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Notation

N : Set of Natural Numbers.

Z : Ring of Integers.

Q : Field of Rational numbers.

R : Field of Real numbers.

C : Field of Complex numbers.

DVR : Discrete Valuation Ring.

PID : Principal Ideal Domain.

UFD : Unique Factorization Domain.

For a commutative ring R, a prime ideal p of R and an R-algebra A, the

following notation will be used:

R∗ : Group of units of R.

R[n] : Polynomial ring in n variables over R.

Spec(R) : The set of all prime ideals of R.

ht(p) : Height of p.
k(p) : Residue field Rp/pRp.

Ap : S−1A where S = R\p; also identified with A⊗R Rp.

For integral domains R ⊆ A,

tr.deg
R
(A) : Transcendence degree of the field of fractions of A over that of R.
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Chapter 1

Introduction

Aim

Throughout this thesis k will always denote a field. The main aims of this

thesis are the following:

(a) To study “Generalised Asanuma varieties” and deduce Epimorphism re-

sults for a certain family of linear hyperplanes over fields of arbitrary charac-

teristic.

(b) To determine isomorphism classes and automorphisms of Generalised

Asanuma varieties and use the classification to demonstrate an infinite family

of pairwise non-isomorphic varieties which are counter examples to the Zariski

Cancellation Problem (ZCP) in higher dimensions (≥ 3) and in positive char-

acteristic.

(c) To study Generalised Danielewski varieties in higher dimensions and in

arbitrary characteristic and use the results to determine some invariants

(Derksen and Makar-Limanov invariants) of some subfamilies of Generalised

Asanuma varieties and to demonstrate a new infinite family of counterexam-

ples to the General Cancellation Problem in arbitrary characteristic.

In Chapter 3 we discuss (a) under the heading “Triviality of a family

of linear hyperplanes” and in Chapter 4 we discuss (b) under the title “An

infinite family of higher dimensional counterexamples to ZCP”. In Chapter

5, entitled “Generalised Danielewski varieties and invariants of generalised

Asanuma varieties”, we will study Danielewski varieties in a more general

set up and thereby provide a new family of counterexamples to the General

Cancellation Problem.
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Chapter 1: Introduction 2

An overview of Chapters 3,4,5 and the main results are given below.

Overview

I. Triviality of a family of linear hyperplanes (Chapter 3)

We recall the Epimorphism Problem, one of the fundamental problems in the

area of Affine Algebraic Geometry (cf. [15], [25]):

Question 1. If k[X1,...,Xn]
(H) = k[n−1], then is k[X1, . . . , Xn] = k[H][n−1]?

The famous Epimorphism Theorem of S.S. Abhyankar and T. Moh ( [2]),

also proved independently by M. Suzuki ( [38]) for k = C, provides an affir-

mative answer to Question 1 when k is a field of characteristic zero and n = 2.

The Abhyankar-Sathaye Conjecture asserts an affirmative answer to Question

1 when k is of characteristic zero and n > 2; and this remains a formidable

open problem in Affine Algebraic Geometry.

When k is a field of positive characteristic, explicit counterexamples to

Question 1 had already been demonstrated by B. Segre ( [36]) in 1957 and M.

Nagata ( [31]) in 1971. However, when the hyperplane H is of some specified

form, it is possible to obtain affirmative answers to Question 1 even when k

is of arbitrary characteristic. Thus, the Abhyankar-Sathaye Conjecture could

be extended to fields of arbitrary characteristic for certain special cases of H.

The first (partial) affirmative solution to Question 1 was obtained for the

case n = 3 and H a linear plane, i.e., linear in one of the three variables,

by A. Sathaye ( [35]) in characteristic zero and P. Russell ( [32]) in arbitrary

characteristic. They also proved that if A = k[2] and the hyperplane H ∈
A[Y ](= k[3]) is of the form aY + b, where a, b ∈ A, then the coordinates X,Z

of A can be chosen such that A = k[X,Z] with a ∈ k[X]; that is, linear planes

were shown to be of the form a(X)Y + b(X,Z).

For the case n = 4 and k = C, S. Kaliman, S. Vènèreau and M.

Zaidenberg proved the Abhyankar-Sathaye Conjecture for certain linear hyper-

planes in C[X1, X2, Y, Z] of the type a(X1)Y +b(X1, X2, Z) and a(X1, X2)Y +

b(X1, X2, Z) under certain hypotheses ( [26]). A general survey on other par-

tial affirmative answers to the Abhyankar-Sathaye Conjecture has been made

in [15, Section 2].

We consider certain types of linear hyperplanes in higher dimensions which

arose out of investigations on the ZCP in [23]. We present the genesis below.
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Consider a ring of the form

A :=
k [X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − F (X1, . . . , Xm, Z, T ))
, ri > 1 for all i, 1 ⩽ i ⩽ m,

(1.0.1)

where F (0, . . . , 0, Z, T ) ̸= 0. Set f(Z, T ) := F (0, . . . , 0, Z, T ). Let x1, . . . , xm, y, z, t

denote the images in A of X1, . . . , Xm, Y, Z, T respectively. We shall call a va-

riety defined by a ring of type (1.0.1) as a “Generalised Asanuma variety”.

In [3], T. Asanuma had constructed three dimensional rings of the above type

as an illustration of non-trivial A2-fibrations (cf. Definition 2.1.2) over a PID

not containing Q. The original ring of Asanuma is obtained from (1.0.1) by

taking m = 1, k a field of positive characteristic p and F = Zp
e
+ T + T sp,

where e, s are positive integers such that pe ∤ sp and sp ∤ pe. Now suppose

F = f(Z, T ), where f is a line in k[Z, T ], i.e., k[Z,T ]
(f) = k[1]. For each inte-

ger m ⩾ 1, N. Gupta established the following two properties of the integral

domain A under the above hypothesis ( [23, Theorem 3.7]):

(a) A[1] = k[m+3].

(b) If A = k[m+2] then k[Z, T ] = k[f ][1].

Earlier, she had investigated the ring A for m = 1 and had shown that

the condition (b) holds (i.e., A = k[3] implies k[Z, T ] = k[f ][1]) even without

the hypothesis that f(Z, T ) is a line in k[Z, T ]. In fact, she had proved the

following general result [22, Theorem 3.11]:

Theorem A. Let k be a field and A′ = k[X,Y,Z,T ]
(XrY−F (X,Z,T )) , where r > 1. Let x be

the image of X in A′. If G := XrY −F (X,Z, T ) and f(Z, T ) := F (0, Z, T ) ̸=
0, then the following statements are equivalent:

(i) k[X,Y, Z, T ] = k[X,G][2].

(ii) k[X,Y, Z, T ] = k[G][3].

(iii) A′ = k[x][2].

(iv) A′ = k[3].

(v) k[Z, T ] = k[f ][1].

Note that the equivalence of (ii) and (iv) above establishes a special case

of the Abhyankar-Sathaye Conjecture for linear hyperplanes in k[4].
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In view of the importance of Theorem A, A. K. Dutta had asked whether

similar results as Theorem A hold over Generalised Asanuma varieties when

m > 1, in particular:

Question 2. For m > 1, is the condition k[Z, T ] = k[f ][1] both necessary and

sufficient for the ring A (as in (1.0.1)) to be k[m+2] ?

Example 3.2.2 in Chapter 3 shows that when m ⩾ 2, the condition that

f is a coordinate in k[Z, T ] is not sufficient for A to be k[m+2] in general.

However, we will show that Question 2 indeed has an affirmative answer when

F is of the form

F (X1, . . . , Xm, Z, T ) = f(Z, T ) + (X1 · · ·Xm)g(X1, . . . , Xm, Z, T ).

In fact, we prove the following generalisation of Theorem A (Chapter 3, The-

orem 3.2.1):

Theorem A1. Let k be a field and

A =
k [X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − F (X1, . . . , Xm, Z, T ))
, ri > 1 for all i, 1 ⩽ i ⩽ m.

Let F (X1, . . . , Xm, Z, T ) = f(Z, T ) + (X1 · · ·Xm)g(X1, . . . , Xm, Z, T ) be such

that f(Z, T ) ̸= 0. Let G = Xr1
1 · · ·Xrm

m Y−F (X1, . . . , Xm, Z, T ) and x1, . . . , xm

denote the images in A of X1, . . . , Xm respectively. Then the following state-

ments are equivalent:

(i) k[X1, . . . , Xm, Y, Z, T ] = k[X1, . . . , Xm, G]
[2].

(ii) k[X1, . . . , Xm, Y, Z, T ] = k[G][m+2].

(iii) A = k[x1, . . . , xm]
[2].

(iv) A = k[m+2].

(v) k[Z, T ] = k[f(Z, T )][1].

We actually prove the equivalence of each of the above statements with nine

other technical statements (Theorems 3.2.1, 3.2.6), involving stable isomor-

phisms, affine fibrations and two invariants — the Derksen invariant and the

Makar-Limanov invariant (cf. Definition 2.1.6) of A. Theorem 3.2.1 provides

a connection between the Epimorphism Problem, Zariski Cancellation Prob-

lem and Affine Fibration Problem in higher dimensions. We also establish
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a generalisation of Theorem A1 over any commutative Noetherian domain R

such that either R is seminormal or Q ⊂ R (Theorem 3.2.10).

The equivalence of (v) with any of the remaining statements in Theorem

A1 shows that a certain property of the polynomial G in m+3 variables (the

property of being a coordinate) is determined entirely by a property of the

polynomial f in two variables, i.e., a question on a polynomial inm+3 variables

reduces to a question on a polynomial in 2 variables. The equivalence of (iv)

and (v) answers Question 2 for the particular structure of F ; the equivalence

of (ii) and (iv) gives an affirmative answer to Question 1 (Abhyankar-Sathaye

Conjecture) for n ⩾ 4 and for a hypersurface of the form G. This result may

be considered as a partial generalisation of the theorem on Linear Planes due

to A. Sathaye ( [35]) and P. Russell ( [32, 2.3]), mentioned earlier.

II. An infinite family of higher dimensional counterexamples to ZCP

(Chapter 4)

Our results in Chapter 4 are inspired by the Zariski Cancellation Problem

(ZCP) for affine spaces which investigates the following.

Question 2. Let B be an n-dimensional affine k-domain such that B[1] =

k[n+1]. Does this imply B = k[n] ?

The answer to Question 2 is affirmative for n ≤ 2 over any field (cf. [1],

[30], [17], [34], [7]). For n ≥ 3, the problem is open over fields of character-

istic zero. However, over fields of positive characteristic, Gupta has shown a

certain subfamily of Generalised Asanuma varieties to be counterexample to

this problem (cf. [21], [23]). Furthermore, in [22], Gupta has given an infinite

family of pairwise non-isomorphic three dimensional varieties which are coun-

terexamples to ZCP in positive characteristic. This motivates us to investigate

the isomorphism classes of generalised Asanuma varieties of higher dimensions

(⩾ 3).

In this chapter, we first see the following result (Theorem 4.1.1).

Theorem A2. Let (r1, . . . , rm), (s1, . . . , sm) ∈ Zm>1, and F,G ∈ k[X1, . . . , Xm, Z, T ],

where f(Z, T ) := F (0, . . . , 0, Z, T ) /∈ k and g(Z, T ) := G(0, . . . , 0, Z, T ) /∈ k.

Suppose ϕ : A→ A′ is an isomorphism, where

A = A(r1, . . . , rm, F ) :=
k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − F (X1, . . . , Xm, Z, T ))
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and

A′ = A(s1, . . . , sm, G) :=
k[X1, . . . , Xm, Y, Z, T ]

(Xs1
1 · · ·Xsm

m Y −G(X1, . . . , Xm, Z, T ))
.

Let x1, . . . , xm, y, z, t and x
′
1, . . . , x

′
m, y

′, z′, t′ denote the images ofX1, . . . , Xm, Y, Z, T

in A and A′ respectively. Let E = k[x1, . . . , xm] and E
′ = k[x′1, . . . , x

′
m]. Sup-

poseB := DK(A) = k[x1, . . . , xm, z, t] andB
′ := DK(A′) = k[x′1, . . . , x

′
m, z

′, t′].

Then

(i) ϕ restricts to isomorphisms from B to B′ and from E to E′.

(ii) For each i, 1 ⩽ i ⩽ m, there exists j, 1 ⩽ j ⩽ m, such that ϕ(xi) = λjx
′
j

for some λj ∈ k∗ and ri = sj . In particular, (r1, . . . , rm) = (s1, . . . , sm)

upto a permutation of {1, . . . ,m}.

(iii) ϕ (xr11 · · ·xrmm , F (x1, . . . , xm, z, t)) = ((x′1)
s1 · · · (x′m)sm , G(x′1, . . . , x′m, z′, t′))

(iv) There exists α ∈ Autk(k[Z, T ]) such that α(g) = λf for some λ ∈ k∗.

Using Theorem A2, we characterise the automorphisms of a certain subfamily

of Generalised Asanuma varieties (Theorem 4.1.2). Further as a consequence

to Theorem A2, we establish the following (Theorem 4.2.1).

Theorem A3. Let (r1, . . . , rm), (s1, . . . , sm) ∈ Zm>1, and f, g ∈ k[Z, T ] be

non-trivial lines. Then A(r1, . . . , rm, f) ∼= A(s1, . . . , sm, g) if and only if

(r1, . . . , rm) = (s1, . . . , sm) upto a permutation of {1, . . . ,m} and there ex-

ists α ∈ Autk(k[Z, T ]) such that α(g) = µf , for some µ ∈ k∗.

The above theorem immediately yields the following result (Corollary 4.2.3).

Corollary A4. Let k be a field of positive characteristic. For each n ⩾ 3,

there exists an infinite family of pairwise non-isomorphic rings C of dimension

n, which are counter examples to the Zariski Cancellation Problem in positive

characteristic, i.e., which satisfy that C [1] = k[n+1] but C ̸= k[n].

III. Generalised Danielewski varieties and invariants of generalised

Asanuma varieties (Chapter 5)

The results in Chapter 5 have their genesis in the General Cancellation Prob-

lem in Affine Algebraic Geometry which asks the following (cf. [16]):

Question 3. Let D and E be two affine domains over a field k such that

D[1] =k E
[1]. Does this imply D ∼=k E?



7

The answer to Question 3 is affirmative for one dimensional affine domains

(cf. [1]). However, there are counterexamples in dimensions greater than or

equal to two. In [11], Danielewski constructed a family of two dimensional pair-

wise non-isomorphic smooth complex varieties which are counterexamples to

the Cancellation Problem. In [10], A. J. Crachiola extended Danielewski’s ex-

amples over arbitrary characteristic. In [13], A. Dubouloz constructed higher

dimensional (⩾ 3) analogues of the Danielewski varieties, which are coun-

terexamples to this problem. More precisely, for r := (r1, . . . , rm) ∈ Zm⩾1 and

F ∈ k[m+1], he studied the affine varieties, defined by the following integral

domains when k = C:

Br := B(r1, . . . , rm, F ) =
k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rmm U − F (T1, . . . , Tm, V ))
,

where F (T1, . . . , Tm, V ) is monic in V and d := degV F > 1. We note that

setting P (V ) := F (0, . . . , 0, V ), we have d = degV P = degV F = d(> 1).

We call these varieties as “Generalised Danielewski varieties”. In the above

setting, Dubouloz proved ( [13], Corollary 1.1, Corollary 1.2):

Theorem B. Suppose F =
∏d
i=1(V − σi(T1, . . . , Tm)), where σi’s are of the

form

σi(T1, . . . , Tm) = ai + T1 · · ·Tmfi(T1, . . . , Tm), fi ∈ C[m] for all i, 1 ≤ i ≤ d,

and ai ∈ C are such that ai ̸= aj for i ̸= j. Then the following statements

hold:

(i) Suppose that either of the following conditions hold:

(a) r ∈ Zm>1 and s ∈ Zm⩾1 \ Zm>1

(b) r, s ∈ Zm>1 are such that the sets {r1, . . . , rm} and {s1, . . . , sm} are

distinct.

Then Br ≇k Bs.

(ii) B
[1]
r

∼=k B
[1]
s for any r, s ∈ Zm⩾1.

We exhibit a larger class of varieties in higher dimensions (⩾ 2) over fields

of arbitrary characteristic which are counter examples to the General Can-

cellation Problem. These varieties accommodate the counterexamples due to

Dubouloz over C. More precisely, we establish the following (Chapter 5, The-

orems 5.2.1 and 5.2.3):
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Theorem B1. Let F, F ′ ∈ k[T1, . . . , Tm, V ] be such that

F = a0 + a1V + · · ·+ ad−1V
d−1 + V d, and

F ′ = a1 + 2a2V + · · ·+ (d− 1)ad−1V
d−2 + dV d−1

for some ai ∈ k[T1, . . . , Tm], 0 ⩽ i ⩽ d − 1. Then the following statements

hold:

(i) Suppose that either of the following conditions hold:

(a) r ∈ Zm>1 and s ∈ Zm⩾1 \ Zm>1

(b) r, s ∈ Zm>1 are such that r = (r1, . . . , rm) and s = (s1, . . . , sm) are

not permutation of each other.

Then Br ≇k Bs.

(ii) B
[1]
r

∼=k B
[1]
s for any r, s ∈ Zm⩾1, whenever (F, F

′) = k[T1, . . . , Tm, V ].

As a consequence we prove the following result (Corollary 5.2.4).

Corollary B2. Let k be any field. For each n ⩾ 2, there exists an infinite

family of pairwise non-isomorphic rings of dimension n, which are counterex-

amples to the Cancellation Problem.

In the rest of Chapter 5 (see 5.3) we will focus on some invariants of

Generalised Asanuma varieties. As we have seen in I, special cases of these

varieties have played crucial roles in solutions to central problems on affine

spaces and the Makar-Limanov and Derksen invariants of these varieties were

the key tools in some of the results. The case m = 1 accommodates the

famous Russell-Koras threefold x2y + x + z2 + t3 = 0 over k = C which

arose in the context of the Linearisation Problem for C[3] and which is now a

potential candidate for a counterexample to ZCP for the affine three space in

characteristic zero (see [25] for details).

Recall that for the affine domain A as in (1.0.1), when k is a field of

positive characteristic, and F = f(Z, T ) is a nontrivial line in k[Z, T ], Gupta

had shown ( [21, Corollary 3.9], [23, Corollary 3.8]) that for each m ⩾ 1, the

corresponding ring A is a counterexample to the ZCP in dimension (m + 2),

i.e., A[1] = k[m+3] but A ̸= k[m+2]. A crucial step in the proof was a result

on the Derksen invariant quoted as Proposition 3.1.5 in Chapter 3. Here we

address the following converse of Proposition 3.1.5:

Question 4. Let A be as in (1.0.1). Suppose that there exists a system of
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coordinates {Z1, T1} of k[Z, T ] such that f(Z, T ) = a0(Z1) + a1(Z1)T1. Is the

Derksen invariant of A equal to A?

We shall apply Theorem B1 to give an affirmative answer to the above

question when F is of a certain form (Proposition 5.3.2). We also give a

complete description of the Derksen and Makar-Limanov invariants for

A =
k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − f(Z, T ))
,

when k is an infinite field and A is a regular domain (Corollary 5.3.3).

In the next chapter, we recall some definitions, well-known results, and ba-

sic properties of exponential maps and someK-theoretic aspects of Noetherian

rings which will be used in the subsequent chapters.
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Chapter 2

Preliminaries

Throughout this thesis all rings and algebras will be assumed to be commu-

tative with unity. The letter k will always denote a field. For any ring R, R[n]

denotes a polynomial ring in n variables over R. For some p ∈ Spec(R) and

an R-algebra B, Bp denotes the ring S−1B where S = R \ p and κ(p) denotes
the field

Rp
pRp

. Capital letters like X,Y, Z, T, U, V,X1, . . . , Xm etc. will denote

indeterminates over the respective ground rings or fields.

2.1 Definitions and well known results

We first recall a few definitions.

Definition 2.1.1. A polynomial h ∈ k[X,Y ] is said to be a line in k[X,Y ]

if k[X,Y ]
(h) = k[1]. Furthermore, if k[X,Y ] ̸= k[h][1], then h is said to be a

non-trivial line in k[X,Y ].

Definition 2.1.2. A finitely generated flat R-algebra B is said to be an An-
fibration over R if B ⊗R k(p) = k(p)[n] for every prime ideal p of R.

Definition 2.1.3. A polynomial h ∈ R[X,Y ] is said to be a residual coordi-

nate, if for every p ∈ Spec(R),

R[X,Y ]⊗R κ(p) = (R[h]⊗R κ(p))[1].

Definition 2.1.4. An integral domain R with field of fractions K is called a

seminormal domain if for any a ∈ K, the conditions a2, a3 ∈ R imply that

a ∈ R.

11
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Definition 2.1.5. A k-algebra B is said to be geometrically factorial over k

if for every algebraic field extension L of k, B ⊗k L is a UFD.

We now define an exponential map on a k-algebra B and two invariants

related to it, namely, theMakar-Limanov invariant and the Derksen invariant.

Definition 2.1.6. Let B be a k-algebra and ϕ : B → B[1] be a k-algebra

homomorphism. For an indeterminate U over B, let ϕU denote the map

ϕ : B → B[U ]. Then ϕ is said to be an exponential map on B, if the following

conditions are satisfied:

(i) ϵ0ϕU = idB, where ϵ0 : B[U ] → B is the evaluation map at U = 0.

(ii) ϕV ϕU = ϕU+V , where ϕV : B → B[V ] is extended to a k-algebra homo-

morphism ϕV : B[U ] → B[U, V ], by setting ϕV (U) = U .

The ring of invariants of ϕ is a subring of B defined as follows:

Bϕ := {b ∈ B |ϕ(b) = b} .

The map ϕ is said to be non-trivial if Bϕ ̸= B.

Let EXP(B) denote the set of all exponential maps on B. The Makar-

Limanov invariant of B is defined to be

ML(B) :=
⋂

ϕ∈EXP(B)

Bϕ

and the Derksen invariant is a subring of B defined as

DK(B) := k
[
b ∈ Bϕ |ϕ ∈ EXP(B) and Bϕ ⫋ B

]
.

Next we record some useful results on exponential maps. The following

two lemmas can be found in [29, Chapter I], [9] and [21].

Lemma 2.1.1. Let B be an affine domain over k and ϕ be a non-trivial

exponential map on B. Then the following statements hold:

(i) Bϕ is a factorially closed subring of B, i.e., for any non-zero a, b ∈ B,

if ab ∈ Bϕ, then a, b ∈ Bϕ. In particular, Bϕ is algebraically closed in

B.

(ii) tr. degk B
ϕ = tr. degk B − 1.
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(iii) For a multiplicatively closed subset S of Bϕ\{0}, ϕ induces a non-trivial

exponential map S−1ϕ on S−1B such that (S−1B)S
−1ϕ = S−1(Bϕ).

Lemma 2.1.2. Let k be a field and B = k[n]. Then DK(B) = B for n ≥ 2

and ML(B) = k.

Next we recall the definition of a rigid k-domain.

Definition 2.1.7. A k-domain D is said to be rigid if there does not exist any

non-trivial exponential map on D.

For convenience, we record below an easy lemma.

Lemma 2.1.3. Let D be a k-domain which is not rigid. Then DK(D[W ]) =

D[W ].

Proof. Consider the exponential map ϕ : D[W ] → D[W,U ] defined by

ϕ(a) = a for all a ∈ D, and ϕ(W ) =W + U.

It is easy to see that (D[W ])ϕ = D. Again as D is not rigid, we have a non-

trivial exponential map ψ on D. We extend ψ to an exponential map ψ̃ on

D[W ] such that ψ̃|D = ψ and ψ̃(W ) =W . Then W ∈ (D[W ])ψ̃. Therefore, it

follows that DK(D[W ]) = D[W ].

Next we define proper and admissible Z-filtration on an affine domain.

Definition 2.1.8. Let k be a field and B an affine k-domain. A collection

{Bn |n ∈ Z} of k-linear subspaces of B is said to be a proper Z-filtration if

(i) Bn ⊆ Bn+1, for every n ∈ Z.

(ii) B =
⋃
n∈ZBn.

(iii)
⋂
n∈ZBn = {0}.

(iv) (Bn \Bn−1).(Bm \Bm−1) ⊆ Bm+n \Bm+n−1 for all m,n ∈ Z.

A proper Z-filtration {Bn}n∈Z of B is said to be admissible if there is a

finite generating set Γ of B such that for each n ∈ Z, every element in Bn can

be written as a finite sum of monomials from Bn ∩ k[Γ].
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A proper Z-filtration {Bn}n∈Z of B defines an associated graded domain

defined by

gr(B) :=
⊕
n∈Z

Bn
Bn−1

.

It also defines the natural map ρ : B → gr(B) such that ρ(b) = b + Bn−1, if

b ∈ Bn \Bn−1.

We now record a result on homogenization of exponential maps due to H.

Derksen, O. Hadas and L. Makar-Limanov [12]. The following version can be

found in [9, Theorem 2.6].

Theorem 2.1.4. Let B be an affine domain over a field k with an admissible

proper Z-filtration and gr(B) be the induced Z-graded domain. Let ϕ be a

non-trivial exponential map on B. Then ϕ induces a non-trivial homogeneous

exponential map ϕ on gr(B) such that ρ(Bϕ) ⊆ gr(B)ϕ.

We quote below a criterion for flatness from [27, (20.G)].

Lemma 2.1.5. Let R→ C → D be local homomorphisms of Noetherian local

rings, κ the residue field of R and M a finite D module. Suppose C is R-flat.

Then the following statements are equivalent:

(i) M is C-flat.

(ii) M is R-flat and M ⊗R κ is C ⊗R κ-flat.

The following is a well known result ( [1]).

Theorem 2.1.6. Let k be a field and R be a normal domain such that k ⊂
R ⊂ k[n]. If tr.degk R = 1, then R = k[1].

Next we state a version of the Russell-Sathaye criterion [33, Theorem 2.3.1],

as presented in [6, Theorem 2.6].

Theorem 2.1.7. Let R ⊂ C be integral domains such that C is a finitely

generated R-algebra. Let S be a multiplicatively closed subset of R \ {0}
generated by some prime elements of R which remain prime in C. Suppose

S−1C = (S−1R)[1] and, for every prime element p ∈ S, we have pR = pC ∩R
and R

pR is algebraically closed in C
pC . Then C = R[1].

We now recall a result on separable A1-forms over a PID ( [14, Theorem

7]).
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Lemma 2.1.8. Let f ∈ k[Z, T ] such that L[Z, T ] = L[f ][1], for some separable

field extension L of k. Then k[Z, T ] = k[f ][1].

We quote below a fundamental result on residual coordinates ( [5, Theorem

3.2]).

Theorem 2.1.9. Let R be a commutative Noetherian domain such that either

Q ⊂ R or R is seminormal. Then the following statements are equivalent:

(i) h ∈ R[X,Y ] is a residual coordinate.

(ii) R[X,Y ] = R[h][1].

2.2 Basic facts of K-theory

In this section we will consider a Noetherian ring R and note some K-theoretic

aspects of R (cf. [4], [8]). Let M (R) denote the category of finitely generated

R-modules and P(R) the category of finitely generated projective R-modules.

Let G0(R) and G1(R) respectively denote the Grothendieck group and the

Whitehead group of the category M (R). Let K0(R) and K1(R) respectively

denote the Grothendieck group and theWhitehead group of the category P(R).

For i ⩾ 2, the definitions of Gi(R) and Ki(R) can be found in ( [37], Chapters

4 and 5). The following results can be found in [37, Propositions 5.15 and

5.16, Theorem 5.2].

Lemma 2.2.1. Let t be a regular element of R. Then the inclusion map

j : R ↪→ R[t−1] and the natural surjection map π : R→ R
tR induce the following

long exact sequence of groups:

Gi(
R
tR) Gi(R) Gi(R[t

−1]) · · · G0(R[t
−1]) 0

π∗ j∗

Lemma 2.2.2. Let t be a regular element of R and ϕ : R → C be a flat ring

homomorphism such that u = ϕ(t). Then we get the following commutative

diagram:

· · · Gi(
R
tR) Gi(R) Gi(R[t

−1]) Gi−1(
R
tR) · · ·

· · · Gi(
C
uC ) Gi(C) Gi(C[u

−1]) Gi−1(
C
uC ) · · · ,

ϕ
∗

ϕ∗ (t−1ϕ)∗ ϕ
∗

where ϕ induces the vertical maps.
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Lemma 2.2.3. For an indeterminate T over R, the following hold:

(a) For every i ⩾ 0, the maps Gi(R) → Gi(R[T ]), which are induced by

R ↪→ R[T ], are isomorphisms.

(b) Let j : R → R[T, T−1] be the inclusion map. Then for every i, i ⩾ 1,

the following sequence is split exact.

0 Gi(R[T ]) Gi(R[T, T
−1]) Gi−1(R) 0

j∗
.

In particular, for i = 0, j∗ is an isomorphism and for i ⩾ 1,

Gi(R[T, T
−1]) ∼= Gi(R[T ])⊕Gi−1(R) ∼= Gi(R)⊕Gi−1(R).

We end this section with the following remark.

Remark 2.2.4. For a regular ring R, Gi(R) = Ki(R), for every i ⩾ 0. In

particular, G1(k[X]) = K1(k[X]) = k∗ and G0(k) = K0(k) = Z. For Cm :=

k[X1, . . . , Xm, X
−1
1 , . . . , X−1

m ], G0(Cm) = K0(Cm) = Z (since every finitely

generated projective module over Cm is free) and by repeated application of

Lemma 2.2.3(b), we get that G1(Cm) ∼= k∗ ⊕ Zm, for every m ⩾ 1.



Chapter 3

Triviality of a family of linear

hyperplanes

The main objective of this chapter is to investigate the Epimorphism Problem

and prove an extended version of Theorem A1 which includes fourteen equiv-

alent statements (cf. Theorems 3.2.1 , 3.2.6). We will prove the results in two

parts.

We first prove some preparatory lemmas, propositions and prove eleven equiv-

alent statements in Theorem 3.2.1. The remaining 3 statements will be proved

in Theorem 3.2.6. The results discussed in this chapter can be found in [19]

and [20].

3.1 Properties of Generalised Asanuma varieties

We begin with the following lemma.

Lemma 3.1.1. Let R be an integral domain. Let E := R[X1, . . . , Xm, T ],

C = E[Z, Y ], g ∈ E[Z] and G = Xr1
1 · · ·Xrm

m Y −X1 · · ·Xmg + Z ∈ C. Then

C = E[G][1].

Proof. Let D = E[G] ⊆ C. Let S be the multiplicatively closed subset of

D \ {0}, which is generated by X1, . . . , Xm. From the expression of G, it is

clear that S−1C = (S−1D)[Z]. Again C
XiC

= ( D
XiD

)[1] for every i, 1 ⩽ i ⩽ m.

Therefore, by Theorem 2.1.7, we get that C = D[1].

We now fix some notation. Throughout this chapter, A will denote the

17
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coordinate ring of Generalised Asanuma varieties, i.e.,

A =
k [X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − F (X1, . . . , Xm, Z, T ))
, ri > 1 for all i, 1 ⩽ i ⩽ m,

(3.1.1)

where f(Z, T ) := F (0, . . . , 0, Z, T ) ̸= 0. Let G := Xr1
1 · · ·Xrm

m Y − F . Note

that A is an integral domain. Recall that x1, . . . , xm, y, z, t denote the images

of X1, . . . , Xm, Y, Z, T in A. The notation E and B will denote the following

subrings of A:

E = k[x1, . . . ,xm] and B = k[x1, . . . ,xm, z, t].

Note that

B = k[x1, . . . , xm, z, t] ↪→ A ↪→ B[x−1
1 , . . . , x−1

m ].

Fix (e1, . . . , em) ∈ Zm. The ring B[x−1
1 , . . . , x−1

m ] can be given the following

Z-graded structure:

B[x−1
1 , . . . , x−1

m ] =
⊕
n∈Z

Bn,

where

Bn =
⊕

(i1,...,im)∈Zm,
e1i1+···+emim=n

k[z, t]xi11 · · ·ximm .

Now every b ̸= 0 ∈ B[x−1
1 , . . . , x−1

m ] can be written uniquely as

b =

dh∑
i=dl

bi,

where bi ∈ Bi, dl, dh are some integers and bdl , bdh ̸= 0. If b ∈ B, then

each bi ∈ B. We call dh the degree of b and hence bdh is the highest degree

homogeneous summand of b. For every n ∈ Z, if An =
⊕

i⩽nBn ∩ A, then
{An}n∈Z defines a Z-filtration on A. For every j, 1 ⩽ j ⩽ m, xj ∈ Aej \Aej−1.

If d denotes the degree of F (x1, . . . , xm, z, t), then y ∈ Al \ Al−1, where l =

d− (r1e1 + · · ·+ rmem).

With respect to the notation as above, we first quote the following two

results [23, Lemmas 3.1, 3.2].

Lemma 3.1.2. The k-linear subspaces {An}n∈Z define a proper admissible

Z-filtration on A with the generating set Γ = {x1, . . . , xm, y, z, t}, and the

associated graded ring gr(A) =
⊕

n∈Z
An
An−1

is generated by the image of Γ in
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gr(A).

Lemma 3.1.3. Let d denote the degree of F (x1, . . . , xm, z, t) and Fd denote

the highest degree homogeneous summand of F . Suppose that, for each j,

1 ⩽ j ⩽ m, xj ∤ Fd. Then the associated graded ring gr(A) is isomorphic to

k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − Fd(X1, . . . , Xm, Z, T ))

as k-algebras.

The following result is proved in [23, Lemma 3.3].

Lemma 3.1.4. k[x1, . . . , xm, z, t] ⊆ DK(A).

The following proposition is stated in [23, Proposition 3.4(i)] under the

hypothesis DK(A) = A. However the proof uses only the consequence that

k[x1, . . . , xm, z, t] ⫋ DK(A). Below we quote the result under this modified

hyopthesis.

Proposition 3.1.5. Suppose that k is infinite and k[x1, . . . , xm, z, t] ⫋
DK(A). Then there exist Z1, T1 ∈ k[Z, T ] and a0, a1 ∈ k[1] such that

k[Z, T ] = k[Z1, T1] and f(Z, T ) = a0(Z1) + a1(Z1)T1.

Remark 3.1.6. For m = 1, the hypothesis that k is an infinite field in the

above proposition can be dropped (cf. [22, Proposition 3.7]).

The next result shows that if f is a non-trivial line, then DK(A) =

k[x1, . . . , xm, z, t].

Proposition 3.1.7. Suppose that k[x1, . . . , xm, z, t] ⫋ DK(A) and

k[Z, T ]/(f) = k[1].

Then k[Z, T ] = k[f ][1].

Proof. If k is infinite, then the assertion follows from [23, Proposition 3.4(ii)].

Now suppose k is a finite field. Let k be an algebraic closure of k and

A = A ⊗k k. Since k[x1, . . . , xm, z, t] ⫋ DK(A), we have k[x1, . . . , xm, z, t] ⫋
DK(A). If k[Z, T ]/(f) = k[1], then k[Z, T ]/(f) = k

[1]
. As k is infinite, by

Proposition 3.1.5, there exist Z1, T1 ∈ k[Z, T ] and a0, a1 ∈ k
[1]

such that

k[Z, T ] = k[Z1, T1] and f = a0(Z1) + a1(Z1)T1. Now since f is a line in

k[Z, T ], we have
(
k[Z, T ]/(f)

)∗
= k

∗
. We now have the following two cases
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Case 1: If a1(Z1) = 0, f = a0(Z1) must be linear in Z1 as f is irreducible in

k[Z, T ].

Case 2: If a1(Z1) ̸= 0, then gcd(a0(Z1), a1(Z1)) = 1 as f is irreducible in

k[Z, T ]. Hence a1(Z1) ∈
(
k[Z, T ]/(f)

)∗
= k

∗
.

Therefore, by above two cases k[Z, T ] = k[f ][1]. Hence by Lemma 2.1.8,

we get that k[Z, T ] = k[f ][1].

Next we prove a result which describes ML(A) when DK(A) is exactly

equal to B(= k[x1, . . . , xm, z, t]).

Proposition 3.1.8. Let A be the affine domain as in (3.1.1). Then the fol-

lowing hold:

(a) Suppose, for every i ∈ {1, . . . ,m}, xi /∈ A∗, and F /∈ k[X1, . . . , Xm].

Then ML(A) ⊆ E(= k[x1, . . . , xm]).

(b) If DK(A) = B, then ML(A) = E.

Proof. (a) Since F /∈ k[X1, . . . , Xm], without loss of generality, suppose

degT F > 0. Consider the map ϕ1 : A→ A[U ] defined as follows:

ϕ1(xi) = xi (1 ⩽ i ⩽ m), ϕ1(z) = z, ϕ1(t) = t+ xr11 · · ·xrmm U,

and

ϕ1(y) =
F (x1, . . . , xm, z, t+ xr11 · · ·xrmm U)

xr11 · · ·xrmm
= y + Uv(x1, . . . , xm, z, t, U),

for some v ∈ k[x1, . . . , xm, z, t, U ]. It is easy to see that ϕ1 ∈ EXP(A). Now

k[x1, . . . , xm, z] ⊆ Aϕ1 ⊆ A ⊆ k[x1, . . . , xm, (x1 · · ·xm)−1, z, t].

Since degT F > 0, and for every i, 1 ⩽ i ⩽ m, xi /∈ A∗, it follows that

A ∩ k[x1, . . . , xm, (x1 · · ·xm)−1, z] = k[x1, . . . , xm, z].

Therefore, k[x1, . . . , xm, z] is algebraically closed inA. Also tr.degk(k[x1, . . . , xm, z]) =

tr. degk(A
ϕ1) = m+ 1 (cf. Lemma 2.1.1(ii)). Hence Aϕ1 = k[x1, . . . , xm, z].

Again consider the map ϕ2 : A→ A[U ] defined as follows:

ϕ2(xi) = xi (1 ⩽ i ⩽ m), ϕ2(t) = t, ϕ2(z) = z + xr11 · · ·xrmm U,
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and

ϕ2(y) =
F (x1, . . . , xm, z + xr11 · · ·xrmm U, t)

xr11 · · ·xrmm
= y + Uw(x1, . . . , xm, z, t, U),

for some w ∈ k[x1, . . . , xm, z, t, U ]. It follows that ϕ2 ∈ EXP(A). Clearly

k[x1, . . . , xm, t] ⊆ Aϕ2 ⊆ k[x1, . . . , xm, (x1 · · ·xm)−1, t].

Therefore, ML(A) ⊆ Aϕ1 ∩Aϕ2 ⊆ k[x1, . . . , xm] = E.

(b) Suppose DK(A) = B. Note that for every i, 1 ⩽ i ⩽ m, xi /∈ A∗,

otherwise x−1
i ∈ DK(A). Further, if either degT F = 0 or degZ F = 0, then

either y ∈ Aϕ1 or y ∈ Aϕ2 respectively, where ϕ1, ϕ2 ∈ EXP(A) are as defined

in part (a). This contradicts our assumption that DK(A) = B. Therefore,

F /∈ k[X1, . . . , Xm], and hence by part (a), it is clear that ML(A) ⊆ E.

Let ϕ ∈ EXP(A). We show that E ⊆ Aϕ. Now tr. degk A
ϕ = m + 1 (cf.

Lemma 2.1.1(ii)) and Aϕ ⊆ k[x1, . . . , xm, z, t]. Suppose {f1, . . . , fm+1} is an

algebraically independent set of elements in Aϕ. We fix some j ∈ {1, . . . ,m}
and let

fi = gi(x1, . . . , xj−1, xj+1, . . . , xm, z, t) + xjhi(x1, . . . , xm, z, t) (3.1.2)

for every i ∈ {1, . . . ,m + 1}. We show that the set {g1, . . . , gm+1} is alge-

braically dependent.

Suppose not. We consider the Z-filtration on A induced by the element

(0, . . . , 0,−1, 0, . . . , 0) ∈ Zm, where the j-th entry is −1. If fid denotes the

highest degree homogeneous summand of fi, then from (3.1.2), we get that

fid = gi. By Theorem 2.1.4, ϕ will induce a non-trivial exponential map

ϕj on the associated graded ring Aj and {gi | 1 ⩽ i ⩽ m + 1} ⊆ A
ϕj
j . By

Lemma 3.1.3,

Aj ∼=
k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − F (X1, . . . Xj−1, 0, Xj+1, . . . , Xm, Z, T ))
. (3.1.3)

Since {gi | 1 ⩽ i ⩽ m+1} is algebraically independent, k[x1, . . . , xj−1, xj+1, . . . , xm, z, t]

is algebraic over k[gi | 1 ⩽ i ⩽ m + 1]. As k[gi | 1 ⩽ i ⩽ m + 1] ⊆ A
ϕj
j and

A
ϕj
j is algebraically closed, we have k[x1, . . . , xj−1, xj+1, . . . , xm, z, t] ⊆ A

ϕj
j .

Therefore, from (3.1.3) we get that xj , y ∈ A
ϕj
j , which contradicts that ϕj is

non-trivial. Thus, {gi | 1 ⩽ i ⩽ m + 1} is algebraically dependent. Hence
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there exists a polynomial P ∈ k[m+1] such that

P (g1, . . . , gm+1) = 0.

Therefore, from (3.1.2), we get that there exists H ∈ k[x1, . . . , xm, z, t] such

that xjH = P (f1, . . . , fm+1) ∈ Aϕ. As Aϕ is factorially closed (cf. Lemma

2.1.1(i)), we have xj ∈ Aϕ. Since j is arbitrarily chosen from {1, . . . ,m},
we have E = k[x1, . . . , xm] ⊆ Aϕ. As ϕ ∈ EXP(A) is arbitrary, we have

E ⊆ ML(A). Therefore, ML(A) = E.

Remark 3.1.9. From Proposition 3.1.5, it follows that if k is an infinite field

and there is no system of coordinates {Z1, T1} of k[Z, T ] such that f(Z, T ) =

a0(Z1) + a1(Z1)T1, then DK(A) = B and hence ML(A) = E.

Remark 3.1.10. In Proposition 3.1.8(a) both the conditions that xi /∈ A∗

and F /∈ k[X1, . . . , Xm] are necessary. If some xi ∈ A∗, then x−1
i ∈ ML(A)

which shows that ML(A) ⊈ k[x1, . . . , xm].

Now consider the ring A =
k[X,Y, Z, T ]

(X2Y − 1)
, where F = 1 ∈ k[X]. Note that

A = k[x, x−1, z, t] and hence ML(A) = k[x, x−1] ⊈ k[x].

We now prove a criterion for a simple birational extension of a UFD to be

a UFD.

Proposition 3.1.11. Let R be a UFD, a, b ∈ R \ {0} and C := R[Y ]
(aY−b) be

an integral domain. Let a :=
∏m
i=1 a

ri
i be a prime factorization of a in R.

Suppose that for every i, 1 ⩽ i ⩽ m, whenever (ai, b)R is a proper ideal, then∏
j ̸=i aj

sj /∈ (ai, b)R, for any integer sj ⩾ 0. Then the following are equivalent.

(i) C is a UFD.

(ii) For each i, 1 ⩽ i ⩽ m, either ai is prime in C or ai ∈ C∗.

(iii) For each i, 1 ⩽ i ⩽ m, either (ai, b)R is a prime ideal of R or (ai, b)R =

R.

Proof. (ii) ⇔ (iii) : For every j, 1 ⩽ j ⩽ m, we have

C

ajC
∼=
(

R

(aj , b)

)[1]

. (3.1.4)

Note that aj is either a prime element or a unit in C according as C
ajC

is either

an integral domain or a zero ring. Hence the equivalence follows from (3.1.4).
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(i) ⇒ (ii) : Note that R ↪→ C ↪→ R[a−1
1 , . . . , a−1

m ]. Suppose aj /∈ C∗ for some

j, 1 ⩽ j ⩽ m. Since C is a UFD, it is enough to show that aj is irreducible.

Suppose aj = c1c2 for some c1, c2 ∈ C. If c1, c2 ∈ R, then either c1 ∈ R∗ or

c2 ∈ R∗, as aj is irreducible in R. Therefore, we can assume that at least one

of them is not in R. Suppose c1 /∈ R. Let c1 = h1
a
i1
1 ···aimm

and c2 = h2

a
l1
1 ···almm

, for

some h1, h2 ∈ R and is, ls ⩾ 0, 1 ⩽ s ⩽ m. Therefore, we have

h1h2 = aj(a
i1+l1
1 · · · aim+lm

m ). (3.1.5)

As c1 /∈ R, using (3.1.5), without loss of generality, we can assume that

c1 = λ

∏
i⩽s a

pi
i∏m

i=s+1 a
pi
i

, for some λ ∈ k∗ and s < m, (3.1.6)

where pi ⩾ 0 for i ⩽ s, and pi > 0 for i ⩾ s+ 1.

Now when m = 1 or pi = 0 for every i ⩽ s, then c1 ∈ C∗, and we are done.

If not, then m > 1 and without loss of generality, we assume that p1 > 0.

Therefore, from (3.1.6), we have ap11 . . . apss ∈ aiC ∩R = (ai, b)R for every

i ⩾ s + 1. Hence by the given hypothesis, for every i ⩾ s + 1, we get that

(ai, b)R = R, i.e., ai ∈ C∗. Thus we get

c1 = µ
∏
i⩽s

apii (3.1.7)

for some µ ∈ C∗ and hence

µc2 =
aj∏
i⩽s a

pi
i

.

If
∏
i⩽s a

pi
i ∈ ajR, then c2 ∈ C∗ and we are done. If not, then aj ∈ aiC ∩R =

(ai, b)R for every i ⩽ s with pi > 0. If for such an ai with i ⩽ s and pi > 0,

(ai, b)R is a proper ideal then we get a contradiction by the given hypothesis.

Therefore, for all such ai, (ai, b)R = R and hence by (3.1.7), c1 ∈ C∗ and we

are done.

Therefore, we obtain that aj must be an irreducible element in C, hence

prime in C.

(ii) ⇒ (i) : Without loss of generality we assume that a1, . . . , ai−1 ∈ C∗ and

ai, . . . , am are primes in C for some i, 1 ⩽ i ⩽ m. Since C[a−1
1 , . . . , a−1

m ] =

C[a−1
i , . . . , a−1

m ] = R[a−1
1 , . . . , a−1

m ] is a UFD, by Nagata’s criterion for UFD
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( [28, Theorem 20.2]), we obtain that C is a UFD.

As a consequence we obtain the following equivalent conditions for the ring

A to be a UFD.

Proposition 3.1.12. The following statements are equivalent:

(i) A is a UFD.

(ii) For each j, 1 ⩽ j ⩽ m, either xj is prime in A or xj ∈ A∗.

(iii) For each j, 1 ⩽ j ⩽ m, Fj := F (X1, . . . , Xj−1, 0, Xj+1, . . . , Xm, Z, T ) is

either an irreducible element in k[X1, . . . , Xj−1, Xj+1, . . . , Xm, Z, T ] or

Fj ∈ k∗.

In particular, if F (X1, . . . , Xm, Z, T ) = f(Z, T ) + (X1 · · ·Xm)g, for some g ∈
k[X1, . . . , Xm, Z, T ], then the following statements are equivalent:

(i′) A is a UFD.

(ii′) For each j, 1 ⩽ j ⩽ m, either xj is prime in A or xj ∈ A∗.

(iii′) f(Z, T ) is either an irreducible element in k[Z, T ] or f(Z, T ) ∈ k∗.

Proof. Putting R = k[X1, . . . , Xm, Z, T ], ai = Xi for 1 ≤ i ≤ m and b =

F (X1, . . . , Xm, Z, T ) in Proposition 3.1.11, we have A = R[Y ]
(aY−b) where a =

Xr1
1 · · ·Xrm

m . Since f(Z, T ) = F (0, . . . , 0, Z, T ) ̸= 0, it follows that for every i,∏
j ̸=iX

sj
j /∈ (Xi, F (X1, . . . , Xm, Z, T ))k[X1, . . . , Xm, Z, T ], for j ̸= i, whenever

it is a proper ideal. Therefore, the result follows from Proposition 3.1.11.

The next result gives a condition for A to be flat over the subring E.

Lemma 3.1.13. Let F (X1, . . . , Xm, Z, T ) = f(Z, T )+(X1 · · ·Xm)g, for some

g ∈ k[X1, . . . , Xm, Z, T ]. Then A is a flat E-algebra.

Proof. Let q ∈ Spec(A) and p = q ∩E ∈ Spec(E). Note that A[x−1
1 , . . . , x−1

m ] =

E[x−1
1 , . . . , x−1

m , z, t]. Hence Aq is a flat Ep algebra if xi /∈ p for every i, 1 ⩽

i ⩽ m. Now suppose xi ∈ p for some i. Consider the following maps:

k[xi](xi) ↪→ Ep ↪→ Aq .

We observe that both Ep and Aq are flat over k[xi](xi) and

A

xiA
∼=

(E/xiE)[Y, Z, T ]

(f(Z, T ))
.
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Since k[Y,Z,T ]
(f(Z,T )) is a flat k-algebra, it follows that A

xiA

(
= k[Y,Z,T ]

(f(Z,T )) ⊗k
E
xiE

)
is a

flat E
xiE

-algebra. Hence it follows that
Aq
xiAq

is flat over
Ep
xiEp

and therefore, by

Lemma 2.1.5, we get that Aq is flat over Ep. Thus, A is locally flat over E,

and hence A is flat over E.

The next result gives some necessary and sufficient conditions for A to be

an affine fibration over E.

Proposition 3.1.14. Let F (X1, . . . , Xm, Z, T ) = f(Z, T ) + (X1 · · ·Xm)g, for

some g ∈ k[X1, . . . , Xm, Z, T ]. Then the following statements are equivalent:

(i) A is an A2-fibration over E.

(ii)
A

(x1, . . . , xm)A
= k[2].

(iii) f(Z, T ) is a line in k[Z, T ], i.e., k[Z,T ]
(f(Z,T )) = k[1].

Proof. (i) ⇒ (ii) : Since A is an A2-fibration over E, for every p ∈ Spec(E),

we have

A⊗E

Ep

pEp
=

(
Ep

pEp

)[2]

.

Hence for p = (x1, . . . , xm)E, we get A
(x1,...,xm)A = k[2].

(ii) ⇒ (iii) : Since

k ↪→ k[Z, T ]

(f(Z, T ))
↪→ A

(x1, . . . , xm)A
=

(
k[Z, T ]

(f(Z, T ))

)[1]

= k[2],

we obtain that k[Z,T ]
(f(Z,T )) is a one dimensional normal domain. Hence, f(Z, T )

is a line in k[Z, T ] by Theorem 2.1.6.

(iii) ⇒ (i) : By Lemma 3.1.13, A is a flat E-algebra. Let p ∈ Spec(E) and

Ap denotes the localisation of the ring A with respect to the multiplicatively

closed set E \ p. We now show A is an A2-fibration over E.

Case 1: If xi /∈ p for every i = 1, . . . ,m, then Ap = Ep[z, t]. Hence,

Ap

pAp
= A⊗E

Ep

pEp
=

(
Ep

pEp

)[2]

. (3.1.8)

Case 2: Suppose xi ∈ p for some i, 1 ⩽ i ⩽ m. Since f(Z, T ) is a line in

k[Z, T ], we have
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A

xiA
=

(E/xiE)[Y, Z, T ]

(f(Z, T ))
=

(
E

xiE

)[2]

.

Hence, A⊗E κ(p) = κ(p)[2], where κ(p) = Ep
pEp

.

Therefore, by the above two cases, we obtain that A is an A2-fibration over

E.

The following lemma may be known but in the absence of a ready reference,

we give below a proof.

Lemma 3.1.15. Let E = k[x1, . . . , xm], u = x1 · · ·xm and R = E
uE . Then

G0(R) ̸= 0.

Proof. By Lemma 2.2.1 the inclusion E ↪→ E[u−1] induces the exact sequence:

G1(E) G1(E[u−1]) G0(R) G0(E) G0(E[u−1]) 0.h

(3.1.9)

By Remark 2.2.4 and repeated application of Lemma 2.2.3, we see that the

map

G1(E) ∼= k∗ G1(E[u−1]) ∼= k∗ ⊕ Zm

is a split inclusion and hence can not be surjective. Therefore, G0(R) ̸= 0 by

(3.1.9).

3.2 Main theorems

We now prove an extended version of Theorem A1 with 11 equivalent state-

ments.

Theorem 3.2.1. Let F (X1, . . . , Xm, Z, T ) = f(Z, T )+(X1 · · ·Xm)g, for some

g ∈ k[X1, . . . , Xm, Z, T ]. Then the following statements are equivalent:

(i) k[X1, . . . , Xm, Y, Z, T ] = k[X1, . . . , Xm, G]
[2].

(ii) k[X1, . . . , Xm, Y, Z, T ] = k[G][m+2].

(iii) A = k[x1, . . . , xm]
[2].

(iv) A = k[m+2].

(v) k[Z, T ] = k[f(Z, T )][1].



27 3.2 Main theorems

(vi) A[l] = k[l+m+2] for some l ⩾ 0 and k[x1, . . . , xm, z, t] ⫋ DK(A).

(vii) A is an A2-fibration over k[x1, . . . , xm] and k[x1, . . . , xm, z, t] ⫋ DK(A).

(viii) f(Z, T ) is a line in k[Z, T ] and k[x1, . . . , xm, z, t] ⫋ DK(A).

(ix) f(Z, T ) is a line in k[Z, T ] and ML(A) = k.

(x) A[l] = k[l+m+2] for l ⩾ 0 and ML(A) = k.

(xi) A is an A2-fibration over k[x1, . . . , xm] and ML(A) = k.

Proof. Note that (i) ⇒ (ii) ⇒ (iv) ⇒ (vi), (i) ⇒ (iii) ⇒ (iv), (iii) ⇒ (vii),

(iii) ⇒ (x) and (iii) ⇒ (xi) follow trivially.

(vi) ⇒ (v) : We first assume that k is algebraically closed. Since

k[x1, . . . , xm, z, t] ⫋ DK(A), by Proposition 3.1.5, we may assume that

f(Z, T ) = a0(Z) + a1(Z)T.

Suppose a1(Z) = 0, i.e., f(Z, T ) = a0(Z). As A is a UFD, by Proposi-

tion 3.1.12, we obtain that a0(Z) is irreducible in k[Z, T ] or a0(Z) ∈ k∗. If

a0(Z) ∈ k∗, then for every i, 1 ⩽ i ⩽ m, xi ∈ A∗. This contradicts the

fact that A∗ = (A[l])∗ = (k[m+l+2])∗ = k∗. Therefore, a0(Z) is irreducible in

k[Z, T ] and hence a linear polynomial as k is algebraically closed. Thus f is a

coordinate of k[Z, T ].

Now suppose a1(Z) ̸= 0. We show that a1(Z) ∈ k∗. Note that

gcd(a0(Z), a1(Z)) = 1 in k[Z], as f(Z, T ) is irreducible in k[Z, T ].

Consider the inclusions k E A A[l]α β γ
. Since E = k[m]

and A[l] = k[m+l+2], by Lemma 2.2.3(a), the inclusions α, γ and γβα induce

isomorphisms

Gi(k) Gi(E),
Gi(α)

∼= Gi(A) Gi(A
[l])

Gi(γ)

∼= and Gi(k) Gi(A
[l]),

Gi(γβα)

∼=

respectively. Hence we get that β induces an isomorphism Gi(E) Gi(A),
Gi(β)

∼=

for every i ⩾ 0. Let u = x1 · · ·xm ∈ E. Note that A[u−1] = E[u−1, z, t].

Therefore, by Lemma 2.2.3(a), the inclusion E[u−1] ↪→ A[u−1] induces isomor-

phisms Gi(E[u−1])
∼=−→ Gi(A[u

−1]) for i ⩾ 0. By Lemma 3.1.13, the inclusion

map β : E A is a flat map. Therefore, by Lemma 2.2.2, β : E ↪→ A
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induces the following commutative diagram for i ⩾ 1:

Gi(E) Gi(E[u−1]) Gi−1(
E
uE ) Gi−1(E) Gi−1(E[u−1])

Gi(A) Gi(A[u
−1]) Gi−1(

A
uA) Gi−1(A) Gi−1(A[u

−1]).

Gi(β) ∼= ∼= ∼= ∼=

From the above diagram, applying the Five Lemma we obtain that the map

E
uE

A
uA ,

β
induced by E A

β
, induces isomorphism of groups

Gi(
E
uE ) Gi(

A
uA),

∼=
Gi(β)

(3.2.1)

for every i ⩾ 0. Let R = E
uE . Now using the structure of f(Z, T ) we get an

isomorphism as follows

A
uA R

[
Y,Z, 1

a1(Z)

]∼=
η .

Further, note that β factors through the following maps

β : R
γ1−→ R[Z]

γ2−→ R

[
Z,

1

a1(Z)

]
γ3−→ R

[
Y,Z,

1

a1(Z)

]
η−1

−−→ A/uA.

Since β, γ1, γ3, η
−1 induce isomorphisms of Gi-groups for i ⩾ 0, we obtain that

γ2 induces an isomorphisms of groups

Gi(R[Z]) Gi

(
R
[
Z, 1

a1(Z)

])
,

∼=
Gi(γ2)

(3.2.2)

for every i ⩾ 0. Since k is algebraically closed, if a1(Z) /∈ k∗, then we have

a1(Z) = λ
∏n
i=1(Z − λi)

mi where λ ∈ k∗, λi ∈ k, mi ⩾ 1 and λi ̸= λj for i ̸= j.

Now we have

R

[
Z,

1

a1(Z)

]
= R

[
Z,

1

Z − λ1
, . . . ,

1

Z − λn

]
.

Let Ri = R
[
Z, 1

Z−λ1 , . . . ,
1

Z−λi

]
, for i ⩾ 1 and R0 = R[Z]. For every i ⩾ 1,

we have the map R[Z] ↪→ Ri−1 is flat. Therefore, applying Lemma 2.2.2, we
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get the following commutative diagram for j ⩾ 1:

Gj

(
R[Z]

(Z−λi)

)
Gj(R[Z]) Gj

(
R
[
Z, 1

Z−λi

])
Gj−1

(
R[Z]

(Z−λi)

)
· · ·

Gj

(
Ri−1

Z−λi

)
Gj(Ri−1) Gj

(
Ri−1

[
1

Z−λi

])
Gj−1

(
Ri−1

Z−λi

)
· · ·

µj µj−1

(3.2.3)

Now by Lemma 2.2.3(b) we get the following split exact sequence for each

j ⩾ 1:

0 Gj(R[Z]) Gj

(
R
[
Z, 1

Z−λi

])
Gj−1

(
R[Z]

(Z−λi)

)
0.

Since the inclusionR[Z] ↪→ Ri−1 induces isomorphism of the rings R[Z]
(Z−λi)

∼=−→ Ri−1

(Z−λi) ,

for every i, 1 ⩽ i ⩽ n, the maps µj−1’s are isomorphisms for every j ⩾ 1. Hence

from (3.2.3), the following exact sequence is also split exact:

0 Gj(Ri−1) Gj

(
Ri−1

[
1

Z−λi

])
Gj−1

(
Ri−1

Z−λi

)
0

Thus the inclusion Ri−1 ↪→ Ri = Ri−1[
1

Z−λi ] will induce a group isomorphism

Gj(Ri) ∼= Gj(Ri−1)⊕Gj−1(R)

for every j ⩾ 1 and i, 1 ⩽ i ⩽ n. In particular, for j = 1, inductively we get

that the inclusion R[Z] Rn = R
[
Z, 1

a1(Z)

]
γ2

induces the isomorphism

G1

(
R

[
Z,

1

a1(Z)

])
∼= G1(R[Z])⊕ (G0(R))

n . (3.2.4)

As G0(R) ̸= 0 by Lemma 3.1.15, (3.2.4) contardicts (3.2.2) if n > 0 i.e., if

a1(Z) /∈ k∗. Therefore, we have a1(Z) ∈ k∗. Hence we obtain that k[Z, T ] =

k[f ][1].

When k is not algebraically closed, consider the ring A = A⊗k k, where k

is an algebraic closure of k. Note that A
[l]
= k

[m+l+2]
and k[x1, . . . , xm, z, t] ⫋

DK(A). Hence by the above argument, we have k[Z, T ] = k[f ][1].

Case 1: If k is a finite field, then by Lemma 2.1.8, k[Z, T ] = k[f ][1].

Case 2: Let k be an infinite field. Then by Proposition 3.1.5 we can assume
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that f(Z, T ) = a0(Z)+a1(Z)T in k[Z, T ]. As f is a coordinate in k[Z, T ], this

is possible only if either a1(Z) = 0 and a0(Z) is linear in Z or if a1(Z) ∈ k
∗
.

Hence in either case

k[Z, T ] = k[f ][1].

(v) ⇒ (i) : Let h ∈ k[Z, T ] such that k[Z, T ] = k[f, h]. Therefore, without loss

of generality we can assume that f = Z and h = T . HenceG = Xr1
1 · · ·Xrm

m Y−
X1 · · ·Xmg − Z, for some g ∈ k[X1, . . . , Xm, Z, T ]. Now by Lemma 3.1.1, we

get that

k[X1, . . . , Xm, Y, Z, T ] = k[X1, . . . , Xm, G, T ]
[1] = k[X1, . . . , Xm, G]

[2].

Therefore the equivalence of the first six statements are established.

By Proposition 3.1.7, (viii) ⇒ (v). By Proposition 3.1.14, (vii) ⇔ (viii)

and (ix) ⇔ (xi). Therefore, (viii) ⇒ (v) ⇔ (iii) ⇒ (vii) ⇔ (viii).

By Lemma 3.1.4 and Proposition 3.1.8(b), (x) ⇒ (vi), (xi) ⇒ (vii). We

now see that the following hold:

(ix) ⇔ (xi) ⇒ (vii) ⇔ (iii) ⇒ (xi).

(x) ⇒ (vi) ⇔ (iii) ⇒ (x).

Hence equivalence of all the statements are established.

The following example shows that the answer to Question 2 (as in Intro-

duction) is not affirmative in general, i.e., without the hypothesis that F is of

the form as in Theorem 3.2.1, the condition k[Z, T ] = k[f ][1] is not sufficient

for A to be k[m+2], for m ⩾ 2. In particular, it is not sufficient to ensure

k[X1, . . . , Xm, Y, Z, T ] = k[X1, . . . , Xm, G]
[2].

Example 3.2.2. Let

A =
k[X1, X2, Y, Z, T ]

(X2
1X

2
2Y − F )

,

where F (X1, X2, Z, T ) = X1Z + X2 + Z. Note that here f(Z, T ) =

F (0, 0, Z, T ) = Z is a coordinate of k[Z, T ]. Also it is easy to see that A

is regular. But as F (X1, 0, Z, T ) = X1Z + Z is neither irreducible nor a unit,

by Proposition 3.1.12, A is not even a UFD. Therefore, A ̸= k[4].

We shall now prove (Theorem 3.2.6) three additional statements which are

equivalent to each of the eleven statements in Theorem 3.2.1. We start with

two technical lemmas which will be used in the proof of Theorem 3.2.6. The
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aim of these lemmas is to show that if DK(A) = A, then we can construct

another affine domain Al of similar structure to A, such that DK(Al) = Al

and dim(Al) < dim(A).

Lemma 3.2.3. Suppose there exists an exponential map ϕ on A such that

Aϕ ⊈ k[x1, . . . , xm, z, t]. Then there exists an integral domain

Â ∼=
k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − h(Z, T ))

and a non-trivial exponential map ϕ̂ on Â, induced by ϕ, such that ŷ ∈ Âϕ̂,

where ŷ denote the image of Y in Â. Moreover, if x1, . . . , xm ∈ Aϕ, then

x̂1, . . . , x̂m ∈ Âϕ̂, where x̂1, . . . , x̂m denote the images of X1, . . . , Xm in Â.

Proof. Since Aϕ ⊈ k[x1, . . . , xm, z, t], there exists g ∈ Aϕ and g has a monomial

summand of the form gι = xi11 · · ·ximm yjzptq where ι = (i1, . . . , im) ∈ Zm⩾0,

j ⩾ 1, p ⩾ 0, q ⩾ 0 and there exists some is such that is < rs. Without loss of

generality, we assume that is = i1.

We now consider the proper Z-filtration onA with respect to (−1, 0, . . . , 0) ∈
Zm. Let Ã be the associated graded ring and F̃ (x1, . . . , xm, z, t) denote

the highest degree homogeneous summand of F (x1, . . . , xm, z, t). Then

F̃ (x1, . . . , xm, z, t) = F (0, x2, . . . , xm, z, t). Since f(z, t) ̸= 0, we have xi ∤ F̃ ,
for every 1 ⩽ i ⩽ m. Therefore, by Lemma 3.1.3, we have

Ã ∼=
k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − F̃ )
.

For every h ∈ A, let h̃ denote its image in Ã. By Theorem 2.1.4, ϕ will induce

a non-trivial homogeneous exponential map ϕ̃ on Ã such that g̃ ∈ Ãϕ̃. From

the chosen filtration on A, it is clear that ỹ | g̃ and hence ỹ ∈ Ãϕ̃.

We now consider the Z-filtration on Ã with respect to (−1, . . . ,−1) ∈ Zm.
By Theorem 2.1.4, we have a homogeneous non-trivial exponential map ϕ̂ on

the associated graded ring Â induced by ϕ̃. By Lemma 3.1.3,

Â ∼=
k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − f(Z, T ))
,

since f(Z, T ) = F̃ (0, . . . , 0, Z, T ) is the highest degree homogeneous summand

of F̃ . For every a ∈ Ã, let â denote its image in Â. Since ỹ ∈ Ãϕ̃, we have

ŷ ∈ Âϕ̂. The weights of x̂1, . . . , x̂m, ŷ, ẑ, t̂ are clear from the chosen filtration

on Ã.
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Lemma 3.2.4. Suppose m > 1 and k[x1, . . . , xm, z, t] ⫋ DK(A). Then there

exists an integer l ∈ {1, . . . ,m} and an integral domain Al such that

Al ∼=
k(Xl)[X1, . . . , Xl−1, Xl+1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − f(Z, T ))
,

where the image y′ of Y in Al belongs to DK(Al). In particular, DK(Al) = Al.

Proof. By Lemma 3.2.3, there exists an integral domain

Â ∼=
k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − f(Z, T ))
,

and a non-trivial homogeneous exponential map ϕ̂ on Â such that for every

i ∈ {1, . . . ,m}, wt(x̂i) = −1, wt(ẑ) = wt(t̂) = 0, wt(ŷ) = r1 + · · · + rm

and ŷ ∈ Âϕ̂, where x̂1, . . . , x̂m, ŷ, ẑ, t̂ denote the images of X1, . . . , Xm, Y, Z, T

respectively in Â.

Since m > 1, tr.degk(Â
ϕ̂) ⩾ 3. Hence if Âϕ̂ ⊆ k[ŷ, ẑ, t̂], then Âϕ̂ =

k[ŷ, ẑ, t̂]. But then x̂r11 · · · x̂rmm ŷ = f(ẑ, t̂) ∈ Âϕ̂, that means ϕ̂ is trivial, as Âϕ̂

is factorially closed (cf. Lemma 2.1.1(i)). This is a contradiction. Therefore,

there exists h1 ∈ Âϕ̂ \ k[ŷ, ẑ, t̂], which is homogeneous with respect to the

grading on Â. Let

h1 = h′(x̂1, . . . , x̂m, ẑ, t̂) +
∑

ι=(i1,...,im)∈Zm
⩾0, j>0 p,q⩾0

λι jpq x̂1
i1 · · · x̂mim ŷj ẑpt̂q

such that λι jpq ∈ k and for every j > 0 and ι = (i1, . . . , im) ∈ Zm⩾0, there exists

sj ∈ {1, . . . ,m} such that isj < rsj . Now we have the following two cases:

Case 1: If h′ /∈ k[ẑ, t̂], then it has a monomial summand h2 such that x̂l |h2,
for some l, 1 ⩽ l ⩽ m.

Case 2: If h′ ∈ k[ẑ, t̂], then each of the monomial summands of the form

λι jpqx̂1
i1 · · · x̂mim ŷj ẑpt̂q of h1 has degree zero. That means, j(r1+ · · ·+ rm) =

i1 + · · · + im. Therefore, for every j > 0 and ι ∈ Zm⩾0, there exists lj ∈
{1, . . . ,m}, lj ̸= sj such that ilj > jrlj , as isj < rsj . We choose one of these

lj ’s and call it l.

We consider the Z-filtration on Â with respect to (0, . . . , 0, 1, 0, . . . , 0) ∈
Zm, where the l-th entry is 1. Let A be the associated graded ring of Â, and
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by Lemma 3.1.3,

A ∼=
k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − f(Z, T ))
.

For every a ∈ Â, let a denote its image in A. By Theorem 2.1.4, ϕ̂ induces

a non-trivial exponential map ϕ on the associated graded ring A such that

h1 ∈ A
ϕ
. From cases 1 and 2, it is clear that h1 is divisible by xl. Hence we

get that xl ∈ A
ϕ
. Therefore, by Lemma 2.1.1(iii), ϕ will induce a non-trivial

exponential map ϕl on Al = A⊗k[xl] k(xl), where

Al ∼=
k(Xl)[X1, . . . , Xl−1, Xl+1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − f(Z, T ))
.

Since Aϕll = A
ϕ ⊗k[xl] k(xl) and y ∈ A

ϕ
, the image y′ of Y in Al is in Aϕll .

Therefore, by Lemma 3.1.4, we get that DK(Al) = Al.

The following lemma is an important step to prove (vi) ⇒ (v) of Theo-

rem 3.2.6.

Lemma 3.2.5. Let F (X1, . . . , Xm, Z, T ) = f(Z, T ) + (X1 · · ·Xm)g, for some

g ∈ k[X1, . . . , Xm, Z, T ]. If A = k[m+2], then there exists an exponential map

ϕ such that k[x1, . . . , xm] ⊆ Aϕ ̸⊆ k[x1, . . . , xm, z, t].

Proof. By Theorem 3.2.1, k[Z, T ] = k[f, f1] = k[f ][1] for some f1 ∈ k[Z, T ].

Now for G = Xr1
1 · · ·Xrm

m Y − F , by Lemma 3.1.1 we have

k[X1, . . . , Xm, Y, Z, T ] = k[X1, . . . , Xm, Y, f, f1] = k[X1, . . . , Xm, G, f1, f2]

for some f2 ∈ k[X1, . . . , Xm, Y, Z, T ]. Hence A = k[x1, . . . , xm, f1(z, t), f2] =

k[x1, . . . , xm]
[2] where f2 denote the image of f2 inA. Since k[x1, . . . , xm, z, t] ⊊

A it follows that f2 ∈ A \ k[x1, . . . , xm, z, t]. We now consider the exponential

map ϕ : A→ A[W ] such that

ϕ(xi) = xi, for every i, 1 ⩽ i ⩽ m, ϕ(f1) = f1 +W, ϕ(f2) = f2.

Therefore, Aϕ = k[x1, . . . , xm, f2] and hence the assertion follows.

We now add three more equivalent statements to Theorem 3.2.1.

Theorem 3.2.6. Let A be the affine domain as in (3.1.1) and F (X1, . . . , Xm, Z, T ) =

f(Z, T )+ (X1 · · ·Xm)g, for some g ∈ k[X1, . . . , Xm, Z, T ]. Then the following

statements are equivalent.
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(i) A is a UFD, k[x1, . . . , xm, z, t] ⫋ DK(A) and
(

A
xiA

)∗
= k∗, for every

i ∈ {1, . . . ,m}.

(ii) k[Z, T ] = k[f ][1].

(iii) A = k[x1, . . . , xm]
[2].

(iv) A is a UFD, ML(A) = k and
(

A
xiA

)∗
= k∗ for every i ∈ {1, . . . ,m}.

(v) A is geometrically factorial over k and there exists an exponential map

ϕ on A satisfying k[x1, . . . , xm] ⊆ Aϕ ̸⊆ k[x1, . . . , xm, z, t].

(vi) A = k[m+2].

Proof. (ii) ⇔ (iii) ⇔ (vi) follows from Theorem 3.2.1. (iii) ⇒ (iv) holds

trivially and (iv) ⇒ (i) follows by Proposition 3.1.8(b). Therefore, it is enough

to show (i) ⇒ (ii) and (v) ⇔ (vi).

(i) ⇒ (ii) : We prove this by induction on m. We consider the case for m = 1.

Since k[x1, z, t] ⫋ DK(A), by Remark 3.1.6, without loss of generality we can

assume that f(Z, T ) = a0(Z) + a1(Z)T for some a0, a1 ∈ k[1]. Since A is a

UFD, either f(Z, T ) is irreducible or f(Z, T ) ∈ k∗ (cf. Proposition 3.1.12). If

f(Z, T ) ∈ k∗, then x1 ∈ A∗, which contradicts that
(

A
x1A

)∗
= k∗. Therefore,

f(Z, T ) is irreducible in k[Z, T ]. Note that A
x1A

∼= k[Y,Z,T ]
(f(Z,T )) . If a1(Z) = 0, then

f(Z, T ) = a0(Z). Since
(

A
x1A

)∗
=
(
k[Y,Z,T ]
(a0(Z))

)∗
= k∗, a0(Z) must be linear in

Z. Hence k[Z, T ] = k[f ][1]. If a1(Z) ̸= 0, then gcd(a0, a1) = 1, as f(Z, T ) is

irreducible. Therefore, since k∗ =
(

A
x1A

)∗
=
(
k[Y,Z,T ]
(f(Z,T ))

)∗
=
(
k
[
Y,Z, 1

a1(Z)

])∗
,

a1(Z) ∈ k∗. Thus, k[Z, T ] = k[f ][1].

We now assume m > 1 and the result holds upto m − 1. Since

k[x1, . . . , xm, z, t] ⫋ DK(A), by Lemma 3.2.4, there exists an integral domain

Al ∼=
k(Xl)[X1, . . . , Xl−1, Xl+1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − f(Z, T ))
,

such that DK(Al) = Al. Note that for every i ∈ {1, . . . ,m}, A
xiA

∼=
k[X1,...,Xi−1,Xi+1,...,Xm,Y,Z,T ]

(f(Z,T )) . Now for every i ̸= l,

A

xiA
⊗k[xl]k(xl)

∼=
k(Xl)[X1, . . . , Xi−1, Xi+1, . . . , Xl−1, Xl+1, . . . , Xm, Y, Z, T ]

(f(Z, T ))
∼=

Al
xiAl

,
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where xi denotes the image of Xi in Al. Since
(

A
xiA

)∗
= k∗, it follows that(

Al
xiAl

)∗ ∼= k(Xl)
∗. Since A is a UFD and xi’s are not unit in A, by Propo-

sition 3.1.12, f(Z, T ) is irreducible in k[Z, T ]. As DK(Al) = Al, by Proposi-

tion 3.1.5, there exist a0, a1 ∈ k(Xl)
[1] such that f(Z, T ) = a0(Z1)+ a1(Z1)T1,

for some Z1, T1 ∈ k(Xl)[Z, T ] such that k(Xl)[Z, T ] = k(Xl)[Z1, T1].

We fix some i, i ̸= l. Suppose a1(Z1) = 0. Since
(

Al
xiAl

)∗ ∼=(
k(Xl)[Z1,T1]
(a0(Z1))

)∗ ∼= k(Xl)
∗, and a0(Z1) is irreducible in k(Xl)[Z1], it follows

that a0(Z1) is linear in Z1. Therefore, f(Z, T ) = a0(Z1) is a coordinate in

k(Xl)[Z, T ].

Suppose a1(Z1) ̸= 0. Since f(Z, T ) is irreducible in k(Xl)[Z1, T1], it follows

that gcd(a0(Z1), a1(Z1)) = 1 and hence

Al
xiAl

∼=
k(Xl)[Z1, T1]

(a0(Z1) + a1(Z1)T1)
∼= k(Xl)

[
Z1,

1

a1(Z1)

]
.

Therefore, a1(Z1) ∈
(

Al
xiAl

)∗ ∼= k(Xl)
∗.

Hence we have k(Xl)[Z, T ] = k(Xl)[f ]
[1]. Therefore, by Lemma 2.1.8, we

have k[Z, T ] = k[f ][1].

(v) ⇒ (vi) : By Lemma 3.2.3, ϕ induces a non-trivial exponential map ϕ̂ on

Â ∼=
k[X1, . . . , . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − f(Z, T ))
,

such that x̂1, . . . , x̂m, ŷ ∈ Âϕ̂, where x̂1, . . . , x̂m, ŷ denote the images of

X1, . . . , Xm, Y in Â, respectively. We now show that k[Z, T ] = k[f ][1].

Case 1: Let k be an infinite field. Since ŷ ∈ Âϕ̂, by Lemma 3.1.4 it follows

that DK(Â) = Â. Hence by Proposition 3.1.5, we can assume that

f(Z, T ) = a0(Z) + a1(Z)T

for some a0, a1 ∈ k[1]. Let k be an algebraic closure of the field k. As A is

geometrically factorial f(Z, T ) is irreducible in k[Z, T ] (cf. Proposition 3.1.12).

If a1(Z) = 0, then a0(Z)(= f(Z, T )) is irreducible in k[Z, T ], hence it is

linear in Z. Thus k[Z, T ] = k[f ][1].

If a1(Z) ̸= 0, then gcd(a0(Z), a1(Z)) = 1. Now ϕ̂ induces a non-trivial
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exponential map on

Ã = Â⊗k[x̂1,...,x̂m,ŷ]k(x̂1, . . . , x̂m, ŷ)
∼=

L[Z, T ]

(µ− f(Z, T ))
=

L[Z, T ]

(µ− a0(Z)− a1(Z)T )
,

where L = k(X1, . . . , Xm, Y ), µ ∈ L \ k, and hence gcd(µ− a0, a1) = 1 in L[1].

Since Ã is not rigid, a1 ∈ k∗, and hence k[Z, T ] = k[f ][1].

Case 2: Let k be a finite field. Now ϕ̂ induces a non-trivial exponential map

ϕ on

A := Â⊗k k ∼=
k[X1, . . . , . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − f(Z, T ))
,

such that x1, . . . , xm, y ∈ A
ϕ
, where x1, . . . , xm, y denote the images of

X1, . . . , Xm, Y in A, respectively. By Case 1, we have k[Z, T ] = k[f ][1], and

hence by Lemma 2.1.8, k[Z, T ] = k[f ][1].

Now from Theorem 2.1.7, it follows that A = k[m+2].

(vi) ⇒ (v) : Since A = k[m+2], it is geometrically factorial over k and the rest

follows from Lemma 3.2.5.

Remark 3.2.7. The above result shows that the condition “A is geometrically

factorial” (i.e., A ⊗k k is a UFD where k is an algebraic closure of k) in [22,

Theorem 3.11(viii)] can be relaxed to “A is a UFD”.

Remark 3.2.8. Note that the proof shows that the condition “A is geomet-

rically factorial over k” may be replaced by a more specific condition that

“A⊗k k is a UFD” where k is an algebraic closure of k. However, the follow-

ing example shows that in statement (v) of Theorem 3.2.6, the condition “A

is geometrically factorial” can not be relaxed to “A is a UFD”.

Example 3.2.9. Let

A =
R[X1, X2, Y, Z, T ]

(X2
1X

2
2Y − 1− Z2)

,

where x1, x2, y, z, t denote the images of X1, X2, Y, Z, T respectively in A. Note

that A = C[t] = C [1], where C = R[X1,X2,Y,Z]
(X2

1X
2
2Y−1−Z2)

.

We consider the exponential map ϕ : A→ A[W ], such that ϕ|C = idC and

ϕ(t) = t +W . Then it follows that Aϕ = C. Therefore, R[x1, x2] ⊆ Aϕ ⊈
R[x1, x2, z, t], as y ∈ Aϕ.

Now note that here F = f = 1+Z2, which is an irreducible polynomial in

R[Z, T ] but not irreducible C[Z, T ]. Hence by Proposition 3.1.12, A is a UFD

but A⊗R C is not a UFD. Therefore, A ̸= R[4].
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We now generalise Theorem A1 over a larger class of integral domains.

The m = 1 case of the following theorem has been proved in [15, Theorem

4.9].

Theorem 3.2.10. Let R be a Noetherian integral domain such that either Q
is contained in R or R is seminormal. Let

AR :=
R [X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − F (X1, . . . , Xm, Z, T ))
, ri > 1 for all i, 1 ⩽ i ⩽ m,

where F (X1, . . . , Xm, Z, T ) = f(Z, T ) + (X1 · · ·Xm)g(X1, . . . , Xm, Z, T ) and

f(Z, T ) ̸= 0. Let G = Xr1
1 · · ·Xrm

m Y − F (X1, . . . , Xm, Z, T ) and x̃1, . . . , x̃m

denote the images in AR of X1, . . . , Xm respectively. Then the following state-

ments are equivalent:

(i) R[X1, . . . , Xm, Y, Z, T ] = R[X1, . . . , Xm, G]
[2].

(ii) R[X1, . . . , Xm, Y, Z, T ] = R[G][m+2].

(iii) AR = R[x̃1, . . . , x̃m]
[2].

(iv) AR = R[m+2].

(v) R[Z, T ] = R[f(Z, T )][1].

Proof. Note that (i) ⇒ (ii) ⇒ (iv) and (i) ⇒ (iii) ⇒ (iv) follow trivially.

Therefore it is enough to show (iv) ⇒ (v) and (v) ⇒ (i).

(iv) ⇒ (v) : Let p ∈ SpecR and κ(p) =
Rp

pRp
. Now A ⊗R κ(p) = κ(p)[m+2].

Now from (iv) ⇒ (v) of Theorem 3.2.1, we have f is a residual coordinate in

R[Z, T ]. Hence R[Z, T ] = R[f ][1] by Theorem 2.1.9.

(v) ⇒ (i) : Let h ∈ R[Z, T ] be such that R[Z, T ] = R[f, h]. Therefore,

without loss of generality we can assume that f = Z and h = T . Hence

G = Xr1
1 · · ·Xrm

m Y −X1 · · ·Xmg − Z, for some g ∈ R[X1, . . . , Xm, Z, T ]. Now

by Lemma 3.1.1, we get that

R[X1, . . . , Xm, Y, Z, T ] = R[X1, . . . , Xm, G, T ]
[1] = R[X1, . . . , Xm, G]

[2].
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Chapter 4

An infinite family of higher

dimensional counterexamples

to ZCP

In this chapter we will first describe the isomorphism classes and automor-

phisms of Generalised Asanuma varieties and use the classification to exhibit

an infinite family of counterexamples to ZCP in positive characteristic. These

results can be found in [19].

4.1 Isomorphism classes and Automorphisms

We first recall the structure of the coordinate rings of these varieties.

A :=
k [X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − F (X1, . . . , Xm, Z, T ))
, ri > 1 for all i, 1 ⩽ i ⩽ m,

(4.1.1)

where F (0, . . . , 0, Z, T ) ̸= 0. Set f(Z, T ) := F (0, . . . , 0, Z, T ). Let x1, . . . , xm, y, z, t

denote the images in A of X1, . . . , Xm, Y, Z, T respectively. The following re-

sult describes some necessary conditions for two such rings to be isomorphic

when DK(A) = k[x1, . . . , xm, z, t].

Theorem 4.1.1. Let (r1, . . . , rm), (s1, . . . , sm) ∈ Zm>1, and F,G ∈ k[X1, . . . , Xm, Z, T ],

where f(Z, T ) := F (0, . . . , 0, Z, T ) /∈ k and g(Z, T ) := G(0, . . . , 0, Z, T ) /∈ k.

Suppose ϕ : A→ A′ is an isomorphism, where

A = A(r1, . . . , rm, F ) :=
k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − F (X1, . . . , Xm, Z, T ))

39
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and

A′ = A(s1, . . . , sm, G) :=
k[X1, . . . , Xm, Y, Z, T ]

(Xs1
1 · · ·Xsm

m Y −G(X1, . . . , Xm, Z, T ))
.

Let x1, . . . , xm, y, z, t and x
′
1, . . . , x

′
m, y

′, z′, t′ denote the images of X1, . . . , Xm, Y, Z, T

in A and A′ respectively. Let E = k[x1, . . . , xm] and E
′ = k[x′1, . . . , x

′
m]. Sup-

pose B := DK(A) = k[x1, . . . , xm, z, t] and B
′ := DK(A′) = k[x′1, . . . , x

′
m, z

′, t′].

Then

(i) ϕ restricts to isomorphisms from B to B′ and from E to E′.

(ii) For each i, 1 ⩽ i ⩽ m, there exists j, 1 ⩽ j ⩽ m, such that ϕ(xi) = λjx
′
j

for some λj ∈ k∗ and ri = sj. In particular, (r1, . . . , rm) = (s1, . . . , sm)

upto a permutation of {1, . . . ,m}.

(iii) ϕ (xr11 · · ·xrmm , F (x1, . . . , xm, z, t)) = ((x′1)
s1 · · · (x′m)sm , G(x′1, . . . , x′m, z′, t′))

(iv) There exists α ∈ Autk(k[Z, T ]) such that α(g) = λf for some λ ∈ k∗.

Proof. (i) Since ϕ : A → A′ is an isomorphism, ϕ restricts to an isomorphism

of the Derksen invariant and the Makar-Limanov invariant. Therefore, ϕ(B) =

B′. By Proposition 3.1.8(b), ML(A) = E and ML(A′) = E′. Hence ϕ(E) = E′.

We now identify ϕ(A) with A and assume that A′ = A, ϕ is identity on A,

B′ = B and E′ = E.

(ii) We first show that for every i, 1 ⩽ i ⩽ m, xi = λjx
′
j , for some j, 1 ⩽ j ⩽ m

and λj ∈ k∗. We now have

y′ =
G(x′1, . . . , x

′
m, z

′, t′)

(x′1)
s1 · · · (x′m)sm

∈ A \B.

Since A ↪→ k[x±1
1 , . . . , x±1

m , z, t], there exists n > 0 such that

(x1 · · ·xm)ny′ =
(x1 · · ·xm)nG(x′1, . . . , x′m, z′, t′)

(x′1)
s1 · · · (x′m)sm

∈ B.

Since for every j ∈ {1, . . . ,m}, x′j is irreducible in B, and x′j ∤ G in B, we have

x′j | (x1 · · ·xm)n. Since x1, x2, . . . , xm are also irreducibles in B, we have

xi = λjx
′
j , (4.1.2)

for some i ∈ {1, . . . ,m} and λj ∈ k∗.
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We now show that ri = sj . Suppose ri > sj . Consider the ideal

ai := xrii A ∩B = (xrii , F (x1, . . . , xm, z, t))B.

Again by (4.1.2),

ai = (x′j)
riA∩B = (x′j)

riA′∩B′ =
(
(x′j)

ri , (x′j)
ri−sjG(x′1, . . . , x

′
m, z

′, t′)
)
B′ ⊆ x′jB

′,

which implies that F (x1, . . . , xm, z, t) ∈ x′jB
′ = x′jB. But this is a contra-

diction. Therefore, ri ⩽ sj . By similar arguments, we have sj ⩽ ri. Hence

ri = sj and as i ∈ {1, . . . ,m} is arbitrary, the assertion follows.

(iii) We now show that

(xr11 · · ·xrmm , F (x1, . . . , xm, z, t))B =
(
(x′1)

s1 · · · (x′m)sm , G(x′1, . . . , x′m, z′, t′)
)
B.

From (ii), it is clear that xr11 · · ·xrmm = µ(x′1)
s1 · · · (x′m)sm , for some µ ∈ k∗.

Since

(xr11 · · ·xrmm )A ∩B = (xr11 · · ·xrmm , F (x1, . . . , xm, z, t))B

and

(
(x′1)

s1 · · · (x′m)sm
)
A ∩B =

(
(x′1)

s1 · · · (x′m)sm , G(x′1, . . . , x′m, z′, t′)
)
B,

the result follows.

(iv) Since (xr11 · · ·xrmm , F (x1, . . . , xm, z, t))B = ((x′1)
s1 · · · (x′m)sm , G(x′1, . . . , x′m, z′, t′))B,

from (4.1.2), it follows that

g(z′, t′) = λf(z, t) +H(x1, . . . , xm, z, t), (4.1.3)

for some λ ∈ k∗ and H ∈ (x1, . . . , xm)B. Let z′ = h1(x1, . . . , xm, z, t) and t
′ =

h2(x1, . . . , xm, z, t). Then we have k[z, t] = k[h1(0, . . . , 0, z, t), h2(0, . . . , 0, z, t)].

Hence α : k[Z, T ] → k[Z, T ] defined by α(Z) = h1(0, . . . , 0, Z, T ) and

α(T ) = h2(0, . . . , 0, Z, T ) gives an automorphism of k[Z, T ], and from (4.1.3),

it follows that α(g) = λf .

The next result characterises the automorphisms of A when DK(A) = B =

k[x1, . . . , xm, z, t].
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Theorem 4.1.2. Let A be the affine domain as in (4.1.1), where

F (X1, . . . , Xm, Z, T ) = f(Z, T ) + h(X1, . . . , Xm, Z, T ),

for some h ∈ (X1, . . . , Xm) k[X1, . . . , Xm, Z, T ] and f(Z, T ) /∈ k. As be-

fore, x1, . . . , xm, y, z, t denote the images of X1, . . . , Xm, Y, Z, T in A. Suppose

DK(A) = B = k[x1, . . . , xm, z, t]. If ϕ ∈ Autk(A), then the following hold:

(a) ϕ restricts to an automorphism of E = k[x1, . . . , xm] and B =

k[x1, . . . , xm, z, t].

(b) For each i, 1 ⩽ i ⩽ m, there exists j, 1 ⩽ j ⩽ m such that ϕ(xi) = λjxj

where λj ∈ k∗ (1 ⩽ i, j ⩽ m) and ri = rj.

(c) ϕ(I) = I, where I = (xr11 · · ·xrmm , F (x1, . . . , xm, z, t)) k[x1, . . . , xm, z, t].

Conversely, if ϕ ∈ Endk(A) satisfies the conditions (a) and (c), then (b)

holds and ϕ ∈ Autk(A).

Proof. By Proposition 3.1.8(b), ML(A) = E = k[x1, . . . , xm]. Now the state-

ments (a), (b), (c) follow from Theorem 4.1.1(i), (ii), (iii) respectively.

We now show the converse part. From (a) and (c), it follows that ϕ(B) =

B, ϕ(E) = E and ϕ(I) = I. Hence ϕ(I ∩ E) = I ∩ E = (xr11 · · ·xrmm )E, and

therefore,

ϕ(xr11 · · ·xrmm ) = λxr11 · · ·xrmm ,

for some λ ∈ k∗. Fix i ∈ {1, . . . ,m}. Since xi and ϕ(xi) are irreducibles in E,

ϕ(xi) = λjxj , for some λj ∈ k∗ and j ∈ {1, . . . ,m} and hence ri = rj and (b)

follows.

Since ϕ is an automorphism of B and A ⊆ B[(x1 · · ·xm)−1], ϕ is an injective

endomorphism of A, by (b). Therefore, it is enough to show that ϕ is surjective.

For this, it is enough to find a preimage of y in A. Since ϕ(I) = I, we have

F = xr11 · · ·xrmm u(x1, . . . , xm, z, t) + ϕ(F )v(x1, . . . , xm, z, t), for some u, v ∈ B.

Since y = F (x1,...,xm,z,t)

x
r1
1 ···xrmm

, using (b),

y = u(x1, . . . , xm, z, t) +
ϕ(F )v(x1, . . . , xm, z, t)

λ−1ϕ(xr11 · · ·xrmm )
. (4.1.4)

Since ϕ(B) = B, there exist ũ, ṽ ∈ B such that ϕ(ũ) = u and ϕ(ṽ) = v. And

hence from (4.1.4), we get that y = ϕ(ũ+ λyṽ) where ũ+ λyṽ ∈ A.
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4.2 ZCP in positive characteristic

We consider the following subfamily of the Generalised Asanuma varieties. Let

(r1, . . . , rm) ∈ Zm>1 and f(Z, T ) be a non-trivial line in k[Z, T ]. Let

A(r1, . . . , rm, f) :=
k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − f)
.

The following result determines the isomorphism classes among the family of

rings defined above.

Theorem 4.2.1. Let (r1, . . . , rm), (s1, . . . , sm) ∈ Zm>1, and f, g ∈ k[Z, T ]

be non-trivial lines. Then A(r1, . . . , rm, f) ∼= A(s1, . . . , sm, g) if and only if

(r1, . . . , rm) = (s1, . . . , sm) upto a permutation of {1, . . . ,m} and there exists

α ∈ Autk(k[Z, T ]) such that α(g) = µf , for some µ ∈ k∗.

Proof. Suppose A(r1, . . . , rm, f) ∼= A(s1, . . . , sm, g) and let x1, . . . , xm, y, z, t

and

x′1, . . . , x
′
m, y

′, z′, t′ denote the images ofX1, . . . , Xm, Y, Z, T in A(r1, . . . , rm, f)

and

A(s1, . . . , sm, g) respectively. As f(Z, T ), g(Z, T ) are non-trivial lines in

k[Z, T ], by Lemma 3.1.4 and Proposition 3.1.7, we have DK(A(r1, . . . , rm, f)) =

k[x1, . . . , xm, z, t] and DK(A(s1, . . . , sm, g)) = k[x′1, . . . , x
′
m, z

′, t′]. Hence the

result follows from (ii) and (iv) of Theorem 4.1.1.

The converse is obvious.

We now recall a result from [23], which shows that varieties in a certain

subfamily of generalised Asanuma varieties are stably isomorphic to a polyno-

mial ring.

Theorem 4.2.2. Let k be a field of any characteristic and A an integral

domain as in (4.1.1). Suppose that

k[X1, . . . , Xm, Z, T ]

(X1 · · ·Xm, F (X1, . . . , Xm, Z, T ))
=

(
k[X1, . . . , Xm]

(X1 · · ·Xm)

)[1]

as k[X1, . . . , Xm]-algebras. Then A[1] = k[X1, . . . , Xm]
[3] = k[m+3]. Moreover,

if ch .k > 0 and f(Z, T ) is a non-trivial line in k[Z, T ] then A ̸= k[m+2].

We now show how the results in this chapter yield an infinite family of

pairwise non-isomorphic n dimensional rings which are counterexamples to

ZCP, for each n ⩾ 3.
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Corollary 4.2.3. Let k be a field of positive characteristic. For each n ⩾ 3,

there exists an infinite family of pairwise non-isomorphic rings C of dimension

n, which are counter examples to the Zariski Cancellation Problem in positive

characteristic, i.e., which satisfy that C [1] = k[n+1] but C ̸= k[n].

Proof. Consider the family of rings

Ω := {A(r1, . . . , rm, f) | (r1, . . . , rm) ∈ Zm>1, f(Z, T ) is a non-trivial line in k[Z, T ]}.

By Theorem 4.2.2, for every C ∈ Ω, we have C [1] = k[m+3] but C ̸= k[m+2].

By Theorem 4.2.1, there exist infinitely many rings C ∈ Ω which are pairwise

non-isomorphic. Taking n = m+ 2, we get the result.



Chapter 5

Generalised Danielewski

varieties and invariants of

generalised Asanuma varieties

In this chapter we will prove Theorem B1 (Theorems 5.2.1 and 5.2.3) and apply

it to describe Makar-Limanov and Derksen invariant of a certain subfamily of

Generalised Asanuma varieties. The results discussed in this chapter can be

found in [20].

We begin by proving some preparatory results. Before that we fix some

notation which will be used throughout this chapter. For positive integers

r1, . . . , rm and a polynomial F = F (T1, . . . , Tm, V ) ∈ k[m+1] which is monic in

V with degV F > 1, B(r, F ) will denote the ring

B(r, F ) := B(r1, . . . , rm, F ) =
k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rmm U − F (T1, . . . , Tm, V ))
,

where r := (r1, . . . , rm) ∈ Zm⩾1. Set P (V ) := F (0, . . . , 0, V ) and d := degV P =

degV F (> 1). Further, when F is understood from the context, we will use

the notation Br to denote the above ring B(r, F ), i.e.,

Br := B(r1, . . . , rm, F ) =
k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rmm U − F (T1, . . . , Tm, V ))
. (5.0.1)

We call the varieties defined by these rings as “Generalised Danielewski vari-

eties”. Let t1, . . . , tm, u, v denote respectively the images of T1, . . . , Tm, U, V

in Br and R denote the subring k[t1, . . . , tm, v] of Br.

45
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5.1 Properties of Generalised Danielewski varieties

The aim of this section is to describe the ML(Br). We first note that

R := k[t1, . . . , tm, v](= k[m+1]) ↪→ Br ↪→ Br[t
−1
1 , . . . , t−1

m ] = k[t±1
1 , . . . , t±1

m , v]

and F ∈ R. Fix (e1, . . . , em) ∈ Zm. This m-tuple defines a proper Z-filtration
{Bn}n∈Z on Br as follows:

Set Cn :=
⊕

e1i1+···+emim=n k[v]t
i1
1 . . . t

im
m . Then the ring k[t±1

1 , . . . , t±1
m , v] has

the following Z-graded structure (with wt(ti) = ei, 1 ⩽ i ⩽ m):

k[t±1
1 , . . . , t±1

m , v] =
⊕
n∈Z

Cn =
⊕

n∈Z,e1i1+···+emim=n

k[v]ti11 · · · timm .

For every n ∈ Z, set Bn :=
⊕

i⩽nCn ∩Br.
Then {Bn}n∈Z defines a proper Z-filtration on Br induced by (e1, . . . , em)

and for every j, 1 ⩽ j ⩽ m, tj ∈ Bej \Bej−1.

Let e := deg(F ) with respect to the given filtration. Then u ∈ Bℓ \ Bℓ−1,

where ℓ = e− (r1e1 + · · ·+ rmem). Set

Λ :=

{
(i, j, q) := (i1, . . . , im, j, q) ∈ Zm⩾0×Z>0×Z⩾0 | is < rs for some s, 1 ⩽ s ⩽ m

}
.

Using the relation tr11 · · · trmm u = F (t1, . . . , tm, v), it can be noted that every

element b ∈ Br can be uniquely expressed as

b = b̃(t1, . . . , tm, v) +
∑

(i,j,q)∈Λ

αi jq t
i1
1 · · · timm ujvq, (5.1.1)

where b̃ ∈ R(= k[t1, . . . , tm, v]) and αi jq ∈ k∗.

Now since the filtration {Bn}n∈Z is induced from the graded structure

of the ring Br[t
−1
1 , . . . , t−1

m ], from the expression (5.1.1) it follows that the

filtration {Bn}n∈Z is admissible with respect to the generating set Γ =

{t1, . . . , tm, u, v} of Br and the associated graded ring gr(Br) =
⊕

n∈Z
Bn
Bn−1

is

generated by the image of Γ in gr(Br).

The following lemma exhibits the structure of gr(Br).

Lemma 5.1.1. Let Fe denote the highest degree homogeneous summand of F .
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If, for every i, ti ∤ Fe in R = k[t1, . . . , tm, v], then

gr(Br) ∼=
k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rmm U − Fe(T1, . . . , Tm, V ))
.

Proof. Since deg(F ) = e, tr11 · · · trmm u = F ∈ Be \Be−1 and hence,

t1
r1 · · · tmrmu = Fe(t1, . . . , tm, v) (5.1.2)

in gr(Br), where t1, . . . , tm, u, v denote the images of t1, . . . , tm, u, v in gr(Br).

Since gr(Br) can be identified with a subring of gr(k[t±1
1 , . . . , t±1

m , v]) ∼=
k[t±1

1 , . . . , t±1
m , v], we have t1, . . . , tm, v are algebraically independent in gr(Br)

and hence dim gr(Br) = m+1. As ti ∤ Fe inR for every i, k[T1,...,Tm,U,V ]

(T
r1
1 ···T rm

m U−Fe(T1,...,Tm,V ))

is an integral domain, and its dimension is m+ 1. Hence by (5.1.2), we have

the isomorphism:

gr(Br) ∼=
k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rmm U − Fe(T1, . . . , Tm, V ))
.

In [13], Dubouloz showed that for k = C, ML(Br) = C[t1, . . . , tm], when
r ∈ Zm>1. When k is an algebraically closed field of characteristic zero and

F ∈ k[V ], a similar result appears in [18, Lemma 6.2]. We extend this result

over any field (of any characteristic) and arbitrary F . First we recall the

following lemma ( [22], Lemma 3.5).

Lemma 5.1.2. Let r1 > 1 and q ∈ k[V ] be such that degV q > 1. Then there

is no non-trivial exponential map ϕ on B(r1, q) = k[T1, U, V ]/(T r11 U − q(V ))

such that u ∈ B(r1, q)
ϕ, where u denotes the image of U in B(r1, q).

We now establish a generalisation of the above lemma.

Lemma 5.1.3. Let r ∈ Zm>1, and P (V ) ∈ k[V ] with degV P > 1. Then there

is no non-trivial exponential map ϕ on B(r, P ), such that u ∈ B(r, P )ϕ.

Proof. Let

B := B(r, P ) =
k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rmm U − P (V ))
.

We will prove the result by induction on m. For m = 1, the result holds by

Lemma 5.1.2. Therefore we assume that m ⩾ 2. Suppose the assertion holds

upto m− 1.
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If possible, suppose there exists a non-trivial exponential map ϕ on B

such that u ∈ Bϕ. By Theorem 2.1.4, with respect to the filtration induced

by (−1, . . . ,−1) ∈ Zm on B, we get a non-trivial exponential map ϕ on the

associated graded ring B, which is isomorphic to B itself (cf. Lemma 5.1.1),

and u ∈ B
ϕ
, where u denotes the image of u in B. Therefore, we can assume

that B is a graded ring and ϕ is a homogeneous exponential map on B, such

that u ∈ Bϕ and the weights of the generators of B are as follows:

wt(ti) = −1, for every i, 1 ⩽ i ⩽ m, wt(u) = r1 + · · ·+ rm, wt(v) = 0.

We first show that Bϕ ⊈ k[u, v]. Suppose, if possible, Bϕ ⊆ k[u, v](⊆ B).

Then m = 2 and tr. degk B
ϕ = 2 and hence Bϕ = k[u, v] (cf. Lemma 2.1.1(i)).

But then, it follows that t1, t2 ∈ Bϕ, as tr11 t
r2
2 u = P (v) ∈ Bϕ (Lemma 2.1.1(i)).

This contradicts the fact that ϕ is non-trivial. Hence Bϕ ⊈ k[u, v].

Therefore, there exists g ∈ Bϕ \k[u, v], which is homogeneous with respect

to the grading on B and

g = g̃(t1, . . . , tm, v) +
∑

(i,j,q)∈Λ

αi jq t
i1
1 · · · timm ujvq,

where g̃ ∈ k[m+1] and αi jq ∈ k. Now the following two cases can occur. We

choose a suitable index l, 1 ⩽ l ⩽ m as follows:

Case 1: If g̃ /∈ k[v], then it has a monomial summand g2 such that tl | g2, for
some l ∈ {1, . . . ,m}.

Case 2: If g̃ ∈ k[v], then there exist at least one nonzero summand of g of the

form αi jq t
i1
1 · · · timm ujvq, and each such summand has weight zero. We fix such

a summand. Since its weight is zero, we have j(r1 + · · ·+ rm) = i1 + · · ·+ im.

Also there exists some s ∈ {1, . . . ,m} such that is < rs. Hence there exists

some l ∈ {1, . . . ,m}, l ̸= s such that il > jrl.

Now if we consider the filtration on B, induced by (0, . . . , 0, 1, 0, . . . , 0) ∈
Zm, where the l-th entry is 1, then ϕ will induce a non-trivial exponential map

ϕ̂ on the associated graded ring (cf. Lemma 5.1.1)

B̂ ∼= B =
k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rmm U − P (V ))
.

For every b ∈ B, let b̂ denote its image in B̂. Note that û, ĝ ∈ B̂ϕ̂. Further,

one can see from Cases 1 and 2 that t̂l | ĝ. Hence t̂l ∈ B̂ϕ̂ (cf. Lemma 2.1.1(i),
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Theorem 2.1.4). Therefore, by Lemma 2.1.1(iii), ϕ̂ will induce a non-trivial

exponential map ϕ̃ on

B̃ = B̂ ⊗k[t̂l]
k(t̂l) ∼=

k(Tl)[T1, . . . , Tl−1, Tl+1, . . . , Tm, U, V ]

(T r11 · · ·T rl−1

l−1 T
rl+1

l+1 · · ·T rmm U − P (V ))
.

Since û ∈ B̂ϕ̂, we have ũ ∈ B̃ϕ̃, where ũ is the image of û in B̃. But this

contradicts the induction hypothesis. Hence the result follows.

The next result describes the Makar-Limanov invariant of the ring Br.

Theorem 5.1.4. Let Br be the ring as in (5.0.1). Then the following hold:

(a) If r ∈ Zm>1, then ML(Br) = k[t1, . . . , tm].

(b) If r ∈ Zm⩾1 \ Zm>1, then ML(Br) ⊊ k[t1, . . . , tm], and for 1 = (1, . . . , 1),

ML(B1) = k.

Proof. (a) We first show that for any non-trivial exponential map ϕ on Br,

Bϕ
r ⊆ k[t1, . . . , tm]. Suppose, if possible, there exists a non-trivial expo-

nential map ψ on Br such that Bψ
r ⊈ k[t1, . . . , tm]. Therefore, there exists

g ∈ Bψ
r \ k[t1, . . . , tm]. Further, suppose that g /∈ k[t1, . . . , tm, v]. Then, g can

be uniquely expressed as

g = g1(t1, . . . , tm, v) +
∑

(i,j,q)∈Λ

αi jq t
i1
1 · · · timm ujvq,

where g1 ∈ k[m+1] and αi jq ∈ k∗.

Let us choose a summand αi jqt
i1
1 · · · timm ujvq of g, where is < rs for some

s, 1 ⩽ s ⩽ m. We now consider the proper Z-filtration on Br, induced by

(0, . . . , 0,−1, 0, . . . , 0) ∈ Zm, where the s-th entry is−1. Then ψ induces a non-

trivial exponential map ψ on the associated graded ring Br. By Lemma 5.1.1,

Br
∼=

k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rmm U − F (T1, . . . , Ts−1, 0, Ts+1, . . . , Tm, V ))
.

For every b ∈ Br, let b denote the image of b in Br. With respect to the chosen

filtration it is clear that u | g and since g ∈ B
ψ
r (Theorem 2.1.4), u ∈ B

ψ
r .

Further with respect to the Z-filtration induced by (−1, . . . ,−1) ∈ Zm>1 on

Br, ψ induces a non-trivial exponential map ψ′ on the associated graded ring
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B′
r. By Lemma 5.1.1,

B′
r
∼=

k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rmm U − P (V ))
.

Let u′ denote the image of U in B′
r. Since u ∈ B

ψ
r , u

′ ∈ (B′
r)
ψ′
. But this

contradicts Lemma 5.1.3. Therefore, we have g ∈ k[t1, . . . , tm, v] = R.

Now note that Br ↪→ C := k[t±1
1 , . . . , t±1

m , v]. Set Dn := k[t±1
1 , . . . , t±1

m ]vn

for all n ≥ 0. The ring k[t±1
1 , . . . , t±1

m , v] can be given the following Z-graded
structure:

k[t±1
1 , . . . , t±1

m , v] =
⊕
n⩾0

Dn =
⊕
n⩾0

k[t±1
1 , . . . , t±1

m ]vn.

This induces a proper Z-filtration {(Br)n}n∈Z on Br such that (Br)n =(⊕
i⩽nDn

)
∩Br. Set

Λ1 :=

{
(i, j) := (i1, . . . , im, j) ∈ Zm⩾0 × Z>0 | is < rs for some s, 1 ⩽ s ⩽ m

}
.

(5.1.3)

Using the relation tr11 · · · trmm u = F (t1, . . . , tm, v), one can see that every ele-

ment b ∈ Br can be uniquely expressed as

b =
∑
n⩾0

bn(t1, . . . , tm)v
n +

∑
(i,j)∈Λ1

bi j(v) t
i1
1 · · · timm uj , (5.1.4)

such that bij(v) ∈ k[v] \ {0}.
Now since the filtration {(Br)n}n∈Z on Br is induced from the graded

structure of the ring C, from the expression (5.1.4), it follows that the fil-

tration {(Br)n}n∈Z is admissible with respect to the generating set Γ =

{t1, . . . , tm, u, v} of Br and the associated graded ring

E :=
⊕
n∈Z

Bn
Bn−1

is generated by the image of Γ in E. For any b ∈ Br, let b̃ denote its image

in E. Note that t̃1
r1 · · · t̃m

rm
ũ = ṽd in E, where P (V ) = F (0, . . . , 0, V ) and

d = degV F = degV P (V )(> 1).

As E can be identified with a subring of the graded domain gr(C) ∼=
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k[t±1
1 , . . . , t±1

m , v], we have t̃1, . . . , t̃m, ṽ are algebraically independent in E and

hence dimE = m+1. Since k[T1,...,Tm,U,V ]

(T
r1
1 ···T rm

m U−V d)
is an integral domain of dimension

m+ 1, we have the following isomorphism

E ∼=
k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rmm U − V d)
. (5.1.5)

Now by Theorem 2.1.4, we have ψ induces a non-trivial exponential map ψ̃

on E such that g̃ ∈ Eψ̃. Now from the grading on E it is clear that ṽ | g̃
and hence ṽ ∈ Eψ̃. But then from (5.1.5) it follows that t̃1, . . . , t̃m, ũ ∈ Eψ̃

(cf. Lemma 2.1.1(i)) and hence ψ̃ is a trivial exponential map, which is a

contradiction.

Therefore we obtain that for every non-trivial exponential map ϕ on Br,

Bϕ
r ⊆ k[t1, . . . , tm]. Since B

ϕ
r is algebraically closed in Br and tr. degk B

ϕ
r = m

(cf. Lemma 2.1.1(ii)), we have Bϕ
r = k[t1, . . . , tm]. Therefore ML(Br) =

k[t1, . . . , tm].

(b) Let r = (r1, . . . , rm) ∈ Zm⩾1 \ Zm>1. Suppose rj = 1 for some j, 1 ⩽ j ⩽ m.

Note that

Br =
k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rj−1

j−1 T
rj+1

j+1 · · ·T rmm TjU − F (T1, . . . , Tm, V ))
.

Let Ej := Br[t
−1
1 , . . . , t−1

j−1, t
−1
j+1, . . . , t

−1
m ] and Cj := k[t±1

1 , . . . , t±1
j−1, t

±1
j+1, . . . , t

±1
m ].

Suppose that

F = TjFj(T1, . . . , Tm, V ) + F (T1, . . . , Tj−1, 0, Tj+1, . . . , Tm, V ).

Now for

uj := u− Fj(t1, . . . , tm, v)

tr11 · · · trj−1

j−1 t
rj+1

j+1 · · · trmm
∈ Ej , (5.1.6)

we have

tjuj −
F (t1, . . . , tj−1, 0, tj+1, . . . , tm, v)

tr11 · · · trj−1

j−1 t
rj+1

j+1 · · · trmm
= 0

and Ej = Cj [tj , uj , v]. We consider the exponential map ϕj : Ej → Ej [W ]

such that

ϕj |Cj = idCj , ϕj(uj) = uj , ϕj(v) = v + ujW and
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ϕj(tj) =
F (t1, . . . , tj−1, 0, tj+1, . . . , tm, v + ujW )

tr11 · · · trj−1

j−1 t
rj+1

j+1 · · · trmm uj
= tj +

r∑
i=1

αiW
i,

where αi ∈ Ej , for each i, 1 ⩽ i ⩽ r. Now since ϕj(uj) = uj , using (5.1.6), it

follows that

ϕj(u) = u+
Fj(t1, . . . , tj +

∑r
i=1 αiW

i, . . . , tm, v + ujW )− Fj(t1, . . . , tm, v)

tr11 · · · trj−1

j−1 t
rj+1

j+1 · · · trmm
= u+

s∑
l=1

βlW
l,

where βl ∈ Ej for every l, 1 ⩽ l ⩽ s.

Let pj := t1 · · · tj−1tj+1 · · · tm and n be the smallest positive integer such

that pnj uj , p
n
j αi, p

n
j βl ∈ Br for every i, 1 ⩽ i ⩽ r and every l, 1 ⩽ l ⩽ s. Since

ϕj(pj) = pj , ϕj induces an exponential map ϕ̃j : Br → Br[W ] such that

ϕ̃j(ti) = ti, for every i, 1 ⩽ i ⩽ m and i ̸= j,

ϕ̃j(tj) = tj +

r∑
i=1

αi(p
n
jW )i,

ϕ̃j(v) = v + ujp
n
jW and

ϕ̃j(u) = u+

s∑
l=1

βl(p
n
jW )l.

Since t1, . . . , tj−1, tj+1, . . . , tm, uj ∈ E
ϕj
j , it is clear that ũj ∈ E

ϕj
j , where

ũj := tr11 · · · trj−1

j−1 t
rj+1

j+1 · · · trmm uj = tr11 · · · trj−1

j−1 t
rj+1

j+1 · · · trmm u− Fj(t1, . . . , tm, v).

Therefore, from the definition of ϕ̃j , it follows that ũj ∈ B
ϕ̃j
r , and hence

Dj := k[t1, . . . , tj−1, ũj , tj+1, . . . , tm] ⊆ B
ϕ̃j
r .

Further, since tr.degkDj = tr.degk B
ϕ̃j
r and Dj is algebraically closed in B

ϕ̃j
r ,

we have B
ϕ̃j
r = Dj .

Again consider the following map ϕ : Br → Br[W ] such that

ϕ(ti) = ti for every i, 1 ⩽ i ⩽ m, ϕ(v) = v + tr11 · · · trmm W

and

ϕ(u) =
F (t1, . . . , tm, v + tr11 · · · trmm W )

tr11 · · · trmm
= u+Wα(t1, . . . , tm, v,W ),
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where α ∈ k[m+2]. It is easy to see that ϕ ∈ EXP(Br) and k[t1, . . . , tm] ⊆ Bϕ
r .

As k[t1, . . . , tm] is algebraically closed in Br, we have Bϕ
r = k[t1, . . . , tm].

Since B
ϕ̃j
r = k[t1, . . . , tj−1,

F (t1,...,tj−1,0,tj+1,...,tm,v)
tj

, tj+1, . . . , tm] for every j,

1 ⩽ j ⩽ m, and F is monic in v, we have

ML(Br) ⊆ Bϕ
r

⋂
{j | rj=1}

B
ϕ̃j
r = k[tj | rj ̸= 1] ⊊ k[t1, . . . , tm].

In particular, for r = 1 we have k ⊆ ML(B1) ⊆ Bϕ
1

⋂
1⩽j⩽mB

ϕ̃j
1 = k. Hence

the result follows.

Remark 5.1.5. From Theorem 5.1.4, it is clear that when r ∈ Zm>1 and

s ∈ Zm⩾1 \ Zm>1, then Br ≇ Bs, as ML(Br) ̸= ML(Bs).

5.2 A family of counterexamples to the Cancella-

tion Problem in arbitrary characteristic

In this section we will prove a certain subfamily (Ω1) of the generalised

Danielewski varieties to provide counterexamples to the Cancellation Prob-

lem in arbitrary characteristic.

The following theorem classifies the generalised Danielewski varieties Br

upto isomorphism when r ∈ Zm>1.

Theorem 5.2.1. Let (r1, . . . , rm), (s1, . . . , sm) ∈ Zm>1 and F,G ∈ k[T1, . . . , Tm, V ]

be monic polynomials in V each of degree more than 1, such that P (V ) =

F (0, . . . , 0, V ) and Q(V ) = G(0, . . . , 0, V ). Suppose

B := B(r1, . . . , rm, F ) =
k[T1, . . . , Tm, U, V ]

(T r11 · · ·T rmm U − F (T1, . . . , Tm, V ))

and

B′ := B(s1, . . . , sm, G) =
k[T1, . . . , Tm, U, V ]

(T s11 · · ·T smm U −G(T1, . . . , Tm, V ))

If B(r1, . . . , rm, F ) ∼= B(s1, . . . , sm, G) then

(i) (r1, . . . , rm) = (s1, . . . , sm) upto a permutation of {1, . . . ,m}.

(ii) There exists α ∈ Autk(k[V ]) such that α(Q) = λP , for some λ ∈ k∗.

Thus degV P = degV Q.
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(iii) There exists a permutation σ of {1, . . . ,m}, λ1, . . . , λm, β, γ ∈ k∗, f ∈
k[T1, . . . , Tm] and α ∈ k[T1, . . . , Tm, V ] such that

G(λσ(1)Tσ(1), . . . , λσ(m)Tσ(m), γV + f(T1, . . . , Tm)) =

T r11 · · ·T rmm α(T1, . . . , Tm, V ) + βF (T1, . . . , Tm, V ).

Furthermore, the conditions (i) and (iii) are sufficient for B(r1, . . . , rm, F )

to be isomorphic to B(s1, . . . , sm, G).

Proof. (i) Let t1, . . . , tm, u, v and t
′
1, . . . , t

′
m, u

′, v′ denote the images of T1, . . . , Tm, U, V

in B and B′ respectively. Let ρ : B → B′ be an isomorphism. Identifying ρ(B)

by B, we assume that B′ = B. By Theorem 5.1.4(a), we have

ML(B) = k[t1, . . . , tm] = k[t′1, . . . , t
′
m].

Therefore,

B ⊗k[t1,...,tm] k(t1, . . . , tm) = B ⊗k[t′1,...,t
′
m] k(t

′
1, . . . , t

′
m),

and hence

k(t1, . . . , tm)[v] = k(t′1, . . . , t
′
m)[v

′] = k(t1, . . . , tm)[v
′]. (5.2.1)

Note that R := k[t1, . . . , tm, v] ↪→ B ↪→ k[t±1
1 , . . . , t±1

m , v]. We now show that

v′ ∈ R. Suppose v′ ∈ B \R. Then

v′ = g(t1, . . . , tm, v) +
∑

(i,j)∈Λ1

bi j(v) t
i1
1 · · · timm uj , (5.2.2)

where Λ1 is as in (5.1.3), g ∈ R and bi j(v) ∈ k[v] \ {0}. Since u = F (t1,...,tm,v)

t
r1
1 ···trmm

and degv P (v) > 1, from (5.2.2), it is clear that degv v
′ > 1, when considered as

an element in k(t1, . . . , tm)[v]. But this contradicts (5.2.1). Therefore, v
′ ∈ R.

Now using the symmetry in (5.2.1), we obtain that

R = k[t1, . . . , tm, v] = k[t′1, . . . , t
′
m, v

′]. (5.2.3)

Also from (5.2.1) and (5.2.3), it is clear that

v′ = γv + f(t1, . . . , tm), (5.2.4)
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for some γ ∈ k∗ and f ∈ k[m]. Now

u′ =
G(t′1, . . . , t

′
m, v

′)

(t′1)
s1 · · · (t′m)sm

∈ B \R.

Since B ↪→ k[t±1
1 , . . . , t±1

m , v], there exists n > 0 such that

(t1 · · · tm)nu′ =
(t1 · · · tm)nG(t′1, . . . , t′m, v′)

(t′1)
s1 · · · (t′m)sm

∈ R.

Since for every i ∈ {1, . . . ,m}, t′i is irreducible in R and t′i ∤ G, we have

t′i | (t1 . . . tm). As t1, . . . , tm are also irreducibles in R, we have

t′i = λjtj , (5.2.5)

for some j ∈ {1, . . . ,m} and λj ∈ k∗. We now show that si = rj . Suppose

si > rj . Consider the ideal

ai := (t′i)
siB ∩R =

(
(t′i)

si , G(t′1, . . . , t
′
m, v

′)
)
.

Again

ai = tsij B ∩R =
(
tsij , t

si−rj
j F (t1, . . . , tm, v)

)
,

which implies that G(t′1, . . . , t
′
m, v

′) ∈ tjR. But this is a contradiction. There-

fore, si ⩽ rj .

Again by similar arguments as above, we get that si ⩾ rj . Therefore,

we have si = rj . Hence it follows that (r1, . . . , rm) = (s1, . . . , sm) upto a

permutation.

(ii) Since by (5.2.5) (t1 · · · tm)B ∩ R = (t′1 · · · t′m)B ∩ R, we have

(t1 · · · tm, F )R =
(
t′1 · · · t′m, G

)
R.

Therefore, it follows that

Q(v′) = λP (v) +Q1(t1, . . . , tm, v), (5.2.6)

for some λ ∈ k∗ and Q1 ∈ (t1, . . . , tm)R. Therefore using (5.2.4), one can see

that α : k[V ] → k[V ] defined by α(V ) = γV + f(0, . . . , 0) is an automorphism

of k[V ], and from (5.2.6) it follows that α(Q) = λP .

(iii) From (i) we get a permutation σ of {1, . . . ,m} such t′i = λσ(i)tσ(i)
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(cf. (5.2.5)) and si = rσ(i) for every i, 1 ⩽ i ⩽ m. Hence tr11 · · · trmm =

λ(t′1)
s1 · · · (t′m)sm for some λ ∈ k∗. Now

tr11 · · · trmm B ∩R = (t′1)
s1 · · · (t′m)smB ∩R

i.e., (tr11 · · · trmm , F (t1, . . . , tm, v))R =
(
(t′1)

s1 · · · (t′m)sm , G(t′1, . . . , t′m, v′)
)
R

Therefore,

G(t′1, . . . , t
′
m, v

′) = tr11 · · · trmm α(t1, . . . , tm, v) + F (t1, . . . , tm, v)β(t1, . . . , tm, v)

for some α, β ∈ k[m+1] such that no monomial summand of β is divisible by

tr11 · · · trmm . Since both F and G are monic in v, by (ii) degv F = degv G, and

hence it follows that β ∈ k∗. Therefore, the desired assertion follows.

We now prove the converse. We define ρ : k[T1, . . . , Tm, U, V ] → B as

follows:

ρ(Ti) = λσ(i)tσ(i), 1 ⩽ i ⩽ m

ρ(V ) = γv + f(t1, . . . , tm)

ρ(U) = λ−1βu+ λ−1α(t1, . . . , tm, v),

where λ =
∏m
i=1 λ

si
σ(i). Note that ρ is surjective, and

ρ(T s11 · · ·T smm U −G(T1, . . . , Tm, V )) = λ

(
m∏
i=1

tsiσ(i)

)(
λ−1βu+ λ−1α(t1, . . . , tm, v)

)
−G(λσ(1)tσ(1) . . . λσ(m)tσ(m), γv + f(t1, . . . , tm)).

Now using (5.2.5) and (iii) it follows that

ρ(T s11 · · ·T smm U −G(T1, . . . , Tm, V )) = tr11 · · · trmm (βu+ α(t1, . . . , tm, v))

− (tr11 · · · trmm α(t1, . . . , tm, v) + βF (t1, . . . , tm, v))

= 0.

Therefore, ρ induces a surjective map ρ : B′ → B, where B,B′ both are affine

domains whose dimensions are equal. Hence ρ is an isomorphism.

We now record an elementary lemma.

Lemma 5.2.2. Let E,D be integral domains such that E ⊆ D. Suppose there
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exists a(̸= 0) ∈ E such that E[a−1] = D[a−1] and aD∩E = aE. Then E = D.

The next theorem exhibits a certain sub-family of generalised Danielewski

varieties which are stably isomorphic.

Theorem 5.2.3. Let (r1, . . . , rm), (s1, . . . , sm) ∈ Zm⩾1. If (F, FV ) = k[T1, . . . , Tm, V ],

then

B(r1, . . . , rm, F )
[1] ∼= B(s1, . . . , sm, F )

[1].

Proof. Let B(r1, . . . , rm, F ) be such that rj > 1 for some j ∈ {1, . . . ,m}.
Without loss of generality we assume r1 > 1. We now show that

B(r1 − 1, r2, . . . , rm, F )
[1] ∼= B(r1, . . . , rm, F )

[1],

and therefore for any pair (r1, . . . , rm), (s1, . . . , sm) ∈ Zm⩾1, we get the result

inductively.

Let E = B(r1, . . . , rm, F )[w] = B(r1, . . . , rm, F )
[1]. Consider the exponen-

tial map ϕ : E → E[T ] = E[1] as follows:

ϕ(ti) = ti, for all i, 1 ⩽ i ⩽ m,

ϕ(v) = v + tr11 · · · trmm T,

ϕ(u) =
F (t1, . . . , tm, v + tr11 · · · trmm T )

tr11 · · · trmm
= u+ Tα(t1, . . . , tm, v, T ),

ϕ(w) = w − t1T,

where α ∈ k[m+2]. Now for

v1 = v + tr1−1
1 tr22 · · · trmm w, (5.2.7)

we have v1 ∈ Eϕ. Again,

F (t1, . . . , tm, v1) = F (t1, . . . , tm, v + tr1−1
1 · · · trmm w)

= F (t1, . . . , tm, v) + tr1−1
1 · · · trmm (wFV (t1, . . . , tm, v) + bt1),

for some b ∈ k[t1, . . . , tm, v, w]. Therefore, as F (t1, . . . , tm, v) = tr11 · · · trmm u,

we have

F (t1, . . . , tm, v1) = tr1−1
1 · · · trmm u1 (5.2.8)

where

u1 = t1u+ wFV (t1, . . . , tm, v) + bt1. (5.2.9)
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Since t1, . . . , tm, v1 ∈ Eϕ, by (5.2.8), u1 ∈ Eϕ (cf. Lemma 2.1.1(i)). Now since

(F, FV ) = k[T1, . . . , Tm, V ], there exist g1, g2 ∈ k[m+1] such that

F (t1, . . . , tm, v)g1(t1, . . . , tm, v) + FV (t1, . . . , tm, v)g2(t1, . . . , tm, v) = 1.

(5.2.10)

Note that g2(t1, . . . , tm, v1)− g2(t1, . . . , tm, v) ∈ t1E. Therefore,

w − u1g2(t1, . . . , tm, v1) = w − g2(t1, . . . , tm, v1)(t1u+ wFV (t1, . . . , tm, v) + bt1)

= w(1− FV (t1, . . . , tm, v)g2(t1, . . . , tm, v1)) + t1θ

= w(1− FV (t1, . . . , tm, v)g2(t1, . . . , tm, v)) + t1δ

= wF (t1, . . . , tm, v)g1(t1, . . . , tm, v) + t1δ

= wtr11 · · · trmm ug1(t1, . . . , tm, v) + t1δ

= t1w̃,

where θ, δ ∈ E and w̃ = wutr1−1
1 · · · trmm g1(t1, . . . , tm, v) + δ ∈ E. Therefore,

we have

w̃ =
w − u1g2(t1, . . . , tm, v1)

t1
∈ E. (5.2.11)

Note that ϕ(w̃) = w̃−T and hence, by Lemma 2.1.1(ii), E = Eϕ[w̃] = (Eϕ)[1].

Let C := k[t1, . . . , tm, v1, u1]. Clearly C ⊆ Eϕ. By (5.2.8), tr. degk C = m+ 1

and hence dim C = m+ 1. We show that

(a) C ∼= B(r1 − 1, r2 . . . , rm, F ) ∼= k[T1,...,Tm,U,V ]

(T
r1−1
1 T

r2
2 ···T rm

m U−F (T1,...,Tm,V ))
,

(b) C = Eϕ.

(a) Consider the surjection ψ : k[T1, . . . , Tm, V, U ] → C such that

ψ(Ti) = ti for all i, 1 ⩽ i ⩽ m, ψ(V ) = v1, ψ(U) = u1.

From (5.2.8) it is clear that (T r1−1
1 T r22 · · ·T rmm U − F (T1, . . . , Tm, V )) ⊆ kerψ.

Therefore, ψ induces a surjection

ψ : B(r1 − 1, r2, . . . , rm, F ) =
k[T1, . . . , Tm, U, V ]

(T r1−1
1 T r22 · · ·T rmm U − F (T1, . . . , Tm, V ))

−→ C.

Since B(r1 − 1, r2, . . . , rm, F ) is an integral domain and dim C = m + 1, we

have ψ is an isomorphism.
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(b) We note that

E[t−1
1 ] = k[t±1

1 , . . . , tm, u, v, w]

= k[t±1
1 , . . . , tm, u1, v1, w] by (5.2.7) and (5.2.9)

= k[t±1
1 , . . . , tm, u1, v1, w̃] by (5.2.11)

= C[t−1
1 ][w̃]

= Eϕ[t−1
1 ][w̃]

Since C ⊆ Eϕ, it follows that C[t−1
1 ] = Eϕ[t−1

1 ]. Therefore, to show that

C = Eϕ, by Lemma 5.2.2, it is enough to show that t1E
ϕ ∩ C = t1C. Since

t1E ∩Eϕ = t1E
ϕ, it is therefore enough to show that t1E ∩C = t1C, i.e., the

kernel of the map π : C → E/t1E is t1C. For every b ∈ E, let b denote its

image in E/t1E, and for every c ∈ C, let ĉ denote its image in C/t1C. We

note that by (5.2.8) and (a),

C/t1C = k[t̂2, . . . , t̂m, v̂1, û1] ∼=
(

k[T2, . . . , Tm, V ]

(F (0, T2, . . . , Tm, V ))

)[1]

. (5.2.12)

Also,

E/t1E ∼=
k[T2, . . . , Tm, U, V,W ]

(F (0, T2, . . . , Tm, V ))
=

(
k[T2, . . . , Tm, V ]

(F (0, T2, . . . , Tm, V ))

)
[U,W ] = k[t2, . . . , tm, v, u, w].

(5.2.13)

Now by (5.2.7), we have π(v1) = v as r1 > 1 and by (5.2.9), π(u1) =

wFv(t1, . . . , tm, v). By (5.2.10), Fv(t1, . . . , tm, v) is a unit in E/t1E and hence

π(C) = k[t2, . . . , tm, v, w] ∼=
(

k[T2, . . . , Tm, V ]

(F (0, T2, . . . , Tm, V ))

)[1]

.

Therefore, from (5.2.12) it follows that π induces an isomorphism between

C/t1C and π(C). Hence kernel of π is equal to t1C.

Thus, from (a) and (b) we have

B(r1, . . . , rm, F )[w] = E = (Eϕ)[1] = B(r1 − 1, r2, . . . , rm, F )
[1].

As a consequence we have an infinite family of examples of varieties in

arbitrary characteristic which are stably isomorphic but not isomorphic (c.f
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Question 3).

Corollary 5.2.4. For each n ⩾ 2, there exists an infinite family of pairwise

non-isomorphic rings of dimension n in the class of Generalised Danielewski

varieties over any field k of arbitrary characteristic, which are counterexamples

to the General Cancellation Problem.

Proof. Consider the family of rings

Ω1 :=
{
B(r, F ) | r := (r1, . . . , rm) ∈ Zm⩾1, F ∈ k[T1, . . . , Tm, V ] is monic in V

and (F, FV ) = k[T1, . . . , Tm, V ]
}
.

For any pair r = (r1, . . . , rm), s = (s1, . . . , sm) ∈ Zm⩾1, by Theorem 5.2.3,

B(r, F )[1] ∼= B(s, F )[1]. Further, by Theorem 5.1.4(b) and Theorem 5.2.1, we

get an infinite sub-family of Ω which contains pairwise non-isomorphic rings.

Hence taking n = m+ 1 we get the result.

5.3 Invariants of Generalised Asanuma varieties

In this section we will see some applications of Theorem 5.2.3. We recall the

coordinate ring of Generalised Asanuma varieties as follows:

A =
k [X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − F (X1, . . . , Xm, Z, T ))
, ri > 1 for all i, 1 ⩽ i ⩽ m,

(5.3.1)

where f(Z, T ) := F (0, . . . , 0, Z, T ) ̸= 0 and G := Xr1
1 · · ·Xrm

m Y − F . Let

x1, . . . , xm, y, z, t denote the images of X1, . . . , Xm, Y, Z, T in A, respectively.

We now deduce the structure of DK(A) and ML(A) for the special form

of F given below:

F (X1, . . . , Xm, Z, T ) = f(Z, T ) + (X1 · · ·Xm)g, (5.3.2)

for some g ∈ k[X1, . . . , Xm, Z, T ].

Proposition 5.3.1. Let A be the affine domain as in (5.3.1) with F as in

(5.3.2). Then the following hold:

(a) If f(Z, T ) ∈ k∗, then DK(A) = A and ML(A) = k[x1, . . . , xm, x
−1
1 , . . . , x−1

m ].

(b) If f(Z, T ) /∈ k∗, DK(A) ̸= k[x1, . . . , xm, z, t] and A is geometrically facto-

rial , then ML(A) ⊊ k[x1, . . . , xm]. Moreover, if m = 1 then ML(A) = k.
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Proof. (a) If f(Z, T ) ∈ k∗, then A = k[x1, . . . , xm, x
−1
1 , . . . , x−1

m , z, t]. There-

fore,

DK(A) = A and ML(A) = k[x1, . . . , xm, x
−1
1 , . . . , x−1

m ].

(b) Since f(Z, T ) /∈ k∗, for every i, 1 ⩽ i ⩽ m, xi /∈ A∗. Therefore, by Proposi-

tion 3.1.8(a), ML(A) ⊆ k[x1, . . . , xm]. Since DK(A) ̸= k[x1, . . . , xm, z, t], there

exists a non-trivial exponential map ϕ on A such that Aϕ ⊈ k[x1, . . . , xm, z, t].

Suppose, if possible, ML(A) = k[x1, . . . , xm]. Then, k[x1, . . . , xm] ⊆ Aϕ ⊈
k[x1, . . . , xm, z, t]. But then, by Theorem 3.2.6, A = k[m+2], which is contra-

diction as ML(k[m+2]) = k.

Therefore, ML(A) ⊊ k[x1, . . . , xm], and since ML(A) is algebraically closed

in A (cf. Lemma 2.1.1(i)), for m = 1, ML(A) = k.

We now answer Question 4 (see Chapter 1) for some special form of F .

Proposition 5.3.2. Let C := k[X1, . . . , Xm] and A be the affine domain as

in (5.3.1) where

F (X1, . . . , Xm, Z, T ) = a0(Z) + a1(Z)T + F̃ (X1, . . . , Xm, Z)

and F̃ ∈ (X1, . . . , Xm)C[Z]. Then DK(A) = A and ML(A) = k when any one

of following holds:

(i) a1(Z) ̸= 0.

(ii) a1(Z) = 0, F is a monic polynomial in Z and (F, FZ) = C[Z].

Proof. (i) It is clear that for every i ∈ {1, . . . ,m}, xi /∈ A∗. Let Q ∈ k[m+2] be

such that

Q(x1, . . . , xm, y, z) = xr11 · · ·xrmm y − F̃ (x1, . . . , xm, z)− a0(z).

Note that Q(x1, . . . , xm, y, z) − a1(z)t = 0. As a1(Z) ̸= 0, for every j ∈
{1, . . . ,m}, we now define the following maps ϕj : A→ A[U ] by

ϕj(xi) = xi for i, 1 ⩽ i ⩽ m, i ̸= j, ϕj(xj) = xj+a1(z)U, ϕj(y) = y, ϕj(z) = z,

and

ϕj(t) =
Q(x1, . . . , xj−1, xj + a1(z)U, xj+1, . . . , xm, y, z)

a1(z)
= t+Uvj(x1, . . . , xm, y, z, U),
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for some vj ∈ k[x1, . . . , xm, y, z, U ]. It is easy to see that ϕj ∈ EXP(A), for

every j. Since y ∈ Aϕj , by Lemma 3.1.4, we have DK(A) = A.

Let Cj := k[x1, . . . , xj−1, xj+1, . . . , xm, y, z]. Then Cj ⊆ Aϕj ⊆ A. As

Cj is algebraically closed in A and tr. degk Cj = tr.degk A
ϕj = m + 1 (cf.

Lemma 2.1.1(ii)), we have Aϕj = Cj . By Proposition 3.1.8(a), ML(A) ⊆
k[x1, . . . , xm]. Since j is arbitrarily chosen from {1, . . . ,m}, we get that

ML(A) ⊆ k[x1, . . . , xm]
⋂

1⩽j⩽mA
ϕj = k. Thus ML(A) = k.

(ii) As a1(Z) = 0, A = B(r1, . . . , rm, F )
[1]. Now by Theorem 5.2.3 we have A ∼=

B(1, . . . , 1, F )[1]. Since by Theorem 5.1.4, ML(B(1, . . . , 1, F )) = k, ML(A) =

k. As B(1, . . . , 1, F ) is not rigid, by Lemma 2.1.3, DK(A) = A.

As a consequence, we give the complete description of DK(A) and ML(A)

when A (as in (5.3.1)) is a regular domain over an infinite field and F =

f(Z, T ).

Corollary 5.3.3. Let A be a regular domain defined by

A =
k[X1, . . . , Xm, Y, Z, T ]

(Xr1
1 · · ·Xrm

m Y − f(Z, T ))
.

Then the following hold:

(a) If f(Z, T ) is coordinate in k[Z, T ], then DK(A) = A and ML(A) = k.

(b) If there exists a system of coordinates {Z1, T1} of k[Z, T ] such that

f(Z, T ) = a0(Z1) + a1(Z1)T1, then DK(A) = A and ML(A) = k.

(c) If k is an infinite field and if f(Z, T ) can not be expressed in the

form described in part (b) above, then DK(A) = k[x1, . . . , xm, z, t] and

ML(A) = k[x1, . . . , xm].

Proof. (a) As k[Z, T ] = k[f ][1], A = k[m+2]. Therefore, DK(A) = A and

ML(A) = k.

(b) If a1(Z1) ̸= 0, then the assertion follows from Proposition 5.3.2(i).

If a1(Z1) = 0, then f(Z, T ) = a0(Z1). As A is regular we have

gcd(a0, (a0)Z1) = 1. Hence the result follows from Proposition 5.3.2(ii).

(c) A special case of Remark 3.1.9.
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