamard matrix is being used for all transformations. Let us again look into the cases of
S0,1, S5,1 and S0,2, S4,2. We first need a 12 × 12 Hadamard Matrix to construct the vectors
of B0,1, B5,1, B0,2 and B4,2. Let the Hadamard Matrix be H12 described below:

H12 =
1√
12


1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 −1 1 −1 −1 −1 1 1 1 −1 1
1 1 1 −1 1 −1 −1 −1 1 1 1 −1
1 −1 1 1 −1 1 −1 −1 −1 1 1 1
1 1 −1 1 1 −1 1 −1 −1 −1 1 1
1 1 1 −1 1 1 −1 1 −1 −1 −1 1
1 1 1 1 −1 1 1 −1 1 −1 −1 −1
1 −1 1 1 1 −1 1 1 −1 1 −1 −1
1 −1 −1 1 1 1 −1 1 1 −1 1 −1
1 −1 −1 −1 1 1 1 −1 1 1 −1 1
1 1 −1 −1 −1 1 1 1 −1 1 1 −1
1 −1 1 −1 −1 −1 1 1 1 −1 1 1


Let us first consider the vectors vt1 = b0,1t1 and vt2 = b5,1t2 . Then we have vt1 =

∑
H12[t1, u]s0,1u

and vt2 =
∑
H12[t2, u]s5,1u . Now when we consider ⟨vt1|vt2⟩ only the basis state |1⟩ is common

between the two vectors, and thus the inner product is always H12[t1, 0]H12[t2, 0] = ± 1
12

.

However, since there are multiple common elements between S0,2 and S4,2 the final dot
product of two vectors b0,2t1 and b4,2t2 is dependent on the choice of the Hadamard matrix and
the ordering of the elements in the set.

For example, we have,

(i) b0,21 = 1√
12

(|2⟩+ |14⟩−|26⟩+ |38⟩−|50⟩−|62⟩−|74⟩+ |86⟩+ |98⟩+ |110⟩−|122⟩+ |134⟩),

(ii) b4,22 = 1√
12

(|2⟩+|18⟩+|34⟩−|38⟩+|54⟩−|70⟩−|74⟩−|90⟩+|106⟩+|110⟩+|126⟩+|142⟩).

Now note that although there are 4 basis states are common between the two vectors we
have

〈
b0,21

∣∣b4,22

〉
= 2

12
. In fact we swap the vectors |74⟩ and |84⟩ in b0,2t then we will in fact
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have
〈
b0,21

∣∣b4,22

〉
= 0. Therefore understanding how to best permute the subsets Si,j before

applying the Hadamard matrices and the choice of the particular Hadamard matrix should
have significant impact on the different dot product values that constitute the spectrum.

This construction gives particularly close results when d = (4x)2 where x is a prime
number in which case ∆(q, q

4
− 1) = 4. We note this as the following corollary.

Corollary 3.2.1. Given d = q2 such that q = 4x where x is a prime then there are (
√
d
4

+ 1)
orthonormal real bases (assuming existence of a real Hadamard matrix of size 4x × 4x)
Bi = {bi,jt }0≤j,t<q, such that for any two vectors bi1,j1t1 and bi2,j2t2 taken from two different bases
we have

|
〈
bi1,j1t1

∣∣bi2,j2t2

〉
| ∈
{

i√
d

: i = 0, 1, . . . , 4

}
.

Proof. In this case the non trivial factors of q are 2, 4, x, 2x. If we choose 0 ≤ i ≤ x−1, i = q
for the sets Si, then α = |i1 − i2| ∈ {0, 1, . . . x−1} and therefore ∆(q, γ) ≤ 4. This combined
with Theorem 3.2.1 gives us the result.

Here one should also note that for many values of q we are aware of constructions for
q × q Hadamard matrices, namely the Paley construction [13], which makes our results not
dependent on the Hadamard conjecture for infinitely many values of q, which we note down
in the following corollary.

Corollary 3.2.2. If d = q2, where q = (p+ 1)2k, k ≥ 1 where q ≡ 0 mod 4 and p is a prime,
then we have γ + 2 many ∆(q, γ)-ARMUBs defined on Rd for all such values of d.

The result of Corollary 3.2.1 and Corollary 3.2.2 can be further combined to state the
following result.

Corollary 3.2.3. If p is a prime such that p+1
2

is also a prime, then there exists (
√
d
4

+ 1)
4-ARMUBs in Rd where d = (2(p+ 1))2.

Proof. If p̂ = p+1
2

is a prime then q is in fact of the form 4r and there exists a q × q
Hadamard matrix due to Paley construction [13]. This combined with Corollary 3.2.2 forms
the result.

Whether infinitely many such pairs (p, p+1
2

) exist is not known. The case of (p, p−1
2

), p
is known as the Sophie Germain primes, and this is also an open problem. One can refer
to [95] for more information in this area.
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3.3 Conclusion

In this chapter we described a simple construction method for designing a set of (γ+2) many
∆(q, γ)-Approximate Real Mutually Unbiased Bases in Rd, where d = q2 and q ≡ 0 mod 4.
Here, ∆(q, γ) denotes the maximum index among the subgroups generated by elements less
than γ in the addition modulo q group. The number of bases that we obtain is more than
14-th power of the best known results for MUBs [98], although we achieve that at the cost of
∆(q, γ)-approximation. We also characterize the exact spectrum of the dot product values
between different vectors taken from different bases. As a special case, when d = (4x)2,

where x is a prime, we obtain (
√
d
4

+1) orthonormal bases where for any two vectors v1 and v2

taken from different bases we have |⟨v1|v2⟩| ∈
{

i√
d

: i = 0, 1, . . . , 4
}

. When both x and 2x−1

are primes, we use Paley construction to obtain 4x × 4x Hadamard matrix and complete
the construction of 4-ARMUBs. The impact of the ordering of the sets Si,j described in
our construction and choices of the Hadamard matrices on this spectrum remains a very
interesting combinatorial problem and needs further investigation. In the next chapter, we
will present further results in this direction using more involved combinatorial objects like
Resolvable Block Designs in conjunction with Hadamard matrices.
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Chapter 4

Resolvable Block Designs in
Construction of Approximate Real
MUBs that are Sparse

As we have discussed so far, several constructions of Mutually Unbiased Bases (MUBs)
borrow tools from combinatorial objects. In this contributory chapter, we focus on how
one can construct Approximate Real MUBs (ARMUBs) with improved parameters, using
the results from the domain of Resolvable Block Designs (RBDs). We first explain the
generic idea of our strategy in relating the RBDs with MUBs/ARMUBs, which are sparse
(the basis vectors have small number of non-zero co-ordinates). Then specific parameters
are presented, for which we can obtain new classes and improve the existing results. To be
specific, we present an infinite family of ⌈

√
d⌉ many ARMUBs for dimension d = q(q + 1),

where q ≡ 3 mod 4 and it is a prime power, such that for any two vectors v1, v2 belonging to
different bases, | ⟨v1|v2⟩ | < 2√

d
. We also demonstrate certain cases, such as d = sq2, where q

is a prime power and sq ≡ 0 mod 4. These findings subsume and improve some of our results
from the previous chapter. This present construction idea provides several infinite families
of such objects, not known earlier in the literature, which can find efficient applications in
quantum information processing for the sparsity, apart from suggesting that parallel classes
of RBDs are intimately linked with MUBs/ARMUBs.

4.1 Introduction

Inspired by the fact that known methods to construct MUBs provide complete set only when
dimension is certain power of a prime, there are strong conjectures relating existence of the
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complete set of MUBs and objects from combinatorial design. Though it is to be noted
that the MUBs are constructed on Hilbert spaces which are continuum, whereas structures
of combinatorial design like affine planes are built on finite number of points and lines for
any order. Hence, the conjectures connecting existence of complete set of MUBs and certain
combinatorial designs are intriguing. For example, one can refer to the conjecture [84] that
states “non existence of a projective plane of the given order d implies that there are less
than d+ 1 MUBs in Cd.”

Zauner studied quantum designs [102], which are orthogonal projection matrices on fi-
nite dimensional Hilbert space (Cd) with certain features, and emphasized its parallel with
combinatorial design theory. Noteworthy is the analogy with regular affine quantum design,
which are equivalent to MUBs for rank one projection matrices, with combinatorial affine
designs that consist of resolvable parallel classes. In the thesis [102], he also provided the
solution of maximal regular affine quantum design, drawing parallels from combinatorial
affine 2-design. The solution was shown to exist for prime power dimensions as was the case
for combinatorial affine 2-design. However, for composite dimensions, the method did not
offer solution.

Wooters [100] drew a parallel between the known numbers of Mutually Orthogonal Latin
Square (MOLS) of order q with the number of known MUBs in Cd, where d = q2. Based
on this parallel, the analogy between lines in finite geometry and pure state in quantum
mechanics can be understood. The study further argues that the complete set of MUBs in
d-dimensional Hilbert space are analogous to combinatorial structure of affine plane of order
d. In order to prove or disprove the conjecture, attempts had been made to construct MUBs
from MOLS(q) and vice versa. One interesting work in this direction was by Wocjan [98]
who used MOLS(q) to construct MUBs in Cd, when d = q2. This also improves the lower
bound of MUBs for many different dimensions. Further, Paterek [76] devised a method to
generate complete set of MUBs in prime power dimension using augmented set of MOLS(q)
and Weyl-Schwinger unitary operators. However, in [77], the authors analyzed the idea
deeply and concluded that the method cannot relate the MUBs to MOLSs completely. They
further concluded that the “problem of MUBs might not be equivalent to the mathematical
problem of MOLS”.

Our construction for ARMUBs (see Construction 4.3.1 later) is an independent and
generalized approach based on RBDs, but it should be noted that for special cases related to
exact MUBs, the MOLS based approach of [98] uses similar kind of combinatorial objects.
The main difference is corresponding to each block. The construction idea of [98, Theorem
3, Example 4] considered different components of a vector in dimension d and a single
Hadamard matrix of a specific order has been used. In our case, same sub-components of a
vector are used corresponding to the elements of a block and those are disjoint for different
blocks inside the same parallel class. In a special case, while generating exact real MUBs, we
obtain similar results as in [98], but have the flexibility of exploiting different non-equivalent
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Hadamard matrices of the same order. Further, we have the advantage of using unitary
matrices of different orders to provide approximate MUBs, in case of different block sizes
in designs which are not regular or balanced. These are not achievable for a large range of
parameters by tweaking the construction idea in [98].

It has been well known for decades that obtaining new classes of MUBs and reaching
the upper bounds are quite challenging problems. Some relaxation is thus considered in
literature and there are efforts towards the concept of Approximate Mutually Unbiased
Bases (AMUBs), where the inner product of two vectors drawn from two different bases is
upper bounded by some value, rather than the optimal 1√

d
for dimension d. In this direction

the works of [61, 86] are pioneering, particularly, the result [86, Theorem 2] remains the best
known construction of Approximate Mutually Unbiased Bases in Cd. The vectors in the
bases due to this construction are inherently complex in nature. Thus it is interesting to
explore some novel construction method when one considers only the real components. In
this direction we have studied certain results in [67], that has been presented in the previous
chapter.

However, further examination pointed out that the work of previous chapter [67] con-
sidered a restricted class and further generalization beyond that is possible given richer
combinatorial structures in literature. In this direction, we propose a generic method to
construct Approximate MUBs (AMUBs) using Resolvable Block Designs (RBDs). RBDs
consist of parallel classes. We provide a method to convert each parallel class into an or-
thonormal basis and show that these bases are intimately linked with AMUBs. Certain kinds
of parallel classes in RBDs, meeting appropriate exact conditions can generate exact MUBs
too. When these conditions are not met with, the parallel classes will generate approximate
ones. The number of such MUBs or AMUBs depends on the number of parallel classes in
RBDs. To convert parallel classes of RBDs into orthonormal bases, our construction strategy
exploits unitary matrices, mostly in smaller dimension, depending on the parameters of the
resolvable design.

In this chapter, our main focus is to construct RBDs with suitable parameters where real
Hadamard matrix (a subset of unitary matrices) can be used. The technique described here
provides novel results in obtaining very sparse Approximate Real MUBs (ARMUBs), that
can find application in quantum information processing. It is well known that sparsity can
be exploited for efficient computations. With this backdrop, let us present the organization
and contribution of this chapter.

4.1.1 Organization & Contribution

In Section 4.2 we begin with various terms and notations formally. We define parameters to
characterize Approximate MUBs and its sparsity. Let us refer to Section 2.3 from Chapter 2
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to revisit the basics of Resolvable Block Design (RBD), Balanced Incomplete Block Design
(BIBD) and Affine Resolvable BIBD and some examples. The relationships between the
parameters of block designs and the necessary conditions are instrumental for our techniques.
Thereafter, we present the novel results of this work [65].

� In Section 4.3, we present the generic method to construct an orthonormal basis us-
ing a parallel class of RBD. This is explained in Construction 4.3.1. We also prove
important bound on inner product between basis vectors from different orthonormal
bases constructed from different parallel classes in the RBD. These are presented in
Lemma 4.3.1 and Theorem 4.3.1.

� Then, in Section 4.4, we use different Resolvable Balanced Incomplete Block Designs
(RBIBDs) to construct ARMUBs. The parameters of the BIBDs and the existence of
certain matrices, particularly Hadamard, are identified from literature and then we plug
those into our construction. Our main result is presented in Theorem 4.4.1. Several
novel structures with new parameters are identified in this process in Section 4.4.1
through Affine Resolvable BIBDs (ARBIBDs).

– Finally in Remark 4.4.1, we explain the construction of exact real MUBs as a
special case. We can attain the results of similar quality as it is mentioned in [98].
However, the focus of this chapter is on ARMUBs, and it will be evident that
our proposal is more generalized and tuned towards the approximate results, that
cannot be achieved through [98] or any other existing methods.

� In Section 4.5 we exploit the RBDs which are not balanced. We construct the un-
balanced designs mostly by assimilating or modifying the Affine Resolvable (q2, q, 1)-
BIBDs, whose construction are known to exist for whenever q is some power of prime.
Clear improvements over presently known parameters are described here. The treat-
ment here provides significant generalization and improvement over our earlier result
in [67] (last chapter) in different aspects. In the last chapter [67], it was shown that√
d
4

+ 1 ARMUBs with maximum value of inner product as 4√
d

could be achieved.

– To show the breadth of this new approach, one special case under Theorem 4.5.1
provides ARMUBs with the same quality as described in the last chapter [67].
This happens when d = sq2, where q is a prime power and sq ≡ 0 mod 4. The
special case, s = 16 as well as q a prime itself, takes care of our earlier result
in [67].

– The parameters are improved too in some other classes. Theorem 4.5.2 shows
that it is possible to construct ⌈

√
d⌉ many ARMUBs with the maximum value

of inner product (between the vectors of two different bases) less than 2√
d
. That

is, we have more number of classes with improved counts of MUBs and a better
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upper bound on the absolute values of the inner products. This happens when
d = q(q + 1), where q is a prime power and q ≡ 3 mod 4.

We conclude this chapter in Section 4.6 with directions towards future research. While con-
structing the approximate MUBs, sometimes we also refer how exact MUBs can be obtained
from our strategy. Indeed, this is not the main focus of this chapter and those results are not
better than the state-of-the-art ones, in terms of number of MUBs constructed. However,
large sparsity is a novel feature of our construction, which is almost absent in the existing
methods. However, we expect to obtain certain improvements if these techniques can be
explored further. Before proceeding, let us now define various notations and parameters
characterizing the MUBs and the AMUBs.

4.2 Background and Preliminaries

As we have already discussed, the well known problem is to maximize the number of MUBs
for a dimension d and it is still open in composite dimensions. Further, the situation is more
complicated in Rd, where very few MUBs are known in general. Knowledge of relatively
large number of Approximate MUBs can be helpful in practical situations.

Given a set of orthonormal bases M = {M1,M2, . . . ,Mr} (may not be MUBs) of dimen-
sion d, we define ∆ to be the set of inner products between the vectors from different or-
thonormal bases. That is, ∆ contains the distinct values of

∣∣⟨ψli|ψmj ⟩∣∣ for all i, j ∈ {1, 2, . . . , d}
and l ̸= m ∈ {1, . . . , r}. In case M is an MUB, ∆ is a singleton set with the only element
1√
d
. However, for the AMUBs, there will be more than one value in the set and we will

try to minimize the maximum absolute value. In this regard, we like to define β-AMUB or
β-ARMUB, for which the maximum value in ∆ is bounded by β√

d
.

To characterize the closeness of orthonormal bases Ml and Mm to MUBs, we define the

variance of the inner products between the vectors of Ml and Mm from
1√
d

. For this we define

σl,m = 1
d

√∑
i,j

(
1√
d
−
∣∣⟨ψlj|ψmi ⟩∣∣)2, as there are d2 different elements in the calculation. For

the set M of orthonormal bases, σ is accordingly defined as σ = maxl ̸=m{σl,m}.

Another way to characterize the closeness of a pair of orthonormal bases to MUBs is by
the value of maximum difference of the inner product between any pair of vectors, say from

Ml and Mm, with the value of 1√
d
. For this we define, τ l,m = max

{∣∣∣ 1√
d
− | ⟨ψlj|ψmi ⟩ |

∣∣∣} ∀i, j.
For a set M of orthonormal bases, τ is accordingly defined as maximum of τ l,m, i.e., τ =
maxl ̸=m{τ l,m}.

Note that if Ml and Mm constitute a pair of MUBs, then β = 1, ∆ =
{

1√
d

}
, σl,m = 0
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and τ l,m = 0. Similarly, if M = {M1,M2, . . . ,Mr} is a set of MUBs, then β = 1,∆ =
{

1√
d

}
,

σ = 0 and τ = 0. In a certain sense, the vectors in two different bases in an MUB set should
make maximum and same angles with others. Thus, the projective measurements associated
with them are maximally uncorrelated. This will be deviated for the approximate MUBs.

It is clear that a particular basis of MUBs or AMUBs in Cd (resp. ARMUBs in Rd) can be
thought of as a d×d unitary matrix (resp. orthogonal matrix in real case) with their columns
as orthonormal basis vectors. To characterize the sparsity of such matrices, we define ϵ as the
ratio of the number of zero elements in the matrix to the total number of elements, i.e., d2.
It is clear to see that, 0 ≤ ϵ ≤ 1. The closer the value of ϵ to 1, more the number of zeros in
the matrix and therefore larger the sparsity. MUBs, which have been constructed for prime
or prime power dimensions using finite fields [99] or those constructed using maximal class of
commuting operators [6], are invariably having almost all nonzero entries in the MUBs except
for the standard basis. Thus, ϵ is close to 0 in these constructions. Regarding sparsity, the
situation is similar with real MUBs constructed in [22]. The construction provided mutually
unbiased Hadamard matrices, which by nature has all the entries {1,−1}, thereby ϵ is 0,
i.e., not sparse at all. The MUBs constructed using MOLS [98, 18] show relatively better
sparsity. This is because the MOLS related constructions are equivalent to the RBDs in
certain cases [31, Part III.3]. We like to reiterate that this is the first time the sparsity of
the (approximate) MUBs is being quantified in literature. In case of actual implementation
or computation, the sparsity might provide efficiency in practice.

4.3 Our Generic idea of Construction

Here we connect how one can design MUBs or approximate MUBs from the above mentioned
combinatorial objects, namely RBDs. We provide a generic construction of an orthonormal
basis from a parallel class of any Resolvable Block Design (RBD). If the parallel class contain
s blocks then the construction would also require s many unitary matrices each of the order
which would be equal to the the size of blocks in the parallel class under consideration. If
there are r many parallel classes in (X,A), then each one of them can be used to construct
an orthonormal basis in Cd or Rd. Next we show that the inner product between two
vectors, each from different orthonormal basis, constructed using parallel classes from design
(X,A), are bounded if the Hadamard matrices are exploited as unitary matrices. The set
of orthonormal basis so constructed are β-AMUBs (see Theorem 4.3.1 later). This β will
depend on the parameters of the RBD and if the parameters are such that β = 1 then the
set of orthonormal bases, constructed using parallel classes, will be MUBs.

Let us now describe the steps for construction of an orthonormal basis using a parallel
class from an RBD (X,A). Then we present a simple example to explain the technique.
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Construction 4.3.1.

1. In a design (X,A), choose the elements of X as some orthonormal basis vectors of Cd.
That is, if |X| = d then X = {|ψ1⟩ , |ψ2⟩ , . . . , |ψd⟩}, such that ⟨ψi|ψj⟩ = δij. Hence A,
which contains blocks consisting of elements from X, would consist of blocks consisting
the elements from the set of chosen orthonormal basis vectors.

2. Let B = {b1, b2, . . . , bs} be one of the parallel class of the design (X,A), where bi’s are
disjoint blocks containing elements from X. Since B is a parallel class, this implies
X = b1 ∪ b2 ∪ . . . ∪ bs.

3. Consider one of the blocks br = {|ψr1⟩ , |ψr2⟩ , . . . , |ψrnr
⟩} ∈ B and let |br| = nr. Cor-

responding to this block, choose any nr × nr unitary matrix whose elements are say
urij, i, j = 1, 2, . . . , nr.

4. Next construct nr many vectors in the following manner, using br and u
r
ij.

|ϕri ⟩ = uri1 |ψr1⟩ + uri2 |ψr2⟩ + . . .+ urinr
|ψrnr

⟩ =
nr∑
k=1

urik |ψrk⟩ : i = 1, 2, . . . , nr.

5. In a similar fashion, corresponding to each block bj ∈ B, construct nj many vectors
where |bj| = nj, using any nj × nj unitary matrix. Since

∑s
j=1 nj = d, we will get

exactly d many vectors.

Note that if all the blocks in a parallel class used in the above construction consist of
only a single element, then it will result into vectors which will be some permutation of X.
Similarly if identity matrices are chosen corresponding to all blocks bj of the parallel class,
again the above construction will result into vectors which will be some permutation of X.
Hence, in order to get vectors different from the initial chosen orthonormal vectors X, at
least one of the blocks of the parallel class should have more than one element and at least
one of the unitary matrices, chosen corresponding to some block of the parallel class, should
be different from the identity matrix.

Lemma 4.3.1. Refer to Construction 4.3.1. The vectors, |ϕri ⟩ for i = 1, 2, . . . , nr and
r = 1, 2, . . . , s, such that

∑s
j=1 nj = d, form an orthonormal basis.

Proof. Consider nr many vectors constructed from the block br of a parallel class B. The
inner product of any two vectors constructed from br would give

⟨ϕrj |ϕri ⟩ =
nr∑

k,l=1

urjl u
r
ik ⟨ψrl |ψrk⟩ =

nr∑
k,l=1

urjl u
r
ik δkl =

nr∑
k=1

urjk u
r
ik = δij.
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Hence nr many vectors constructed from the block br are orthogonal. Note that, the vectors
constructed from a block are linear combinations of vectors {|ψi⟩} ∈ X in the corresponding
block. Since different blocks of the parallel class are disjoint subsets of X, the vectors
constructed from different blocks of the parallel class would lie on the orthogonal subspace
of Cd and hence will be orthogonal. Since

∑s
j=1 nj = d, the construction will generate an

orthonormal basis in Cd.

Note that in Construction 4.3.1, if X is chosen from some orthonormal basis vectors of
Rd along with the orthogonal matrix (i.e., all the entries are real) corresponding to each br in
step 1 and 3 respectively, then the Construction 4.3.1 will result into real orthonormal basis
vectors in Rd corresponding to the parallel class under consideration. Similarly, as noted
above, the construction will provide vectors different from X in Rd, if at least one block
of the parallel class consist of more than one elements or at least one orthogonal matrix
corresponding to some block is chosen different from the identity matrix.

Let us illustrate the above construction method by applying it on Resolvable Block Design
(X,A2) mentioned in Section 2.3 of Chapter 2. The two resolutions of A2 are P1 and P2,
where P1 = {(1, 2, 3), (6, 8), (4, 5, 7)} and P2 = {(1, 7), (2, 4, 6), (3, 5, 8)}. We will show how
to convert P1 into one orthonormal basis and in a similar manner P2 can be converted to
another orthonormal basis. Let X = {|1⟩ , |2⟩ , . . . , |8⟩} be the computational basis in C8.
Using above notations, consider the parallel class P1 = {b1, b2, b3}, where b1 = (1, 2, 3),
b2 = (6, 8) and b3 = (4, 5, 7). Thus we see that, |b1| = |b3| = 3 and |b2| = 2. Hence,
we require at least two unitary matrices, one of order 2 and another of order 3. We will

choose the Hadamard matrices in this direction. Let us choose U2 = 1√
2

(
1 1
1 −1

)
and

U3 = 1√
3

1 1 1
1 ω ω2

1 ω2 ω

. For simplicity, we will use the same U3 for both the blocks, b1 and

b3. Following the notations and methods given in Construction 4.3.1, we obtain total eight
orthogonal vectors of C8 from the parallel class P1. Two orthogonal vectors are constructed
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from b2 and three each from b1 and b3 in the following manner.

|ϕ1
1⟩ =

1√
3

(|1⟩ + |2⟩ + |3⟩) =
1√
3

(1 1 1 0 0 0 0 0)T

|ϕ1
2⟩ =

1√
3

(
|1⟩ + ω |2⟩ + ω2 |3⟩

)
=

1√
3

(1 ω ω2 0 0 0 0 0)T

|ϕ1
3⟩ =

1√
3

(
|1⟩ + ω2 |2⟩ + ω |3⟩

)
=

1√
3

(1 ω2 ω 0 0 0 0 0)T

|ϕ2
1⟩ =

1√
2

(|6⟩ + |8⟩) =
1√
2

(0 0 0 0 0 1 0 1)T

|ϕ2
1⟩ =

1√
2

(|6⟩ − |8⟩) =
1√
2

(0 0 0 0 0 1 0 − 1)T

|ϕ3
1⟩ =

1√
3

(|4⟩ + |5⟩ + |7⟩) =
1√
3

(0 0 0 1 1 0 1 0)T

|ϕ3
2⟩ =

1√
3

(
|4⟩ + ω |5⟩ + ω2 |7⟩

)
=

1√
3

(0 0 0 1 ω 0 ω2 0)T

|ϕ3
3⟩ =

1√
3

(
|4⟩ + ω2 |5⟩ + ω |7⟩

)
=

1√
3

(0 0 0 1 ω2 0 ω 0)T .

Note that the first three vectors |ϕ1
1⟩ , |ϕ1

2⟩ , |ϕ1
3⟩ corresponding to one block in a parallel

class works with |1⟩ , |2⟩ , |3⟩ only, and the orthogonality among themselves is achieved by
using U3. This is different from [98, Theorem 3, Example 4] as there the vectors corresponding
to each block may have other components of the vector. The kind of separate grouping that
we use here and use the unitary matrices for orthogonality between the vectors is different
from that of [98]. In our case the between block orthogonality in the same parallel class is
achieved as the components of the vectors are different. This helps us to exactly calculate the
different inner product values (as we are considering approximate MUBs rather than exact
MUBs) when blocks (and the vectors corresponding to that) from two different parallel
classes (different orthogonal bases) interact.

Now arranging the above eight orthogonal vectors as columns of 8× 8 unitary matrix we
have the following.

M1 =
1√
6



√
2

√
2

√
2 0 0 0 0 0√

2
√

2ω
√

2ω2 0 0 0 0 0√
2

√
2ω2

√
2ω 0 0 0 0 0

0 0 0 0 0
√

2
√

2
√

2

0 0 0 0 0
√

2
√

2ω
√

2ω2

0 0 0
√

3
√

3 0 0 0

0 0 0 0 0
√

2
√

2ω2
√

2ω

0 0 0
√

3 −
√

3 0 0 0


.
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In a similar manner, the parallel class P2 can be converted into another orthonormal basis
of C8. Following the Construction 4.3.1 in a similar manner, and using the unitary matrix
U2 for block (1, 7) and U3 for both the blocks (2, 4, 6) and (3, 5, 8) we obtain the following.

M2 =
1√
6



√
3

√
3 0 0 0 0 0 0

0 0
√

2
√

2
√

2 0 0 0

0 0 0 0 0
√

2
√

2
√

2

0 0
√

2
√

2ω
√

2ω2 0 0 0

0 0 0 0 0
√

2
√

2ω
√

2ω2

0 0
√

2
√

2ω2
√

2ω 0 0 0√
3 −

√
3 0 0 0 0 0 0

0 0 0 0 0
√

2
√

2ω2
√

2ω


.

Let us now denote {|ψ1
i ⟩}, 1 ≤ i ≤ 8 for column vectors of M1 and {|ψ2

j ⟩}, 1 ≤ j ≤ 8 for
column vectors of M2. Through explicit calculations we obtain,

∆ =
{
| ⟨ψ1

i |ψ2
j ⟩ | where i, j = 1, . . . , 8

}
=

{
1

2
,

1√
6
,
1

3

}
.

In order to calculate σ1,2, note that out of 64 many inner products formed between the
vectors of M1 and M2, 36 of them have the value 1

3
, 24 of them have the value of 1√

6
and

remaining 4 has the value 1
2
, whereas MUBs in C8 would have inner product value of 1√

8
for

all the cases. Hence,

(
σ1,2
)2

=
1

64

(
36

(
1

3
− 1√

8

)2

+ 24

(
1√
6
− 1√

8

)2

+ 4

(
1

2
− 1√

8

)2
)
,

which evaluates to σ1,2 ≈ 0.052. Note that maxi,j
∣∣⟨ψ1

i |ψ2
j ⟩
∣∣ = 1

2
. Hence τ 1,2 =

∣∣∣12 − 1√
8

∣∣∣ ≈
0.12. We also obtain β1,2 =

√
8
2

=
√

2 and the sparsity ϵ = 42
64

≈ 0.66 for both M1 and
M2. From calculations it is evident that the maxi,j

∣∣⟨ψ1
i |ψ2

j ⟩
∣∣ is dependent on the block sizes

and number of points common between the blocks from which |ψ1
i ⟩ , |ψ2

j ⟩ are constructed.
The following proposition examines the same, when Hadamard matrices are used as unitary
matrices, and presents an upper bound on this value. The Hadamard matrices are subset
of unitary matrices, and at least one such (Fourier) matrix exists for every dimension. In
the following proposition, and the subsequent constructions, we will use Hadamard matrices
of order dependent on the block size of parallel class under consideration. That is, in this
initiative we will use the real Hadamard matrices for unitarity/orthogonality.

Theorem 4.3.1. Let P1 and P2 be two parallel classes of Resolvable Block Design (X,A)
having constant block sizes k1 and k2 respectively, such that the maximum intersection points
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between the blocks of parallel classes is µ. Then corresponding to the parallel classes P1 and

P2, orthonormal bases in Cd can be constructed which is β-AMUB with β = µ
√

d
k1k2

where

|X| = d.

Proof. The proof follows from Construction 4.3.1, where the Hadamard matrices are chosen
as the unitary matrices in step 3. We show this as follows.

Let X = {|ψ1⟩ , |ψ2⟩ , . . . , |ψd⟩} be an orthonormal basis in Cd. Let the blocks in the
parallel classes be P1 = {b11, b12, . . . , b1p} and P2 = {b21, b22, . . . , b2q}. We have |b11| = |b12| = . . . =
|b1p| = k1 and |b21| = |b21| = . . . = |b2q| = k2 and X = b11 ∪ b12 ∪ . . . ∪ b1p = b21 ∪ b22 ∪ . . . ∪ b2q.

Following the steps of the Construction 4.3.1, let M1 = {|ζ1⟩ , |ζ2⟩ , . . . , |ζd⟩} and M2 =
{|ϕ1⟩ , |ϕ2⟩ , . . . , |ϕd⟩} be the orthonormal matrices constructed from parallel classes P1 and
P2 respectively of the RBD (X,A). Consider the vectors constructed from rth (r ≤ p) block
of P1, say |ζri⟩, and from sth (s ≤ q) block of P2, say |ϕsj⟩. Let Hk1 be the Hadamard matrix
of order k1 used for constructing |ζri⟩ and Hk2 be the Hadamard matrix of order k2 used for
constructing |ϕsj⟩. Then we have

|ζri⟩ = h1i1 |ψr1⟩ + h1i2 |ψr2⟩ + . . .+ h1ik1 |ψrk1 ⟩ =

k1∑
u=1

h1iu |ψru⟩ : b1r = {|ψru⟩} ⊂ X,

|ϕsj⟩ = h2j1 |ψs1⟩ + h2j2 |ψs2⟩ + . . .+ h2jk2 |ψsk2 ⟩ =

k2∑
v=1

h2jv |ψsv⟩ : b2s = {|ψsv⟩} ⊂ X,

where (Hk1)i,j = h1i,j and (Hk2)i,j = h2i,j. Hence,

⟨ζri |ϕsj⟩ =

k1,k2∑
u,v=1

h1iu h
2
jv ⟨ψru|ψsv⟩ =

k1,k2∑
u,v=1

h1iu h
2
jv δru,sv .

Since {|ψru⟩} and {|ψsv⟩} are subsets of X, which consist of orthonormal basis vectors,
therefore ⟨ψru|ψsv⟩ = δru,sv . Let b1r ∩ b2s be the set of points common in the two blocks, which
has been used in the construction for |ζri⟩ and |ϕsj⟩. It is given that maxi,j

{∣∣b1i ∩ b2j ∣∣} = µ,

where i = 1, 2, . . . , p and j = 1, 2, . . . , q. Hence |b1r ∩ b2s| ≤ µ. Further, note that
∣∣h1ru∣∣ = 1√

k1

and
∣∣h2sv ∣∣ = 1√

k2
. Hence

⟨ζri|ϕsj⟩ =
∑
b1r∩b2s

h1iu h
2
jv ≤

∑
b1r∩b2s

|h1iu| |h2jv| =
∑
b1r∩b2s

1√
k1k2

≤ µ√
k1k2

=
µ
√

d
k1k2√
d

,

where β = µ
√

d
k1k2

. The vectors |ζri⟩ and |ϕsj⟩ are constructed from any rth and sth block of

P1 and P2 respectively. Hence the above relationship will hold for any two vectors constructed
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from different parallel classes. Hence | ⟨ζi|ϕj⟩ | ≤ µ√
k1k2

for any 1 ≤ i, j ≤ d. Thereby,
the orthonormal bases constructed corresponding to the parallel classes P1 and P2 are β-
AMUB.

Suitable choices of Hadamard matrices, for specific situations may improve the inequality.
Particularly, whenever parametric form of Hadamard matrices are available, they may be
used and parameters may be optimized, which can result into orthonormal bases closer to
MUBs. Another method to improve this inequality would be through reducing the µ, which
is dependent on parameters of the Resolvable Block Design. In fact, if µ = 1 and d = k1 · k2
then β = 1, and the above constructions will present MUBs. In our present work we will
focus on making β close to 1 (from the higher side) by altering the parameters of RBD.

In a similar manner, we can convert Resolvable Block Design consisting of r resolutions
into set of r orthonormal bases for Rd using real Hadamard matrices in set 3 of Construction
4.3.1. A real Hadamard matrix exists for d = 2s, s ∈ N (Sylvester Construction [48]) and
for d = 2s(q+ 1), where q is some power of odd prime (Paley Construction [75]), apart from
other known constructions [48]. In fact, the Hadamard Conjecture [37] says that the real
Hadamard matrix exists for all dimensions d > 2 such that 4|d. This is a long standing
unproven conjecture which has been found to be true for all d < 668 [37].

The order of Hadamard matrix to be exploited in the step 3 of construction 4.3.1, is
decided by the block size of the corresponding parallel class. Hence to obtain real MUBs,
we will ensure that the block size (denoted by k) is either 2 or divisible by 4. Though our
focus is on ARMUBs, the results hold equally well for complex AMUBs. In fact to obtain
complex AMUBs, there would be no restriction on the parameters of the Resolvable Block
Design (X,A), as there are Hadamard matrices available for every order, namely the Fourier
matrices.

For all our examples and constructions in following sections, the points (or elements) in
X would consist of computational basis vectors and would be simply denoted as {1, 2, . . . , d}.
For example, |X| = 4 implies X = {1, 2, 3, 4} where 1 represents (1, 0, 0, 0)T , 2 represents
(0, 1, 0, 0)T , 3 represent (0, 0, 1, 0)T and 4 represent (0, 0, 0, 1)T . Since a real Hadamard
matrix consists of only {−1,+1} entries, our construction for ARMUBs will have vectors
whose entries will consist of {−1, 0,+1} with some normalization factor for the corresponding
vectors.

4.4 ARMUBs using Resolvable BIBDs

In this section, we will explore the designs which are resolvable and also (v, k, 1)-BIBDs.
Necessary condition for a (v, k, 1)-BIBD to be resolvable can be derived by the fact that k|v
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and (k − 1)|(v − 1) for b and r to be integers. It turns out that the necessary condition
for resolvable (v, k, 1)-BIBD is v = k(k − 1)t + k for t ∈ N [46]. It has been shown that
with finitely many exceptions, resolvable (v, k, 1)-BIBDs exist whenever necessary condition
is satisfied. More specifically, given k ≥ 2, there exists a constant C(k) such that if v ≥ C(k)
and v ≡ k mod [k(k − 1)], then (v, k, 1)-resolvable BIBDs exist [80]. This implies that
there exist infinite families of resolvable (v, k, 1)-BIBDs for every k ∈ N. In all the following
theorems and constructions, the dimension d of the underlying vector space will be equal to
v i.e., d = v.

Theorem 4.4.1. Suppose, there exists a resolvable (v, k, 1)-BIBD. Let d = v = k(k−1)t+k,
where t ∈ N. If t > 1, then one can construct (kt+ 1) many Approximate MUBs in Cd with

∆ =
{

0, 1
k

}
, β =

√
(k−1)t+1

k
, σ2 = 2

d

[
1 − k√

d

]
, τ < 1

k
and the sparsity ϵ = 1 − 1

(k−1)t+1
. If

t = 1, then one can construct (k + 1) many MUBs in Cd with ∆ =
{

1
k

}
, β = 1, σ = τ = 0

and the sparsity ϵ =
(
1 − 1

k

)
. Further, if a real Hadamard matrix of order k exists, then one

can construct ARMUBs in Rd with the same parameters.

Proof. The necessary condition for the existence of a Resolvable (v, k, 1)-BIBD is v = k(k−
1)t + k for some t ∈ N [46]. Let us consider t > 1. Since λ = 1 in this BIBD, every pair of
points will occur in a single block. Thus, any two blocks will have maximum one point in
common. This implies that the blocks from different parallel classes will have at most one
point in common. Now we can use any Hadamard matrix of order k to convert each parallel
class having block size k into orthonormal basis as per Construction 4.3.1. The ∆ would
consist of

{
1
k
, 0
}

corresponding to whether there is one point in common or there is no point
is common between the blocks used to generate corresponding vectors of the orthonormal

basis. Hence β =
√
d
k

=

√
k(k−1)t+k

k
=
√

(k−1)t+1
k

. Now to compute σ, note that each vector

in an orthonormal basis will have inner product value equal to 1
k

with k2 vectors of any
other orthonormal basis and will have inner product equal to 0 with remaining (d−k2) basis
vectors. Hence,

σ2 =
1

d

[
k2
(

1√
d
− 1

k

)2

+
(
d− k2

)( 1√
d
− 0

)2
]

=
2

d

[
1 − k√

d

]
.

In order to calculate τ , note that
∣∣∣ 1k − 1√

d

∣∣∣ ≥ 1√
d

for d ≥ 4k2 which implies t ≥ 4k−1
k−1

≈ 4 for

sufficiently large k. Hence,

τ =

{
1√
d
, for 1 < t ≤ 4k−1

k−1
(i.e., k2 < d ≤ 4k2)

1
k
− 1√

d
, for t > 4k−1

k−1
(i.e., d > 4k2)

.
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Hence τ ≤ 1
k

for any d. Note that for for a fixed k, σ decreases as the dimension d increases,
whereas τ goes towards 1

k
. In this construction ∆ is independent of the dimension but σ and

τ are not.

To calculate sparsity, note that each vector in Cd (or Rd), constructed from block of size
k, will have exactly k many non-zero and d − k many zero entries. Since the construction
provides d orthonormal basis vectors, we get

ϵ =
d2 − dk

d2
= 1 − k

d
= 1 − 1

(k − 1)t+ 1
.

Now consider the case t = 1. Here d = v = k2 which implies combinatorial design is (k2, k, 1)-
ARBIBD. Hence blocks from different parallel classes have exactly one point in common.
Hence ∆ =

{
1
k

}
. But in this case 1

k
= 1√

d
. Hence σ = τ = 0. The expression for sparsity

will remain unchanged, i.e. ϵ = 1 − k
d

= 1 − 1
k
. This completes the proof.

Hence the constructed orthonormal bases are very sparse even for moderate size k and t.
Let us consider two simple cases, for k = 2, 4. This will enable us to choose real Hadamard
matrices for converting the parallel classes of resolvable (v, k, 1)-BIBD into orthonormal
bases. It has been shown in [80, 46] that for these values of k, necessary condition is also
a sufficient condition for the existence of resolvable (v, k, 1)-BIBD without any exception.
Hence we obtain the following result.

Corollary 4.4.1. For any even dimension d > 4, there exist d−1 ARMUBs in Rd such that

∆ =
{

1
2
, 0
}
, β =

√
d
4
, σ2 = 2

d

[
1 − 2√

d

]
, τ < 1

2
and sparsity ϵ = 1 − 2

d
. Further, for d = 4 we

can construct three real MUBs with sparsity ϵ = 1
2

Proof. This directly follows from Theorem 4.4.1. Taking k = 2 gives d = 2t + 2. Hence for
t > 1, we can construct 2t + 1 = d − 1 many Approximate MUBs in Rd with ∆ =

{
0, 1

2

}
,

β =
√

t+1
2

=
√

d
4
, σ2 = 2

d

[
1 − 2√

d

]
, τ < 1

2
and the sparsity ϵ =

(
1 − 2

d

)
. If t = 1, then

d = 2 + 2 = 4 and we can construct (2 + 1) = 3 many MUBs in Rd with ∆ =
{

1
2

}
, β = 1,

σ = τ = 0 and the sparsity ϵ = 1 − 1
2

= 1
2
. This completes the proof.

To explicitly demonstrate the construction of real MUBs in R4, using Resolvable (4, 2, 1)-
BIBD, let X = {1, 2, 3, 4} be the four standard basis vectors in R4 and let A = {P1, P2, P3}
be the three parallel classes of the resolvable design. Explicitly, one such design would be:

P1 = {(1, 2), (3, 4)} P2 = {(1, 3), (2, 4)} P3 = {(1, 4), (2, 3)} .
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Now using H2 = 1√
2

(
1 1
1 −1

)
for each block of parallel class, and exploiting Construction

4.3.1, we obtain three set of orthonormal basis vectors corresponding to each parallel class
as follows.

M1 =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 ,M2 =
1√
2


1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

 ,M3 =
1√
2


1 1 0 0
0 0 1 1
0 0 1 −1
1 −1 0 0

 .

The columns of {M1,M2,M3} form the orthonormal basis vectors, and these orthonormal
bases are MUBs in R4. Note that maximum number of real MUBs in d = 4s, s ∈ N is equal
to d

2
+ 1 [18]. Hence for d = 4, the three MUBs constructed are also maximal for R4.

To illustrate construction of ARMUBs with a specific example, let us consider d = 6. Let
X = {1, 2, 3, 4, 5, 6} be the six standard basis vectors in R6 and let A = {P1, P2, P3, P4, P5}
be the five parallel classes of the design. Explicitly, one such design would be

P1 = {(1, 4), (2, 3), (5, 6)}, P2 = {(2, 6), (3, 4), (1, 5)}, P3 = {(5, 2), (3, 1), (4, 6)}, P4 =
{(5, 3), (4, 2), (6, 1)}, P5 = {(5, 4), (6, 3), (1, 2)}.

Now again using H2 = 1√
2

(
1 1
1 −1

)
for each block of parallel class, and following Con-

struction 4.3.1, we obtain five set of orthonormal basis vectors as follows.

M1 =
1√
2


1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 −1 0 0
1 −1 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 −1

 ,M2 =
1√
2


0 0 0 0 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1
1 −1 0 0 0 0

 ,

M3 =
1√
2


0 0 1 1 0 0
1 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 1
1 −1 0 0 0 0
0 0 0 0 1 −1

 ,M4 =
1√
2


0 0 0 0 1 1
0 0 1 1 0 0
1 1 0 0 0 0
0 0 1 −1 0 0
1 −1 0 0 0 0
0 0 0 0 1 −1

 ,

M5 =
1√
2


0 0 0 0 1 1
0 0 0 0 1 −1
0 0 1 1 0 0
1 1 0 0 0 0
1 −1 0 0 0 0
0 0 1 −1 0 0

 .
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Here again, the columns form the orthonormal basis vectors. Note that, for any basis vector
say from M1, there are four vectors in M2 which has inner product value of 1

2
and the

remaining two have the values 0 i.e., two of them are orthogonal. Here ∆ =
{

0, 1
2

}
, β =

√
6
2

≈

1.22. Further, for this construction σ =

√
2
6

(
1 − 2√

6

)
≈ 0.247, τ = max

{
1√
6
, |1

2
− 1√

6
|
}

=

1√
6
≈ 0.408 and sparsity ϵ = 1 − 2

6
= 2

3
. Now let us consider the case for k = 4.

Corollary 4.4.2. For any dimension d > 16 where d ≡ 4 mod 12, there exist d−1
3

many

ARMUBs in Rd such that ∆ =
{

0, 1
4

}
, β =

√
d

4
, σ2 = 2

d

(
1 − 4√

d

)
, τ < 1

4
and the sparsity

ϵ = 1 − 4
d
. For d = 16, we can construct five real MUBs with sparsity ϵ = 3

4
.

Proof. The result follows directly from Theorem 4.4.1 by taking k = 4. This gives d =
4 × 3t + 4 ≡ 4 mod 12. Hence for t > 1, using Theorem 4.4.1, we get 4t + 1 = d−1

3
many

ARMUBs with ∆ =
{

0, 1
4

}
, β =

√
3t+1
4

=
√
d
4

, σ2 = 2
d

(
1 − 4√

d

)
, τ < 1

4
and the sparsity

ϵ = 1 − 4
d
.

If t = 1, then in d = 4 × 3 + 4 = 16 and we can construct (4 + 1) = 5 many MUBs in
Rd with ∆ =

{
1
4

}
, β = 1, σ = τ = 0 and the sparsity ϵ = 1 − 1

4
= 3

4
. This completes the

proof.

Note that in d = 42, the maximum number of real MUBs are 42

2
+ 1 = 9 [18]. However,

from our construction, we only obtain five MUBs which is not maximal. However, we like
to point out here that these 5 MUBs are very sparse (ϵ = 0.75), whereas 9 real MUBs con-
structed using [22] would give MUBs in the form of mutually unbiased Hadamard matrices,
where all the entries from {+1,−1} hence no sparsity, except the standard basis.

Note that the construction using Theorem 4.4.1 gives very good Approximate MUBs for
a fixed k (d ≥ k2) in lower dimensions, with β close to 1. However, as dimension increases
β increases as

√
d hence approximation deteriorates. On the other hand, as d increases the

sparsity also increases. In this regard, let us present two instances.

Example 4.4.1. The resolvable (28, 4, 1)-BIBD will provide 9 ARMUBs in R28 with β =√
7
4
≈ 1.3 and ϵ = 6

7
. Similarly, the resolvable (40, 4, 1)-BIBD will generate 13 ARMUBs in

R40 with β =
√

5
2
≈ 1.6 and ϵ = 9

10
. Note that for both of the dimension only a pair of real

MUBs can exist.
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4.4.1 Constructions following ARBIBD

Among all the resolvable BIBDs, Affine Resolvable BIBDs (r = k+λ) provide very interesting
class of MUBs and AMUBs because of the fact that any two blocks from different parallel
classes intersect at exactly k2

v
points. By using the Hadamard matrices in Construction 4.3.1

at Step 3 provides approximate MUBs with small values of σ and τ , as well as β close to 1.

The Affine Resolvable BIBD (v, k, λ) can be parameterized in terms of two positive
integer variables n and µ. The other parameters of the design in terms of n and µ are given

as v = n2µ, k = nµ, λ = nµ−1
n−1

, b = n(n2µ−1)
n−1

, r = n2µ−1
n−1

, and k2

v
= µ. Hence one may consider

it as (n2µ, nµ, nµ−1
n−1

)-ARBIBD. Conversely, any resolvable BIBD having parameters of this
form is Affine Resolvable. We will denote such BIBD as an (n, µ)-ARBIBD [93, Chapter 5].

Lemma 4.4.1. If there exists an Affine Resolvable BIBD of the form (n2µ, nµ, nµ−1
n−1

), then

for d = n2µ, we can construct n2µ−1
n−1

many approximate MUBs with β =
√
µ, σ ≤ 1

n
, τ ≤ 1

n

and sparsity ϵ = 1 − 1
n
. If real Hadamard matrix of order nµ exist, then we can construct

Approximate Real MUBs with the same parameters.

Proof. Using Affine resolvable (n2µ, nµ, nµ−1
n−1

)-BIBD, we can convert r = n2µ−1
n−1

number of
parallel classes using Hadamard matrix of order nµ into r many orthonormal basis. Since
exactly µ points are common between any two blocks from different parallel classes, maximum
inner product between vectors from different orthonormal bases should be less than or equal
to µ× 1

nµ
= 1

n
.

Now, max
{

1
n
√
µ
,
∣∣∣ 1n − 1

n
√
µ

∣∣∣} is equal to
√
µ−1√
d

for µ ≥ 4 and it is equal to 1√
d

for 1 <

µ < 4. Therefore σ2 ≤
(

1
n
− 1√

n2µ

)2

=
(√µ−1)

2

d
for µ ≥ 4 and σ2 ≤

(
1

n
√
µ
− 0
)2

= 1
d

for 1 < µ < 4. Hence σ2 ≤ µ
d

= 1
n2 ∀µ > 1. That is, σ ≤ 1

n
for µ > 1. Similarly

τ = max
{

1
n
√
µ
,
∣∣∣ 1n − 1

n
√
µ

∣∣∣}, which implies τ ≤
√

µ
d

= 1
n
∀µ > 1.

Note that when µ = 1, both σ and τ = 0. This happens because, µ = 1 means, between
a pair of blocks from different parallel classes has exactly one point in common, implying
β = 1, and we will get exact MUBs.

The sparsity can be calculated as ϵ = 1− k
d

= 1− 1
n
. Moreover, if real Hadamard matrix

of order nµ exists, then we can choose them as the unitary matrix in step 3 of Construction
4.3.1 to construct ARMUBs, where the parameters will remain unchanged. As noted, if
µ = 1 then both σ and τ will be zero, hence we will get exactly n+ 1 many MUBs.

However, there are not many known families of Affine Resolvable (n2µ, nµ, nµ−1
n−1

)-BIBDs [87,
93]. One well known family of ARBIBD can be constructed from affine geometry of order
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d. However, this construction is known only if d is some power of prime. In particular
when d = q2, where q is some power of prime, Affine Resolvable (q2, q, 1)-BIBDs can be
constructed. This immediately gives the following corollary.

Corollary 4.4.3. When d = q2 where q is some power of prime, then we can construct q+1
MUBs in Cd with ϵ = 1 − 1

q
.

Proof. For any prime power, an Affine Resolvable (q2, q, 1)-BIBD exists, such that between
any two blocks from different parallel classes there is only one point in common. Thus, using
any Hadamard matrix of order q in Step 3 of Construction 4.3.1, we obtain q+1 many MUBs
in Cd. If Fourier matrix of order q is used, then resulting entries of MUBs will consist of only
qth roots of unity and zeros. These q + 1 MUBs so constructed have sparsity ϵ = 1 − 1

q
.

In such constructions of MUBs, any kind of Hadamard matrix can be used in step 3 of
Construction 4.3.1. This immediately suggests the ways to generate MUBs in a dimension q2,
where q is some power of a prime. Such constructions are not possible using Galois Field [99,
39] or through construction of maximal commuting unitary operators using generalized Pauli
matrices [6]. The caveat here is, using Construction 4.3.1, the number of MUBs would be
q + 1, which is considerably less than the upper bound of q2 + 1. For example, we can
construct five MUBs in d = 42 using Affine Resolvable (42, 4, 1)-BIBD and using parametric

form of Hadamard matrix F
(1)(a)
4 [94, Example 1.2.1]. Similarly, using Buston Hadamard

matrices like BH(n2k, 6) [94, Corollary 1.4.42], which exist for every n, k ∈ N, we can
construct q2 + 1 many MUBs in Cq4 where q is some power of prime. Here we need to use
Affine Resolvable (q4, q2, 1)-BIBD, whose non-zero entries would consist of only sixth roots
of unity. Further, using Petrescu’s construction for parametric form of Hadamard matrices,
for primes p = 7, 13, 19, 31 [94, Theorem 3.1.2], one can construct corresponding parametric
MUBs in d = 72, 132, 192, 312, which would not be equivalent to the MUBs from known
methods, based on Galois Field [99, 39] or through construction of maximal commuting
unitary operators using generalized Pauli matrices [6]. Further knowledge of Hadamard
matrices, whose orders are some powers of prime, can be exploited to construct interesting
sparse MUBs using this method.

Since there always exist real Hadamard matrices of order 2s, s ∈ N [48], we have the
following corollary.

Corollary 4.4.4. For d = 4s, s ∈ N, there exist 2s + 1 many real MUBs with sparsity
ϵ = 1 − 2−s.

Note that these are very sparse real MUBs and hence can be used for efficient compu-
tations. However, these do not improve the existing parameters in literature. However, we
present these for exposure as we expect that further analysis of our techniques may improve
the parameters.
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It should also be noted that the existence of real Hadamard matrix of order 4m implies the
existence for Affine Resolvable (4m, 2m, 2m− 1)-BIBD [93, 87]. Thus we have the following
result.

Proposition 4.4.1. Consider that a real Hadamard matrix of order 2m (m > 1) exists.
Then for d = 4m, we can construct 4m − 1 many β-ARMUBs where β ≤

√
m. Further,

∆ = 1√
d
×
{

0, 2√
m
, 4√

m
, . . . , m√

m

}
, σ ≤ 1

2
, τ ≤ 1

2
and the sparsity ϵ = 1

2
.

Proof. The case for m = 1, i.e., d = 4, is covered in Corollary 4.4.1. Hence we assume
m > 1 here. If there exists a Hadamard matrix of order 2m, then for m > 1, m must be
even. We can use this Hadamard matrix of order 2m to construct Hadamard matrix of order
4m by taking its tensor product with the Hadamard matrix of order 2 [48]. Then using
Hadamard matrix of order 4m, we obtain Affine Resolvable (4m, 2m, 2m− 1)-BIBD [93, 87].
Now following the Construction 4.3.1 and choosing the given real Hadamard matrix of order
2m in step 3, we obtain the desired ARMUB.

Since the design is Affine Resolvable, there are exactly same number of points are common

between blocks from different resolution, which is k2

v
= (2m)2

4m
= m implying β =

√
m. This

also implies that the inner product between vectors from different basis would be of the form
1
2m

× w, where w will be the sum of m many 1’s putting ± before each 1. Since m is even

and d = 4m, this implies ∆ =
{

0, 2
2m
, 4
2m
, . . . , m

2m

}
= 1√

d
×
{

0, 2√
m
, 4√

m
, . . . , m√

m

}
.

In order to estimate σ, note that the maximum inner product between the vectors from

different bases is m
2m

= 1
2

which implies σ2 ≤
(

1√
4m

− 1
2

)2
= 1

4
+ 1

4m
− 1√

4m
≤ 1

4
. Similarly

τ ≤
∣∣∣ 1√

4m
− 1

2

∣∣∣ ≤ 1
2

and the sparsity ϵ = 1 − k
d

= 1
2
. Note that this k is the block size.

In a first look, it appears that ARMUBs with β =
√
m might not be very interesting.

However, using this construction we get d − 1 many ARMUBs and β is not very large
for certain moderate values of d. Let us take the example for d = 64 = 4 · 16 and thus,
β ≤ 4. Here we obtain 63 ARMUBs. However, for the same dimension, our construction
in the earlier work [67] provided only three β-ARMUBs respectively with β ≤ 4. This is a
significant improvement for this specific d = 64. For larger dimensions, this construction will
provide significantly more number of ARMUBs than [67] but the value of β will be greater
than 4.

Now we present the case for d = 2s, where the existence of Hadamard matrix is guaran-
teed.

Corollary 4.4.5. For d = 2s, s ≥ 2 there exist 2s − 1 many β-ARMUBs where β ≤
√

2s−2,
with σ ≤ 1

2
, τ ≤ 1

2
and with sparsity ϵ = 1

2
.
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Proof. There always exists a Hadamard matrix of the order 2n where n ∈ N (Sylvester
construction [48]). Then in the Affine Resolvable (4m, 2m, 2m−1)-BIBD, one can substitute
m = 2s−2 with s > 2, and the result follows immediately.

We conclude this section with the following remark that compares our construction idea
for exact real MUBs with [98].

Remark 4.4.1. Consider that w many MOLS(q) are available. Such a structure can be used
to construct an RBD (X,A), such that |X| = q2 having w+ 2 parallel classes, each having q
blocks of constant size q and any two blocks from different parallel classes will have exactly
one point in common. This idea follows from [93, Section 6.4.1, Theorem 6.32] in relating
MOLS and Affine Plane. One may note that such an RBD will provide w + 2 MUBs in Cd

following our Construction 4.3.1. Further, if real Hadamard matrix of order q exists, then
the construction will provide w+ 2 real MUBs in Rd. Our numerical results related to exact
MUBs in this direction will be the same as [98], but our construction is different and we
have more flexibility of using different suitable unitary matrices. Further, our main focus
here is the relaxed model of approximate MUBs, rather that exact ones, and their we have
the opportunity of different avenues to explore through Construction 4.3.1, which we could
not see immediately through the work of [98].

In the next section we explore the designs which are not balanced, and that provide us
further results in this direction.

4.5 ARMUBs using Resolvable Block Designs that are

not Balanced

Now we will focus on resolvable block designs which are not balanced. This implies that
either one or both the conditions given in 2 or 3 of BIBD (Definition 2.3.3) are not satisfied.
However, these kinds of customized designs, for the purpose of obtaining ARMUBs provide
generic and improved results. In the first construction, we use multiple Affine Resolvable
BIBDs which are identical, and in the next one we add new elements in the design.

Theorem 4.5.1. Consider d = sq2, where q is a prime power and sq ≡ 0 mod 4. Assuming
a real Hadamard matrix of order sq exists, we can construct q+ 1 many β-ARMUBs, where
β ≤

√
s. Further, σ ≤

√
s
d
, τ = 1√

d
for 1 ≤ s ≤ 4 and τ =

√
s−1√
d

for s > 4 and the sparsity

ϵ = 1 − 1
q
.

Proof. We split d = sq2 orthonormal vectors in s sets of q2 vectors. Now for each set of
q2 vectors, one can construct Affine Resolvable (q2, q, 1)-BIBD, where each one of them will
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have all blocks of size q and total q+ 1 many parallel classes, such that blocks from different
parallel classes will have only one point in common. Now, consider the union of s such
ARBIBDs, each having an identical structure, but different points. It will give resolvable
design of sq2 points, with each block of size of sq, consisting of q + 1 many parallel classes,
such that blocks from two different parallel classes will have exactly s points in common.
If we assume that Hadamard matrix of order sq exits, that can be used to convert each
parallel classes into orthonormal bases as in Construction 4.3.1. Thus we obtain q+ 1 many
β-ARMUBs.

To explain the values in ∆, note that inner products between the vectors from different
parallel classes would be of the form 1

sq
×w, where w will be the sum of s many 1’s putting

± before each 1. This implies ∆ =
{

0, 2
sq
, 4
sq
, . . . , s

sq

}
if s is even and ∆ =

{
1
sq
, 3
sq
, 5
sq
, . . . , s

sq

}
if s is odd. Hence β =

√
d
q

=
√
s.

The largest inner product value between the vectors from different parallel classes is equal

to 1
q
. Further, we have max

{
1√
d
,
∣∣∣ 1√

d
− 1

q

∣∣∣} is equal to 1√
d

for 1 ≤ s ≤ 4 and is equal to 1
q
− 1√

d

for s ≥ 4. Hence σ2 ≤
(

1√
sq
− 0
)2

for 1 < s ≤ 4, and σ2 ≤
(

1√
sq
− 1

q

)2
, for s ≥ 4 which we

can conveniently state as σ ≤
√

s
d
. In order to ascertain τ , we have max

{
1√
d
,
∣∣∣ 1√

d
− 1

q

∣∣∣} is

equal to 1√
d

for 1 ≤ s ≤ 4 and is equal to 1
q
− 1√

d
for s ≥ 4. Hence τ =

√
s−1√
d

for s > 4, else

τ = 1√
d

for s ≤ 4. The sparsity ϵ = 1 − k
d

= 1 − 1
q
, where k is the block size.

This case subsumes the result in the previous chapter[67] for s = 16 and a prime q, i.e.,

d = (4q)2. That is, with the method of [67], one can obtain q + 1 =
√
d
4

+ 1 ARMUBs such
that for two vectors from different orthogonal bases, the inner product will be upper bounded
by 4√

d
. This is the same quality result presented in Corollary 3.2.1 in the previous chapter

(also available in [67, Corollary 1]). The clear extension in our case is that, here u can be
any power of prime, whereas the construction given by [67] (as explained in the previous
chapter) was applicable only to d = (4q)2 for a prime q. For example, using above corollary,
we can construct β-ARMUBs with β ≤ 4, even for dimensions 4 × 9, 4 × 25 etc. However,
one can not construct β-ARMUBs for these dimensions using the construction given in the
last chapter. Thus this result subsumes the result of our previous work [67].

Now we present a result, where we can improve the number of MUBs as well as upper
bound the inner product value. This we explore for a case where real Hadamard matrices
exist. For this we have the following result.

Theorem 4.5.2. Consider d = q(q + 1) such that q is a prime power and q ≡ 3 mod 4.

Then we can construct (q + 1) many ARMUBs with ∆ =
{

0, 1
q+1

, 2
q+1

}
, β = 2

√
q
q+1

and
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σ2
o

(
1 − 1√

d

)
≤ σ2 ≤ σ2

o

(
1 + 1√

d

)
, where σ2

o = 2
d

(
1 −

√
q
q+1

)
. Further, τ = 1√

d
and the

sparsity is given by ϵ = 1 − 1
q
.

Proof. Consider an Affine Resolvable (q2, q, 1)-BIBD. There will be r = q+1 parallel classes,
consisting of q blocks each having q elements. Any two blocks from different parallel classes
will have only one point in common. Add q more elements in the set X, which implies
|X| = q2 + q. Add these q elements, one in each block of every parallel class. Now all the
parallel classes will have blocks of size q+1 and the number of blocks will remain unchanged,
which is q. In this situation, any block in a parallel class will have one element in common
with q−1 blocks and two elements in common with the remaining block of any other parallel
class. Hence we obtain a set of q + 1 parallel classes each having q blocks and each block
consisting of q + 1 elements. This is the desired resolvable design.

Since q ≡ 3 mod 4, the Paley construction [75] will always provide real Hadamard matrix
of order q + 1. Hence we use this for constructing ARMUBs following Construction 4.3.1.
Note that the blocks from different parallel classes have maximum two points in common,

implying ∆ =
{

0, 1
q+1

, 2
q+1

}
. In order to calculate σ, note that every block has only one

point in common with q − 1 blocks of any other parallel class and two points in common
with the remaining blocks of that parallel class. Thus, any vector from one basis will have
the inner product value of 1

q+1
with (q− 1)(q+ 1) vectors and will have inner product either

0 or 2
q+1

with (q + 1) vectors of any other orthogonal basis. Thus, we have

(
1√

q(q + 1)
− 1

q + 1

)2

(q − 1)(q + 1) +

(
1√

q(q + 1)
− 2

q + 1

)2

(q + 1) ≤ d× σ2

≤

(
1√

q(q + 1)
− 1

q + 1

)2

(q − 1)(q + 1) +

(
1√

q(q + 1)
− 0

)2

(q + 1).

This simplifies to σ2
o

(
1 − 1√

d

)
≤ σ2 ≤ σ2

o

(
1 + 1√

d

)
where σ2

o = 2
d

(
1 −

√
q
q+1

)
.

On the other hand, there will be vectors between two different orthonormal bases which
will also be orthogonal, corresponding to blocks having two points in common such that one
gives +1 and another provides −1 in the inner product or vice versa, thereby, making the
inner product between the vectors 0. Hence τ = 1√

q(q+1)
= 1√

d
and the sparsity would be

given by ϵ = 1 − 1
q
.

This result clearly shows that there are ⌈
√
d⌉ real MUBs with β < 2 and it substantially

improves the result of the last chapter [67] from both in number of MUBs as well as in terms
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of upper bound of the inner products. As numerical examples, for d = 12, 56, there would
be respectively 4, 8 ARMUBs of the above type.

For clarity, let us present the case for q = 3, i.e., d = 3(3 + 1) = 12. To begin with,
consider the design of Affine Resolvable (32, 3, 1)-BIBD. Below we represent each parallel
class as 3 × 3 matrix, where each row represent one block of the parallel class. Hence there
would be 4 such matrices. Writing them explicitly

P1 =

1 5 9
2 6 7
3 4 8

 , P2 =

1 6 8
2 4 9
3 5 7

 , P3 =

1 4 7
2 5 8
3 6 9

 , P4 =

1 2 3
4 5 6
7 8 9

 .

Now add three more points in the design, namely {10, 11, 12}, and as stated, one point is
added in each block of every parallel class. The resulting parallel classes would be

P1 =

1 5 9 10
2 6 7 11
3 4 8 12

 , P2 =

1 6 8 10
2 4 9 11
3 5 7 12

 , P3 =

1 4 7 10
2 5 8 11
3 6 9 12

 , P4 =

1 2 3 10
4 5 6 11
7 8 9 12

 .

Above is the desired RBD, consisting of four parallel class, each having 3 blocks of constant
size 4, such that between any two blocks from different parallel classes, either one or two
points will be in common. The existence of real Hadamard matrix of order 4 will produce four
ARMUBs here, with the inner product value bounded by 2

q+1
= 2

4
= 1

2
< 2√

d
= 2√

12
= 1√

3
.

As a passing remark, in the above construction of RBD, we can add q elements as one
block in say, (q + 1)-th parallel class, and then one element of this block, into each block of
all other parallel classes. This will make all the parallel classes to have q blocks of size q+ 1
except the (q+1)-th parallel class which will have q+1 blocks each having size q. Each block
of this parallel class will have only one element in common with any block of other parallel
classes. Since q is a prime power, and if it is odd, we need a complex Hadamard matrix
to convert (q + 1)-th parallel class into an orthonormal basis. This complex orthonormal
basis would be mutually unbiased with all the other q sets of real orthonormal bases so
constructed.

4.6 Conclusion

In this chapter we have described a generic approach that connects an object of combinatorial
design, namely Resolvable Block Design (RBD) with Mutually Unbiased Bases (MUBs)
which are structures on Hilbert spaces. We have presented a method which takes an RBD as
input and use this to construct the orthonormal bases. The parallel classes of RBD play the
most important role here. Each orthonormal basis is constructed out of a parallel class, and
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the parameters of the approximate MUBs are dependent on that of the parallel classes. Our
construction method also exploits unitary matrices, dependent on the block sizes of a parallel
class to generate the Approximate Real MUBs (in some cases MUBs too, but those are not
main focus of this work). Throughout this chapter, we mostly concentrate on Hadamard
construction while using the unitary matrices.

To characterize the approximate nature of the MUBs, we define certain parameters
namely β, ∆, σ and τ . It has been shown that in most of the cases variance goes to zero
as dimension increases, hence making the approximation quite close to the actual MUBs.
In certain cases, where the variance is zero, exact MUBs are obtained. The sparsity ϵ has
been characterized as the simple ratio of the number of zero elements divided by the total
elements in the matrix that corresponds to a basis. In general, our construction provides
very high sparsity and we obtain ϵ = 1 − 1√

d
, in most of the cases.

In summary, we provide a generic approach for the first time to obtain ARMUBs for a
large class of parameters that were not known earlier. The kinds of constructions we studied
are different from the existing efforts in this domain of research. Thus, it will be interesting if
these ideas can be extended further to obtain ARMUBs with improved inner product values
or exact MUBs with more numbers than what is available in the state of the art literature.
In this direction we present the idea of Almost Perfect MUBs in the next chapter where the
conditions are more restrictive in terms of inner products.
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Chapter 5

Almost Perfect MUBs

In this chapter we present a formalization of a specific subclass of Approximate MUBs.
We propose the notion of Almost Perfect MUBs (APMUBs), where the absolute value of
the inner product | ⟨v1|v2⟩ | can be restricted to two values, one being 0 and the other

≤ 1+O(d−λ)√
d

, such that λ > 0 and the numerator 1 + O(d−λ) ≤ 2. The vectors so constructed

has the important features that large number of its component are zero (similar to what
we noted in the previous chapter) and more than that, the non-zero components are of
equal magnitude. Our techniques in this chapter are based on combinatorial structures
related to Resolvable Block Designs (RBDs) as in the previous chapter, but we exploit the
combinatorial structures more cleverly to produce large number of APMUBs having very
good parameters for composite dimensions.

First we show that for a general composite dimension d = k × s, k, s ∈ N, with k ≤
s ≤ 4k, one can construct at least N(s) + 1 many APMUBs, where N(s) is the number of
Mutually Orthogonal Latin Squares (MOLS) of order s. Even when restricted to Rd, we can
construct similar number of real APMUBs, whenever real Hadamard matrix of order k can
be constructed. Further, if s = q, where q power of prime, we have N(q) = q − 1. This
enables us to construct q ∼ O(

√
d) many APMUBs.

More appropriate and novel combinatorial designs are presented in this regard that extend
to composite dimensions of the form d = (q − e)(q + f), e, f ∈ N, with 0 ≤ f ≤ e and q
some power of prime. Our technique produces O(

√
d) many APMUBs for these cases, when

e, f are constants. We estimate that, such kind of composite dimensions are at least as
numerous as the prime numbers in the set of positive integers N. Our result has important
implications towards Bi-angular vectors. We show that, APMUBs so constructed in Cd or
Rd, provide sets of Bi-angular vectors which are of the order of O(d3/2) in numbers (here the
upper bound is O(d2)). These constructions of APMUBs have several interesting properties
and the resulting structures may have applications in quantum information, coding theory,
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weighing matrices and association schemes.

5.1 Introduction

In the two previous contributory chapters, we have used different combinatorial structures
to produce Approximate MUBs. We obtain a significant number of orthonormal bases on
dimension d such that for any two vectors from two different bases, the inner product may
deviate from 1√

d
. Now accepting the approximation, what could be the logical way of for-

malization. In this direction two points are important.

1. Can we restrict the nonzero values in [ 1√
d
, 2√

d
], and more towards 1√

d
?

2. Can we have only two-valued spectra? That is, for inner products between the vectors
from two different matrices, the magnitude of nonzero values should be the same. In
fact, some of the values may be zero too considering the vectors from two matrices.

We answer both questions affirmatively. The second point can be seen as follows. In the set
of an orthonormal basis, any two vectors are perpendicular to each other. As d grows larger,
it is clear that β√

d
becomes small, for 1 ≤ β ≤ 2. Now if the inner product between two

vectors from different bases is zero, then they are orthogonal. Else, if it is β√
d
, then also being

very small, the angle between them is close to a right angle. Now each basis has d many
vectors, and for certain parameters we show that we can have O(

√
d) such APMUBs. Thus,

in total we obtain O(d3/2) vectors which are either perpendicular or almost perpendicular
(having the same angle) to each other. These are known as Bi-angular vectors. Such vectors
have received serious attention in literature [73], and constructions have been proposed for
O(d2) vectors. However, the angles are smaller in the construction of [73] compared to our
results that are achieved through the APMUBs.

That is, our formalization of the approximation provides connections to interesting com-
binatorial structures. Let us now explain the contribution and organization of this chapter
in more details.

5.2 Contribution & Organization

In this chapter we begin with Section 5.3 to present a background of related combinatorial
objects. Then towards the constructions, in Section 5.4, we show bounds on the values
of certain parameters, expressed in terms of the block size k and number of elements in
the RBD, i.e., d. In this regard, we define a combinatorial quantity T (d, k, µ), relevant to
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our analysis, which can be of its own independent interest. Thereafter in Lemma 5.4.3 we
describe an interesting class of RBDs which can be constructed from MOLS(s) yielding µ = 1
and r = N(s) + 2. A constructive proof to obtain the same from MOLS(s) has also been
given and in Lemma 5.4.4. We further show that the converse of Lemma 5.4.3 is also true.
The results are further explained with illustrative examples.

Then we consider the Almost Perfect MUBs (APMUBs) and some generic ideas of con-
struction in Section 5.5. The basic motivation and its relationship with Bi-angular vectors
are presented in Section 5.5.1. In Section 5.5.2, we analyze certain properties of the AMUBs
which can be constructed using RBDs having blocks of constant size. In this direction, we
consider RBD(X,A) with |X| = d = k × s = (q − e)(q + f) and A with resolution r, where
each block is of size (q − e). We study the asymptotic behaviours of the parameters of
AMUBs thus generated. It is also shown that our construction can provide APMUBs only
when µ = 1, therefore putting strong constraints over the nature of the RBDs required for
this kind of constructions.

Section 5.6 contains our algorithms towards constructing RBDs that can be consequently
used for obtaining APMUB’s with parameters that could be achieved for the first time. We
first show that whenever the dimension d is a composite number and can be expressed as
k × s, k ≤ s, such that β =

√
s
k
≤ 2, one can construct N(s) + 1 many APMUBs, where

N(s) is the number of MOLS(s). We refer to this as the MOLS Lower Bound Construction
for APMUBs. Since a composite number d can be factored in multiple ways ensuring β ≤ 2,
there can be more than one MOLS Lower Bound Constructions for a dimension d. It is to be
noted that if s = q, some power of prime, then N(q) = q−1. Hence in such situations we get

q many APMUBs. The best known asymptotic bound for N(s) is given by N(s) → O(s
1

14.8 ),
which generally results into a small number of APMUBs. In this direction we show that
when d = (q − e)(q + f), e, f ∈ N and e ≥ f , where q is some power of prime, we can
obtain O(q) many APMUBs. Illustrative examples to describe the above construction have
also been provided. In addition to this, we have highlighted that for a certain form of the
composite dimension d, it might be hard to obtain construction techniques for developing
APMUBs that could beat the MOLS Lower Bound Construction.

5.3 Background

Let us recapitulate a few definitions that were already discussed in the background (Chap-
ter 2). We describe it again here towards better consistency in following the technical results
in this chapter. A combinatorial block design is a pair (X,A), where X is a set of elements,
called elements, and A is a collection of non-empty subsets of X, called blocks. A combinato-
rial design is called simple, if there is no repeated block in A. Generally all the combinatorial
designs are assumed to be simple, i.e., they do not have any repeated blocks.

66



Definition 5.3.1. A combinatorial design (X,A) is a t-(d, k, λ) design if each block in A is
of size k, and that any set of t elements from X, appears as subset of exactly λ blocks in A.
Note that here t, d, k and λ are positive integers with 1 < k < d.

As we have already discussed, Resolvable Block Design (RBD) is a special kind of Com-
binatorial design, where the set A can be partitioned into parallel classes which are called
resolutions of A. This combinatorial structure was proposed in the context of Balanced
Incomplete Block Design [15, 16, 17]. Later various generalizations could be achieved as
explained in varied literatures [88, 56, 78, 53].

Definition 5.3.2. Combinatorial design (X,A), is called a Resolvable Block Design (RBD),
if A can be partitioned into r ≥ 1 parallel classes, called resolutions. Where a parallel class
in design (X,A) is a subset of the disjoint blocks in A whose union is X.

As discussed earlier, there is a special kind of RBD called the Affine Resolvable BIBD
(ARBIBD) [16, 17, 87] (see also [93, Chapter 5]). It is well known that whenever q is some
power of a prime, one can construct (q2, q, 1) ARBIBD. An Affine plane of order q is an
example of this. Here |X| = q2, and A consists of q(q+ 1) blocks, which can be resolved into
q + 1 many parallel classes. Each parallel class consists of q many blocks of constant size q.
Most importantly, any pair of blocks from different parallel classes has exactly one element
in common. Affine Planes are known only when q is power of a prime. For more details, one
may refer to [93, Sections 2.3, 5.2, 5.3, 6.4].

Let us define a few notations that we will use in the context of this chapter. For
RBD(X,A), with |X| = d, we will indicate the elements (also called elements) of X by
simple numbering, i.e., X = {1, 2, 3, . . . , d}. Here r will denote the number of parallel
classes in RBD and parallel class will be represented by P1, P2, . . . , Pr. The blocks in the
lth parallel class will be represented by {bl1, bl2, . . . , bls}, indicating that the lth parallel class
has s many blocks. Since in our entire analysis we will be using RBDs with constant block
size, let us denote the block size by k. Further, we denote the number of blocks in a parallel
class of RBD by s. Since in our analysis we are making of use of RBDs with constant block
size, hence each parallel class will always have s many blocks and |X| = d = k × s. The
notation blij would represent the jth element of the ith block in the lth parallel class. Further,
the notation bli would represent ith block of lth parallel class. Note that blij ∈ X. In every
block, we will arrange the elements in increasing order, and we will follow this convention
throughout the paper, unless mentioned specifically. Thus blij ≤ bli,j+1, ∀j. This will be
important to revisit when we convert the parallel classes into orthonormal bases. Another
important parameter for our construction is the value of the maximum number of common
elements between any pair of blocks from different parallel classes. We denote this positive
integer by µ. Note that µ ≥ 1 for any RBD, with r ≥ 2. One may further refer to Lemma
5.4.2 of Section 5.4 in this regard. We also like to refer to Section 2.4 in Chapter 2 for the
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background on MOLS (Mutually Orthogonal Latin Square). With this, let us describe a few
technical results.

5.4 Some Important Technical Results

Let us now consider a counting of combinatorial objects that is relevant to us.

Definition 5.4.1. Let T (d, k, µ), 0 ≤ µ < k < d be the maximum number of subsets each of
size k, that can be constructed from d distinct objects, such that, between any two different
subsets there is a maximum of µ objects in common.

First we should relate with the error correcting codes, as this can be seen as the maximum
number of codewords of the binary constant weight codes of length d and weight k with
minimum distance 2(k − µ). For more details in this regard one may refer to [51, Theorem
2.3.6], but we will only restrict here to some technical results only. One may immediately
note that T (d, k, 0) =

⌊
d
k

⌋
, and T (d, k, k − 1) =

(
d
k

)
. For arbitrary d, k, µ ∈ N, the following

result provides an estimate of T (d, k, µ).

Lemma 5.4.1. T (d, k, µ) ≤
⌊

( d
µ+1)

( k
µ+1)

⌋
=
⌊
d!(k−µ−1)!
k!(d−µ−1)!

⌋
. The upper bound of

⌊
d!(k−µ−1)!
k!(d−µ−1)!

⌋
is

achieved whenever (µ + 1) − (d, k, 1) design exists and in such cases T (d, k, µ) is the same
as the number of blocks in (µ+ 1) − (d, k, 1) design as in Definition 5.3.1.

Proof. Given a set of d distinct elements, we like to construct the maximum number of
subsets each of size k, such that any two subsets has µ elements in common. Let us label
these blocks as {b1, b2, . . . br}, with r = T (d, k, µ).

Now consider all the (µ + 1)-element subsets of d distinct elements. They will be
(

d
µ+1

)
in numbers. Now consider the blocks bi and bj. Since there are a maximum of µ elements
in common, any (µ+ 1)-element subset of d elements cannot exist, which occur in both the
blocks bi and bj. Since each block bi is of size k, the number of (µ+1)-element subsets which
can be constructed by the k elements in bi is

(
k

µ+1

)
. Let us denote this set by Si. Similarly for

block bj the number of (µ+ 1)-element subsets which can be constructed with its k elements
is
(

k
µ+1

)
. Let us denote this set by Sj. We have already seen Si∩Sj = ϕ, else there would be

µ+ 1 element common between bi and bj. Now since there are r such blocks each of size k,
hence |S1| + |S2| + . . . |Sr| = r

(
k

µ+1

)
. This must be less than or equal to

(
d

µ+1

)
, which is the

maximum possible (µ+1)-element subsets that can be constructed from d distinct elements.

This implies r
(

k
µ+1

)
≤
(

d
µ+1

)
⇒ T (d, k, µ) = r ≤

⌊
( d
µ+1)

( k
µ+1)

⌋
=
⌊
d!(k−µ−1)!
k!(d−µ−1)!

⌋
.
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To see the second part of the lemma, note that t − (d, k, 1) design is a design (X,A)
where A contains the subsets of X called blocks, such that |X| = d and each block contains
exactly k elements. Every t-element subset of X is contained in exactly one block. Hence
this implies that any two blocks of the design has maximum t − 1 elements in common.
Thus it immediately follows that if (µ+ 1)− (d, k, 1) design exists, then blocks of the design
satisfies the property of T (d, k, µ), and since number of blocks in (µ + 1) − (d, k, 1) design

is
( d
µ+1)

( k
µ+1)

[93, Chapter 9, Theorem 9.4 and the following observation], which is exactly the

upper bound of T (d, k, µ) as proven above.

The upper bound of T (d, k, µ) is achieved whenever a (µ + 1) − (d, k, 1) design exists,
which is known for many values of 0 ≤ µ < k < d. This implies that the bound for T (d, k, µ)
given by the above result is tight. However, getting an exact value/expression of T (d, k, µ)
appears to be an open and challenging problem.

To construct the AMUBs, our focus has been on RBDs with constant block size. In this
connection we now focus on few results that are relevant to our constructions of APMUBs in
Section 5.6. Following is a lemma related to an RBD providing a bound for µ and r in terms
of the block size and the number of blocks in parallel classes where, as defined previously,
µ is the maximum number of common elements between any pair of blocks from different
parallel classes and r is the number of parallel classes.

Lemma 5.4.2. Consider an RBD(X,A) with |X| = d = k × s where k, s ∈ N, consisting of
r > 1 parallel classes, each having blocks of size k. Then µ ≥ ⌈k

s
⌉, where µ is the maximum

number of common elements between any pair of blocks from different parallel classes and
r ≤ T (d− 1, k − 1, µ− 1). Further, if µ = 1, then r ≤ ⌊ d−1

k−1
⌋ = s+ ⌊ s−1

k−1
⌋.

Proof. Since r > 1, consider any pair of parallel classes of RBD say (Pl, Pm). Denote the
blocks of Pl be as bl1, b

l
2, . . . , b

l
s. Since blocks are of constant size ⇒ |bli| = k and the blocks

belonging to the same parallel class have no element in common, ⇒ bli ∩ blj = ϕ ∀ i, j =
1, 2, . . . , s and X = bl1 ∪ bl2 ∪ . . . ∪ bls, |X| = k × s. Similar relations will hold for blocks of
any other parallel class.

Consider any block of Pl, say bli. Since, µ = maxm |bli ∩ bmj |, we have bli ∩ bmj ≤ µ, ∀ j =
1, 2, . . . , s. Since X = bm1 ∪ bm2 ∪ . . . ∪ bms , hence,

∑s
j=1 |bli ∩ bmj | = |bli| = k. We also have∑s

m=1 |bli ∩ bmj | ≤
∑s

m=1 µ = µs ⇒ k ≤ µs. Since k, s, µ ∈ N, we get µ ≥ ⌈k
s
⌉. This implies

minimum value of µ = 1 which is possible only if k ≤ s and on the other hand if k > s, then
minimum value of µ = 2. Thus, for µ = 1, we must have k ≤ s, i.e., number of blocks must
be greater than or equal to the block size of the RBD.

To obtain a bound on r, fix an element, say x ∈ X. Since the blocks of a parallel class are
mutually disjoint and their union is X, each parallel class will have exactly one block which
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will contain x. Collect all the blocks that contain the element x and we will obtain a set of
r such blocks. Denote this set by S. Now, remove x from every block in the set S. Hence S
will consist of blocks of size k − 1, the maximum number of common elements between any
two blocks in S would be now (µ− 1) and the total number of elements contained in these
r blocks will be ≤ (d − 1). Therefore, we obtain r ≤ T (d − 1, k − 1, µ − 1). Thus if µ = 1
we have r ≤ T (d− 1, k − 1, 0) = ⌊ d−1

k−1
⌋ = ⌊ s·k−1

k−1
⌋ = s+ ⌊ s−1

k−1
⌋.

We will see that, using our construction method for APMUBs, the necessary condition
on RBDs is µ = 1. Hence our effort will be to construct RBDs with µ = 1. For this to
happen, k ≤ s and r ≤ s+ ⌊ s−1

k−1
⌋.

5.4.1 Results relating to MOLS

We will now consider a class of Resolvable Block Designs (X,A) such that |X| = s2, which
can be constructed from a set of w-MOLS(s). Here A consists of blocks having constant size
s, which can be resolved into w + 2 many parallel classes, each having s many blocks, such
that blocks from two different parallel classes have exactly one element in common. Through
the following construction, we explain a simple and direct way to convert a set of w many
MOLS(s) into such an RBD(X,A).

Construction 5.4.1. To construct an RBD having w + 2 number of parallel classes from
w-MOLS(s) using the following steps.

1. Define Mref , which is a s×s array where each cell consists of one of the elements from
X = {1, 2, . . . , s2}, as follows:

Mref =


1 2 3 . . . s

s+ 1 s+ 2 s+ 3 . . . 2s
2s+ 1 2s+ 2 2s+ 3 . . . 3s

...
...

...
. . .

...
(s− 1)s+ 1 (s− 1)s+ 2 (s− 1)s+ 3 . . . s2

 , Lk =


lk11 lk12 . . . lk1s

lk21 lk22 . . . lk2s
...

...
. . .

...
lks1 lkn2 . . . lkss


2. Consider a Latin Square Lk, from the set of w-MOLS(s). Let (Lk)ij = lkij as indicated

above.

3. Corresponding to the Latin Square Lk, construct a parallel class Pk consisting of s
disjoint blocks bkt , each of size s as follows,

bkt = {(Mref )ij : lkij = t}, where i, j ∈ {1, 2, . . . , s}.
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Each row of the the Latin Square is a permutation of {1, 2, . . . , s}. Hence, there will be a
pair (i, j) in each row for which lkij = t. Thus, the blocks P k

t will have a total s elements,
one from each row and column of Mref . Since t = {1, 2, . . . , s}, there will be s blocks.
Thus we are essentially collecting all the elements ofMref corresponding to a particular
symbol t of Lk in one block bkt , and together the blocks bki where i = {1, 2, . . . , s} form
a parallel class Pk.

4. Repeat the above step for all Latin Squares in the set of w-MOLS(s), thereby giving w
many parallel classes.

5. Construct two more parallel classes, one using the horizontal rows of Mref , and other
using the vertical rows of Mref as follows:

P0 =
{

(1, 2, . . . , s), (s+ 1, s+ 2, . . . , 2s), . . . ((s− 1)s+ 1, (s− 1)s+ 2, . . . , s2)
}

P∞ =
{

(1, s+ 1, . . . , (s− 1)s+ 1), (2, s+ 2, . . . , (s− 1)s+ 2), . . . , (s, 2s, . . . , s2)
}

6. The RBD(X,A) with X = {1, 2, 3, . . . , s2} and A = {P0, P∞, P1, P2, . . . , Pw} is the
desired outcome.

Lemma 5.4.3. A set of w many MOLS(s) can be used to construct an RBD(X,A) such that
|X| = s2, consisting of constant block sizes, each having s elements, that can be resolved into
w + 2 many parallel classes. Here, any two blocks from different parallel classes will have
exactly one element in common.

Proof. We claim that, any pair of blocks from different parallel classes {P0, P∞, P1, P2, . . . Pw}
constructed above has exactly one element in common. Consider the tth and sth blocks of
kth and mth parallel classes respectively. Then

P k
t ∩ Pm

s = {(Mref )ij : lkij = t} ∩ {(Mref )ij : lmij = s}.

Now since Lk and Lm are the orthogonal Latin Squares, there will be exactly one pair (i, j)
such that, (Lk)ij = t and (Lm)ij = s. Hence exactly one element will be common between
the blocks P k

t and Pm
s .

From the construction of P0 and P∞, it is clear that any block has exactly one element
in common. Since any block of P k

t is picking one element from each row and each column of
Mref , each block of P k

t will have exactly one element in common with blocks of P0 and P∞,
which are collection of horizontal rows (P0) and vertical rows (P∞) of Mref .

We will now sketch the idea of the above method with a simple example to convert a
2-MOLS(5) into 4 parallel classes.
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Example 5.4.1. Let us consider the 2-MOLS(5) and Mref as follows.

L1 =


5 1 2 3 4
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3

 , L2 =


5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5
3 4 5 1 2

 ,Mref =


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

.
We use a 5× 5 Reference Matrix Mref consisting of elements indicated by {1, 2, . . . , 25}.

We put them in a simple row wise increasing sequence, which is to ensure that each element
occur only once in the matrix Mref . Now corresponding to each MOLS L1 and L2, we
construct a parallel class, as per the Construction 5.4.1, thereby forming blocks of P1 and P2

by picking elements from Mref .

P1 = {(2, 6, 15, 19, 23), (3, 7, 11, 20, 24), (4, 8, 12, 16, 25), (5, 9, 13, 17, 21), (10, 14, 18, 22, 1)} ,
P2 = {(2, 10, 13, 16, 24), (3, 6, 14, 17, 25), (4, 7, 15, 18, 21), (5, 8, 11, 19, 22), (1, 9, 12, 20, 23)} .

The remaining two parallel classes will be constructed using horizontal and vertical elements
of Mref as follows:

P0 = {(1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15), (16, 17, 18, 19, 20), (21, 22, 23, 24, 25)} ,
P∞ = {(1, 6, 11, 16, 21), (2, 7, 12, 17, 22), (3, 8, 13, 18, 23), (4, 9, 14, 19, 24), (5, 10, 15, 20, 25)} .

Let us now consider the construction in the other way, i.e., the converse.

Construction 5.4.2. Consider an RBD(X,A), where |X| = s2 and A consist of w + 2
numbers of parallel classes such that, each block of a parallel class is of a constant size s and
any pair of blocks from different parallel classes have exactly one element in common. Let us
denote the elements of X by {1, 2, . . . , s2}, parallel classes by {P0, P∞, P1, . . . , Pw}, and the
blocks of Pl by b

l
i. Since there are s blocks in each parallel class, therefore Pl = {bl1, bl2, . . . , bls}.

Let s distinct symbols for construction of the Latin Squares be denoted by Y = {y1, y2, . . . , ys}.
Now construct w-MOLS(s) using RBD(X,A) as follows.

1. Use P0 and P∞ to construct a reference matrixMref having elements from {1, 2, . . . , s2}
in the following manner:

Mref =


b01 ∩ b∞1 b01 ∩ b∞2 . . . b01 ∩ b∞s
b02 ∩ b∞1 b02 ∩ b∞2 . . . b02 ∩ b∞s

...
... . . .

...
b0s ∩ b∞1 b0s ∩ b∞2 . . . b0s ∩ b∞s

 .
HereMref contains all the elements of X exactly once. As any two blocks from different
parallel classes have exactly one element in common, if (Mref )ij = (Mref )lm then b0i ∩
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b∞j = b0l ∩ b∞m , and that implies all the blocks {b0i , b0l , b∞j , b∞m} have one element in
common. Here, b0i and b

0
l are the blocks in the Parallel class P0. Similarly, b∞j and b∞m

are the blocks of the parallel class P∞. Since blocks in a Parallel class are mutually
disjoint, this is not possible, i.e., (Mref )ij ̸= (Mref )lm.

2. Corresponding to the parallel class Pk, construct the Latin Squares Lk as follows

if (Mref )ij ∈ bkt then (Lk)ij = yt.

That is, we are substituting yt, wherever the element of the block bkt is appearing in
Mref to construct Lk. Note that Lk is a Latin Square. Since X = bk1 ∪ bk2 . . . b

k
s , for

every (Mref )ij there will be one bkt such that (Mref )ij ∈ bkt and since bki ∩ bkj = ϕ, i, j ∈
{1, 2, . . . , s}, for each (Mref )ij, there will be a unique bkt such that (Mref )ij ∈ bkt . Now
if Lk is not a Latin square, then there would be at least a pair of (i1, i2) corresponding
to which (Lk)i1j = (Lk)i2j or a pair of (j1, j2) corresponding to which (Lk)ij1 = (Lk)ijj .
Consider (Lk)i1j = (Lk)i2j. This implies if x1 = (Mref )i1j = b0i1 ∩ b∞j ∈ bkt and x2 =
(Mref )i2j = b0i2 ∩ b

∞
j ∈ bkt . Thus x1 and x2 ∈ b∞j . Hence |bkt ∩ b∞j | ≥ |{x1, x2}| = 2 as

x1 = (Mref )i1j ̸= (Mref )i2j = x2. This is a contradiction as there is exactly one element
common between the blocks of different parallel classes, here P∞ and P k. Similarly it
can be argued that (Lk)ij1 ̸= (Lk)ijj for any pair of (j1, j2).

3. Repeat the above step for each of the parallel class Pk, k = 1, 2, . . . , w, thereby con-
structing the set of w Latin squares viz {L1, L2, . . . , Lw}.

The converse of Lemma 5.4.3 is as follows.

Lemma 5.4.4. Given an RBD(X,A), where |X| = s2 and consisting of w+ 2 many parallel
classes such that, each block of a parallel class is of a constant size s and any pair of blocks
from different parallel classes have exactly one element in common. Then RBD(X,A) can
be used to construct w-MOLS(s).

Proof. We claim that the set of Latin squares L1, L2, . . . , Lw as constructed above are Mu-
tually Orthogonal Latin Squares of order s.

Recalling that a pair of Latin Squares L1 and L2 of same order and constructed from the
entries from the same set Y is called mutually orthogonal, if the ordered pair ((L1)ij, (L2)ij) ∈
{(Y, Y )} appears exactly once.

Consider the ordered pair, ((Lk)ij, (Lm)ij). Assume that, Lk and Lm are not Mutually
Orthogonal Latin Squares, which implies that, there would be at least one pair of Indices
{(i, j), (u, v) : (i, j) ̸= (u, v)} such that, ((Lk)ij, (Lm)ij) = ((Lk)uv, (Lm)uv) = (yp, yq). Let
yp = (Lk)ij ∈ bkp and yq = (Lm)ij ∈ bmq . This implies (Mref )ij ∈ bkp and bmq . Similarly,
yp = (Lk)uv ∈ bkp and yq = (Lm)uv ∈ bmq which implies (Mref )uv ∈ bkp and bmq . However, then
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we will have, bkp ∩ bmq = {(Mref )ij, (Mref )uv}, but if (i, j) ̸= (u, v) then (Mref )ij ̸= (Mref )uv.
Thus, |bkp ∩ bmq | ≥ 2 which contradicts the fact that |bkp ∩ bmq | = 1. Hence we conclude that
Lk and Lm are Mutually Orthogonal Latin Squares.

We now sketch the above method with an example to obtain a 2-MOLS(5) from 4 parallel
classes.

Example 5.4.2. If we proceed with the same set of 4 parallel classes obtained as in Example
5.4.1, it would naturally result into the same pair of MOLS(5), i.e., L1 and L2, with which
we have started Example 5.4.1. Therefore, we consider a different set of 4 parallel classes as
follows:

P0 = {(1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15), (16, 17, 18, 19, 20), (21, 22, 23, 24, 25)} ,
P∞ = {(1, 6, 11, 16, 21), (2, 7, 12, 17, 22), (3, 8, 13, 18, 23), (4, 9, 14, 19, 24), (5, 10, 15, 20, 25)} ,
P1 = {(1, 9, 12, 20, 23), (2, 10, 13, 16, 24), (3, 6, 14, 17, 25), (4, 7, 15, 18, 21), (5, 8, 11, 19, 22)} ,
P2 = {(1, 7, 13, 19, 25), (2, 8, 14, 20, 21), (3, 9, 15, 16, 22), (4, 10, 11, 17, 23), (5, 6, 12, 18, 24)} .

Note that, P0 and P∞ are taken as above for convenience, providing the Mref with el-
ements from X = {1, 2, . . . , 25}. Observe that any pair of blocks from different parallel
classes have exactly one element in common. Now corresponding to s = 5, we simply use
Y = {1, 2, 3, 4, 5} as five symbols to construct the Latin square. The remaining parallel
classes P1 and P2 are used to construct L1 and L2 respectively, which are the required 2-
MOLS(5). Following the Construction 5.4.2 above, we obtain Orthogonal Latin Squares L1

and L2 as follows:

Mref =


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

 , L1 =


1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

 , L2 =


1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1

 .

Based on this we now proceed for our generic construction idea in the next section.

5.5 Definition of APMUBs and general construction

ideas

In this section we first present the motivation of proposing such a combinatorial object and
then proceed with the general construction ideas.
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5.5.1 Motivation for defining APMUBs and its Characteristics

Consider a pair of orthonormal bases, sayMl and Mm. If they are β-AMUBs then | ⟨ψli|ψmj ⟩ | ≤
β√
d
, where β is bounded by some constant. The definition of β-AMUBs does not rule out

| ⟨ψli|ψmj ⟩ | = 0. Let for n1 pairs, the value of | ⟨ψli|ψmj ⟩ | be 0, and for the remaining pairs n2,

the value of | ⟨ψli|ψmj ⟩ | be non-zero (̸= 0). If | ⟨ψli|ψmj ⟩ | =
βij√
d

(say), then
βij√
d
≤ β√

d
. Since∑d

ij | ⟨ψli|ψmj ⟩ |2 = d. Therefore,

n1 · 0 +
d∑

i,j=1
|⟨ψl

i|ψm
j ⟩|≠0

(
βij√
d

)2

= d⇒ n2
β2
min

d
≤ d ≤ n2

β2
max

d
,

where, βmin = minij βij and βmax = maxij βij This implies,

n2
β2
min

d2
≤ 1 ≤ n2

β2
max

d2
.

Note that, n1 + n2 = d2 ⇒ n1
d2

= 1 − n2
d2

, then we have,

1 − 1

β2
min

≤ n1
d2

≤ 1 − 1

β2
max

. (5.1)

Note that, n1
d2

is the probability of randomly selecting two orthogonal vectors from two

different bases. Therefore, if βmin = β = βmax, i.e., ∆ = {0, β√
d
} and β = 1 + O(d−λ), λ > 0,

then, n1
d2

= O(d−λ), λ > 0. Hence, with these conditions on ∆ and β, the probability of any
pair randomly selected vectors from different orthonormal bases being orthogonal, tends to
0. Similarly, the probability that the angle between them is β√

d
tends to 1 asymptotically.

Since β → 1, as d increases, the bases of APMUBs would behave like MUBs in this sense.

Further note that, the vectors from a set of MUBs form a set of Bi-angular vectors as
∆ = {0, 1√

d
}. Now if we restrict ∆ = {0, β√

d
}, then basis vectors of AMUBs would form set of

Bi-angular vectors. Thus analysis of such AMUBs would also shed light on the study of Bi-
angular vectors that has close connections with Weighing Matrices, Error Correcting Codes,
Orthogonal spreads, Frame theory, Association Schemes etc. [20, 11, 12, 50, 72, 45, 24, 49, 59].

With this motivation, let us define Almost Perfect MUBs (APMUBs), which is the main
focus of this paper.

Definition 5.5.1. The set M = {M1,M2, . . . ,Mr} will be called Almost Perfect MUBs

(APMUBs) if ∆ =
{

0, β√
d

}
, i.e., the set contains just two values, such that β = 1+O(d−λ) ≤

2, λ > 0. When the bases are real, we call them Almost Perfect Real MUBs (APRMUBs).
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If the vectors are understood as states of a quantum system then the absolute value of an
inner product essentially indicates the overlap between these states. Hence randomly picking
two quantum states corresponding to different basis of above set of APMUBs, the overlap
will have magnitude equal to β√

d
with probability almost 1. With negligible probability it

will be 0 which corresponds to the quantum sates being orthogonal.

The sets of basis vectors of APMUB are Bi-angular as they are either orthogonal or have
constant absolute value of inner product, i.e., ∆ = {0, β√

d
}. Hence APMUBs form set of

Bi-angular vectors with 0 being one of the value of inner product. Thus, for any pair of
APMUBs in Cd(or Rd) we have the following lemma.

Lemma 5.5.1. Consider any pair of APMUBs in Cd with ∆ = {0, β√
d
}. Then any basis

vector of an APMUB will be orthogonal to (1− 1
β2 )×d many basis vectors of another APMUB

and will be at angle β√
d
with remaining d

β2 many basis vectors.

Proof. Let Ml and Mn be any pair of APMUBs over Cd and let {|ψli⟩ : i = 1, 2, . . . , d}
and {|ψmj ⟩ : j = 1, 2, . . . , d} be the corresponding basis vectors. Expressing |ψli⟩ as a linear
combination of {|ψmj ⟩ : j = 1, 2, . . . , d}, we get,

|ψli⟩ = αi1 |ψm1 ⟩ + αi2 |ψm2 ⟩ + . . .+ αid |ψmd ⟩ ,

where αij = ⟨ψli|ψmj ⟩. Since the bases consist of unit vectors, i.e., ⟨ψli|ψli⟩ = 1∀l, i hence,

⟨ψli|ψli⟩ = |αi1|2 + |αi2|2 + . . .+ |αid|2 =
d∑
j=1

| ⟨ψli|ψmj ⟩ |2 = 1.

Since ∆ = {0, β√
d
}, let us assume that |ψli⟩ is orthogonal, i.e., | ⟨ψli|ψmj ⟩ | = 0 with t1 many

basis vectors of Mm, and make an angle of β√
d

with remaining t2 = d− t1 many basis vectors
of Mm. Hence we have,

d∑
j=1

| ⟨ψli|ψmj ⟩ |2 = 1 ⇒ t1 · 0 + t2 ×
(
β√
d

)2

= 1 ⇒ t1 =

(
1 − 1

β2

)
× d and t2 =

d

β2
.

Since |ψli⟩ is arbitrary basis vector of M l, hence the result.

The above result tells that β2 can only be a rational number. Further, we have the
following corollary considering all the vectors in the set of APMUBs.

Corollary 5.5.1. Consider a set of r many APMUBs on dimension d with ∆ = {0, β√
d
},

that will produce r × d vectors. In this set, each vector will have (d− 1) + (r − 1)(1 − 1
β2 )d

many vectors as its orthogonal and (r − 1) d
β2 many vectors having the dot product β√

d
.
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The main contribution here is to show that one can construct O(
√
d) many APMUBs

with values of β slightly more than one. This says that our method can provide O(d
3
2 ) many

Bi-angular vectors where the dot product values are 0 and β√
d
. While there are constructions

of O(d2) Bi-angular vectors [73], but the angles we obtain with our methods are quite high
than the existing constructions. Further we achieve large sparsity and non-zero components
of equal magnitude. This is related to coherence property of unit norm vectors. This
shows that the construction of APMUBs may produce interesting results in related domain.
Further note that any set of Orthonormal Basis vectors always form Unit Norm Tight Frames
(UNTF). For a brief introduction on Frame theory and its application in Hilbert space one
may refer to [26, 25]. Thus the basis vectors of the set of APMUBs also constitute a Unit
Norm Tight Frames apart from being Bi-angular, whereas in general the Bi-angular vectors
constructed in [73] do not constitute tight frame. To see this, note that since APMUBs are
orthonormal basis vectors, hence any arbitrary vector |u⟩ can be uniquely expressed in terms
of each of the APMUBs. Thus in this context also the construction of APMUBs may be of
independent interest.

Let us now demonstrate how the construction of APMUBs bears implications to the
existence of mutually unbiased weighing matrices (MUWM).

Definition 5.5.2. Let W1 and W2 be a pair of weighing matrices of order d and weight
w. If W †

1W2 is again a weighing matrix with order d and weight w, then the pair is called
mutually unbiased weighing matrices (MUWM). Moreover, let W = {W1,W2, . . . ,Wr} be a
set of weighing matrices such that every pair is mutually unbiased. Then W is referred to as
a set of mutually unbiased weighing matrices. If W consists solely of real weighing matrices,
it is called a set of mutually unbiased real weighing matrices (MURWM).

Note that, the MUWMs generalize mutually unbiased Hadamard matrices. The study
of mutually unbiased weighing matrices of small orders has been conducted in [12], where
computer searches and some analytical methods were predominantly employed. Moreover,
in [47], mutually unbiased real weighing matrices have been used to study the binary codes.
In this regard, we like to underline the following technical result.

Lemma 5.5.2. The existences of the following combinatorial objects are equivalent:

1. r many APMUBs with ∆ =
{

0, β√
d

}
, and

2. (r − 1) many mutually unbiased weighing matrices of order d and weight d
β2 .

Proof. (1) ⇒ (2): Let {M1,M2, . . . ,Mr} be a set of r many APMUB. Choose any weighing

matrix, say M1 and consider the set
{
M †

1M1,M
†
1M2, . . . ,M

†
1Mr

}
= {I,W2,W3, . . . ,Wr}.
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SinceMi’s are unitary matrices, Wi are also unitary. Moreover, sinceM1 andMi are APMUB,

the elements of Wi = M †
1Mi are from the set

{
0, β exp(iθ)√

d

}
where θ ∈ R. Hence, Wi is a

weighing matrices with weight d
β2 .

Further, W †
iWj = (M †

1Mi)
†(M †

1Mj) = M †
iM1M

†
1Mj = M †

iMj. Since Mi and Mj are

APMUB, the elements of M †
iMj are from the set

{
0, β exp(iθ)√

d

}
where θ ∈ R, making W †

iWj

a weighing matrices with weight d
β2 . Hence, Wi and Wj are mutually unbiased weighing

matrices, for any pair of Wi,Wj. Thus {W2,W3, . . . ,Wr} is a set of (r−1) mutually unbiased
weighing matrices of weight d

β2 .

(2) ⇒ (1) The set of (r − 1) mutually unbiased weighing matrices along with identity
matrix (I), constitute the set of r many APMUB.

In the lemma above, when we restrict the matrices to APRMUB, we obtain a set of
mutually unbiased real weighing matrices (MURWM). It’s also noteworthy that this lemma
parallels the connection between MUBs and mutually unbiased Hadamard matrices (MUHM)
[39, Section 5], where r MUBs are equivalent to (r − 1) MUHMs and vice versa.

5.5.2 Our general construction ideas

Let us now refer to the construction method of orthonormal bases using RBDs as given
in [65, Section 3]. The construction idea of [65] is generic in nature, where unitary matrices
can be employed to construct orthogonal bases corresponding to each parallel class of an
RBD. However, here we will confine ourselves to the choice of Hadamard Matrices (which
are special kind of unitary matrices) for constructing orthonormal bases from parallel classes
of an RBD. This will enable us to bound β as per [65, Theorem 1], which is required for
constructing APMUBs with good parameters. The order of the Hadamard matrices used in
this construction must be same as the block size of each parallel class. With this method
in place for constructing the set of orthonormal bases from RBD, our work here primarily
focuses on constructing suitable RBDs, and consequently analyzing the parameters ∆, β and
ϵ of corresponding AMUBs constructed from them.

We focus on constructing RBDs, having constant block size. The constant block size
is essential if we want to use Hadamard matrices of same order (real or complex) for all
the blocks of the RBD. This is required as it renders all the components of the basis finally
constructed to be either zero or of a constant magnitude ( 1√

k
), which is the normalizing factor

of each basis vector. We will examine when they can satisfy the conditions of APMUBs
(APRMUBs). Our construction method results into vectors which are vary sparse with the
non-zero components of constant magnitude. This provides large sets of both real as well as
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complex AMUBs for the dimensions where it is known that not more that two or three real
MUBs exist.

We first present a generic result, which is dependent on the existence of suitable RBDs.
Thereafter, we explore the methods to construct such RBDs. We further show that if an RBD
satisfy µ = 1, then it will result into an APMUB. In fact, µ is the most critical parameter
which we control in the construction of RBDs. In all the constructions of AMUBs, the
number of elements in an RBD, i.e., |X| can be increased without bound whereas, the
parameter µ remains constant. All our constructions will have this property, which justifies
asymptotic analysis of the parameters for AMUBs thus constructed.

Theorem 5.5.1. Consider an RBD(X,A) with |X| = d = (q − e)(q + f), with q, e, f ∈ N.
If the said RBD(X,A) consists of r parallel classes, each having blocks of size (q− e), and if

0 ≤ (e+f) ≤
(
c2−µ2
µc

)
d

1
2 where c is some constant, then one can construct r many β-AMUBs

in dimension d, where β = µ
√

q+f
q−e ≤ c and ϵ = 1 − 1

q+f
. When µ = 1 and c = 2, we will

get r many APMUBs with β = 1 + e+f

2
√
d

+ O(d−1) ≤ 2 and ∆ = {0, 1
q−e}. Further, if there

exists a real Hadamard matrix of order (q − e), we can construct r many APRMUBs with
the same parameters.

Proof. We have |X| = (q−e)(q+f) with each parallel class having the block size k = (q−e).
Here µ is the maximum number of elements that are common between two blocks from

different parallel classes. Following [65, Theorem 1], this implies that, β = µ
√
d

q−e = µ
√

q+f
q−e .

Further, using the relation d = q2 + (f − e)q − ef , we obtain β = µ(
√

1 + x2 + x), where
x = e+f

2
√
d
. From the definition of β-AMUBs, β must be bounded for all values of d. Let this

bound for β be c, then µ(
√

1 + x2 +x) ≤ c⇒ 0 ≤ (e+ f) ≤
(
c2−µ2
µc

)
d

1
2 . This inequality can

be restated in terms of q as 0 ≤ (c2e+ µ2f) ≤ (c2 − µ2)q, which is the condition for β being
bounded above by the constant c.

In order to see the asymptotic variation of β in terms of q, we consider the expansion of
terms as follows:

β = µ

(
1 +

e+ f

2q
+

(e+ f)(3e− f)

23q2
+

(e+ f)(5e2 − 2ef + f 2)

24q3
+ . . .

)
. (5.2)

To understand the asymptotic variation of β in terms of d, we again use the relation d =
q2 + (f − e)q − ef to express q in terms of

√
d and thereafter, expanding the expression for

β = µ
√

q+f
q−e = µ(

√
1 + x2 + x), where x = f+e

2
√
d
, in terms of negative power of

√
d and we

obtain

β = µ

(
1 +

e+ f

2
√
d

+
(e+ f)2

23d
− (e+ f)4

27d2
+

(e+ f)6

210d3
− 5(e+ f)8

215d4
+ . . .

)
. (5.3)
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Thus, for a given e and f , for large d (or q), asymptotically β = µ + O(1
q
) = µ + O( 1√

d
).

Therefore, if µ = 1, the construction yields APMUBs, provided β ≤ 2 ⇒ c = 2 as we have
seen above that β is bounded by c. And in this situation we get 0 ≤ (e+ f) ≤ 3

2
d

1
2 .

To get the values of the set ∆, note that when µ = 1, there is maximum one element
common between any pair of blocks from different parallel classes. And since Hadamard
matrices are used for constructing orthonormal bases, thus | ⟨u|v⟩ | = 1

q−e corresponding to

the situations when one element is common between the pair of blocks and | ⟨u|v⟩ | = 0
corresponding to situation, when no elements are common between the pair of blocks. Thus
∆ = {0, 1

q−e}.

To calculate sparsity, note that for each vector constructed from a block of size k, we will
have exactly k many non-zero and d− k many zero entries, hence

ϵ =
d− k

d
= 1 − k

d
= 1 − q − e

(q + f)(q − e)
= 1 − 1

q + f
.

If a real Hadamard matrix of order (q− e) exists, we can exploit it to obtain r many real
approximate MUBs in Rd, with same values of the parameters β, ∆ and ϵ.

If the construction in [65] is to be used for APMUBs, then µ should be 1. Thus µ, which is
the maximum number of elements common between any pair of blocks from different parallel
classes, is the most critical parameter here. Further note that, µ is always greater than or
equal to 1, hence, a very limited kinds of RBDs can be used to construct APMUBs. As per
Lemma 5.4.2, µ ≥ ⌈k

s
⌉. Thus, for µ = 1, an RBD having a constant block size must have

k ≤ s, i.e., the block size must not be greater than the number of blocks in the parallel
class. In this connection, we have noted that an RBD constructed using MOLS have µ = 1.
In fact, between any pair of blocks from different parallel classes, in such an RBD, there is
exactly one element in common.

In our above theorem, we have |X| = d = (q − e)(q + f), where number of elements
in a block is (q − e), i.e., k = (q − e), and number of blocks in a parallel class is (q + f),
hence s = (q + f). The reason we are expressing it like this will be clear in Theorem 5.6.2
where we demonstrate the construction of such an RBD. Since e and f are bounded by a

positive integer, if e ≥ f , it will ensure that k ≤ s. Sinceβ = µ
√

s
k

= µ
√

q+f
q−e , hence for large

d = (q− e)(q+ f) we obtain β → µ, which is also evident from the asymptotic expansion of
β above.

For |X| = d = (q− e)(q+ f), we can have an RBD, where the block size is (q+ f), hence
having (q − e) blocks in each parallel class. However, in such a situation, µ > 1 Lemma
5.4.2, and hence we cannot get APMUBs. However, they can provide AMUBs as in [65]. The
result of [65, Theorem 4] is a particular case of this situation, with e = 0, f = 1 and µ = 2.
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In this case, q + 1 many parallel classes are there in an RBD, each having a constant block

size of (q+ 1). In this case, β = 2
√

q
q+1

= 2−O( 1√
d
), i.e., though the maximum value of the

inner product was slightly less than 2√
d
, but asymptotically β converges to 2. Further ∆ is

also not two-valued. Thus the construction did not satisfy the conditions needed for Almost
Perfect MUBs which is β = 1 + O(d−λ), for some λ > 0 and ∆ being the set consisting of
just two elements with one being 0.

Thus, in order to obtain APMUBs, the RBDs in use must have µ = 1 and all the block
sizes must be same. With this understanding, we will explore more suitable designs in the
following sections, so that the upper bound on the absolute inner product values can be
improved than the results presented in [65] to obtain Almost Perfect MUBs.

5.6 Exact constructions of APMUBs through RBDs

As followed from previous section, an RBD having constant block size must have µ = 1, in
order to obtain APMUBs. In this section we explain the constructions of such RBDs. Since
our focus is to build APMUBs in composite, we concentrate on d = k × s, and consider two
categories.

� The first construction, being generic in nature, will work for any composite d = k×s =
(s − e)s with 0 ≤ e ≤ 3

2
d

1
2 . Here the number of APMUBs is at least N(s) + 1 when

e > 0 and N(s) + 2 when e = 0.

� The second one is considered when d can be expressed as (q − e)(q + f), 0 < f ≤ e,
where q is some power of prime. Here the number of APMUBs is at least ⌊ q−e

f
⌋ + 1.

These are presented in the Sections 5.6.1 and 5.6.2 respectively as below. Thus here
our approach to is to obtain large numbers of APMUBs, if the composite dimension d can
be expressed in some generic form. In the first category our starting point is w-MOLS(s)
and in the second category we initiate with (q2, q, 1)-ARBIBD. In each case, we will first
demonstrate the construction with an example, then outline the algorithm for the respective
construction and then provide the proof of correctness.

5.6.1 d = k × s = (s− e)s, 0 ≤ e ≤ 3
2d

1
2

Let us first demonstrate the method by explicitly constructing RBD(X,A) with |X| = 2×5 =
10, i.e., here s = 5 and k = 2.

1. To begin with, consider the following 4-MOLS(5) and the Mref :
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LS1 =


1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1

 , LS2 =


1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
5 1 2 3 4
3 4 5 1 2

 , LS3 =


1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

,

LS4 =


1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

 ,Mref =


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

.

2. Using Construction 5.4.1, we construct RBD(X̄, Ā), with |X̄| = 25 and Ā having 6
parallel classes. We used Mref as shown above to obtain the following RBD. We collect
blocks from each parallel class, in a 5× 5 matrix, where each row represents one block
of the parallel class, and index the blocks as b̄li, where l represents the index of parallel
class and i represents the block number within the parallel class.

P̄1 =


b̄15 = {1 7 13 19 25}
b̄14 = {2 8 14 20 21}
b̄13 = {3 9 15 16 22}
b̄12 = {4 10 11 17 23}
b̄11 = {5 6 12 18 24}

 , P̄2 =


b̄25 = {1 8 15 17 24}
b̄24 = {2 9 11 18 25}
b̄23 = {3 10 12 19 21}
b̄22 = {4 6 13 20 22}
b̄21 = {5 7 14 16 23}

,

P̄3 =


b̄35 = {1 9 12 20 23}
b̄34 = {2 10 13 16 24}
b̄33 = {3 6 14 17 25}
b̄32 = {4 7 15 18 21}
b̄31 = {5 8 11 19 22}

 , P̄4 =


b̄45 = {1 10 14 18 22}
b̄44 = {2 6 15 19 23}
b̄43 = {3 7 11 20 24}
b̄42 = {4 8 12 16 25}
b̄41 = {5 9 13 17 21}

,

P̄∞ =


b̄55 = {1 6 11 16 21}
b̄54 = {2 7 12 17 22}
b̄53 = {3 8 13 18 23}
b̄52 = {4 9 14 19 24}
b̄51 = {5 10 15 20 25}

 , P̄0 =


b̄65 = {1 2 3 4 5}
b̄64 = {6 7 8 9 10}
b̄63 = {11 12 13 14 15}
b̄62 = {16 17 18 19 20}
b̄61 = {21 22 23 24 25}

.

Here Ā = {P̄1 ∪ P̄2 ∪ P̄3 ∪ P̄4 ∪ P̄0 ∪ P̄∞}. Note that, any pair of blocks from different
parallel classes has exactly one element in common.

3. Now we remove any 3 blocks from the parallel class P̄0, say {b̄61, b̄62, b̄63}.

4. Next we remove the elements contained in this block from the entire design (X̄, Ā).
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5. Then we discard P̄0 from the design. Here we get RBD(X,A) consisting of 5 parallel
classes, each having 5 blocks of size 2, where X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and A =
{P1 ∪ P2 ∪ P3 ∪ P4 ∪ P∞}. Explicitly, we have,

P1 =


b15 = {1 7}
b14 = {2 8}
b13 = {3 9}
b12 = {4 10}
b11 = {5 6}

 , P2 =


b25 = {1 8}
b24 = {2 9}
b23 = {3 10}
b22 = {4 6}
b21 = {5 7}

 , P3 =


b35 = {1 9}
b34 = {2 10}
b33 = {3 6}
b32 = {4 7}
b31 = {5 8}

 ,

P4 =


b45 = {1 10}
b44 = {2 6}
b43 = {3 7}
b42 = {4 8}
b41 = {5 9}

 , P∞ =


b55 = {1 6}
b54 = {2 7}
b53 = {3 8}
b52 = {4 9}
b51 = {5 10}

 .

Note that, for this particular case using (10, 2, 1)-BIBD, one can construct an RBD with
9 parallel classes each having 5 many blocks of constant block size 2. One must note that
this construction may not provide RBDs having maximum number of parallel classes, with
constant block size and µ = 1. Even if we include the parallel class P0 = P̄0 \ {b̄61, b̄62, b̄63} in
the RBD(X,A), it will not change the value of µ which will remain equal to 1. However,
the block size of P0 will be 5 then and hence RBD(X,A) will contain two different block
sizes. Therefore we discard the P0. Nevertheless we will see that even P0 can be used to
construct orthonormal basis which will be mutually unbiased with all the orthonormal basis
constructed using {P1 ∪ P2 ∪ P3 ∪ P4 ∪ P∞}.

The technique is more formally explained for the general case in Construction 5.6.1 below.

Construction 5.6.1. Let d = k × s = (s− e)s, with 0 < e ≤ s.

1. Using Construction 5.4.1, construct RBD(X̄, Ā), where X̄ = {1, 2, . . . , s2}. It will
have r = N(s) + 2 many parallel classes, namely {P̄1, P̄2, . . . , P̄w, P̄0, P̄∞}, each having
s many blocks of constant size s. Denoting blocks of the parallel class P̄l with b̄li, for
i = 1, 2, . . . , s, we note that between any two blocks from different parallel classes,
there is exactly one element in common, i.e., |b̄li ∩ b̄mj | = 1, ∀ l ̸= m.

2. Pick a parallel class, say P̄0. Remove e many blocks from it and denote as S =
{b̄01 ∪ b̄02 ∪ . . . ∪ b̄0e}.

3. Remove the elements in S from X̄ and let us denote the new set with X, i.e., X = X̄\S.
Further, we remove the elements in S from the parallel classes {P̄2, P̄3, . . . , P̄w, P̄∞} and
denote them by Pl, for l = 2, 3, . . . , r, i.e., Pl = P̄l \ S. Then A = {P2, P3, . . . , Pw, P∞}
with Pl = {bl1, bl2, . . . , blq}, where bli = b̄li \ S.
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4. Discard the parallel class P̄0. The resulting RBD(X,A) is the required design. For
convenience, rename the elements from 1 to (s− e)s.

We claim that the above design (X,A) is an RBD, such that |X| = (s − e)s and A
consist of N(s) + 1 many parallel classes, i.e., A = {P2, P3, . . . , Pw, P∞}, each having s many
blocks, i.e., Pl = {bl1, bl2, . . . , bls}, l = 1, 2, . . . , s, each of size (s − e), i.e., |bli| = (s − e) ∀i, l,
such that blocks from different parallel classes have at most one element in common, i.e.,
|bli ∩ bmj | ≤ 1 ∀ l ̸= m. We formalize this in the form of a lemma below.

Lemma 5.6.1. Let d = (s − e)s for s, e ∈ N with 0 < e ≤ s. Then one can construct an
RBD(X,A), with |X| = d having constant block size (s− e) with µ = 1, and having N(s) + 1
many parallel classes, where N(s) is the number of MOLS(s).

Proof. Refer to Construction 5.6.1 above. In RBD(X̄, Ā) any pair of blocks from different
parallel classes is of size s and has exactly one element in common, i.e., |b̄li∩ b̄mj | = 1 ∀ l ̸= m.
Hence removal of the elements S = {b̄11∪ b̄12∪ . . .∪ b̄1e} from entire design will discard exactly
e elements from each block b̄li, l ̸= 1. Hence, the blocks bli = b̄li\S will be of constant size
|bli| = s− e and |bli ∩ bmj | ≤ 1 ∀ l ̸= m.

Now we can use this RBD(X,A) to construct APMUBs in dimension d = |X| = (s− e)s
following Theorem 5.5.1.

Theorem 5.6.1. Let d = (s− e)s for s, e ∈ N with 0 < e ≤ 3
2
d

1
2 . Then there exist N(s) + 1

many APMUBs with ∆ = {0, 1
s−e} and β =

√
s
s−e = 1 + O(d−λ) ≤ 2, where λ = 1

2
and

sparsity ϵ = 1 − 1
s
. Further, if there exists a real Hadamard matrix of order (s − e), then

we can construct N(s) + 1 many APRMUBs with the same parameters. For the case e = 0,
there exist N(s)+2 many MUBs, and if there exists a real Hadamard matrix of order s, then
we can construct N(s) + 2 many Real MUBs.

Proof. In order to show that we can produce such number of APMUBs, let us consider an
RBD(X,A) with |X| = (s−e)s having N(s)+1 parallel classes of constant block size (s−e)
such that between the blocks from different parallel classes, there is at most one element in
common, and hence µ = 1. This follows from Lemma 5.6.1. Then using this RBD along
with a Hadamard matrix of order (s − e), we can construct orthonormal bases following
Theorem 5.5.1, with the values of ∆, β, ϵ by substituting q = s, and f = 0. Further, the
condition that β ≤ 2 for APMUB gives e ≤ 3

2
d

1
2 . In terms of s this inequality becomes

e ≤ 3
4
s and in terms of k = (s − e), the inequality becomes s ≤ 4k so that β ≤ 2. The

parameters of APMUBs are ∆ = {0, 1
s−e}, β =

√
s
s−e = 1 + O(d−

1
2 ) ≤ 2 and ϵ = 1 − 1

s
.

Since the number of parallel classes is one more than number of Mutually Orthogonal Latin
Squares of Order s, we have r = N(s) + 1.
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In the situation when d = s2, i.e., e = 0, using Construction 5.4.1 above, we obtain
RBD(X,A) having N(s) + 2 parallel classes, such that any pair of blocks have exactly one
point in common. Now using this RBD(X,A), along with a Hadamard matrix of order s, we
can construct orthonormal bases following Theorem 5.5.1 which will provide N(s) + 2 many
MUBs. Hence for e = 0, the result follows directly. Construction 5.6.1 is applied only when
e > 0. Thus when d = s2, we get N(s) + 2 MUBs, and when real Hadamard matrix of order
s is available, that can be used to construct N(s) + 2 real MUBs.

Remark 5.6.1. Note that we can construct an orthonormal basis corresponding to the paral-
lel class P0 = P̄0 \S, again having (s−e)s elements. These basis vectors will be mutually un-
biased with all the orthonormal bases constructed using the parallel classes P1, P2, . . . Pw, P∞.
However, if we include it in the set of orthonormal bases then ∆ = {0, 1√

d
, β√

d
} will have three

values, and the condition of APMUB will not be satisfied. Thus we ignore P0, even though
it provides an orthonormal basis which is mutually unbiased with all the bases constructed
above.

For a composite s, N(s) → O(s
1

14.8 ) ≪ s− 1, which is an upper bound [1, 93, 98]. Thus
in case d can be expressed as d = k × s = (s − e)s, where s, e ∈ N with k < s ≤ 4k
(or 0 < e ≤ 3

4
s), we can always construct N(s) + 1 many APMUBs. We refer to this as

Mutually Orthogonal Latin Square Lower Bound construction for APMUBs. For example, given
d = 22 × 32 × 5 × 7,

� this can be factored as d = 35× 36, which will provide N(36) + 1 = 9 many APMUBs
with β = 1.01,

� or d = 30 × 42 which will give N(42) + 1 = 6 many APMUBs with β = 1.18,

� or d = 28 × 45, which will give N(45) + 1 = 7 many APMUB with β = 1.27.

Here, N(36) = 8, N(42) = 5 and N(45) = 6 are the presently known values of the maximum
number of MOLS of these orders [1]. Let us now explain the significance of our construction
method through this example.

� The number of complex MUBs for this d = 22 × 32 × 5 × 7 which can be constructed
using prime power decomposition, and then taking tensor product, would be 22+1 = 5.
This is the lower bound and there is no better known result than this in the number of
MUBs in this dimension. The value of β is 1 in this case as exact MUBs are referred.

� Expressing d = 35×36, we have more number of APMUBs (9 many) than MUBs, with
β = 1.01.
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� Further, expressing d = 28 × 45, we can get 7 many APRMUBs with β = 1.27. This
is because, we have real Hadamard matrix on the dimension 4 × 7 = 28.

Our Theorem 5.6.1 can be compared with that of [98, Theorem 3], where the result could
be achieved using (k, s)-nets. This, in turn, can be constructed from Mutually Orthogonal
Latin Squares of order s. Thus, for a square dimension d = s2, there would be N(s) + 2
many MUBs. Moreover, the result in [65, Corollary 3] points out that using RBDs, one can
construct q + 1 many MUBs of dimension d when d = q2. Note that N(q) = q − 1 and
thus the number of MUBs from [65, Corollary 3] is same as that presented in [98, Theorem
3]. The construction of [65, Corollary 3] had the advantage of using different Hadamard
matrices for the construction of each MUBs, whereas a single Hadamard matrix can be used
for construction of MUBs in [98, Theorem 3].

Since Theorem 5.6.1 is based on RBDs as in [65, Corollary 3], here also different Hadamard
matrices can be used for the construction of each MUBs. Hence, Theorem 5.6.1 is a gener-
alization of [98, Theorem 3] and [65, Corollary 3] as enumerated below.

1. For d = s2, Theorem 5.6.1 reproduces the results of [98, Theorem 3] in terms of
number of MUBs constructed.

2. For d = q2, Theorem 5.6.1 reproduces the results of [65, Corollary 3], in terms of
having the advantage of using different Hadamard matrices for the construction of
each MUBs and the number of MUBs constructed.

3. As the additional contribution, for any composite d = k × s = (s − e) × s, with

0 < e ≤ 3
2
d

1
2 , Theorem 5.6.1 provides MOLS(s) + 1 many APMUBs and one can also

use different Hadamard matrices for the construction of each basis.

The case N(s) = s − 1 corresponds to affine plane of order s and the corresponding
RBD is called Affine Resolvable BIBD. When s = q, where q is a prime power, we have well
known methods to construct Affine Resolvable (q2, q, 1)-BIBDs. Hence in such a situation
we will have q ∼ O(

√
d) many APMUBs for composite dimensions which are not square. For

example, if d = 34×7 = 21×27, we have 29 APMUBs with β = 1.13 or for d = 24×3 = 6×8
we obtain 9 APMUBs, with β = 1.15 whereas number of MUBs is 8 and 4 respectively in
these cases.

Now let us explain the consequences for Approximate Real MUBs. When q is a prime
power, and real Hadamard matrix of order (q − e) exists, then we will obtain (q + 1) >

√
d

many APRMUBs, which provides large numbers of such objects over Rd. This is presented
in the following result.

Corollary 5.6.1. Let d = (q − e)q, where q is a prime power and e ∈ N, with 0 < e ≤ 3
2
d

1
2 .

Then there exist q + 1 many APMUBs with ∆ = {0, 1
q−e}, β =

√
q
q−e = 1 + O(d−λ), where
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λ = 1
2
and ϵ = 1 − 1

q
. Further, if there exist real Hadamard matrices of order (q − e), then

one can construct q + 1 many Almost Perfect Real MUBs with same parameters.

The condition e ≤ 3
2
d

1
2 is because we require β ≤ 2 for APMUBs. If e > 3

2
d

1
2 then

β > 2, hence the constructed Approximate MUBs will not satisfy the criteria for APMUBs
[Definition 5.5.1]. Further examining the expression for β in Equation 5.3, for this particular
construction with µ = 1, f = 0, we obtain the best possible APRMUBs when e = 1. That is,
we have this situation when the dimensions are of the form d = (q − 1)q. This we formally
state in the following corollary.

Corollary 5.6.2. Consider d = (q − 1)q, such that q is a prime power and assume that a
real Hadamard matrix of order (q−1) exists. Then one can construct q many Almost Perfect

Real MUBs in dimension d with ∆ =
{

0, 1
q−1

}
, β =

√
q
q−1

= 1 + O(d−
1
2 ), and ϵ = 1 − 1

q
.

For example, when d = 20 and 156, there would be respectively 5 and 13 APRMUBs
of the above type. One may note that we have ⌈

√
d⌉ many APRMUBs in this case. If

m = q−3
2

≡ 1 mod 4 and m is some prime power, then using the Paley Construction [75],
one can obtain Hadamard matrix of order 2(m + 1) = q − 1. Hence for any prime power
q ≡ 1 mod 4, if q−3

2
is also some prime power and is equal to 1 mod 4, then the real Hadamard

matrix of order q − 1 will necessarily exist through the Paley Construction. For example,
one can consider q = 13, 29, 53 etc. For such q’s, the result will become independent of the
Hadamard Conjecture.

5.6.2 d = k × s = (q − e)(q + f), 0 < f ≤ e and 0 < (e+ f) ≤ 3
2d

1
2

As noted in Corollary 5.6.1 that if d can be expresses as k × s = (q − e)q with β =
√

s
k

=√
q
q−e ≤ 2, then there we can construct q = O(

√
d) many APMUBs. However, if d can

not be expressed in this form then one can construct N(s) many APMUBs if d can be
expressed as k × s with s a composite such that k ≤ s ≤ 4k, i.e., for example in the cases
d = {2× 32, 2× 11, 2× 3× 7, 22 × 3× 7, . . .} etc. The condition k ≤ s ≤ 4k ensures β ≤ 2

and if d can be expressed as (s− e)×s then it is equivalent to 0 ≤ e ≤ 3
2
d

1
2 . The best known

lower bound for general s is N(s) ∼ s
1

14.8 which is much less than s.

In order to obtain significantly larger number of APMUBs, for the dimensions that cannot
be expressed in the form d = (q − e)q where q is some prime power with 0 < e ≤ 3

2
d

1
2 , we

now consider the form of d = (q − e)(q + f), such that q is a prime power with e, f ∈ N.
First we show that, in such a case if e ≥ f , then we can construct RBD(X,A) with |X| = d

having constant block size (q−e) such that A can be partitioned into at least r = ⌊ q−(e−f)
f

⌋ =

⌊ q−e
f
⌋+1 many parallel classes. Hence such an RBD(X,A) can be used to construct ⌊ q−e

f
⌋+1
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many orthonormal bases following [65, Theorem 1]. Further, if 0 < (e + f) ≤ 3
2
d

1
2 , then

β ≤ 2, and these orthonormal bases would be APMUBs, thus providing us O(q) many
APMUBs in such a situation.

We explain this construction in two parts. First we consider a (q2, q, 1) Affine Resolvable
BIBD as the input. We call this RBD(X̄, Ā) where |X̄| = q2 and all the blocks of A is of the

same size q and number of parallel classes in A is q+1. We use this to construct RBD(X̃, Ã),

where |X̃| = (q−e)(q+f) having same number of parallel class (q+1), but the blocks are not
of the same size. The sizes of the blocks are from set {(q− e), (q− e+ 1), . . . , (q− e+ f), q}.

In the second part we use the RBD(X̃, Ã) as input and construct RBD(X,A) where
|X| = (q − e)(q + f) such that each block in A is of size (q − e). However, now the number
of parallel class reduces to ⌊ q−e

f
⌋ + 1.

To demonstrate the first part of the construction, we take |X| = (7−3)(7+1) = 4·8 = 32,
where q = 7, e = 3 and f = 1. We use an Affine Resolvable (72, 7, 1)-BIBD which we call
RBD(X̄, Ā). It will consist of eight parallel classes. Each parallel class would consist of
seven blocks of constant size 7. We represent each parallel class as a 7 × 7 matrix, where
each row represent one block of the parallel class. Hence there would be eight such matrices
as below to represent the design.

P̄1 =



b̄17 = {1 2 3 4 5 6 7}
b̄16 = {8 9 10 11 12 13 14}
b̄15 = {15 16 17 18 19 20 21}
b̄14 = {22 23 24 25 26 27 28}
b̄13 = {29 30 31 32 33 34 35}
b̄12 = {36 37 38 39 40 41 42}
b̄11 = {43 44 45 46 47 48 49}


, P̄2 =



b̄27 = {1 9 17 25 33 41 49}
b̄26 = {2 10 18 26 34 42 43}
b̄25 = {3 11 19 27 35 36 44}
b̄24 = {4 12 20 28 29 37 45}
b̄23 = {5 13 21 22 30 38 46}
b̄22 = {6 14 15 23 31 39 47}
b̄21 = {7 8 16 24 32 40 48}


,

P̄3 =



b̄37 = {1 10 19 28 30 39 48}
b̄36 = {2 11 20 22 31 40 49}
b̄35 = {3 12 21 23 32 41 43}
b̄34 = {4 13 15 24 33 42 44}
b̄33 = {5 14 16 25 34 36 45}
b̄32 = {6 8 17 26 35 37 46}
b̄31 = {7 9 18 27 29 38 47}


, P̄4 =



b̄47 = {1 11 21 24 34 37 47}
b̄46 = {2 12 15 25 35 38 48}
b̄45 = {3 13 16 26 29 39 49}
b̄44 = {4 14 17 27 30 40 43}
b̄43 = {5 8 18 28 31 41 44}
b̄42 = {6 9 19 22 32 42 45}
b̄41 = {7 10 20 23 33 36 46}


,
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P̄5 =



b̄57 = {1 12 16 27 31 42 46}
b̄56 = {2 13 17 28 32 36 47}
b̄55 = {3 14 18 22 33 37 48}
b̄54 = {4 8 19 23 34 38 49}
b̄53 = {5 9 20 24 35 39 43}
b̄52 = {6 10 21 25 29 40 44}
b̄51 = {7 11 15 26 30 41 45}


, P̄6 =



b̄67 = {1 13 18 23 35 40 45}
b̄66 = {2 14 19 24 29 41 46}
b̄65 = {3 8 20 25 30 42 47}
b̄64 = {4 9 21 26 31 36 48}
b̄63 = {5 10 15 27 32 37 49}
b̄62 = {6 11 16 28 33 38 43}
b̄61 = {7 12 17 22 34 39 44}


,

P̄7 =



b̄77 = {1 14 20 26 32 38 44}
b̄76 = {2 8 21 27 33 39 45}
b̄75 = {3 9 15 28 34 40 46}
b̄74 = {4 10 16 22 35 41 47}
b̄73 = {5 11 17 23 29 42 48}
b̄72 = {6 12 18 24 30 36 49}
b̄71 = {7 13 19 25 31 37 43}


, P̄8 =



b̄87 = {1 8 15 22 29 36 43}
b̄86 = {2 9 16 23 30 37 44}
b̄85 = {3 10 17 24 31 38 45}
b̄84 = {4 11 18 25 32 39 46}
b̄83 = {5 12 19 26 33 40 47}
b̄82 = {6 13 20 27 34 41 48}
b̄81 = {7 14 21 28 35 42 49}


,

In order to construct RBD(X̃, Ã), where |X̃| = (q − e)(q + f) = (7 − 3)(7 + 1) = 32 such
that µ = 1, we consider the following steps.

1. Choose any h = e− f = 3 − 1 = 2 blocks from P̄1. Let these blocks be b̄11 and b̄12. Let
S1 = b̄11 ∪ b̄12 = {36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49}, as annotated in red in
the above matrices.

2. Choose another f = 1 block from P̄1. Let it be b̄13. Now choose any e = 3 elements
from it. Let these be S2 = {33, 34, 35}. Set S = S1 ∪ S2 = {33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49} (indicated in red).

3. Remove the elements of set S from RBD(X̄, Ā). Call the resulting combinatorial

design RBD(X̃, Ã), where |X̃| = 32 and Ã = {P̃1, P̃2, P̃3, P̃4, P̃5, P̃6, P̃7, P̃8}, presented
as below.

P̃1 =


b̃17 = {1 2 3 4 5 6 7}
b̃16 = {8 9 10 11 12 13 14}
b̃15 = {15 16 17 18 19 20 21}
b̃14 = {22 23 24 25 26 27 28}
b̃13 = {29 30 31 32}

 , P̃2 =



b̃27 = {1 9 17 25}
b̃26 = {2 10 18 26}
b̃25 = {3 11 19 27}
b̃24 = {4 12 20 28 29}
b̃23 = {5 13 21 22 30}
b̃22 = {6 14 15 23 31}
b̃21 = {7 8 16 24 32}


,
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P̃3 =



b̃37 = {1 10 19 28 30}
b̃36 = {2 11 20 22 31}
b̃35 = {3 12 21 23 32}
b̃34 = {4 13 15 24}
b̃33 = {5 14 16 25}
b̃32 = {6 8 17 26}
b̃31 = {7 9 18 27 29}


, P̃4 =



b̃47 = {1 11 21 24}
b̃46 = {2 12 15 25}
b̃45 = {3 13 16 26 29}
b̃44 = {4 14 17 27 30}
b̃43 = {5 8 18 28 31}
b̃42 = {6 9 19 22 32}
b̃41 = {7 10 20 23}


,

P̃5 =



b̃57 = {1 12 16 27 31}
b̃56 = {2 13 17 28 32}
b̃55 = {3 14 18 22}
b̃54 = {4 8 19 23}
b̃53 = {5 9 20 24}
b̃52 = {6 10 21 25 29}
b̃51 = {7 11 15 26 30}


, P̃6 =



b̃67 = {1 13 18 23}
b̃66 = {2 14 19 24 29}
b̃65 = {3 8 20 25 30}
b̃64 = {4 9 21 26 31}
b̃63 = {5 10 15 27 32}
b̃62 = {6 11 16 28}
b̃61 = {7 12 17 22}


,

P̃7 =



b̃77 = {1 14 20 26 32}
b̃76 = {2 8 21 27}
b̃75 = {3 9 15 28}
b̃74 = {4 10 16 22}
b̃73 = {5 11 17 23 29}
b̃72 = {6 12 18 24 30}
b̃71 = {7 13 19 25 31}


, P̃8 =



b̃87 = {1 8 15 22 29}
b̃86 = {2 9 16 23 30}
b̃85 = {3 10 17 24 31}
b̃84 = {4 11 18 25 32}
b̃83 = {5 12 19 26}
b̃82 = {6 13 20 27}
b̄81 = {7 14 21 28}


.

Note that here all the blocks are not of the same sizes, but any two blocks from different
parallel classes have at most 1 element in common, i.e., µ = 1. The blocks sizes are in the
set {(q − 3), (q − 2), q} = {4, 5, 7}. The number of parallel classes in Ã remains q + 1 = 8.
This technique is now more formally explained for the general case in Construction 5.6.2
below. Let d = k × s = (q − e)(q + f), with 0 < f ≤ e ≤ q. The steps for constructing the
RBD(X,A) are as follows.

Construction 5.6.2. Given q, a prime power, construct (q2, q, 1)-ARBIBD. Call this design
(X̄, Ā) with X̄ = {1, 2, . . . , q2} and |Ā| = q(q + 1) many blocks, each block is of constant
size q. It will have r = q+1 many parallel classes, call them {P̄1, P̄2, . . . , P̄q+1}, each parallel
class having q many blocks of constant size q. Between any two blocks from different parallel
classes, exactly one element will be common, i.e., |b̄li ∩ b̄mj | = 1, ∀ l ̸= m.

1. Given e ≥ f , choose h = e − f ≥ 0 many blocks from P̄1, which are {b̄11, b̄12, . . . , b̄1h}.
Let S1 = b̄11 ∪ b̄12 ∪ . . . ∪ b̄1h. Therefore, |S1| = h× q.
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2. From {b̄1h+1, b̄
1
h+2, . . . , b̄

1
h+f} blocks of P̄1, choose any e number of elements from each

of them. Let S2 be the union of all these elements. Therefore, |S2| = e × f . Let
S = S1 ∪ S2.

3. Remove the elements of set S from RBD (X̄, Ā) and call the resulting design as

RBD(X̃, Ã).

We claim that the above RBD(X̃, Ã) is such that |X̃| = (q − e)(q + f) and Ã consists
of q + 1 many parallel classes having different block sizes, such that blocks from different
parallel classes have at most one element in common, i.e., |bli ∩ bmj | ≤ 1,∀ l ̸= m. Hence
µ = 1. We formalize this in the form of a lemma below.

Lemma 5.6.2. Let d = (q − e)(q + f) for f, e ∈ N with 0 < f ≤ e ≤ q and some prime

power q. Then one can construct an RBD(X̃, Ã), with |X| = d having block sizes from the
set of integers {(q− e), (q− e+ 1), . . . , (q− e+ f), q} with µ = 1, and having r = q+ 1 many
parallel classes.

Proof. Refer to Construction 5.6.2 above. Here RBD(X̄, Ā) is an ARBIBD with |X̄| = q2,
having constant block size q. Note that any pair of blocks from different parallel classes have
exactly one element in common, i.e., |b̄li ∩ b̄mj | = 1 ∀ l ̸= m. The number of elements in
the set |S| = |S1 ∪ S2| = |S1| + |S2| = (e − f)q + ef < q2, which is a proper subset of X̄.
These are removed from all the parallel classes of RBD(X̄, Ā). Hence, the resulting design

RBD(X̃, Ã) is such that |X̃| = q2 − (e− f)q+ ef = (q− e)(q+ f) = d, having same number
of parallel classes as in Ā. The number of element common between any two blocks from
different parallel classes would be at most 1, i.e., |̃bli ∩ b̃mj | ≤ 1,∀ l ̸= m.

To obtain the sizes of the blocks in RBD(X̃, Ã), note that S1 contains all elements from
h = (e − f) number of blocks of P̄1. Hence S1 would have at least h elements in common
with all the blocks of remaining parallel classes. Thus, removal of the elements in S1 from
the parallel classes P̄l, l ≥ 2 will remove at least h elements from each block of P̄l which
implies |b̄li \ S1| = q − (e − f). Further S2 contains e elements from f many blocks of P̄1.
Thus, the blocks in P̄2, P̄3, . . . , P̄q+1 will have at most f many elements in common with S2.
Consequently, after removal of all the elements in S, from the parallel class P̄l, the block size
|̃bli|, l ≥ 2 will be maximum q − (e− f) = (q − h) and minimum q − (e− f) − f = (q − e).

Further, the blocks in P̃1 will be of sizes q, (q−e) and have total (q−h) number of blocks.

We will now show how one can use f many blocks of the parallel class P̃1 in RBD(X̃, Ã),

as constructed above, to reshape any one of the parallel classes P̃l, l ̸= 1 into a parallel class
having (q + f) many blocks each of size (q − e), which we denote by Pl and the resulting

combinatorial design by RBD(X,A). Since P̃1 have q−h number of blocks, thus ⌊ q−h
f
⌋ many

parallel classes of Ā can be reshaped into a parallel class of A.
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Let us first demonstrate the construction by using RBD(X̃, Ã), as constructed in the

example earlier in this section, where |X̃| = (7 − 3)(7 + 1) = 4 · 8 = 32, with q = 7, e = 3,

f = 1 and h = e − f = 2. Note that P̃1 has q − h = 5 blocks, and all the other parallel
classes have q = 7 blocks each. Let us denote the excess number of elements on each
block of b̃lj, l ≥ 2 than (q − e) by ml

j. Hence ml
i = |̃bli| − (q − e). Here for each block of

the parallel class P̃l, l ≥ 2, the value of ml
i is either 0 or 1. If the block |̃bli| = 5, then

ml
i = |̃bli| − (q − e) = 5 − (7 − 3) = 1 and similarly for block |̃bli| = 4, ml

i = 0. Note that∑q
i=1m

l
i = (q − e) · f = (7 − 3) · 1 = 4,∀ l ≥ 2. We modify this RBD(X̃, Ã) as follows.

1. Since f = 1, consider one block b̃13 of P̃1, which has 4 elements in it. Remove these

elements from different blocks of P̃2 and add them as separate block in P̃2. Denote the
resulting parallel class as P2.

2. Consider the parallel class P̃3 and the next f = 1 block of P̃1, i.e., the block b̃14. Choose

a block from P̃3, say b̃31. Since |̃b31| = 5, i.e., it has one element more than q−e = 4, hence

mark one common element between b̃14 and b̃31 which is 27 in this case. Sequentially

execute this for all the blocks of P̃1. This will mark the elements {27, 23, 22, 28} on b̃14.

3. Since m3
j = 0 or 1, the above step will mark exactly (q − e) = 4 elements on b̃14. In

a situation, if ml
i has more than one elements, then further iterations are required to

mark exactly (q − e) elements on the blocks of P̃1. Refer to Step 3 of Construction
5.6.3 later for the exact strategy in this regard.

4. Now remove the elements marked on b̃14, i.e., {27, 23, 22, 28} from P̃3 and add them as

a separate block of P̃3 and denote the resulting parallel class as P3.

5. Consider the next parallel class P̃4 and the next f = 1 block of P̃1, i.e., the block b̃15.
Then repeat the Steps 2, 3, 4 to obtain P4.

6. Since the number of blocks in P̃1 = 5, in this way r = 5
1

= 5 parallel classes, i.e.,

P̃l, l = 2, 3, 4, 5, 6 can be modified. Discard P̃7 and P̃8. The resulting RBD(X,A) is
such that |X| = 32 with A consisting of parallel classes {P2, P3, P4, P5, P6} as shown
below.

P2 =



b28 = {29 30 31 32}
b27 = {1 9 17 25}
b26 = {2 10 18 26}
b25 = {3 11 19 27}
b24 = {4 12 20 28}
b23 = {5 13 21 22}
b22 = {6 14 15 23}
b21 = {7 8 16 24}


, P3 =



b38 = {22 23 27 28}
b37 = {1 10 19 30}
b36 = {2 11 20 31}
b35 = {3 12 21 32}
b34 = {4 13 15 24}
b33 = {5 14 16 25}
b32 = {6 8 17 26}
b31 = {7 9 18 29}


, P4 =



b48 = {16 17 18 19}
b47 = {1 11 21 24}
b46 = {2 12 15 25}
b45 = {3 13 26 29}
b44 = {4 14 27 30}
b43 = {5 8 28 31}
b42 = {6 9 22 32}
b41 = {7 10 20 23}


,
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P5 =



b58 = {10 11 12 13}
b57 = {1 16 27 31}
b56 = {2 17 28 32}
b55 = {3 14 18 22}
b54 = {4 8 19 23}
b53 = {5 9 20 24}
b52 = {6 21 25 29}
b51 = {7 15 26 30}


, P6 =



b68 = {2 3 4 5}
b67 = {1 13 18 23}
b66 = {14 19 24 29}
b65 = {8 20 25 30}
b64 = {9 21 26 31}
b63 = {10 15 27 32}
b62 = {6 11 16 28}
b61 = {7 12 17 22}


, P7 =



b78 = {5 12 19 26}
b77 = {1 14 20 32}
b76 = {2 8 21 27}
b75 = {3 9 15 28}
b74 = {4 10 16 22}
b73 = {11 17 23 29}
b72 = {6 18 24 30}
b71 = {7 13 25 31}


.

We will now discuss about P7 as presented above. From the two discarded parallel classes
P̃7 and P̃8, we find that one can use the block b̃83 and remove the elements in it from P̃7,

and place them as a separate block of parallel class P̃7, resulting into another parallel class
having (q + f) = 8 many blocks each block having (q − e) = 4 elements each. We denote
this parallel class as P7. Certainly this is not unique as there are other possibilities to obtain

a parallel class using P̃7 and P̃8. Thus here we actually obtain r = 6 >
⌊
q−e
f

⌋
+ 1 = 5,

indicating that
⌊
q−e
f

⌋
+ 1 is not a tight lower bound in this example.

The above construction is formally explained for the general case in Construction 5.6.3
below. We consider RBD(X̃, Ã) constructed in 5.6.2 with |X̃| = (q − e)(q + f) as the input

for following construction. To begin with, compute ml
j = |̃blj| − (q − e), l ≥ 2 for each

block of P̃l, l ≥ 2, which is the count of the excess number of elements on each block of

b̃lj, l ≥ 2 than what is required, which is q−e. Note that
∑q

j=1m
l
j =

∑q
j=1

(
|̃blj| − (q − e)

)
=∑q

j=1 |̃blj|− q(q− e) = (q− e)(q+f)− q(q− e) = (q− e)f, ∀ l ≥ 2. Thus
∑q

j=1m
l
j = (q− e)f

is constant for all the parallel classes of RBD(X̃, Ã) except P̃1, which consists of q−h blocks
of sizes {(q − e), q} and are being used to modify the r number of other parallel classes and
will be discarded in the end.

Construction 5.6.3. Let d = k × s = (q − e)(q + f), with 0 < f ≤ e ≤ q and we consider

RBD(X̃, Ã) from Construction 5.6.2 with |X̃| = (q − e)(q + f) as the input.

1. Consider f many blocks of P̃1, which has (q−e) elements, i.e., the blocks {b̃1h+1, b̃
1
h+2, . . .,

b̃1h+f}. Remove the elements in the blocks {b̃1h+1, b̃
1
h+2, . . . , b̃

1
h+f} from different blocks

of P̃2 and add the blocks {b̃1h+1, b̃
1
h+2, . . . , b̃

1
h+f} as blocks of P̃2. Name the resulting

parallel class as P2.

2. Consider the parallel class P̃3 and next f many blocks of P̃1, i.e., {b̃1(h+f+1), b̃
1
(h+f+2), . . .,

b̃1(h+2f)}, each consisting of q many elements. Call this set of blocks as S1
3 . Select a block
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from P̃3, say b̃31. Corresponding to this block, mark m3
1 number of elements which are

common with the blocks in set S1
3 . Then move them to the next block of P̃3, namely

b̃32, and mark m3
2 number of elements common with the blocks in S1

3 . Sequentially

continue this for all the blocks of P̃3.

3. Now consider b̃1u, b̃
1
v ∈ S1

3 , such that b̃1u has more elements marked than (q − e) and b̃1v
has less elements marked than (q − e). Identify the blocks of P̃3 which have a marked

element common with b̃1u, but has an unmarked element common with b̃1v, say block b̃3j .

Then unmark this element in b̃1u, and mark the common element between the block b̃3j
and b̃1v on the block b̃1v. Thus, the marked element on b̃1u is removed and the marked on

b̃1v is added. Iterate this for all such blocks in S1
3 which has marked elements different

from (q − e) and continue this till all the blocks in set S1
3 have exactly (q − e) marked

element.

Later in Lemma 5.6.3, we will show that such a block b̃3j will always exist. Further
this process will terminate in a finite number of steps as there are finite number of
blocks and elements, and every iteration adds the marked element of a block having
less elements marked than (q − e) and removes the mark element of a block having
more elements marked than (q − e).

4. Remove the elements marked on each of the blocks in the set S1
3 from the parallel class

P̃3 and add the elements marked on the block, say b̃1h+f+1 as separate blocks in P̃3.

Similarly add elements marked on the block b̃1h+f+2 as separate blocks in P̃3 and so on
for all the blocks in S1

3 . Call the resulting parallel class as P3.

5. Then consider the next parallel class P̃4 and the next f many blocks of P̃1 and repeat
the steps 2, 3 and 4 as mentioned above. Denote the resulting class as P4 and continue
till the number of blocks in P̃1 becomes less than f .

6. Since the number of blocks in P̃1 is q − h = q − (e − f), in this way r =
⌊
q−(e−f)

f

⌋
=⌊

q−e
f

⌋
+ 1 many parallel classes P̃r can be modified. Then the RBD(X,A), where

X = {1, 2, . . . , (q − e)(q + f)} and A = {P2, P3, . . . , Pr+1} is the required design.

Note that in Step 4 above, since each block in the set S1
3 has q − e elements marked and

total number of blocks is f , hence total number of elements removed from P̃3 are (q− e)×f .

Thus, we are basically using a set of f blocks from the parallel classes P̃1 to reshape one
of the remaining parallel class, into blocks of size (q − e), having (q + f) blocks. This is

achieved by identifying (q − e) elements of one block from the parallel classes P̃1, and in

different blocks of parallel class say P̃l. Thereafter, we delete these elements from different
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blocks P̃l, and add these elements as a separate block in P̃l. Thus, the resulting parallel class
will consist of (q + f) blocks, each having (q − e) elements.

We claim that the above design (X,A) is a RBD, such that |X| = (q − e)(q + f) and

A consists of r =
⌊
q−e
f

⌋
+ 1 many parallel classes each having (q + f) many blocks each of

size (q − e), such that the blocks from different parallel classes have at most one element in
common, i.e., |bli ∩ bmj | ≤ 1 ∀ i ̸= j. We formalize this in the following lemma.

Lemma 5.6.3. Let d = (q − e)(q + f), for f, e ∈ N with 0 < f ≤ e ≤ q and q some power
of prime. Then one can construct an RBD(X,A), with |X| = d having constant block size

(q − e) with µ = 1, and having at least r =
⌊
q−e)
f

⌋
+ 1 many parallel classes.

Proof. Refer to Construction 5.6.3 above. Since in RBD(X̃, Ã) any pair of blocks from
different parallel classes has at most one element in common, we have |b̄li ∩ b̄mj | ≤ 1 ∀ l ̸= m.

Since no element of RBD(X̃, Ã) has been deleted or added to it to obtain RBD(X,A),

hence d = |X̃| = |X| = (q − e)(q + f). From the Step 6 of Construction 5.6.3, we obtain

r =
⌊
q−e)
f

⌋
+ 1.

Now we show that Step 2 can be successfully executed. That is, from the set of f many
blocks of P̃1, it will be possible to mark

∑q
i=1m

l
i = (q−e)×f, ∀ l ≥ 2. Note that each block

b̃1j , j > e has exactly one element common with b̃lj, j = 1, 2, . . . , q, l ≥ 2. As 0 ≤ ml
j ≤ f ,

corresponding to each block b̃lj, there will always be ml
j elements on different blocks, which

is total f in number. Hence Step 2 can be successfully executed.

Steps 3 and 4 are related to the construction where elements are to be marked on blocks
in the set S1

3 having f many blocks. These steps will finally result into (q − e) elements
being marked on each of these blocks. For this, note that

∑q
i=1m

l
i = (q− e)f . That means,

if it is not possible to mark q − e elements on each of the blocks in the set S1
3 , then on

some block there will have more elements marked than q − e and on some blocks there are
less element marked than q − e. It is not possible that all the blocks have less than (q − e)
elements marked or all the blocks have more than (q − e) elements marked as in that case∑q

i=1m
l
i < (q − e)f or > (q − e)f accordingly.

In case there is a block b̃1u, b̃
1
v ∈ S1

3 , such the b̃1u has more elements marked than (q − e)

and b̃1v has less element marked than (q − e), then there will exist a block of P̃3 which have

marked element common with b̃1u, but non-marked element common with b̃1v. Suppose there

is no such block in P̃3. Then the marked elements of block b̃1u (which is > q − e) and the

unmarked elements of b̃1v (which is > e) would all lie on the different blocks of P̃3. However,

this would imply number of blocks in |P̃3| > q − e + e = q, which is a contradiction as

|P̃3| = q.
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Finally, we show that µ = 1. Note that the blocks which has been added in the parallel
classes P̃2, P̃3, . . . , P̃r+1 to construct the parallel classes P2, P3, . . . , Pr+1 are respectively part
of the blocks of P̃1. Since any block of P̃1 has at most one element common with any other
block of P̃l, l ≥ 2, µ will be 1 for RBD(X,A).

Now we can use this RBD(X,A) to construct APMUBs in dimension d = |X| = (q −
e)(q + f) having parameters as given by Theorem 5.5.1, which we formally state and prove
in the next theorem.

Theorem 5.6.2. Let d = (q − e)(q + f), for some prime power q, where 0 < f ≤ e and

0 < (e + f) ≤ 3
2
d

1
2 , e, f ∈ N. Then there exist at least r =

⌊
q−e
f

⌋
+ 1 many Almost Perfect

MUBs, with ∆ = {0, 1
q−e}, β =

√
q+f
q−e = 1 + O(d−λ) ≤ 2, where λ = 1

2
and ϵ = 1 − 1

q+f
.

Further, if there exists a Real Hadamard matrix of order (q − e), then one can construct r
many Almost Perfect Real MUBs with same parameters.

Proof. In order to show that we can produce such APMUBs, let us consider an RBD(X,A)
with |X| = (q − e)(q + f) having r parallel classes of constant block size (q − e), such that
between the blocks from different parallel classes, there is at most one element in common,
and hence µ = 1.Then using this RBD along with a Hadamard matrix of order (q − e),
we can construct orthonormal bases following Theorem 5.5.1. Further, the condition that
β < 2 for APMUB gives (e+ f) ≤ 3

2
d

1
2 . In terms of q, this inequality becomes 4e+ f ≤ 3q.

The parameters of APMUBs are ∆ = {0, 1
q−e}, β =

√
q+f
q−e = 1 + O(d−

1
2 ) ≤ 2 and sparsity

ϵ = 1− 1
q+f

. Further when a real Hadamard matrix of order (q−e) is available, the same can
be used in the construction of Approximate Real MUBs. Since number of parallel classes r
is at least ⌊ q−e

f
⌋ + 1, hence we get at least these many APMUBs.

Remark 5.6.2. Note that q−e
f

is O(
√
d), when e, f are considered to be constants. That is,

in such cases we obtain O(
√
d) many APMUBs for the dimension d.

Following Theorem 5.6.2, we can get at least r =
⌊
q−e
f

⌋
+ 1 many APMUBs. This can

enable us to beat the Mutually Orthogonal Latin Square (MOLS) Lower Bound construction for
APMUBs (Theorem 5.6.1), according to which we obtain N(q+ f) + 1 many APMUBs. Let
us present a few illustrative examples in this regard.

� For d = 60 = 6 × 10, the known value of N(10) is 2 hence MOLS Lower Bound
construction provides three APMUBs with β value of 1.29. On the other hand, if we
use above construction method, by expressing d = (9−3)(9+1), we obtain 9−(3−1)

1
= 7

many APMUBs with β = 1.29. In this case the number of complex MUBs, that can
be constructed following prime factorization formula, is 3 + 1 = 4 only.
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� For d = 24 = 4 × 6, with N(6) = 1, the MOLS Lower Bound construction generates 2
APRMUBs with β = 1.22. On the other hand, expressing d = 24 = (5 − 1)(5 + 1) we
obtain 5 APRMUBs with β = 1.22. The number of real MUBs for d = 24 is 2 [18]
only.

Further, to illustrate the advantage of Construction 5.6.3 over Construction 5.6.1, con-
sider the example of d = 22× 32× 5× 7 and different ways of expressing it as product of two
factors, that we considered earlier following Theorem 5.6.1.

� Expressing d = 30×42, the MOLS Lower Bound construction will provide N(42)+1 = 6
many APMUBs with β = 1.18, where as expressing d = (41 − 11)(41 + 1) and using
Theorem 5.6.2 will provide 31 many APMUBs with β = 1.18.

� or expressing d = 28×45, the MOLS Lower Bound construction will provide N(45)+1 =
7 many APRMUB with β = 1.27, where as expressing d = (43− 15)(43 + 2) and using
Theorem 5.6.2 will provide 15 many APRMUB with β = 1.27.

Note that, N(42) = 5 and N(45) = 6 are the presently known values of the maximum
number of MOLS of these orders [1]. Here expressing d = 35 × 36, we cannot use Theorem
5.6.2 as it cannot be expressed as (q− e)(q+ f), with q some power of prime and 0 ≤ f ≤ e.
Thus with this factorization of d, MOLS Lower Bound construction provides N(36) + 1 = 9
APMUBs with β = 1.01.

Note that, r =
⌊
q−(e−f)

f

⌋
, with condition 0 < f ≤ e, is maximum for a given q when

f = e = 1. From the asymptotic expression of β, it is clear that for 0 < f ≤ e we will obtain
β closest to 1 when e = f = 1. Thus for e = f = 1, we state the result of APMUB as a
corollary below.

Corollary 5.6.3. Let d = q2 − 1 = (q − 1)(q + 1) where q is a prime power. Then one can

construct q many Almost Perfect MUBs with ∆ =
{

0, 1
q−1

}
and β =

√
q+1
q−1

with sparsity

ϵ = 1− 1
q+1

. If a real Hadamard Matrix of order q−1 exists, then we have q many APRMUBs
with the same parameters.

Our observation made in connection with Hadamard matrix of order (q−1), constructed
through Paley method [75] after Corollary 5.6.2 is applicable here as well. That is, if m =
q−3
2

≡ 1 mod 4 and m is some prime power, then using the Paley Construction [75], one can
obtain Hadamard matrix of order 2(m+1) = q−1. Hence for any prime power q ≡ 1 mod 4, if
q−3
2

is also some prime power and is equivalent to 1 mod 4, then the real Hadamard matrix of
order q−1 will necessarily exist through the Paley Construction. For all such q’s, there exist
q APRMUBs in Rq2−1 and the above corollary will become independent of the Hadamard
Conjecture. Examples of such q are 13, 29, 53 etc.
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� For d = (13 − 1)(13 + 1) = 23 × 3 × 7, we obtain 13 many APRMUBs with β = 1.080.
In this case number of real MUBs is only 2 and complex MUBs is 4.

� For d = (29−1)(29+1) = 23×3×5×7, we obtain 29 many APRMUBs with β = 1.035.
In this case also the number of real MUBs is only 2 and complex MUBs is 4.

The above examples clearly indicates that as d increases, β approaches closer to 1, hence we
obtain APRMUBs which are significantly close to the MUBs.

5.6.3 Some problems that require further attention

It was pointed out in the example constructed above for RBD(X,A), that for |X| = d = 4×
8 = (7−3)(7+1), one could construct more number of parallel classes than r =

⌊
q−e
f

⌋
+1 = 5

in this case, q = 7, e = 3, f = 1. From our experience of constructing RBD(X,A), for the
situation when |X| can be expressed as (q−e)(q+e) = q2−e2, i.e., for the situation e = f > 0,

there appears to be always more than r =
⌊
q
f

⌋
+ 1 many parallel classes. In this situation it

is possible to use other parallel classes, apart from the first one of (q2, q, 1)-ARBIBD, which

enable us to obtain more parallel classes for RBD(X,A) than r =
⌊
q
f

⌋
+ 1. A proof of this

in the following form in a general setting might be an interesting open problem.

Let d = (q − e)(q + e), for e ∈ N with 0 ≤ e ≤ q and q a prime power. Then one can
construct an RBD(X,A), with |X| = d having constant block size (q − e) with maximum
intersection number µ = 1, and having r ≥ q

2
many parallel classes.

Further our efforts for the following form of composite d could not result into number of
APMUBs of the order of O(

√
d), where q is a prime power.

� For d = q(q + f), RBD having block size q, with q + f many blocks in each parallel
classes.

� For d = (q− e)(q+ f), 0 < e < f , RBD having block size q− e with q+ f many blocks
in each parallel classes.

For the above forms of d, we could not construct more number of APMUBs than what is
given by Mutually Orthogonal Latin Square Lower Bound construction. Further efforts in this
direction or new ideas may be required for this. We believe that it should be possible to
improve the MOLS lower bound in such cases as well.

Note that our construction of APMUBs are very sparse and hence the set of Bi-angular
vectors are very sparse. The sparsity of each vector inner constructions, is ϵ = 1− 1

s
≈ 1− 1√

d
.
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Also the non zero components of the vectors are all of the same absolute value, which is
1
s−e ≈ 1√

d
. Our extensive search of literature could not find any study on bounds on the

cardinality of such kind of sparse vectors, each having same sparsity. Nevertheless, there are
bounds on the cardinality of flat equiangular lines. Here flat signifies that all the component
of the vectors are of same magnitude. In such situation the cardinality of set of equiangular
lines in Cd is bounded by (d2 − d − 1), Refer to [43, Lemma 2.2] which is less than d2,
which is cardinality when the constrain of flatness is relaxed. We similarly believe that the
cardinality of such Bi-angular set, with with such large sparsity would be significantly less
than those given in [36, Table I] and [20, Equations 3.9,5.9]]. Hence we subsequently intend
to study the bounds on the cardinality of the set of Bi-angular vectors, with large sparsity.

5.7 Conclusion

In this chapter we consider construction of APMUBs, which are significantly good approxi-
mation of MUBs. In asymptotic sense, the APMUBs are almost as good as the MUBs. That
is, for a dimension d, the value of the dot product between two vectors from different bases
will be very close to 1√

d
, and in a few cases 0. In this paper we have formalized the definition

of APMUBs and shown that for a good proportion of integers, we can construct O(
√
d)

many APMUBs. Such a generic result is elusive in cases of perfect MUBs. Thus, for all
practical purposes in the domain of quantum information, or related areas, our construction
ideas open up a larger possibility of obtaining required combinatorial structures. How dense
are these values of d for which we can construct such APMUBs is an important research
question. As the main scope of this thesis is understanding the combinatorial techniques, we
leave this as a future research effort. Another important issue in this regard is that our con-
structions are directly related to the concept of Bi-angular vectors. We primarily note that
when two vectors are randomly selected from the set of such Bi-angular vectors, there exists
a very large probability that they will be making an angle of β√

d
. In fact as d increases, the

probability converges to certainty. This is the scenario that happens in our APMUB related
constructions. We leave this too for future investigation in a disciplined manner.
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Chapter 6

Further Constructions of AMUBs for
Non-prime power Composite
Dimensions

As discussed so far, the construction of a large class of Mutually Unbiased Bases (MUBs)
for non-prime power composite dimensions (d = k × s) is a long standing open problem,
which leads to different construction methods for the class Approximate MUBs (AMUBs)
by relaxing the criterion that the absolute value of the dot product between two vectors
chosen from different bases should be ≤ β√

d
. In this chapter, we consider a more general

class of AMUBs (ARMUBs, considering the real ones too), compared to Chapter 4. We
note that the quality of AMUBs (ARMUBs) constructed using RBD(X,A) with |X| = d,
critically depends on the parameters, |s − k|, µ (maximum number of elements common
between any pair of blocks), and the set of block sizes. We present the construction of

O
(√

d
)

many β-AMUBs for composite d when |s−k| <
√
d, using RBDs having block sizes

approximately
√
d, such that | ⟨ψli|ψmj ⟩ | ≤

β√
d

where β = 1 + |s−k|
2
√
d

+ O (d−1) ≤ 2. Moreover,

if real Hadamard matrix of order k or s exists, then one can construct at least N (k) + 1 (or

N (s) + 1) many β-ARMUBs for dimension d, with β ≤ 2− |s−k|
2
√
d

+O (d−1) < 2, where N (w)

is the number of MOLS(w). This improves and generalizes some of our previous results for
ARMUBs in Chapter 4 from two points, viz., the real cases are now extended to complex
ones too. The earlier efforts use some existing RBDs, whereas here we consider new instances
of RBDs that provide better results. Similar to the earlier cases, the AMUBs (ARMUBs)

constructed using RBDs are in general very sparse, where the sparsity (ϵ) is 1 −O
(
d−

1
2

)
.
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6.1 Introduction

In this chapter we analyze general characteristics of AMUBs constructed using combinatorial
design techniques, using objects called Resolvable Block Designs, as in the earlier two chap-
ters. We have identified parameters that critically influence the quality of AMUBs. We show
that, large sets of real and complex class of Approximate MUBs, which we call β-AMUBs
(not APMUBs) can be constructed, in composite dimensions (d = k × s) with |s− k| <

√
d

using RBD. In general, for the composite dimensions (non-prime power), only a very small
set of MUBs is known, even in the complex case.

In this work, we derive how β depends on the nature of RBD(X,A), with |X| = d.
To explore this, we broadly categorize RBD(X,A) into two categories, one where all the
parallel classes have a constant block size and the other, where the block sizes differ. When
parallel classes have a constant size, say k, in such RBD(X,A), a single Hadamard matrix
of order k can be used to yield AMUBs over Cd (or Rd), depending on whether complex or
real Hadamard matrices are used. Here, for the cases where parallel classes do not have a
constant block size, one needs to use Hadamard matrices of the order of block sizes.

On the basis of our analysis and construction under various settings, we conclude that
|s− k|, µ and set of Block sizes K are most critical parameters determining the closeness of
AMUBs to the MUBs constructed over Cd (or Rd). When block sizes are near

√
d and µ is

1, we get O(
√
d) many AMUBs for all d’s with 2δ = |s− k| <

√
d, β = 1 + δ√

d
+ O( δ

2

d
) ≤ 2

and ϵ = 1 −O(d−
1
2 ). Further, once a real Hadamard matrix of order k or s is available, we

obtain N(s) + 1 or N(k) + 1 many ARMUBs with similar characteristics.

6.2 Organization and Contribution

In Section 6.3, we provide a theoretical analysis of AMUBs that could be constructed using
RBD and describe the important parameters of RBD that affect the quality of the constructed
AMUBs using RBDs. For this, we categorize RBD into two categories: one having variable
block size and another having constant block size. We first show that the sparsity of the
AMUBs constructed using RBD is approximately 1− 1√

d
if block sizes are around

√
d. Then,

we present a general theorem on AMUBs, assuming the existence of a certain kind of RBD.
The block sizes and the maximum number of elements common between any pair of blocks
in the RBD play a crucial role in the value of β. We demonstrate that when block sizes are

around
√
d, we obtain very sparse β-AMUBs with β = µ+O

(
d−

1
2

)
and sparsity ϵ ∼ 1− 1√

d
,

thus showing that as d increases, β approaches µ and the sparsity approaches 1. For RBDs
(X,A), with |X| = d = k× s having constant block size either k or s, we show that δ = |s−k|

2

plays a crucial role in deciding the quality of AMUBs apart from µ. For constant block sizes,
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we express d = (q − e)(q ± f) where q is some power of a prime. After that, we provide an
estimate of e and f using unconditional results on the gaps between primes and Cramér’s
conjecture.

Section 6.4 discusses algorithms for constructing the RBDs for composite d. And then
we give result about β-AMUBs, which can be constructed using such RBD. In the first
subsection, we give the construction for variable block sizes of RBD, with µ = 1, and
the number of parallel classes is greater than

√
d. In the following subsection, we provide

construction using the RBD with constant block sizes, where µ is either 1 or 2, and the
number of parallel classes is N(s) or N(k). We show that RBDs having constant block size
can be used to construct β-ARMUBs if a Hadamard matrix of order s or k is available. We
also illustrate our constructions with examples and show how these constructions improve
and generalize the previous results.

In Section 6.5, we discuss and compare the present results with existing results. In Section
6.6, we summarize the main ideas of this work and conclude by suggesting further research
possibilities in this direction.

6.3 Theoretical Analysis

In this section, we present a generic result dependent on the existence of a suitable RBD,
achieved by appropriately categorizing RBD. After that, we explore methods to construct
such RBDs. We again emphasize that in the present theoretical analysis, we assume that the
points of RBD, i.e., |X| = d, can be increased without bound while the parameter µ remains
constant. All our constructions will have this property, justifying the asymptotic analysis
of the quality of AMUBs thus constructed. We categorize the analysis into two part, one
where all the blocks are of constant size and the other where the blocks are not of constant
size in RBD(X,A) with |X| = d, a composite number.

6.3.1 RBD(X,A) with variable block size.

In general, RBD(X,A) with |X| = d can have block sizes varying from 1 to d. Before pre-
senting the theorem demonstrating how RBD can be used to construct high-quality AMUBs,
we provide the following lemma regarding the sparsity of the orthonormal basis constructed
[65, Construction 1], having different block sizes.

Lemma 6.3.1. Refer to [65, Construction 1]. If a parallel class Pl of RBD(X,A) has b
blocks of sizes

{
kl1, k

l
2, . . . , k

l
b

}
, where

∑
i k

l
i = |Pl| = |X| = d, then the sparsity (ϵ) of the
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orthonormal basis constructed using Pl is:

ϵ = 1 − kl1
2

+ kl2
2

+ . . .+ klb
2

d2
≤ 1 − 1

b
.

Proof. To estimate sparsity, refer the construction of an orthonormal basis using RBD(X,A)
as in [65, Theorem 1]. Each block within any parallel class, denoted as Pl, consisting of ki
elements, which yields ki basis vectors. Each of these basis vectors contains ki many non-
zero elements and (d− ki) zeros. Consequently, a block with ki elements will contribute k2i
non-zero elements and ki(d − ki) zero elements. Therefore, if a parallel class Pl comprises
b blocks of sizes kl1, k

l
2, . . . , k

l
b, the total number of non-zero components across all the basis

vectors is given by
∑

i k
l
i
2

= kl1
2

+ . . . + klb
2
. The constraint

∑
i k

l
i = |Pl| = |X| = d

represents the total number of elements in the combinatorial design. Under this constraint,∑
i k

l
i
2

is minimized when kl1 = kl2 = . . . = klb = d
b
, resulting in maximum sparsity giving∑

i k
l
i
2

= d2

b
⇒ ϵ ≤ 1 − 1

b
.

When we know the bounds on the block size of the RBD but do not know the number
of blocks, in such situation we can derive bounds on the sparsity using above result, which
we state in following corollary

Corollary 6.3.1. Refer to [65, Construction 1]. If a parallel class Pl of RBD(X,A), with
|X| = d, has block sizes bounded below by ko and above by km, then the sparsity (ϵ) of the
orthonormal basis constructed using Pl

1 − km
d

≤ ϵ ≤ 1 − ko
d
.

Proof. From Lemma 6.3.1, the ϵ = 1 − kl1
2
+kl2

2
+...+klb

2

d2
where

∑
i k

l
i = d. To determine the

minimum or maximum value of
∑

i k
l
i
2
, consider that if x+ y = c is a constant, with x > y,

then (x + u)2 + (y − u)2 > x2 + y2. Hence, the maximum value of
∑

i k
l
i
2

occurs when the
maximum number of kli is as large as possible, while the minimum occurs when maximum
number of kli is as small as possible. But since the ko ≤ kli ≤ km, hence when all the blocks
are of size ko, the number of blocks would be d

ko
and when all the blocks would be size ko,

the number of blocks would be d
km

. Thus d
ko
k2o ≤

∑
i k

l
i
2 ≤ d

km
k2m ⇒ 1 − km

d
≤ ϵ ≤ 1 − ko

d
.

Note that 0 ≤ ϵ ≤ 1 − 1
d
, where the upper bound corresponds to diagonal unitary

matrix, which corresponds to the parallel class having d singleton blocks and the lower bound
corresponds to Unitary matrix having no zero entry in it, which corresponds to parallel class
having just one block consisting of all the elements of the design. RBDs can be used to
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construct set of orthonormal basis as given in [65, Construction 1], but all of them might not
be good quality AMUBs. In this direction, we give the following theorem, where if the block
sizes are O(d

1
2 ), then we can get good quality sparse β-AMUBs, even when blocks are of

different sizes. As noted previously, we call the largest number of elements common between
any pair of blocks from different parallel classes the intersection number and denoted as µ.

Theorem 6.3.1. Let (X,A) be an RBD with |X| = d and µ, containing r parallel classes,
with block sizes from the set K = {q −m, q −m+ 1, . . . , q −m+ t} with q,m, t ∈ N. Let
q =

√
d + η, with η ∈ R. If (m − η) ≤

(
c−µ
c

)√
d, then we can construct r many β-AMUBs

in dimension d, where β = ( µ
q−m)

√
d = µ + µ(m−η)√

d
+ O(d−1) ≤ c. Additionally, the sparsity

(ϵ) is bounded by Furthermore, if real Hadamard matrices of order equal to every block size
exist, then we can construct r many ARMUBs with the same β and ϵ.

Proof. We have |X| = d and each parallel class has block size from the set K = {q−m, q−m+
1, . . . , q−m+ t}, with µ(≥ 1) being the maximum number of points being common between
any two blocks from different parallel classes. Now, we obtain the maximum value of the dot
product between two vectors from different bases would when the vectors are constructed

from minimum block sizes. Thus | ⟨v1|v2⟩ | ≤ µ
q−m This implies, β = µ

√
d

q−m and if η = q −
√
d,

then β ≤ c ⇒ (m − η) ≤
(
c−µ
c

)√
d. Since 1 ≤ µ ≤ c, we have

(
m−η√
d

)
≤
(
c−µ
c

)
< 1. Thus

series expansion of β in terms of d, is given by

β = µ

(
1 +

m− η√
d

+
(m− η)2

d
+

(m− η)3

d
√
d

+ . . .

)
showing that β = µ+ µ(m−η)√

d
+O(d−1). Now to estimate the sparsity, we use Corollary 6.3.1

above. The block size are bounded between (q −m) and (q −m+ t), thus,

1 − q −m+ t

d
≤ ϵ ≤ 1 − q −m

d
,

which implies ϵo − t
d
≤ ϵ ≤ ϵo, where ϵo = 1 − q−m

d
. And if real Hadamard matrices of

order equal to every block size exist, then they can be used as unitary matrices in the [65,
Construction 1] to get real AMUBs with the same parameters, as the choice of Hadamard
matrix does not affect the parameters β and ϵ of the constructed AMUBs.

Note that the parameter β is independent of t and depends solely on µ, m, and η. This is
because β, being an upper bound, is determined by the smallest block size of the RBD(X,A)
and the intersection number, whereas the sparsity depends on m and t, as the block sizes
determine it.

104



6.3.2 RBD having constant block size

In this section, we focus on analyzing the properties of AMUBs constructed using RBDs with
a constant block size. The constant block size is essential if we want to utilize Hadamard
matrices of the same order (equal to the block size) for all the blocks of the RBD. This
is necessary as it ensures that all the basis components finally constructed are either zero
or of a constant magnitude (= 1/

√
k), the normalizing factor for each basis vector. If the

RBD has a constant block size (denoted as k), then the total number of elements, denoted
as |X| = d, would be a multiple of k, thus d = k × s. Now, two situations arise, one when
k ≤ s and the other when k > s, corresponding to the scenarios where block sizes are less
than or equal to the number of blocks in a parallel class and vice versa.

The case where k ≤ s has been analyzed in [68] in constructing APMUBs. For APMUBs,
µ = 1 was identified as a necessary condition, and a construction was provided for specific
forms of d = k × s = (q − e)(q + f), 0 < f ≤ e, where O(

√
d) many APMUBs could be

constructed. The [68, Theorem 1] outlines general features of such AMUBs, concluding that
for APMUB construction, one of the crucial requirements was µ = 1, achievable only when
k ≤ s. This is because, when the blocks are of constant sizes, as shown in the previous
chapter, µ ≥ ⌈k

s
⌉. Hence, for µ = 1, it necessitates that k ≤ s.

The constant block size is very useful for constructing ARMUB, as it necessitates the
existence of only one real Hadamard matrix of order k. Otherwise, a real Hadamard matrix
corresponding to all the different block sizes is needed to obtain ARMUB, which is difficult,
as real Hadamard matrices are only possible of order 2 and multiples of 4. However, if the
Hadamard matrix of order s is available and not k, we would require RBDs to have a block
size of order s. Thus, in such a situation, we need RBDs to have a larger block size than
the number of blocks in each parallel class. Toward this, we provide a general result, for
d = k × s, constructed using RBDs, without assuming k ≤ s, as was done in [65, Theorem
4]. This can also be viewed as a generalization of the result of [65, Theorem 4] so that a
larger class of d can be covered. For this, we state and prove the following theorem.

Theorem 6.3.2. Suppose there exists an RBD(X,A) with an intersection number µ, having
constant block size k and consisting of r parallel classes, where |X| = d = k×s, with k, s ∈ N
and 2δ = (s − k) such that δ ≤

√
d. Then, one can construct r β-AMUBs in dimension d,

where β = µ
√

s
k

= µ
(

1 + δ√
d

+ O(d−1)
)
≤
(
1 +

√
2
)
µ, and sparsity ϵ = 1− 1

s
. Furthermore,

if there exists a real Hadamard matrix of order k, we can construct r APRMUBs with the
same β and ϵ values and ∆ = 0, 1

k
, 2
k
, . . . , µ

k
.

Proof. We have |X| = d = k × s, where each parallel class has a block size of k and µ
represents the maximum number of points common between blocks from different parallel

classes. Consequently, β = µ
√
d

k
= µ

√
s
k
. If 2δ = s − k, then d = (s − 2δ)s, and solving
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for s and k, we obtain s =
√
d+ δ2 + δ and k =

√
d+ δ2 − δ. Therefore, if β = µ

√
s
k
≤

c, it follows that δ ≤
(
c2−µ2
2µc

)√
d. Assuming δ to be small and bounded, we have β =

µ
(

1 + δ√
d

+ δ2

2d
+ . . .

)
.

The sparsity, as defined in Lemma 6.3.1, is given by ϵ = 1− k
d

= 1− 1
s
. If a real Hadamard

matrix of order k exists, we can use them in the construction to obtain r many real approx-
imate MUBs in Rd, with the same β and sparsity (ϵ). In the case of real approximate MUBs
over Rd, the ∆ values, representing different possible absolute values of the inner product,
would be ∆ =

{
0, 1

k
, 2
k
, . . . , µ

k

}
. This implies that in the case of ARMUBs constructed using

RBD(X,A) with a constant block size k, |∆| = µ+ 1, and since µ is usually a small positive
integer, ∆ constitutes a small set.

The form of d as (q − e)(q + f) in [68] was chosen because when q is some power of a
prime, using (q2, q, 1)-RBIBD, one could construct having O(

√
d) many parallel classes. In

[68], the focus was to construct RBD(X,A) such that µ = 1, hence the block size could
only be (q − e) and not (q + f). Not all composite d could be written in this form as it
required the existence of prime power q, such that k+s

2
≤ q ≤ s. Nevertheless, expressing

d = (q − e)(q + f) proved beneficial in increasing the number of AMUBs to O(
√
d). In the

similar direction of constructing O(
√
d) many parallel classes, for a larger class of composite

d, we now express composite d as (q − e)(q ± f), 0 < f ≤ e, where q is some suitable prime
power depending on factors of d and then we focus on constructing RBD(X,A) with |X| = d
and having q many parallel classes, with intersection number µ. The condition 0 < f ≤ e
will ensure (q − e) ≤ (q ± f). Also note that when d = q2, i.e., corresponding to e = f = 0,
the RBD method gives q+1 many Orthonormal bases, which are MUBs [65, Corollary 3 and
Corollary 4]. Hence, expressing a composite d which is not some power of a prime number,
as (q − e)(q ± f), 0 < f ≤ e for small values of e and f , will also help in understanding how
the small perturbation in q affects the nature of the constructed orthonormal basis and its
deviation from MUBs.

Using the theorem above along with [68, Theorem 1], and expressing d = k × s =
(q − e)(q ± f), where 0 < f ≤ e, we summarize the results, providing the values of its β
and sparsity ϵ for the AMUBs constructed under various situations for RBD(X,A), where
|X| = d, and all blocks of the design are of constant size, depicted as follows.
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d = k × s Block size µmin β ϵ β/µ

(q − e)(q + f) (q − e) 1 µ
√

q+f
q−e 1 − 1

q+f
1+ e+f

2
√
d

+ . . .

(q − e)(q + f) (q + f) 2 µ
√

q−e
q+f

1 − 1
q−e 1 − e+f

2
√
d

+ . . .

(q − e)(q − f) (q − e) 1 µ
√

q−f
q−e 1 − 1

q−f 1 + e−f
2
√
d

+ . . .

(q − e)(q − f) (q − f) 2 µ
√

q−e
q−f 1 − 1

q−e 1 − e−f
2
√
d

+ . . .

We have ignored the higher-order terms in the expansion of β as a function of 1/
√
d.

Furthermore, it is worth noting that (e+ f) and (e− f), which appear above, are equivalent
to 2δ = s − k for their respective cases. Although in the cases where µmin = 2, APMUBs
cannot be obtained, it still qualifies as a β-AMUBs, with β bounded above by µ. Therefore,
for constructing high-quality β-AMUBs, it is desirable to use RBD(X,A), ensuring that µ
is minimized as much as possible. In this connection let us following lemma on Absolute
Lower Bound on β

Lemma 6.3.2. Let RBD(X,A) with |X| = d = k × s having constant block size k, is used

to construct β-AMUBs where each parallel class has s many blocks, then β ≥
√

k
s
.

Proof. From [68, Lemma 2] for d = k × s, where k is the block size and s is the number of

blocks in a parallel class, then µ ≥ ⌈k
s
⌉ ≥ k

s
. Thus, we have β = µ

√
s
k
≥
√

k
s

Note that β ≥ 1 in all cases, thus this provides a better lower bound for β than the trivial
lower bound of 1, in situations where the block size exceeds the number of blocks i.e., k > s,
in the RBD(X,A), having a constant block size.

Since, we are interested in expressing factors of d = k × s as (q − e)(q + f) where q
is some power of prime, we now state some facts about the gaps between two consecutive
primes. In [5] it was shown that there is prime in interval[x − xθ, x] for x greater than
sufficiently large integer say no where θ = 0.525. Hence, for any two consecutive prime we
have, pn+1 − pn = O(p0.525n ) for all prime, larger than no. If we define gn = pn+1 − pn then
the ratio gn

log(pn)
is known as merit of the gap gn. There is another important figure of merit

for gap between the consecutive prime, is called Cramér - Shanks - Granville ratio based on
Cramér conjecture [33]. It is defined as the ratio gn

log(pn)2
. Shanks conjectured that this ratio

will always be less than 1, where as Granville conjectured, that the ratio will exceed 1 or
come arbitrarily close to 2/eγ = 1.1229 [69, 90]. On the other hand Firoozbakht’s conjecture
implies that the ratio is below 1− 1

log(p)
for all primes p ≥ 11 [63]. The greatest known value

of this ratio is about 0.92, after discarding the anomalously high values of the ratio for the
small primes less than or equal to 7. Thus assuming Cramér conjecture, there is a prime
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number in interval [x, x+ϱ log2 x] for all x ≥ 7 where currently all the known value of ϱ < 1.

We now state and prove the following lemma related to expressing any composite d =
k × s = (q − e)(q ± f) and examine the availability of such q to express d in the above form
and examine the asymptotic dependence of β on q, e, f , and get an estimate of these values
in terms of d and its factors k and s. These will help in analyzing constructions in the next
section. We state and prove the following lemmas.

Lemma 6.3.3. If d = k × s such that δ = s−k
2

≥ sθ, then there exists a prime number q
such that d = (q − e)(q + f). Here θ = 0.525 for sufficiently large s.

Proof. We are looking for a prime number q between k and s such that d = (q − e)(q + f)
with 0 ≤ f ≤ e ⇒ s − q ≤ q − k ⇒ s+k

2
≤ q. Hence s+k

2
≤ q ≤ s. The unconditional

result on the gaps in the prime [5] implies the existence of a prime number in the interval
[s − sθ, s] for sufficiently large s. The current known value of θ = 0.525. Applying this, we
get s− s+k

2
= δ ≥ sθ as a sufficient condition for the existence of such prime number q.

Since k+s
2

≤ q ≤ s, hence δ = k+s
2

− k ≤ e = q − k ≤ s − k = 2δ and 0 ≤ f = s − q ≤
s− k+s

2
= δ. Thus 0 ≤ f ≤ δ ≤ e ≤ 2δ such that e+f

2
= δ. Now assuming Cramér conjecture

[33] on the gap in prime number in terms of Cramér - Granville - Shanks ratio, which is
less than 1, we have δ ≥ ϱ log2 s as a sufficient condition for the existence of such a prime
power q. Therefore, if it is impossible to find such prime between k and s only in situation
when there is no ’sufficient’ gap between them. In such a situation, we find q closest to s
but greater than s and express d = (q − e)(q − f). In this direction, we have the following
lemma.

Lemma 6.3.4. Let d = k× s, and there is no prime power between k and s, then d = O(s2)
and we can express d = (q − e)(q − f), with q being some prime power greater than s, such

that f = O(d
θ
2 ) and e = 2δ + O(d

θ
2 ) where δ = s−k

2
and θ = 0.525.

Proof. The result on prime power gaps states that for sufficiently large x, there is a prime
number between [x−xθ, x]. Given that there is no prime power between k and s, this implies
(s−k) = 2δ < sθ. In such a situation, choose the smallest prime power q such that q ≥ s and
express d = k × s = (q − e)(q − f) where f = O(sθ) and e = 2δ + O(sθ). Further note that
in this situation, since 2δ ≤ sθ ⇒ k ≥ s− sθ. Thus (s− sθ)s ≤ d ≤ s2 ⇒ s2 − s1+θ ≤ d ≤ s2.

Hence d = O(s2). Also note that d = (s − 2δ)s ⇒ s = d
1
2 + δ + δ2

4
√
d

+ .. and since δ ≤ sθ,

hence s = O(
√
d) thereby implying f = O(d

θ
2 ) and e = 2δ + O(d

θ
2 ).

Note that in this case e+f
2

= δ + f = δ + O(d
θ
2 ). And again if we assume Cramér

conjecture [33] on the gap in prime number, then in terms of Cramér - Granville - Shanks
ratio we have f = O(log2 s) and e = 2δ + O(log2 s) and e+f

2
= δ + O(log2 s).
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6.4 Construction of AMUBs through RBDs

We will characterize an AMUB by the values of β,∆ and ϵ, which we call as the parameters
of the AMUB. We now present the construction of several sets of β-AMUBs, which could
be useful in information processing in classical and quantum domains. We demonstrate that
for a given d, there can be varying number of AMUBs having same β but different ϵ and ∆.
We will compare the parameters of our construction with known constructions of AMUBs,
illustrating and highlighting salient features of the present construction and how it surpasses
known AMUBs in certain aspects.

To construct AMUBs through RBD, we proceed in two steps. First, we construct suit-
able RBDs. Then, we using the steps of [65, Construction 1] to construct a set of unitary
matrices corresponding to each parallel class of RBD, having values of parameters following
the results provided in Section 6.3. For ease of understanding, we will initially demonstrate
each construction with a simple example, followed by a general algorithm for construction
and then proof of the correctness of the construction in the form of a lemma. This will
be followed by Theorem/Lemma concerning AMUB for the given form of d for which the
construction has been demonstrated.

We present this in two parts: one devoted to constructing AMUBs using RBDs with non-
constant block size and another devoted to constructing AMUBs using RBDs with constant
block size.

6.4.1 Construction of β-AMUBs through RBD having non-constant
block size

In this section, we demonstrate that for any composite d = k × s such that |k − s| <
√
d,

we can construct an RBD(X,A) with µ = 1 containing more than
√
d parallel classes with

non-constant block sizes which in turn will fetch O(
√
d) many sparse β-AMUBs with β =

1 + O(d−
1
2 ), indicating that for large d, it approaches very close to MUBs. To achieve this,

we express d as either d = (q − e)(q + f) or (q − e)(q − f), where q is some power of prime,
and e and f satisfy some suitable condition.

Let us first consider the case for d = (q−e)(q+f) with 0 < f ≤ e. In [68, Theorem 3] we
have shown that when d is of the form (q− e)(q+ f), then we can construct ⌊ q−e

f
⌋+ 1 many

APMUBs, with β = 1 + O(d−
1
2 ). Toward the proof of this theorem, the [68, Construction

4] and corresponding [68, Lemma 7] shows the existence of RBD(X̃, Ã), where |X̃| = d =
(q − e)(q + f) with f ≤ e having r = q + 1 parallel classes, and µ = 1. The block sizes are

from set {(q−e), (q−e+1), . . . , (q−e+f)}. Now in Theorem 6.3.2, one can use RBD(X̃, Ã)
to construct q+ 1 many β-AMUBs. But since the block sizes are not constant, hence ∆ will
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consist of more than two elements, and thus it will not satisfy the criteria of APMUB, even
though β = 1 + O(d−λ) with λ = 1

2
and β ≤ 2 if 0 ≤ (e+ f) ≤ 3

2

√
d. To characterize the ∆

of resulting AMUBs from RBD(X̃, Ã), we define the following.

Definition 6.4.1. For d = (q − e)(q + f), where e ≥ f and let θ1 = 1√
q−e , θ2 = 1√

q−e+1
, . . .,

θf+1 = 1√
q−e+f , θf+2 = 1√

q
, then define ∆1 = {θiθj}∪{0} where i, j = 1, 2, . . . , (f+1), (f+2).

Note that |∆1| =
(
f+2
2

)
+ (f + 2) + 1 = (f+3)(f+2)

2
+ 1 = O(f 2). Thus the number of

elements in ∆1 is only dependent on the value of f and is proportional to the square of it.
We now state and prove the result on β-AMUBs, using such RBD(X̃, Ã) as follows

Corollary 6.4.1. If d = (q − e)(q + f), for some prime-power q, and e, f ∈ N satisfying
0 < f ≤ e and 0 < (e+ f) ≤ 3

2

√
d, then there exist at least r = q + 1 many β-AMUBs, with

∆ ⊆ ∆1, β =
√

q+f
q−e = 1 + e+f

2
√
d

+O(d−1) ≤ 2, and 1− q−e+f
d

≤ ϵ ≤ 1− 1
q
where ϵ denotes the

sparsity.

Proof. Consider the RBD(X̃, Ã) as constructed in [68, Construction 4], and its property given

in [68, Lemma 7]. The |X̃| = (q−e)(q+f) with f ≤ e. The block sizes of RBD(X̃, Ã) are from
the set (q − e), (q − e+ 1), . . . , (q − e+ f), q. Now using Hadamard matrices of the order of
the block sizes, we get the set of q + 1 orthonormal basis. Thus, the normalizing factors of

Hadamard matrices of different orders would be from set
{

1√
q−e ,

1√
q−e+1

, . . . , 1√
q−e+f ,

1√
q

}
.

Let’s denote this set by Sθ = {θ1, θ2, . . . , θf+2} where θ1 = 1√
q−e , θ2 = 1√

q−e+1
, . . ., θf+1 =

1√
q−e+f , and θf+2 = 1√

q
. The set has f + 2 elements. Since µ = 1 for RBD(X̃, Ã), we have

| ⟨ψli|ψmj ⟩ | = θiθj or 0, where |ψli⟩ and |ψmi ⟩ are the vectors from two different orthonormal

bases constructed using the parallel class of RBD(X̃, Ã) and θi, θj ∈ Sθ. Thus, ∆ ⊆ ∆1.

Now, max
{
| ⟨ψli|ψmj ⟩ |

}
= max {θiθj} = 1

q−e corresponding to the maximum value of

θi = θj = 1√
q−e . Thus, β = d

q−e =
√

q+f
q−e = 1 + e−f

2
√
d

+O(d−1). And for β ≤ 2 as stated in [68,

Theorem 3] we should have 0 < (e+ f) ≤ 3
2
d

1
2 .

To estimate the value of sparsity, refer to the Lemma 6.3.1, since there are q blocks in
each parallel class, thus Sparsity(ϵ) is bounded above by 1− 1

q
and using Corollary 6.3.1, the

lower bound of ϵ is 1 − q−e+f
d

. Hence 1 − q−e+f
d

≤ ϵ ≤ 1 − 1
q
.

Note the that here we have improved the number of β-AMUBs for dimensions of the form
d = (q− e)(q+ f) from ⌊ q−e

f
⌋+ 1 to (q+ 1) many β-AMUBs with the same β = 1 +O(d−

1
2 ).

However, the order of set ∆ has now increased from two valued viz.
{

0, β√
d

}
to ∆s as in

Definition 6.4.1. Hence, it is also not APMUB. Also as stated in [68, Theorem 3], if there
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exists a real Hadamard matrix of order (q− e), then there exists at least r = ⌊ q−e
f
⌋+ 1 many

Almost Perfect Real MUBs (APRMUBs). However, the same cannot be applicable here,
since from Corollary 6.4.1, the block sizes vary from (q − e) to (q − e+ f) and q. Hence for
ARMUBs, we require real Hadamard matrices of all these orders. Since a real Hadamard
matrix can only exist when the order is divisible by 4, it is not possible to construct ARMUBs
using RBD(X̃, Ã). Also the sparsity in the above case is bounded above by 1− 1

q
, whereas the

sparsity in the case of APMUB [68, Theorem 3] is 1 − 1
q+f

. Hence, for f > 0, the APMUBs

are sparser than the AMUBs constructed here for same d = (q − e)(q + f).

For example, when the RBD(X̃, Ã) with d = 4×8 = (7−3)(7+1), is used for constructing
β-AMUBs, we obtain ∆ = 1√

d
× {βi} where βi = {0, 0.79, 0.96, 1.07, 1.13, 1.24, 1.41}.

Note that, β =
√

q+f
q−e =

√
2 = 1.41 in this case, and the sparsity ϵ ≤ 1 − 1

7
= 0.86. On

the other hand, the APMUB for the same d = 4 × 8, we obtain ∆ =
{

0, β√
d

}
= {0, 1.41}

and sparsity ϵ = 1 − 1
7+1

= 0.88. Thus, the ∆ reduces to two elements, and the sparsity

increases slightly. Note that, β =
√

q+f
q−e =

√
2 = 1.41 remain same for both the cases. But

the advantage here is that we have 8 many β-AMUBs where as there were only 5 APMUBs.

As we have noted that when there is not sufficient gap between k and s, there need not
be any prime power q between k and s, hence we can not express d = (q − e)(q + f) with
f ≤ e. In such situation we find q greater than s and express d = (q− e)(q− f) for suitable
e and f . Refer Lemma 6.3.3 and Lemma 6.3.4 in this connection.

Let us now consider d of the form (q − e)(q − f), where q is a prime power with 0 <
f ≤ e. First, we demonstrate that in such cases, we can construct an RBD(X,A) with
|X| = d having q many parallel classes, where block sizes in the parallel classes are from set
{q − (e+ f), q − (e+ f) + 1, . . . , q − e}. Consequently, such an RBD(X,A) can be utilized
to construct q orthonormal bases following Theorem 6.3.1 thus providing O(q) many AMUBs
in such scenarios.

For constructing such an RBD, we consider a (q2, q, 1)-Affine Resolvable BIBD as the
input. We denote this RBD(X̄, Ā), where |X̄| = q2 and all blocks of A have the same size q,
with the number of parallel classes in A being q+1. Utilizing this, we construct RBD(X,A),
where |X| = (q− e)(q− f) with the same number of parallel classes q, but the blocks do not
have the same size.

Let us illustrate this construction with an example. Consider |X| = (7 − 2)(7 − 1) =
5× 6 = 30, where q = 7, e = 2, and f = 1. We employ an Affine Resolvable (72, 7, 1)-BIBD,
call it as RBD(X̄, Ā), which comprises of eight parallel classes. Each parallel class comprises
seven blocks of constant size 7. We represent each parallel class as a 7× 7 matrix, with each
row representing one block of the parallel class. Therefore, there would be 8 such matrices
as shown below to depict the combinatorial design.
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P̄1 =



b̄17 = {1 2 3 4 5 6 7}
b̄16 = {8 9 10 11 12 13 14}
b̄15 = {15 16 17 18 19 20 21}
b̄14 = {22 23 24 25 26 27 28}
b̄13 = {29 30 31 32 33 34 35}
b̄12 = {36 37 38 39 40 41 42}
b̄11 = {43 44 45 46 47 48 49}


, P̄2 =



b̄27 = {1 9 17 25 33 41 49}
b̄26 = {2 10 18 26 34 42 43}
b̄25 = {3 11 19 27 35 36 44}
b̄24 = {4 12 20 28 29 37 45}
b̄23 = {5 13 21 22 30 38 46}
b̄22 = {6 14 15 23 31 39 47}
b̄21 = {7 8 16 24 32 40 48}


,

P̄3 =



b̄37 = {1 10 19 28 30 39 48}
b̄36 = {2 11 20 22 31 40 49}
b̄35 = {3 12 21 23 32 41 43}
b̄34 = {4 13 15 24 33 42 44}
b̄33 = {5 14 16 25 34 36 45}
b̄32 = {6 8 17 26 35 37 46}
b̄31 = {7 9 18 27 29 38 47}


, P̄4 =



b̄47 = {1 11 21 24 34 37 47}
b̄46 = {2 12 15 25 35 38 48}
b̄45 = {3 13 16 26 29 39 49}
b̄44 = {4 14 17 27 30 40 43}
b̄43 = {5 8 18 28 31 41 44}
b̄42 = {6 9 19 22 32 42 45}
b̄41 = {7 10 20 23 33 36 46}


,

P̄5 =



b̄57 = {1 12 16 27 31 42 46}
b̄56 = {2 13 17 28 32 36 47}
b̄55 = {3 14 18 22 33 37 48}
b̄54 = {4 8 19 23 34 38 49}
b̄53 = {5 9 20 24 35 39 43}
b̄52 = {6 10 21 25 29 40 44}
b̄51 = {7 11 15 26 30 41 45}


, P̄6 =



b̄67 = {1 13 18 23 35 40 45}
b̄66 = {2 14 19 24 29 41 46}
b̄65 = {3 8 20 25 30 42 47}
b̄64 = {4 9 21 26 31 36 48}
b̄63 = {5 10 15 27 32 37 49}
b̄62 = {6 11 16 28 33 38 43}
b̄61 = {7 12 17 22 34 39 44}


,

P̄7 =



b̄77 = {1 14 20 26 32 38 44}
b̄76 = {2 8 21 27 33 39 45}
b̄75 = {3 9 15 28 34 40 46}
b̄74 = {4 10 16 22 35 41 47}
b̄73 = {5 11 17 23 29 42 48}
b̄72 = {6 12 18 24 30 36 49}
b̄71 = {7 13 19 25 31 37 43}


, P̄8 =



b̄87 = {1 8 15 22 29 36 43}
b̄86 = {2 9 16 23 30 37 44}
b̄85 = {3 10 17 24 31 38 45}
b̄84 = {4 11 18 25 32 39 46}
b̄83 = {5 12 19 26 33 40 47}
b̄82 = {6 13 20 27 34 41 48}
b̄81 = {7 14 21 28 35 42 49}


,

In order to construct RBD(X,A), where |X| = (q− e)(q− f) = (7− 2)(7− 1) = 30 such
that µ = 1, do the following.

1. Choose any e(= 2) many blocks from P̄1. Let these blocks be b̄11 and b̄12. Let S1 =
b̄11 ∪ b̄12 = {36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49}.
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2. Choose another f(= 1) many block from P̄1. Let it be b̄13. Now choose any (q− e) = 5
elements from each of the f blocks. Let these be S2 = {31, 32, 33, 34, 35}. Set S =
S1 ∪ S2 = {31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49} (indicated
in red).

3. Remove the elements of the set S from the RBD (X̄, Ā). Call the resulting combinato-
rial design a new RBD (X,A), where |X| = 30 and A = {P1, P2, P3, P4, P5, P6, P7, P8},
presented as below.

P1 =


b17 = {1 2 3 4 5 6 7}
b16 = {8 9 10 11 12 13 14}
b15 = {15 16 17 18 19 20 21}
b14 = {22 23 24 25 26 27 28}
b13 = {29 30}

 , P2 =



b27 = {1 9 17 25}
b26 = {2 10 18 26}
b25 = {3 11 19 27}
b24 = {4 12 20 28 29}
b23 = {5 13 21 22 30}
b22 = {6 14 15 23}
b21 = {7 8 16 24}


,

P3 =



b37 = {1 10 19 28 30}
b36 = {2 11 20 22}
b35 = {3 12 21 23}
b34 = {4 13 15 24}
b33 = {5 14 16 25}
b32 = {6 8 17 26}
b31 = {7 9 18 27 29}


, P4 =



b47 = {1 11 21 24}
b46 = {2 12 15 25}
b45 = {3 13 16 26 29}
b44 = {4 14 17 27 30}
b43 = {5 8 18 28}
b42 = {6 9 19 22}
b41 = {7 10 20 23}


,

P5 =



b57 = {1 12 16 27}
b56 = {2 13 17 28}
b55 = {3 14 18 22}
b54 = {4 8 19 23}
b53 = {5 9 20 24}
b52 = {6 10 21 25 29}
b51 = {7 11 15 26 30}


, P6 =



b67 = {1 13 18 23}
b66 = {2 14 19 24 29}
b65 = {3 8 20 25 30}
b64 = {4 9 21 26}
b63 = {5 10 15 27}
b62 = {6 11 16 28}
b61 = {7 12 17 22}


,

P7 =



b77 = {1 14 20 26}
b76 = {2 8 21 27}
b75 = {3 9 15 28}
b74 = {4 10 16 22}
b73 = {5 11 17 23 29}
b72 = {6 12 18 24 30}
b71 = {7 13 19 25}


, P8 =



b87 = {1 8 15 22 29}
b86 = {2 9 16 23 30}
b85 = {3 10 17 24}
b84 = {4 11 18 25}
b83 = {5 12 19 26}
b82 = {6 13 20 27}
b̄81 = {7 14 21 28}


,
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Note that here all the blocks are not of the same size, but any two blocks from dif-
ferent parallel classes have at most 1 element in common, i.e., µ = 1. Except for the
blocks of parallel class P1, the blocks of the remaining parallel classes have sizes in the
set {q − (e+ f), q − (e+ f) + 1, . . . , q − e} = {4, 5}. Thus, we discard the Parallel class P1.
The remaining parallel classes form the required resolvable design, which we call RBD(X,A).
Let us formalize the algorithm for the general case. Let d = k × s = (q − e)(q − f), with
0 < f ≤ e < q.

Construction 6.4.1. Let q be a prime power, construct (q2, q, 1)-ARBIBD. Call this design
(X̄, Ā) with X̄ = {1, 2, . . . , q2} and |Ā| = q(q+1) many blocks, each block is of constant size
q. It will have r = q + 1 many parallel classes, call them

{
P̄1, P̄2, . . . , P̄q+1

}
, each parallel

class having q many blocks of constant size q. Between any two blocks from different parallel
classes, exactly one element will be common, i.e., |b̄li ∩ b̄mj | = 1, ∀ l ̸= m.

1. Given e ≥ f , choose e(≥ 0) many blocks from P̄1 =
{
b̄11, b̄

1
2, . . . , b̄

1
h

}
. Let S1 = b̄11 ∪ b̄12 ∪

. . . ∪ b̄1h. Therefore, |S1| = e× q.

2. From
{
b̄1e+1, b̄

1
e+2, . . . , b̄

1
e+f

}
blocks of P̄1, choose any (q − e) number of elements from

each of them. Let S2 be the union of all these elements. Therefore, |S2| = f × (q− e).
Let S = S1 ∪ S2.

3. Remove the elements of set S from RBD (X̄, Ā) and remove parallel class P̄1 from Ā.
Call the resulting design RBD(X,A).

We claim that RBD(X,A) satisfies |X| = (q − e)(q − f) and A consists of q + 1 many
parallel classes having different block sizes, such that blocks from different parallel classes
have at most one element in common, i.e., |bli ∩ bmj | ≤ 1 for all l ̸= m, implying µ = 1. We
formalize this in the following lemma.

Lemma 6.4.1. Let d = (q − e)(q − f) for f, e ∈ N with 0 < f ≤ e ≤ q where q is some
prime power. Then one can construct an RBD(X,A), with |X| = d having block sizes from
the set of integers {(q − e− f), (q − e− f + 1), . . . , (q − e)} with µ = 1, and having q many
parallel classes.

Proof. Refer to Construction 6.4.1 above. Here RBD(X̄, Ā) is an ARBIBD with |X̄| = q2,
having a constant block size q. Note that any pair of blocks from different parallel classes
have exactly one element in common, i.e., |b̄li ∩ b̄mj | = 1, ∀ l ̸= m. The number of elements
in the set |S| = |S1 ∪ S2| = |S1| + |S2| = eq + f(q − e) < q2, which is a proper subset of X̄.
These elements are removed from all the parallel classes of RBD(X̄, Ā). Hence, the resulting
design RBD(X,A) is such that |X| = q2−eq−f(q−e) = (q−e)(q−f) = d, having the same
number of parallel classes as in Ā\P1, which is q. The number of elements common between
any two blocks from different parallel classes would be at most 1, i.e., |bli ∩ bmj | ≤ 1, ∀ l ̸= m.
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To obtain the sizes of the blocks in RBD(X,A), note that S1 contains all elements from
e number of blocks of P̄1. Hence, S1 would have at least e elements in common with all
the blocks of the remaining parallel classes. Thus, removal of the elements in S1 from the
parallel classes P̄l, l ≥ 2 will remove at least e elements from each block of P̄l, which implies
|b̄li \ S1| = q − e. Further, S2 contains q − e elements from f many blocks of P̄1. Thus, the
blocks in P̄2, P̄3, . . . , P̄q+1 will have at most f elements in common with S2. Consequently,
after the removal of all the elements in S from the parallel class P̄l, the block size |bli|, l ≥ 2
will be at maximum (q − e) and minimum (q − e− f). However, the blocks in parallel class
P1 will be of sizes q or e and have a total of (q − e) blocks, which we discard.

Now, the RBD(X,A) can be used to construct AMUBs. Since the number of parallel
classes in RBD(X,A) is q, and as per Theorem 6.3.1, we will obtain q many β-AMUBs.
Although µ = 1 here, the block sizes are not constant, hence ∆ will consist of more than two
elements, and thus it will not satisfy the criteria of APMUB, even though β = 1 + O(d−λ),
where λ = 1

2
. For this situation, to characterize AMUB, we define the following.

Definition 6.4.2. For d = (q − e)(q − f), where e ≥ f and let θ1 = 1√
q−e−f , θ2 =

1√
q−e−f+1

, . . . , θf+1 = 1√
q−e , then define ∆2 = {θiθj} ∪ {0} where i, j = 1, 2, . . . , (f + 1).

Note that |∆2| =
(
f+1
2

)
+ (f + 1) + 1 = (f+1)(f+2)

2
+ 1 = O(f 2). Again, as in the case

of ∆1, here also the number of elements in ∆2 is only dependent on the value of f and is
proportional to the square of it. We now state and prove the result on β-AMUBs, using such
RBD(X,A) as follows

Corollary 6.4.2. Let d = (q − e)(q − f) with q be some prime-power, 0 < f ≤ e and
0 < (e+ f) ≤ 3

2

√
d where e, f ∈ N then there exist at least q many β-AMUBs, with ∆ ⊆ ∆2,

β =
√
d

q−(e+f)
= 1 + e+f

2
√
d

+ O(d−1) ≤ 2 and 1 − q−e
d

≤ ϵ ≤ 1 − 1
q
.

Proof. Consider the RBD(X,A) from Construction 6.4.1, where |X| = (q − e)(q − f) with
f ≤ e. The block sizes of RBD(X,A) are from the set {(q−e−f), (q−e−f+1), . . . , (q−e)}
as given in Lemma 6.4.1. Using the Hadamard matrices of the order of block sizes, we
get q many Orthonormal Basis. Thus, the normalizing factors of Hadamard matrices of

different order would be from set

{
1√

q−(e+f)
, 1√

q−(e+f)+1
, . . . , 1√

q−e

}
. Let’s denote this set

by Sθ = {θ1, θ2, . . . , θf+1} where θ1 = 1√
q−(e+f)

, θ2 = 1√
q−(e+f)+1

, . . . , θf+1 = 1√
q−e+f . There

will be f + 1 elements in the set. Since µ = 1 for the RBD(X,A), we have
∣∣⟨ψli|ψmj ⟩∣∣ = θiθj

or 0, where |ψli⟩ and |ψmj ⟩ are the vectors from two different orthonormal bases constructed
using a parallel class of RBD(X,A), and θi, θj ∈ Sθ. Thus, ∆ ⊆ ∆2.
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Now, max
{∣∣⟨ψli|ψmj ⟩∣∣} = max{θiθj} = 1

q−(e+f)
corresponding to the maximum value of

θi = θj = 1√
q−(e+f)

. Thus, β =
√
d

q−(e+f)
hence if β ≤ c, using d = (q − e)(q − f) and solving

for q in terms of d, we get q = d
1
2 (1 + (e−f)2

4d
)
1
2 + e+f

2
⇒ efc+ (e+ f)

√
d ≤ c2−1

c
d, which for

c = 2 we get 2ef√
d

+ (e+ f) ≤ 3
2

√
d hence 0 < (e+ f) < 3

2

√
d. Note that for this condition, we

have e+f

2
√
d
< 3

4
< 1, thus the series expansion gives β = 1 + e+f

2
√
d

+ O(d−1) ≤ 2.

To estimate the sparsity, refer to the Lemma 6.3.1, since there are q many blocks in each
parallel class, the ϵ is bounded above by 1 − 1

q
, and for lower bound, the maximum block

size is q − e, thus Corollary 6.3.1 gives ϵ is bounded below by 1 − q−e
d

, hence

1 − q − e

d
≤ ϵ ≤ 1 − 1

q
.

For example, for the case of RBD(X,A) with d = 5 × 6 = (7 − 2)(7 − 1) = 30, implying
e = 2 and f = 1 shown in the example above, when used for constructing the β-AMUBs, we
get β =

√
30
4

= 1.37 and the set ∆ = 1√
d
×{βi}, where βi = {0, 0.76, 0.93, 1.04, 1.09, 1.20, 1.37}

The Corollary 6.4.1 and Corollary 6.4.2 together imply that for every composite d = k×s
such that |s − k| ≤

√
d, then we can always construct O(

√
d) many APMUB. We formally

state and prove following

Lemma 6.4.2. For any composite number, d = k × s, k ≤ s with 2δ = s − k ≤
√
d, then

there exist O(
√
d ) many β-AMUBs where β ≤ 1 + δ√

d
+ O(d−λ) ≤ 2, λ = 1−θ

2
= 0.2375 and

ϵ = 1 −O(d−
1
2 ).

Proof. Consider the prime number p nearest to u
(
= k+s

2

)
but greater than u. From result

on gap in prime [5], there will exist a prime number p in the interval [u, u + O(uθ)] where
θ = 0.525. Now let v = p − u, hence v ≤ O(uθ). Consequently, s = p − v + δ and
k = p− v− δ where 2δ = s− k. Now, if v ≤ δ, then it becomes the case of d = (q− e)(q+ f)
where q = p, e = v + δ and f = v − δ, in which case we get p + 1 many β-AMUBs
with β = 1 + δ√

d
+ O(d−1) ≤ 2. On the other hand if v ≥ δ, then it becomes the case of

d = (q−e)(q−f) where q = p, e = v+δ, and f = v−δ in which case we get p many β-AMUBs

with β = 1+ e+f

2
√
d

+O(d−1). And as shown in Lemma 6.3.3, we have e+f
2

= δ+f = δ+O(d
θ
2 ).

Hence β = 1 + δ√
d

+ O(d−λ) ≤ 2 where λ = 1−θ
2

= 0.2375.

Thus, considering both the cases together, we get p + 1 or p many β-AMUBs with
β ≤ 1 + δ√

d
+ O(d−λ) ≤ 2. Since for d = (p − e)(p + f) or d = (p − e)(p − f), with e ≥ f ,

we have d = p2 − (e ± f)p ∓ ef ⇒ p = O(
√
d), hence number of β-AMUBs is O(

√
d).

116



The sparsity ϵ is bounded from below by 1 − s
d

and bounded from above by 1 − 1
q

hence

ϵ = 1 −O(d−
1
2 ).

Note that, the number of β-AMUBs will always be ≥ ⌊d 1
2 ⌋. It can also be verified that,

if we assume the validity of Cramér Conjecture [33], the above result will hold, but now the

asymptotic series for β for the case of d = (q−e)(q−f) will be β = 1+ δ√
d
+O((log2 d)d−

1
2 ) ≤ 2.

Thus if δ is bounded then we have β = 1 + O(d−
1
2 ).

Let us now focus on using RBD, having constant block sizes. Such RBD has the advantage
of using a single Hadamard matrix for the entire construction. Hence, RBD(X,A) are more
amenable for ARMUB construction. Whereas RBD(X,A) with non-constant block size,
intersection number µ is generally small and easy to construct, but then different order
Hadamard matrices are required for constructing AMUBs. And since real Hadamard matrix
exist only of order 2 or multiple of 4, thus getting ARMUB using such RBD having variable
block sizes may not be possible. But our experience has shown that in general, constructing
RBD(X,A), having a large number of parallel classes, and having constant block size for all
the parallel classes such that intersection number µ remains small and bounded are difficult
to achieve. In this direction, we present a few constructions of AMUBs/ARMUBs through
RBDs having constant block size.

6.4.2 Construction of β-AMUBs through RBDs having constant
block size

In [68, Theorem 2], it is shown that for any composite dimension d = k × s, k ≤ s such
that

√
s
k
< 2, one can construct at least N(s) + 1 APMUBs. Here, the key idea is the

use of MOLS(s) for the construction of RBD(X,A), having N(s) + 1 many parallel classes
with µ = 1. This also enables us to construct ARMUB using the real Hadamard matrix
of order k if it exists. However, if only the Hadamard matrix of order s exists and not k,
then to construct ARMUBs, the RBD(X,A) should have block size s. Nevertheless, from
[68, Lemma 2], we know that in such a situation, µ ≥ 2. Hence, the minimum value of µ
would be 2 in such a situation. Also, if N(k) > N(s) and we wish to use the MOLS(s) to
get RBD with more number of parallel classes, then in such situation we would like to have
RBD, with a block of size s.

Our following construction achieves the minimal possible value of µ = 2 when block
size s < k < 2s. We express k = s + f , 0 < f ≤ s. Let us demonstrate the con-
struction by explicitly constructing RBD(X,A) with |X| = 5(5 + 3) = 10, here q = 5
and f = 3. As in [68, Section 5.1], 4- MOLS(5) was used to get RBD(X̄, Ā) having
6 parallel classes. Following the steps of [68, Construction 3] for d = (q − e)q, where
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e = q − f , we will use this, to construct RBD(X̃, Ã) with |X̃| = (5 − 2)5 = 15. For this

let, X̃ = {26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}. Now, we will combine this de-
sign of RBD(X̄, Ā). We will get RBD(X, A), with elements numbered 1 to 40. Explicitly

RBD(X̃, Ã) with |X̃| = 5(5 − 2) = 15 is as follows.

P̃1 =


b̃15 = {26 32 38}
b̃14 = {27 33 39}
b̃13 = {28 34 40}
b̃12 = {29 35 36}
b̃11 = {30 31 37}

 , P̃2 =


b̃25 = {26 33 40}
b̃24 = {27 34 36}
b̃23 = {28 35 37}
b̃22 = {29 31 38}
b̃21 = {30 32 39}

 , P̃3 =


b́35 = {26 34 37}
b́34 = {27 35 38}
b̃33 = {28 31 39}
b̃32 = {29 32 40}
b̃31 = {30 33 36}

 ,

P̃4 =


b̃45 = {26 35 39}
b̃44 = {27 31 40}
b̃43 = {28 32 36}
b̃42 = {29 33 37}
b̃41 = {30 34 38}

 , P̃5 =


b̃55 = {26 31 36}
b̃54 = {27 32 37}
b̃53 = {28 33 38}
b̃52 = {29 34 39}
b̃51 = {30 35 40}

 ,

Note that, any two blocks from different parallel class of RBD(X̃, Ã) has at most one point

in common. Now taking corresponding block wise union of RBD(X̃, Ã) with RBD(X̄, Ā),

i.e., bij = b̄ij∪ b̃ij. Ignore any one of the parallel class of RBD(X̄, Ā). The resulting RBD(X,A)
is given as follows.

P1 =


b15 = {1 7 13 19 25 26 32 38}
b14 = {2 8 14 20 21 27 33 39}
b13 = {3 9 15 16 22 28 34 40}
b12 = {4 10 11 17 23 29 35 36}
b11 = {5 6 12 18 24 30 31 37}

 , P2 =


b̌25 = {1 8 15 17 24 26 33 40}
b24 = {2 9 11 18 25 27 34 36}
b23 = {3 10 12 19 21 28 35 37}
b22 = {4 6 13 20 22 29 31 38}
b21 = {5 7 14 16 23 30 32 39}

 ,

P3 =


b35 = {1 9 12 20 23 26 34 37}
b34 = {2 10 13 16 24 27 35 38}
b33 = {3 6 14 17 25 28 31 39}
b32 = {4 7 15 18 21 29 32 40}
b31 = {5 8 11 19 22 30 33 36}

 , P4 =


b45 = {1 10 14 18 22 26 35 39}
b44 = {2 6 15 19 23 27 31 40}
b43 = {3 7 11 20 24 28 32 36}
b42 = {4 8 12 16 25 29 33 37}
b41 = {5 9 13 17 21 30 34 38}

 ,

P5 =


b55 = {1 6 11 16 21 26 31 36}
b̌54 = {2 7 12 17 22 27 32 37}
b53 = {3 8 13 18 23 28 33 38}
b52 = {4 9 14 19 24 29 34 39}
b51 = {5 10 15 20 25 30 35 40}

 .
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It can be seen that in the above RBD(X,A), any two blocks from different parallel
class have either one or two points in common. X consist of points from 1 to 40, and
A = {P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5}. The technique is more formally explained for the general
case in the following Construction.

Construction 6.4.2. Let d = k × s = (s+ f)s, with 0 < f ≤ s

1. Using [68, Construction 1], construct an RBD(X̄, Ā) using w-MOLS(s). The resulting
RBD(X̄, Ā) has X̄ = {1, 2, . . . , s2} and |A| = s(N(s) + 2) many blocks. It will have
r = N(s) + 2 many parallel classes, namely

{
P̄1, P̄2, . . . , P̄N(s), P̄0, P̄∞

}
, each having

s many blocks of constant size s. The blocks of the parallel class P̄l are denoted by
b̄li, i = 1, 2, . . . , s. Between any two blocks from different parallel class, have exactly
one point in common i.e., |b̄li ∩ b̄mj | = 1, ∀ l ̸= m.

2. Pick any parallel class, say P̄1. Remove (s − f) many blocks from it and let S ={
b11 ∪ b12 ∪ . . . ∪ b1(s−f)

}
.

3. Remove all the points of S from X̄ i.e., X̄ \S and also remove the points of S from all
the blocks of parallel classes

{
P̄2, P̄3, . . . , P̄s+1

}
. Let the resulting parallel classes be

called as
{
P̃2, P̃3, . . . , P̃q+1

}
i.e., P̃i = P̄i \ S.

4. Discard the parallel class P̄1.

5. Construct another RBD(X,A) having elements from (X̄, Ā). Then |X| = s2 and
|A| = s(N(s) + 2) blocks with r = N(s) + 2 many parallel classes {P1, P2, . . . , Pr}.

6. Discard any one parallel class from A1, say P1.

7. Form a new design (X,A) where X = X̃ ∪X, A = {P2, P3, . . . , Pr} where Pl = Pl + P̃l.
Then (X,A) is the required RBD.

We claim that the above design (X,A) is an RBD such that |X| = s(s + f) and A
consists of N(s) + 1 many parallel classes, A = {P2, . . . , Pr}, each parallel class have s many
blocks, Pl =

{
bl1, b

l
2, . . . , b

l
s

}
for l = 2, 3, . . . , r, each of size (s + f) i.e., |bli| = (s + f), for all

i ∈ {1, 2, . . . , s} and l ∈ {2, 3, . . . , r}, such that blocks from different parallel classes have
at most two points in common, i.e., 1 ≤ |bli ∩ bmj | ≤ 2, ∀ i ̸= j. We formalize this using the
following lemma.

Lemma 6.4.3. Let d = (s + f)s with 0 < f ≤ s, then one can construct an RBD(X,A),
with |X| = d having constant block size of (s + f) with µ = 2 and having N(s) + 1 many
parallel classes, where N(s) is the number of MOLS(s).
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Proof. Refer to Construction 6.4.2. Since any pair of blocks from different parallel classes is
of size s and has exactly one point in common in RBD(X̄, Ā), i.e., |b̄li ∩ b̄mj | = 1, ∀ l ̸= m,

removing the elements of S =
{
b̄11 ∪ b̄12 ∪ . . . ∪ b̄1s−f

}
from the entire design will remove

exactly (s − f) elements from each block b̄lt, l ̸= 1. Hence, the blocks b̃lt = b̄lt \ S will be of
constant size |b̃li| = f and |b̃li ∩ b̃mj | ≤ 1, ∀ l ̸= m.

On the other hand, in an RBD(X,A), any pair of blocks from different parallel classes is
of size s and has exactly one point in common, i.e., |bli ∩ bmj | = 1, ∀ l ̸= m. Since the design

(X,A), where X = X̃ ∪ X̄, A = {P2, P3, . . . , Pr}, and Pl = Pl + P̃l, is a direct union of the
blocks for Ā and Ã, it will have either one point or two points in common between blocks of
different parallel classes.

Now using such RBD, we can construct β-AMUBs with the following characteristics.

Theorem 6.4.1. If d = s(s+ f), with s, f ∈ N and f ≤ s, then one can construct N(s) + 1

many approximate MUBs with β = 2
√

s
s+f

= 2− f√
d

+O(d−1) ≤ 2 and sparsity ϵ = 1− 1
s
. If

there exist a real Hadamard matrix of order (s+ f), then one can construct N(s) + 1 many

approximate real MUBs (ARMUBs) with the same β and ϵ. Furthermore, ∆ =
{

0, βo√
d
, 2βo√

d

}
where 1√

2
≤ βo = 1 − f

2
√
d

+ O(d−1) < 1.

Proof. Following the Construction 6.4.2, we construct an RBD(X,A) with |X| = d = (s +
f)s. The block size is (s + f), and the number of parallel classes is N(s) + 1. Since the

intersection number µ = 2, we have β = 2
√
d

s+f
= 2

√
s

s+f
< 2. The result follows from

the construction of β-AMUBs in [65] and Theorem 6.3.2. The minimum possible β in this
situation is when f = s, for which β ≤

√
2. The asymptotic variation of the parameters in

terms of d is given by β = 2 − f√
d

+ O(d−1). However, here, β converges to 2. The sparsity

is given by ϵ = 1− s+f
d

= 1− 1
s
. Using the real Hadamard matrix of order (s+ f), we obtain

the ARMUBs with the same β and ϵ. However, the set ∆, which contains all the different
values of the absolute value of dot product | ⟨ψli|ψmj ⟩ | of vectors |ψli⟩ and |ψmj ⟩ from different

bases, is restricted to set
{

0, 1
s+f

, 2
s+f

}
. Hence, ∆ =

{
0, βo√

d
, 2βo√

d

}
where βo =

√
s

s+f
hence

1√
2
≤ βo = 1 − f

2
√
d

+ O(d−1) < 1, where the lower bound correspond to the situation when
f = s.

When s = q, some power of a prime number, there is well-known method of construction
of affine resolvable (q2, q, 1)-BIBD which is an RBD. In this regard, we have the following
immediate corollary.
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Corollary 6.4.3. If d = q(q + f), where q is some power of a prime and q, f ∈ N such

that f ≤ q, then we can construct q many AMUBs with β = 2
√

q
q+f

= 2 − f√
d

+ O(d−1).

Moreover, if there exist a real Hadamard matrix of order (q + f), one can construct q many
approximate real MUBs (ARMUBs) with the same parameters.

The proof of this corollary follows directly from the fact that N(q) = q − 1. For ex-
ample, the RBD(X,A) constructed above having 5 parallel classes, can be converted into 5

orthonormal bases, which gives β = 2
√

5
8

= 1.58 < 2 and ϵ = 1 − 1
5

= 0.8.

The corollary above is a generalization of the result for d = q(q + 1) [65, Theorem 4] to
q(q + f), having a similar parameter, β = 2 − O(d). In fact, the result of [65, Theorem 4]
is a particular case of our present result, where the block size is larger than the number of
blocks, with e = 0, f = 1, and µ = 2. There are q + 1 many parallel classes in an RBD,

each having a constant block size of (q + 1). In that case, β = 2
√

q
q+1

= 2 −O( 1√
d
), which

is the same as [65, Theorem 4]. Once again, we would like to point out that these are not
APMUBs but provide results of the same quality in terms of absolute inner product values
as [65], but over a larger class. In order to obtain APMUBs, we must have µ = 1.

The above Theorem 6.4.1 and [68, Theorem 2], together give the following important
corollary, which enables us to construct β-ARMUBs, such that β < 2, for every d = k×s, k ≤
s such that s− k <

√
d and there exist a real Hadamard matrix of order k or s. The quality

of the constructed β-ARMUB depends on the factors of d and |s− k|.

Corollary 6.4.4. Let d = k × s, with |s − k| <
√
d. If a real Hadamard matrix of order k

exists, then one can construct N(s) + 1 many β-ARMUB, with sparsity ϵ = 1 − 1
k
. If k < s

then β =
√

s
k

= 1 + δ√
d

+ O( δ
2

d
) < 2, and if k > s then β = 2

√
s
k

= 2 − δ√
d

+ O( δ
2

d
) < 2,

where 2δ = |s− k|. And if k = s, then β = 1

Proof. When we have a Hadamard matrix of order k, and if k < s then we employ the
construction corresponding to d = (s− e)s, [68, Construction 3], with k = s− e, which will
result into N(s) + 1 many β-AMUBs, with β =

√
s
k

and ϵ = 1− 1
s

as stated in [68, Theorem
2]. On the other hand when k > s then we will employee above Construction 6.4.2 for

d = s(s+f) to construct N(s)+1 many β-AMUBs with β = 2
√

s
s+f

= 2− δ√
d
+O( δ

2

d
) < 2.

The quality of the constructed AMUBs for d = k×s depends on δ = |s−k| <
√
d, and the

smaller the δ, the closer β becomes to 1. However, note that the number of AMUBs is only
of the order of N(k) or N(s), which is generally small. Nevertheless note that N(w) → ∞
as w → ∞ whereas the number or real MUBs for most of the non square dimension is either
2 or 3.
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6.5 Discussion and comparison with existing results on

AMUBs

We have shown that for a composite d = k × s, if |s − k| <
√
d, then RBD can be used

to constructed ≥
√
d many very sparse β-AMUBs, with β ≤ 2 for all such composite d.

This is to be compared with the fact that corresponding to such composite d = k × s =
pn1
1 pn2

2 . . . pnm
m , number of MUB possible is pnr

r +1 where pnr
r is min{pn1

1 , p
n2
2 , . . . , p

nm
m }. Thus

number of β-AMUBs will always be greater than MUBs for such composite d.

In order to construct AMUBs, for a such composite d, we express d = (q − e)(q + f) or

(q − e)(q − f), where q ≥ |s+k|
2

is some prime-power closest to |s+k|
2

. Then, we construct

an RBD, whose block sizes are O(
√
d), with µ = 1. The most important parameter which

control the quality of AMUBs, measured by closeness of β to 1, is |s−k|
2

. The order of set
∆, which consist of different possible values of | ⟨ψli|ψmj ⟩ |, where |ψli⟩ and |ψmj ⟩ are basis
vectors from different bases is O(f 2). Hence for small f , we get only a few different values
of | ⟨ψli|ψmj ⟩ |. For the case of d = (q − e)(q + f), the 0 ≤ f ≤ δ and for the case of

d = (q − e)(q − f) the 0 ≤ f = O(d
θ
2 ). Thus smaller the δ, the β will be closer to 1 and

|∆| will be small. And when δ = 0 i.e., d = q2, we get q + 1 many MUBs. For example for
d = 6 × 10 we can construct 10 β-AMUBs with β = 1.29 where as for same d we have only
4 MUBs. And for d = 6 × 7 we can construct 8 β-AMUBs with β = 1.08 where as for same
d we have only 3 MUBs. Note that smaller the δ, closer is the β to 1

The RBD having constant block size is particularly useful for constructing β-ARMUBs.
We have shown that for a composite d = k×s with |s−k| <

√
d, such that a real Hadamard

matrix of order k or s is available, then we can construct N(s) + 1 or N(k) + 1 many
β-ARMUBs with β < 2 respectively. For example for d = 4 × 7 we can construct 7 β-
ARMUBs with β = 1.32 where as only 2 real MUBs exist [18, Table 1] in this case. Consider
for d = 7 × 12 we can construct 7 β-ARMUBs with β = 1.527 where as only 2 real MUBs
exist in this case as well [18, Table 1].

Here we generalize the result for d = q(q + 1) of Chapter 4 to q(q + f) in Corollary 6.4.3

having a similar form of β = 2−O(d−
1
2 ). We also improve the number of β-AMUBs for the

case of (q− e)(q+ f) where previously only ⌊ q−e
f
⌋+ 1 many β-AMUBs could be constructed.

However, now q many β-AMUBs could be constructed with same β = 1 + O(d−
1
2 ), but

now |∆| increased from 2 to O(f 2) as in Definition 6.4.1. In fact, we generalized the case
for d = (q − e)(q + f), 0 < f ≤ e for the construction of β-AMUBs to include the case for
d = (q−e)(q±f). Thus, for situation like d = 9×10 or d = 13×15 etc., we cannot construct
APMUBs, but can construct β-AMUBs by expressing these d in the form of (q − e)(q − f)
for suitable e and f . However, this generalization comes at the expense of increasing |∆| to
|∆1| (Definition 6.4.1) or to |∆2| (Definition 6.4.2), as opposed to the previous scenario of
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APMUBs where |∆| = 2.

We make the following observation applicable to various construction of β-AMUBs here,
highlighting common characteristics of AMUBs constructed using RBD(X,A).

1. One of the critical parameters of RBD(X,A) is the intersection number, denoted as µ,
which is the maximum number of elements common between any pair of blocks from
different parallel classes. Note that, as each parallel class contains all the points of X,
a block in a parallel class is bound to have at least one point in common with some
block of a different parallel class, and therefore µ ≥ 1. A lower value of µ is desirable
for a lower value of β.

2. In general, using RBD(X,A), with |X| = d = k × s a composite number, we can

obtain good quality β-AMUBs (ARMUBs) if δ = |s−k|
2

is small. In fact, the smaller the
value of δ, the better the quality of the AMUBs. For large values, we get poor-quality
AMUBs (ARMUBs). .

3. The other critical parameter is the block size of RBD(X,A). The block sizes should
be around

√
d to obtain good quality AMUB(ARMUBs). Closer the block size to

√
d,

closer the value of β to 1.

4. In general, for composite d with small δ and a resolvable design having a block size
O(

√
d) with small µ, the β of the constructed AMUBs is of the form β = µ(1 ± δ√

d
+

O(d−1)). In such a situation, generally, we get O(
√
d) many AMUBs.

5. For ARMUBs, a Hadamard matrix corresponding to the block sizes of the parallel class
should exist. Thus, RBD with block sizes equal to the order of some Hadamard Matrix
is sufficient to construct ARMUBs. However, since the real Hadamard matrix exists
only for order 2 or orders multiple of 4, it is easier to construct ARMUBs with RBD
having a constant block size, a multiple of 4.

6. Sparsity (ϵ) of the constructed AMUBs depends on the block sizes. The larger the
block size, the smaller the sparsity, and vice versa.

7. The set of all the different absolute values of the dot product of basis vectors of AMUBs,
denoted by |∆|, is dependent on the number of different block sizes of RBD. The more
different sizes of blocks in RBD, the larger the size of |∆|. Hence, RBD having a
constant block size is desirable to get a smaller size of the set |∆|. Furthermore, |∆|
is also dependent on the value of µ. The larger the value, the larger the size of |∆|.
Hence, a smaller intersection number in RBD is also desirable to get a smaller size of
the set |∆|.
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The best result, applicable for most of the dimensions, for β-AMUBs is based on the
elliptic curve construction, [86, Theorem 2] where the construction gave pt−1, t ≥ 2 where p
is a prime such that

√
n− 1 ≤ √

p ≤
√
n+ 1.

| ⟨ψli|ψmj ⟩ | ≤
2t+ O(d−

1
2 )√

d
= O(d−

1
2 ) ⇒ β = 2t+ O(d−

1
2 ).

Here the smallest value of β = 4 + O(d−
1
2 ) > 4, corresponding to t = 1. However, here we

could provide a construction where β ≤ 2. Thus the β is closer to one in all our construction
than this. On the other hand, we obtain only O(

√
d) many AMUBs, whereas [86, Theorem 2]

can provide O(d) many AMUBs. The other generic construction of AMUBs applicable for all

d is of Klappenecker et al. [61] where they gave construction of AMUBs that has β = O(d
1
4 )

[61, Theorem 11] or the construction of AMUBs based on the finite field [86, Theorem 1]
where β = O(

√
log d). Thus in all the known construction of AMUBs for a generic d, the β

constructed using RBD is much closer to 1 than the other known construction. In fact here
β → 1 for larger d where as for other it blows up without any bound or tends to a larger
values.

In case of certain specific kinds of d, as per our survey, only for d = q − 1, where q is
some power of prime, there are d or d+ 1 AMUBs [61, 96] where β = 1 + O(d−λ) for λ > 0.
The other known case of the β of this form, for d = q(q − 1), the number of AMUBs is
O(

√
d), and for d = ϕ(n), the number of AMUBs is equal to the smallest prime division of

n, which is always less than
√
n when n is not a prime number [91]. At the same time, we

have shown that for all composite d = k × s when |s− k| < d
1
2 then we will get more than√

d many AMUBs with β = 1 + O(d−λ) for λ > 0. Thus, we can effectively construct such
AMUBs for a large set of integer d. Further, we are also able to construct ARMUBs with
β = 1 + O(d−λ) or with β = 1 −O(d−λ) < 2 for such d whenever real Hadamard matrix of
order k or order s is available. Moreover, all these AMUBs are very sparse where in general
the sparsity ϵ = 1 −O(d−

1
2 ) for both complex and real cases.

6.6 Conclusion

In this chapter, our study suggests that constructing RBD(X,A), having a large number of
parallel classes, and having constant block size for all the parallel classes such that block
sizes remain near O(

√
d) as well as the intersection number µ remains small, are not easy

to achieve. In general we start with RBD(X,A) with O(
√
d) many parallel classes, having

µ = 1 or 2. We intend to work on constructing RBD(X,A)’s, having larger order of parallel
classes, keeping µ small and block sizes near O(

√
d). Our results show that such RBD(X,A)

will enable one to construct even larger number of AMUBs, without compromising the inner
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product value. Further, if the condition |s−k| <
√
d can be released, it will be applicable for

all the d’s. Certain informal observations suggest that this condition is not very restrictive,
and the ratio of integers, which satisfy this condition to the total numbers less than certain
finite large integer, is almost one. Nevertheless, there are infinitely many integers that do
not satisfy this condition, and hence effort in the direction to dispense with this condition
may be worthwhile.
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Chapter 7

A Heuristic Framework to search for
Approximate MUBs

We have explained throughout this thesis that as optimal number of MUBs may not always
be available for different composite dimensions, Approximate MUBs (AMUBs) might be
studied through different techniques. In this chapter, we deviate from the earlier chapters
where combinatorial structures are exploited and take a different heuristic based approach
to obtain AMUBs with significantly good parameters. Given a non-prime dimension d, we
note the closest prime d′ > d and form d′ +1 MUBs through the existing methods. Then our
proposed idea is (i) to apply basis reduction techniques (that are well studied in Machine
Learning literature) in obtaining the initial solutions, and finally (ii) to exploit the steepest
ascent kind of search to achieve further improved results. The efficacy of our technique
is shown through construction of AMUBs in dimensions d = 6, 10, 46 from d′ = 7, 11 and
47 respectively. Our technique provides a novel framework in construction of AMUBs that
can be refined in a case-specific manner. From a more generic view, this approach considers
approximately solving a challenging (where efficient deterministic algorithms are not known)
mathematical problem in discrete domain through state-of-the-art heuristic ideas.

7.1 Introduction

Combinatorial constructions (as in the previous chapters) and algebraic as well as search
based techniques (see [81] and the references therein) are trending in AMUB literature.
However, the strategies have their respective limitations too. The combinatorial construc-
tions work on dimensions of certain kinds, and the computations for the rich but restricted
class of unitary transformations explored in [81] are not applicable for higher dimensions.
Thus, in this chapter, we explore alternative heuristics to construct AMUBs in any dimension
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with good computational efficiency.

We propose a generic approach in constructing AMUBs through dimension reduction,
using Singular Value Decomposition (SVD) as the primary and initial component of our
algorithm. Given an arbitrary dimension d, we start from d′, the closest prime power larger
than d. As the construction for (d′ + 1) MUBs exist for prime power d′, we apply dimension
reduction to those MUBs to obtain a potential collection of AMUBs in dimension d. Finally,
a heuristic search on this collection produces (d + 1) AMUBs in the d-dimensional Hilbert
space Cd. This approach works for any dimension d, and is quite efficient for higher dimen-
sional spaces. Although SVD is quite prominent for its dimensionality-related applications
in mathematics and machine learning [82], to the best of our knowledge, such an SVD-based
dimension reduction technique has never been studied for constructions of AMUB. For a
more detailed background, let us refer to Section 7.1.1, where we present the two measures
used in this chapter to determine the closeness of AMUBs to MUBs. We also briefly explain
the basics of dimension reduction using Singular Value Decomposition (SVD) here.

Let us now formally propose the framework. We devise two strategies for dimension
reduction using the general idea of SVD – merged and non-merged. We treat the reduced
bases obtained from the SVD routine as our initial solution set for prospective AMUBs,
which will further be subjected to a steepest ascent kind of heuristic search, as proposed
in [81]. It is thus natural that for d = 6, we do not obtain results as good as in [81], as
the algebraic structure is not used at all. However, our results for d = 6 is encouraging
and only slightly weaker than that of [81], though we relax the restrictions related to the
parameterization and proceed with a general class of bases. More important is that, our
proposed technique can be adapted easily in case of higher dimensions to construct more
number of AMUBs exceeding the lower bound on MUBs. These we present in details in
Section 7.2. The algorithm is presented in two parts – ‘Creation of Bases’ and ‘Choice of
Bases’. We also highlight the heuristic search technique in [81], as we subject the reduced
bases obtained from our dimension reduction step to this search routine.

It is generally accepted that to construct large number of MUBs in Cd, where d = 2
mod 4 is quite difficult and in such dimensions using known construction methods for prime
powers, we get only 3 MUBs. Hence we implement our techniques for dimensions of the
form d = 2p, where p is a Sophie Germain prime [38] (that is, both p and 2p+ 1 are primes),
as large number of MUBs are available in dimension d′ = d + 1 = 2p + 1. In particular we
consider the dimensions d = 6, 10, 46, where our proposed strategy yields AMUBs with good
parameters. Section 7.3 describes the experimental results. Section 7.4 concludes the chapter
by summarizing our contribution in the domain of AMUB constructions, and by indicating
the scope for further generalization of our framework to higher-dimensional Hilbert spaces.
Note that our results are not the best ones (see [32] and the references therein) for the small
dimensions like six or ten. However, the existing results for small dimensions are case specific
and there is no clear evidence that such techniques are scalable to very large dimensions.
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In such a scenario, our method provides a generic technique for approximate solutions with
significantly good parameters as noted from experiments. In fact, we did not see any heuristic
methods to consider the dimension 46, that we put in experiment here.

7.1.1 Closeness Measures for AMUBs

We broadly use two measures to validate our results in terms of the closeness of AMUBs to
MUBs: (i) Average Squared Distance (ASD) among the bases and (ii) maximum distance of
⟨ai|bj⟩ from 1√

d
, termed as Drift Measure.

D2 – Average Squared Distance (ASD) between bases.

To measure the quality of AMUBs generated by our algorithm, we use the concept of distance
between two bases, following Bengtsson et al. [8], who used the distance between two bases as
a yardstick to measure the unbiasedness, and Raynal et al. [81], who used a similar measure
to determine the results of their proposed algorithms.

The squared distance between two orthonormal bases A = {|a1⟩ , . . . , |ad⟩} and B =
{|b1⟩ , . . . , |bd⟩} of a d-dimensional Hilbert space Cd is defined as

D2
AB = 1 − 1

d− 1

d∑
i,j=1

(
|⟨ai|bj⟩|2 −

1

d

)2

, (7.1)

and for a set of k orthonormal bases in Cd, the Average Squared Distance (ASD) between
the k(k − 1)/2 pairs of bases is defined as the average over all pairs:

D2 =
2

k(k − 1)

∑
A<B

D2
AB. (7.2)

The value of ASD is maximum (D2 = 1) for a perfect set of MUBs, that is, when |⟨ai|bj⟩| = 1√
d

for all i, j = 1, . . . , d and for all pairs of bases A, B in the set. Thus, deviation of D2 from
one in Eq. (7.2) provides a measure of closeness for AMUBs.

S – Maximum Distance of | ⟨ai|bj⟩ | from 1√
d
.

Consider a set ofm orthonormal bases in Cd, where we choose pairs of bases A = {|a1⟩ , . . . , |ad⟩}
and B = {|b1⟩ , . . . , |bd⟩} at a time. One may choose

(
m
2

)
pairs of bases A,B, and for each

pair A,B, one may compute d2 inner products |⟨ai|bj⟩| for i, j = 1, . . . , d.
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We define the Drift Measure S as the maximum of absolute values of the distance
|⟨ai|bj⟩| − 1/

√
d over all such choices of base pairs and inner products:

S = max
A,B

max
i,j

||⟨ai|bj⟩| − 1/
√
d| (7.3)

The value of Drift is minimum (S = 0) for a perfect set of MUBs, that is, when |⟨ai|bj⟩| = 1√
d

for all i, j = 1, . . . , d for all pairs of bases A, B in MUBs. Thus, deviation of S from 0 in
Eq. (7.3) provides a measure of closeness for AMUBs. In order to understand how is the
maximum departure in the form of some α√

d
, we also refer to α such as

α =
√
d · S, (7.4)

in the results section (Section 7.3).

In case of β-AMUBs, it can be easily shown that (for a detailed derivation, refer to [68]),

S =
β − 1√

d
(7.5)

Therefore, we have,

β = α + 1 (7.6)

7.1.2 Dimension Reduction using SVD

The primary idea of generating AMUBs in our proposal revolves around the concept of dimen-
sion reduction. Several dimension reduction techniques are available in the literature [42, 57],
where the main purpose of these algorithms is to reduce certain high-dimensional data to a
suitable lower dimension, preserving the characteristics and properties of the data as much
as possible. In case of dimension reduction in this initiative, we focus on Singular Value
Decomposition (SVD).

The techniques related to SVD for real square matrices were proposed by Beltrami and
Jordan and for complex matrices by Autonne (see [92] and references therein). The generic
algorithm for SVD in case of rectangular matrices was proposed by Eckart and Young in the
Autonne-Eckart-Young Theorem [40]. SVD decomposes a matrix of higher dimension into
two unitary (orthogonal) matrices and a diagonal matrix containing the singular values. The
singular values are ordered by their magnitudes (importance) in the data. The mathematical
formulation of SVD is as follows.
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Singular Value Decomposition.

Over C, a matrix Ap×q of rank ρ(A) = r can be decomposed as Ap×q = Up×p Σp×q Vq×q,
where Up×p and Vq×q are unitary matrices, and Σ comprises of the r nonnegative real
singular values of the matrix A along its diagonal as Diag(σ1, σ2, . . . , σr) with σ1 ≥ σ2 ≥
. . . ≥ σr ≥ 0, and with all other values equal to 0. The columns of U are called the left
singular vectors of A and the columns of V are called the right singular vectors of A. The
complete Singular Value Decomposition (SVD) of the matrix Ap×q can be expressed using
the partitioning of matrices as follows.

U (p× p)

|
|
|
|

u1 · · · ur | ur+1 · · · up
|
|
|
|



Σ (p× q)

σ1
...

. . . · · · 0 · · ·

σr
...

...
...

· · · 0 · · · · · · 0 · · ·
...

...



VT (q × q)

vT1
...
vTr

vTr+1
...
vTq



SVD in Our Proposal.

We intend to generate AMUBs in Cd by dimension reduction from Cd′ , where d′ is the closest
prime power larger than d. In this chapter, we provide examples where d′ = d+ 1 is a prime,
and d

2
is a prime too. To accomplish this, we reduce a z× d′ matrix to a z× d matrix, where

z ∈ Z+ varies depending on the choice of our algorithms. We perform SVD on the z × d′

matrix to obtain Uz×z, Σz×d′ and Vd′×d′ . Finally, to obtain the reduced matrix of order
z × d for generating AMUBs, we take the product of Uz×z, the first d singular values from
Σ and a sub-matrix of order d× d from V. If consecutive singular values are identical, there
would be various choices to construct reduced matrices. In such cases, we try to optimize
choices through exhaustive or heuristic searches.

7.2 Construction of AMUBs

The algorithm proposed in this section for generating d-dimensional Approximate Mutually
Unbiased Bases (AMUBs) is a combination of dimension reduction and then search tech-
niques to obtain appropriate bases with maximum possible ASD and a small value of S, as
defined in Section 7.1.1. In the first part, we prepare the suitable bases for AMUB selection
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through dimension reduction. In the second part, we search for the best set of AMUBs from
the bases developed in the first part. Finally, we apply a gradient-ascent kind of heuristic
search as in [81] on the available AMUBs to obtain further improved results.

7.2.1 Creation of Bases

We use SVD to reduce suitable bases from a higher prime power (or prime) dimension d′ to
the target composite dimension d < d′. There are two aspects that we investigate here. That
is, we propose two techniques to apply SVD – Merging technique and Non-Merging technique.
First let us explain the merging technique through Figure 7.1. Then the Algorithm 1 follows.

Figure 7.1: Merging technique: Schematic Representation

As one may note, corresponding to d′ +1 many MUBs of dimension d′, we naturally have
each matrix with d′×d′ entries. Thus, one can see that we have total (d′+1) ·d′ vectors here.
Now the dimension will be reduced to d. Now we will consider all the (d′ + 1) · d′ vectors for
input to the SVD technique and then put them in different d′ + 1 buckets. Each bucket will
contain d′ many vectors. We will consider d vectors from those d′ and orthogonalize them
to have a basis. Thus, there will be several options of a basis from a bucket, and we will
choose different buckets to obtain the bases corresponding to an AMUB. This will continue
to obtain the best result. Naturally while considering d′ = 7 and d = 6, such buckets can be
searched exhaustively. However, the computational requirement becomes much higher and
while running on a laptop, such exhaustive searches cannot be completed in reasonable time
(say one hour) for d′ = 11, d = 10. Thus, in these case exhaustive searches are not possible,
and we go for only reasonable random samples of the complete possibilities. Nevertheless,
one must note that given a powerful computational set-up, such exhaustive search is possible
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for even higher dimensions and the computational effort can be estimated beforehand.

Algorithm 1: Merging technique

Data: Target dimension d
Step 1 : Generate d′ + 1 many MUBs of dimension d′, where d′ is the next higher
prime to d.
Step 2 : Merge the bases as generated in Step 1 in a matrix of order
((d′ + 1) · d′) × d′.
Step 3 : Implement the routine of SVD to reduce the dimension of the matrix
formed in Step 2 to ((d′ + 1) · d′) × d.
Step 4 : The matrix as developed in Step 3 is split into d′ + 1 many boxes, each
containing a matrix of order d′ × d.
Step 5 : In each box, decompose the matrix into

(
d′

d

)
many matrices of order d× d

and then orthogonalize to form the possible candidates for AMUB selection.

In the second effort, we consider each d′ × d′ matrix separately and apply SVD on each
of them to construct each bucket and provide the results.

Figure 7.2: Non-Merging technique: Schematic Representation

As one can observe in Section 7.3, the results out of merging and non-merging techniques
do not differ much. This needs further effort to study including investigating certain theoret-
ical issues. In this technique (Non-Merged) of dimension reduction, the MUBs of dimension
d′ comes out to be unitary matrices. Hence, the SVD decomposition gives all the singular
values as identity. Therefore, we always eliminate the last row and last column of the right
singular matrix obtained from the decomposition and the corresponding singular value is
made 0, post which an exhaustive search is performed as in the Merged technique and the
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dimension reduction proceeds as usual. We explain the non-merging technique in Figure 7.2
and then in Algorithm 2.

Algorithm 2: Non-Merging technique

Data: Target dimension d
Step 1 : Generate d′ + 1 many MUBs of dimension d′, where d′ is the next higher
prime to d.
Step 2 : Instead of merging the bases as generated in Step 1, implement the routine
of SVD directly to these d′ + 1 bases to obtain d′ + 1 many matrices of order d′ × d,
and then arrange them into d′ + 1 many boxes.
Step 3 : In each box, decompose the the matrix into

(
d′

d

)
many matrices of order

d× d and then orthogonalize to form the possible candidates for AMUB selection.

Thus, from both of our techniques as illustrated above in Algorithms 1, 2, the idea of
dimension reduction results in d′ + 1 many boxes, each containing

(
d′

d

)
bases of dimension d,

and we thereby, proceed to our next step of choosing the appropriate bases.

7.2.2 Choice of Bases

The next component of our AMUB construction technique involves searching through the
bases created and stored in d′+1 many boxes (as in Section 7.2.1) to obtain the set of required
AMUBs, which will result in best possible measures (as defined in Section 7.1.1) used for
the experimentation. In general, the search procedure used to create n many AMUBs of
dimension d, as illustrated through the following algorithmic steps relates to an exhaustive
combinatorial search procedure.

Algorithm 3: The Exhaustive Search Procedure

Step 1 : Choose n boxes from d′ + 1 many boxes in
(
d′+1
n

)
ways.

Step 2 : From each of the chosen n boxes, select a candidate base of dimension d in(
k
1

)
ways, where k =

(
d′

d

)
.

Step 3 : Then, determine the respective measures for the selected candidate bases
as in Step 2.

Step 4 : Choose the set of bases with the best possible results.

This exhaustive search procedure is implemented for dimensions d = 6, 10 for four
AMUBs and only for d = 6 in the case of five MUBs. Mathematically, for n many AMUBs
and a dimension d, that we obtain from a higher prime power dimension d′, the exhaustive
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search complexity is
(
d′+1
n

)
·
[((d′

d)
1

)]n
. However, other than the cases mentioned above, we

could not manage the exhaustive search in reasonable time in a simple laptop. However, the
formula clearly provides the estimation of computational requirements in practice and can
be achieved in a high end computational facility for even larger dimensions.

7.2.3 Further Heuristics

The set of AMUBs that we obtain from the above dimension reduction technique and search
is again subjected to another gradient-ascent kind of heuristic for improved results. The
heuristic search algorithm as given in [81] is tweaked and this is applied on the initial so-
lutions (n AMUBs) obtained from Section 7.2.2. This is broadly a steepest-ascent search
procedure, where the gradients are computed in each iteration and the set of n bases are
altered accordingly keeping the property of orthonormality intact, thereby resulting in the
set of AMUBs with optimal approximations. The algorithm is given as follows.

Algorithm 4: The Heuristic Search Algorithm

Step 1 : The gradient {Gk : k = 1, 2, . . . , n} of the kth base is computed with
respect to the remaining n− 1 bases, where Gk is given by,

Gk =
8

n(n− 1)(d− 1)
Im

[ n∑
l=1

d∑
i,j=1

(|ki⟩ ⟨ki|lj⟩ ⟨lj|)2
]

Step 2 : For the step size (ϵ) of the algorithm, compute σk corresponding to the kth

base such that, σk = ϵGk with a common ϵ > 0.
Step 3 : Implement a finite unitary change of the basis k, i.e., |kj⟩ → Vk |kj⟩, where
Vk = 1 + iσk upto first order of σk.
Step 4 : Finally, orthogonalize the set of n bases |kj⟩, j = 1, 2, . . . , d; k = 1, 2, . . . , n.

We run the algorithm until all the components of the gradient vanishes.

7.3 Results & Numerical Study

In this section, we present the results obtained from the implementation of the dimension
reduction algorithms (refer to Algorithms 1, 2 and 3). Further, we provide the results,
when the AMUBs obtained from the dimension reduction algorithms are subjected to the
heuristic search technique (refer to Algorithm 4). The values of the dimensions (d and
d′), measures, i.e., maximum ASD (D2

max) over all the iterations (refer to Equation 7.2)
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and the corresponding Drift Measure S (refer to Equation 7.3) and α (refer to Equation
7.4). We also highlight the complexity of our computations by reporting the number of
iterations (denoted by #I). Note that, the initial solutions, i.e., the reduced bases obtained
from the dimension reduction algorithms (Merging as well as Non-Merging techniques) are
subjected to the heuristic search procedure for a fixed number of iterations (#I = 20000) for
d = 6, 10 and (#I = 1000) for d = 46 and step size (ϵ = 0.500). We also present the results
corresponding to the heuristic search taking into account i) maximization of ASD (D2) and
ii) minimization of the Drift Measure (S). Thereafter, we provide a comparative study of our
results along with the results obtained from a combinatorial point of view as in [65, Corollary
1] and [86]. Some relevant observations are also noted in this section corresponding to the
results obtained under our proposed framework.

First, we perform dimension reduction using the Merged technique (as in Algorithm
1). The results are presented (Table 7.1) for n = 4 and 5 sets of AMUBs in dimension
6, 10 and 46 respectively. Since the complexity for choosing bases for dimensions 10, 46 is
computationally expensive in certain cases, we randomly choose certain sets of boxes and
search for the best results in them. That is the exhaustive search as in Algorithm 3 is not
implemented in all the cases.

Table 7.1: Numerical Results for Merging technique: Algorithm 1

Number of Bases d′ → d D2
max S α #I

7 → 6 0.912 0.380 0.931
(
8
4

)
74

n = 4 11 → 10 0.936 0.405 1.281
(
12
4

)
114

47 → 46 0.979 0.317 2.150 474

7 → 6 0.904 0.389 0.953
(
8
5

)
75

n = 5 11 → 10 0.928 0.388 1.227 115

47 → 46 0.979 0.350 2.374 475

Remark 7.3.1. The computational results as presented in Table 7.1 suggests that, our pro-
posed algorithm related to the Merging technique (Algorithm 1) successfully generates in-
creased sets ( larger than the available bound) of AMUBs with closer approximations to
MUBs (with respect to D2).

The resultant reduced sets of bases/AMUBs obtained from the Merging technique are
further subjected to the Heuristic Search Algorithm, the results of which are provided below,
both with respect to D2 and S in Tables 7.2 and 7.3 respectively.

Remark 7.3.2. Few of the notable observations when the Heuristic Search is aimed at
maximizing D2 under the Merging technique, are as follows,
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Table 7.2: Numerical Results for Heuristic Search (Algorithm 4) on the bases obtained from
the Merged technique with respect to ASD (D2)

Number of Bases d′ → d D2
max S α # I Step Size (ϵ)

7 → 6 0.971 0.383 0.938 10000 0.500
n = 4 11 → 10 0.973 0.447 1.414 10000 0.500

47 → 46 0.982 0.366 2.482 1000 0.500
7 → 6 0.960 0.399 0.977 10000 0.500

n = 5 11 → 10 0.930 0.369 1.167 10000 0.500
47 → 46 0.981 0.314 2.130 1000 0.500

� For a fixed set of bases (n), as the dimension (d) increases, the average distance between
the bases (D2) tends to increase.

� Now if the dimension (d) is kept fixed, the average distance between the bases seems to
vary inversely with n.

� The value of α which normalizes the Drift Measure (S) is higher for larger dimensions
(keeping n fixed) as well as for higher values of n (keeping d fixed).

Table 7.3: Numerical Results for Heuristic Search (Algorithm 4) on the bases obtained from
the Merged technique with respect to Drift Measure (S)

Number of Bases d′ → d D2
max S α # I Step Size (ϵ)

7 → 6 0.931 0.325 0.797 10000 0.500
n = 4 11 → 10 0.964 0.305 0.965 10000 0.500

47 → 46 0.977 0.320 2.174 1000 0.500
7 → 6 0.936 0.355 0.871 10000 0.500

n = 5 11 → 10 0.917 0.332 1.050 10000 0.500
47 → 46 0.978 0.305 2.071 1000 0.500
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Remark 7.3.3. In case the heuristic search is aimed at minimizing the Drift Measure (S)
under the Merging technique, we note the following.

� In view of the values of S (both in the cases when n and d are considered to be fixed)
in Table 7.3, the pattern in which S varies is not definitive unlike D2.

� The behavior of α tends to be the same as mentioned in Note 7.3.2.

Consequently in Tables 7.4, 7.5 and 7.6, we report the results for the same sets of oper-
ations, as in dimension reduction and subjecting the bases to the heuristic search routine,
when performed with the Non-Merged sets of bases both with respect to the optimization
routine followed in view of maximizing the average distance (D2) and the Drift (S). As
mentioned earlier, to avoid the high complexity in choosing bases for sets of 4 and 5 AMUBs
of dimension 46 and sets of 5 AMUBs of dimension 10, we have randomly chosen certain sets
of boxes instead of performing an exhaustive search and reported the best results obtained
in them.

Table 7.4: Numerical results for the Non-Merging technique: Algorithm 2

Number of Bases d′ → d D2
max S α # I

7 → 6 0.909 0.423 1.036
(
8
4

)
74

n = 4 11 → 10 0.933 0.448 1.417
(
12
4

)
114

47 → 46 0.974 0.558 3.785 474

7 → 6 0.901 0.423 1.036
(
8
5

)
75

n = 5 11 → 10 0.916 0.520 1.644 115

47 → 46 0.975 0.447 3.032 475

Remark 7.3.4. Observations as reported above in Table 7.4 shows that the proposed Non-
Merging technique for generating AMUBs results into increased sets of bases (with respect to
D2) providing close approximations to MUBs.

Remark 7.3.5. In reference to Tables 7.5 and 7.6, we note the following.

� Heuristic Search aimed at maximization of D2 (Table 7.5) under the Non-Merging
technique leads to an increasing trend in the average distance between the bases both
in the cases when i) d increases over a fixed value of n and ii) n increases over a fixed
value of the dimension (d).

� When the Heuristic Search minimizes S (Table 7.6) under the Non-Merging technique
does not show any definitive pattern in the values of the Drift Measure, whereas the
values α increases with d.
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Table 7.5: Numerical results for Heuristic Search (Algorithm 4) on the Bases obtained from
Non-Merged technique with respect to D2

Number of Bases d′ → d D2
max S α # I Step Size (ϵ)

7 → 6 0.972 0.404 0.989 10000 0.500
n = 4 11 → 10 0.973 0.440 1.391 10000 0.500

47 → 46 0.982 0.600 4.069 1000 0.500
7 → 6 0.959 0.399 0.977 10000 0.500

n = 5 11 → 10 0.967 0.391 1.236 10000 0.500
47 → 46 0.983 0.451 3.059 1000 0.500

Table 7.6: Numerical results for Heuristic Search (Algorithm 4) on the Bases obtained from
Non-Merged technique with respect to Drift Measure (S)

Number of Bases d′ → d D2
max S α # I Step Size (ϵ)

7 → 6 0.963 0.337 0.826 10000 0.500
n = 4 11 → 10 0.926 0.303 0.958 10000 0.500

47 → 46 0.974 0.558 3.787 1000 0.500
7 → 6 0.908 0.364 0.892 10000 0.500

n = 5 11 → 10 0.917 0.338 1.070 10000 0.500
47 → 46 0.983 0.446 3.026 1000 0.500

Remark 7.3.6. Some important observations related to the Merged and Non-Merged tech-
niques of dimension reduction as well as the measures D2 and S are as follows.

� In reference to the results for the Merging and Non-Merging techniques presented above
in Tables 7.1 and 7.4, we observe that, the initial solutions in case of the Merging
technique provides more or less better results than the Non-Merging technique with
respect to the value of D2 (more closer to 1) as well as the value of S ( comparatively
lower).

� It is also to be noted that, we are considering the efficacy of our results, i.e., closeness of
AMUBs to MUBs in terms of D2 as the heuristic search [81] deals with the optimization
of D2, also we have extended the optimization (minimization) with respect to the Drift
Measure S. Further we observe that in the Merging and Non-Merging techniques,
achieving simultaneous control over both D2 and S seems to be quite difficult at this
stage, i.e., as the value of D2 is being optimized ( closer to 1) by the Heuristic Search,
the value of S does not decrease. On the other hand, when the Heuristic Search aims at
minimizing S, the value of D2 moves further away from 1, which is naturally expected
from the respective definitions of the measures used.
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In the following Table 7.7, we present the results for dimensions d = 6, 10 and 46, where
AMUBs have been constructed using a combinatorial technique. In reference to [65, Corollary
1], combinatorial construction for AMUBs is available for every even dimension with k = 2.
For such construction, it can be shown that,

D2 =
d · (k2 − 1)

k2 · (d− 1)
, for k = 2 (7.7)

⇒ D2 =
3

4
· d

d− 1
(7.8)

It is to be noted that, the value of D2 is smaller in case of the combinatorial construction
of AMUBs in comparison to the the construction algorithms proposed here for generating
AMUBs. Observe that, D2 → 1 − 1

k2
asymptotically for large values of d. And in general

for the dimensions under consideration, i.e., d = 6, 10 and 46, we have D2 → 3
4

= 0.75 ≪
all the values of D2 achieved using the above techniques. We should also mention that the
theoretical result of [86] is not applicable for the small dimensions d = 6, 10. The bound for
d = 46 is also worse than what we obtain by our technique.

Table 7.7: Numerical Results for AMUBs constructed using Combinatorial techniques [65,
Corollary 1]

Number of Bases d D2 S α
6 0.900 0.408 0.999

n = 4, 5 10 0.833 0.316 0.999
46 0.767 0.352 2.387

All the results above are computed in a laptop supported by Apple M1 chip - 8 core

CPU and 8 GB of RAM, using the open source Python programming language. We have imple-
mented a multiprocessing technique using the Python function multiprocessing.ProcessPool,
with 16 processes to speed up the process of choosing AMUBs in dimension reduction tech-
nique. Significant improvement over execution timings as well as number of iterations can
be obtained if the program is executed on a GPU integrated environment. The SVD routine
was performed using the numpy.linalg.svd function from the Python library numpy. In
Algorithms 1, 2 and 4, we utilize the QR Decomposition routine for orthogonalizing the
set of bases using the numpy.linalg.qr function from the Python library numpy. The rel-
evant codes of the numerical experimentation and computations are present in the GitHub

Repository [27].
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7.4 Conclusion

In this chapter we have presented a broad framework for the construction of AMUBs. The
initial approach is based on the widely used dimension reduction technique, namely the
Singular Value Decomposition (SVD). This technique has been successfully exploited in
different domains of the Machine Learning literature. The resulting approximate MUBs from
this strategy are considered as initial solutions. Consequently, those are further subjected
to a steepest ascent kind of heuristic search technique, as in [81], to obtain improved results.
The novelty of our approach lies in the fact that the broad framework does not require
any prior mathematical formulation and parameterization of the AMUBs to be generated.
Observe that, the heuristic search has been implemented aiming to optimize the average
distance between the bases (D2) [81] and further extended to an optimization of the drift
measure (S). Hence, it is to be kept in mind that, this generic approach of computation
and experimentation to generate AMUBs presented here can be efficiently used with the two
available optimizations as and when required. As we note, these are only initial experimental
results that can be improved with different kinds of refinements and even with this initial
approach, we could obtain quite encouraging results.

Further, our prospective work will address another general experimentation of generating
AMUBs for any dimension d. One may first consider the available MUBs for that dimension
d, say k and then produce sets of k+ 1 AMUBs, where the (k+ 1)-th basis may be explored
from the dimension reduction technique, i.e., which involves the reduction of dimension d′

(next higher prime to d) to d. For example, consider dimension d = 6 = 2 · 3, for which
k = 3 MUBs are known to exist. To generate sets of k+1 = 4 AMUBs, we will take the 4-th
AMUB from the bases created by the dimension reduction routine (reducing dimension from
d′ = 7 to d = 6). We may go for some steepest ascent kind of heuristic further. Similarly, for
dimension d = 12 = 22 · 3, one can obtain sets of k + 1 = 5 AMUBs from the k = 4 MUBs
that are known to exist. The 5-th AMUB would be generated through dimension reduction
(from d′ = 13 to d = 12) and further search. Likewise, this approach can be extended to
higher dimension, providing another generic framework in obtaining Approximate Mutually
Unbiased Bases.

With this chapter, we conclude our technical contributions in this thesis. In the next
chapter we will present the concluding remarks and explain the important open questions
that might be interesting as future research directions.
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Chapter 8

Concluding Remarks

Here we first summarize the contribution of the thesis and then list related open problems
in this direction of research.

8.1 Summary of the thesis

In this dissertation we have studied several issues related to certain approximate versions of
Mutually Unbiased Bases (MUBs). Chapter 1 presents a brief introduction and in Chapter 2,
we provide an outline of existing research and show how our work fits in that framework.
The next four chapters are contributory works of this thesis.

In Chapter 3, we present a construction method to obtain at most (
√
d + 1) many ap-

proximate MUBs for the dimension d = q2, where q is any positive integer. For q ≡ 0 mod 4,
we obtain Approximate Real MUBs (ARMUBs) under the assumption that a Hadamard
matrix of order q exists. We also identify the inner product values between the vectors from
two different bases. In particular, we show that for a prime x, and d = (4x)2, we obtain

(
√
d
4

+ 1) many ARMUBs such that for any two vectors v1, v2 belonging to different bases,
|⟨v1|v2⟩| ≤ 4√

d
. This contribution of this chapter has been published in [67].

We work in the similar direction for improved and generalized techniques in Chapter 4.
Various constructions exploiting involved combinatorial structures such as Resolvable Block
Designs are studied in this chapter. We start with a generic construction idea to relate
the RBDs with MUBs and Approximate Real MUBs. Our construction is such that the
basis vectors have small number of non-zero co-ordinates. That is, the constructed bases are
sparse. Specific parameters have been explored for which we could demonstrate new classes
of approximate MUBs and provide improved results. For example, we identify a novel infinite
family of ⌈

√
d⌉ many ARMUBs for dimensions d = q(q + 1), where q is a prime power and
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q ≡ 3 mod 4. Here, for any two vectors v1, v2 belonging to different bases, | ⟨v1|v2⟩ | < 2√
d
.

We also study other important scenario such as d = sq2, where q is a prime power and
sq ≡ 0 mod 4. The work of this chapter got published in [65].

Our final work in this direction is to formalize the definition of approximate MUBs with
further restrictions. This is presented in Chapter 5. We introduce the nomenclature Almost
Perfect MUBs (APMUBs), where the absolute value of inner product | ⟨v1|v2⟩ | is exactly

two-valued, one being zero and the other ≤ 1+O(d−λ)√
d

, such that λ > 0 and the numerator

1+O(d−λ) ≤ 2. Here, the constructed vectors have the important feature that large number
of its components are zero as in our earlier constructions. Further, each non-zero component
is of equal magnitude. Here also, the techniques are mostly based on Resolvable Block
Designs (RBDs). We first show that for a composite dimension d = k · s, k ≤ s ≤ 4k,
one can construct at least N(s) + 1 many APMUBs, where N(s) is the number of Mutually
Orthogonal Latin Squares (MOLS) of order s. Then we also consider the cases when the
component of the vectors are real, producing real APMUBs of similar order, whenever real
Hadamard matrix of order k are available. Moreover, when s = q, a prime power, we have
N(q) = q − 1. This provides a construction method of q ∼ O(

√
d) many APMUBs. The

methodology is extended to composite dimension of the general form d = (q−e)(q+f), e, f ∈
N, with 0 ≤ f ≤ e and a prime power q. We have noted that such cases are at least as
numerous as the prime numbers in the set of positive integers. These results are also related
to construction of Bi-angular vectors. The APMUBs, so constructed in Cd or Rd, present
sets of Bi-angular vectors which are of the order of O(d3/2) in numbers (the known upper
bound is O(d2)). All these results are available in [68].

Relaxing the strict criteria of APMUB we revisit the AMUBs in Chapter 6. Here we
extend and generalize the ideas of Chapter 4, taking some ideas from Chapter 5. As in the
previous two chapters the Resolvable Block Designs are exploited, but with much greater
details. In this regard, we broadly categorize RBD(X,A) into two categories, one where all
the parallel classes have a constant block size and another where they do not have a constant
block size. The results provide various classes of AMUBs both in real and complex cases for
composite dimensions, that are not prime power. These results are presented in [66].

While the deterministic combinatorial constructions are the prime contributions in this
thesis, we also explored a heuristic framework to search Approximate MUBs with good
parameters. This is presented in the final contributory chapter, namely Chapter 7. We obtain
some interesting parameters when we compare them with the Approximate MUBs presented
in Chapters 3, 4. In particular, these are not APMUBs as described in Chapter 7 that are
of nice combinatorial structures. Instead of combinatorial techniques, certain heuristics are
implemented and the experimental results from certain computer programs are reported. The
basic idea is as follows. Given any non-prime dimension d, we first consider the closest prime
d′ > d and construct d′ +1 MUBs through the existing methods, such as [79, 60, 6]. Then we
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explore two techniques one after the other. First we apply basis reduction techniques from
Machine Learning literature to generate the initial solutions. Then the steepest ascent kind
of search strategy is used to improve the results. The experimental outcome is evaluated
through construction of AMUBs for the dimensions d = 6, 10, 46 from the primes d′ = 7, 11
and 47 respectively. Our technique here provides a generic framework in construction of
Approximate MUBs heuristically, that is published in [28].

With this backdrop, let us now present a few problems that we find interesting for future
research.

8.2 Future research directions

In this thesis we have contributed different results related to Approximate MUBs (AMUBs).
Naturally the prime questions are:

� how to increase the numbers of such AMUBs,

� how to obtain such MUBs in different dimensions, i.e., we like to cover the space of
positive integers as much as possible, and

� how to achieve the absolute value of the inner product between two vectors from two
different AMUBs close to 1√

d
.

The results of Chapter 3 provides a method to obtain at most (
√
d+ 1) many approximate

MUBs for the dimension d = q2. That is, the further questions will be, how can we relax
the square dimension, how to make the inner product value closer to 1√

d
from 4√

d
and how

to increase the numbers beyond O(
√
d). Further here the constraints are more as we are

discussing about real vectors only. This is the reason more involved combinatorial structures
like RBDs are exploited in Chapters 4, 5. In this direction, we have presented certain
questions in Section 5.6.3. Increase in the number of parallel classes are always beneficial to
have more approximate MUBs. That is why, further efforts are required in this direction.
Considering d = (q − e)(q + e), it seems that more than r =

⌊
q
e

⌋
+ 1 many parallel classes

can be explored. A detailed research in this direction and exploring related combinatorial
objects will be important here. Additional questions are also there in the following cases:

� d = q(q + f), RBD having block size q, with q + f blocks in each parallel classes,

� d = (q − e)(q + f), 0 < e < f , RBD having block size q − e, with q + f blocks in each
parallel classes.
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In these cases actually we depended on the bounds provided by the MOLS. Improving these
further will be an important research area.

We consider different forms of d, mostly as product of two numbers. Now the question is,
how to estimate the density of integers d, for which our method of RBD can give O(

√
d) many

APMUBs. We have shown the existence of APMUBs of O(
√
d) for dimension d of the form

(q− e)(q+ f) with 0 ≤ f ≤ e such that 0 ≤ (f + 4e) ≤ 3q. Note that number of APMUB as
per Theorem 5.6.2 (and the following remark) is ⌊ q−e

f
⌋+ 1 = O(

√
d) whenever f is bounded.

Particularly when f = 0, we have d = (q− e)q and 0 ≤ e ≤ 3
4
q then the number of APMUBs

is q = O(
√
d) for all such d. Basic analysis reveals that at least constant proportion of prime

density (O( N
logN

), for an integer of the order of N) may be covered in such cases. However,
number theoretic techniques may be employed to obtain specific estimates, and that could
be an interesting area to study.

Chapter 7 considers certain heuristics. However, the area of dimension reduction needs
more involved studies. The dimension reduction techniques to obtain an orthonormal basis
of dimension d from a higher dimension d′ is by itself an interesting computational problem.
Further, in the framework of approximate MUBs, one needs to restrict the absolute value
of the inner product between two vectors from two different bases. Such basis reduction
techniques with further restrictions may require further efforts by combining advanced tools
from linear algebra and discrete algorithms.

Finally we like to conclude this thesis by again pointing out that there are several open
problems in the domain of actually constructing the (exact) MUBs. While we have considered
several approximate versions in this thesis, the original problems related to MUBs are still
open even after significant efforts by researchers for half a century. Interested researchers
may have a look at [39, 64] and the references therein for deeper information about these
problems.
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[37] D. Ž. Djoković. Hadamard matrices of order 764 exist. Combinatorica, 28(4): 487–489,
2008. doi: https://doi.org/10.1007/s00493-008-2384-z

[38] H. Dubner. Large Sophie Germain primes. Math Comput. 65(213): 393–397, 1996. doi:
https://doi.org/10.1090/S0025-5718-96-00670-9.

[39] T. Durt, B. G. Englert, I. Bengtsson, and K. Życzkowski. On mutually unbiased bases.
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