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Notations & Abbreviations

ep(z), e
(

z
p

)
e

2πiz
p

a ∼ b, a ≍ b cb ≤ a ≤ Cb for some absolute constants c, C, not de-
pending on a, b

f(x) ∼ g(x) f(x)/g(x) → 1, as x→ ∞

A≪ B ∃ some absolute constant c > 0 such that |A| ≤ cB

A≪f B ∃ some c(f) > 0 depending on f such that |A| ≤ c(f)B

N set of all positive integers

N0 set of all non-negative integers

Z set of all integers

C set of all complex numbers

H the upper half plane

R+
0

set of all non-negative real numbers

ε arbitrary small positive real number

IS the characteristic function of the set S

Zp ring of p-adic integers

Qp field of p-adic numbers

ρp 1
p−1

for any prime p
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Chapter 1

Introduction

1.1 General correlation problem

A problem which arises in a variety of contexts is the cancellations in sums of the form

S =
∞∑
n=1

a(n)b(n), (1.1)

where a = {a(n)}, and b = {b(n)} are arithmetic sequences of special interest. This type of
problem is also known as the general correlation problem.

For most of the problems we can assume the following three assumptions (these are standard
also) :

A. Finite support : The sequences are supported in some dyadic range [N, 2N ], i.e.,
a(n) = b(n) = 0 for all n /∈ [N, 2N ].

B. The Ramanujan bound : Though for the sequences the “pointwise Ramanujan
bound”, i.e., a(n), b(n) ≪ nε may not be available to us, so we assume the “Ramanujan

bound on average” at least in the L2-sense, i.e., we consider
∑

N≤n≤2N

∣∣∣a(n)∣∣∣2 ≪ε N
1+ε

and
∑

N≤n≤2N

∣∣∣b(n)∣∣∣2 ≪ε N
1+ε.

C. Non-trivial cancellations : At least one of
∞∑
n=1

a(n) and
∞∑
n=1

b(n) is small, i.e., of size

O(N1−δ) for some δ > 0.

Then from the first and second assumptions, indexed by A and B respectively, one can note

1



that by the Cauchy-Schwarz inequality, we have,

∣∣∣S(N)
∣∣∣ = ∣∣∣ ∞∑

n=1

a(n)b(n)
∣∣∣ ≤ ( ∑

N≤n≤2N

∣∣∣a(n)∣∣∣2)1/2( ∑
N≤n≤2N

∣∣∣b(n)∣∣∣2)1/2

≪ε N
1+ε

Then the correlation is given by:

1

N

∞∑
n=1

a(n)b(n)−
[ 1
N

∞∑
n=1

a(n)
] [ 1
N

∞∑
n=1

b(n)
]
=
S

N
+O(N−δ).

Definition 1.1.1. We say that the sequences a = {a(n)}, and b = {b(n)} are independent
if there exists some δ > 0, such that,

∑∞

n=1
a(n) b(n) ≪ N1−δ. (1.2)

1.2 Examples :

For several problems of arithmetic interest, these correlation problems occur naturally. Let
us discuss some of them here :

• Subconvexity problems : To break the convexity bound (coming from the Phragmen-
Lindelof principle of complex analysis) of certain L-functions, we need to consider
certain correlation problems as in the following examples.

(i) At first we take a(n) = χ(n)W
(
n
N

)
where χ is a primitive Dirichlet character modulo

q and b(n) = nitV
(
n
N

)
where t > 2, for n ∈ [N, 2N ]. Here W, V are finitely supported

nice functions, which will be discussed later. Suppose we take N =
√
qt. Note that the

pointwise bounds a(n), b(n) ≪ 1 hold trivially. Also
∑

N≤n≤2N

b(n) ≪ N1−δ follows from

cancellations of exponential sums (Weyl differencing). In this case
∑

N≤n≤2N

a(n) ≪ N1−δ

can also be established, following Burgess [11]. The correlation (1.2) in this case is
related to the subconvexity problem of L(1

2
+ it, χ).
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(ii) Now we take a(n) = χ(n), b(n) = λf (n) where χ is a primitive Dirichlet character
modulo q and λf (n)’s are normalized Fourier coefficients for a holomorphic cusp or
Hecke-Maass cusp form f for the full modular group SL(2,Z). Here we take N = q.
Then as discussed in the previous example, we have cancellations for the sequence
{a(n)} and also for {b(n)} (see [18]). The correlation (1.2) in this case will be discussed
in our next two chapters, where we show that it is related to the subconvexity of
L(1

2
+ it, f ⊗ χ).

• Dirichlet’s divisor problem and its cuspidal analogue : Let d2 be the usual divisor
function. In 1849 (see [47]), using the hyperbola method, Dirichlet established that

D(N) :=
∑
n≤N

d2(n) = N logN +N(2γ − 1) + ∆(N),

where γ is the Euler-Mascheroni constant and ∆(N) = O(
√
N) is the error term. The

Dirichlet divisor problem is about improving this error term by finding the smallest
value θ for which ∆(N) = O(N θ+ε). Hardy (see [47]) showed that inf θ ≥ 1

4
.

In general, for dk(n), which counts the number of ways that n can be written as a
product of exactly k numbers, the error term (see [32]) is related to

∑
n∼N

dk(n) e
(
k(nx)

1
k

)
for N ∼ x

k−1
k+1 .

For the above problem, it is natural to define
(
(Nx)1/k

)k ≍ x
2k
k+1 as the “conductor”.

Then note that the length of the sumN is smaller than the square root of the conductor.
If we take a Hecke-Maass or holomorphic cusp form then our interest lies in estimating
the following sum with the sharp cut :

∑
n<x

λ(n).

We expect that it is bounded by O
(
x

1
4
+ε
)
, which is conjectured, though the known

bound is x
1
3
+ε (see [18]). To improve the known bound O

(
x

1
3
+ε
)
, one needs to study

∑
n∼N

λ(n) e(a
√
nx) for N ∼ x1/3.
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For the above problem we define
(√

Nx
)2

≍ N4 as the “conductor” naturally. One

notes that this is the cuspidal analogue of the above problem with k = 2. Note that
the length of the sum N is less than the square root of the conductor.

• Critical Zeros of Symmetric Square L-functions : To prove the existence of critical
zeros of the symmetric square L-functions (analogue of Hardy’s theorem, see [55]), one
has to show strong cancellation in the following sum, namely

∑
n∼N

λ(n2) e(αn2/3) ≪ N1− 1
6
−δ for some δ > 0.

For the above problem we define
(
N2/3

)3
= N2 as the “conductor”. Here one can note

that the length of the sum N is less than the square root of the conductor.

• Higher rank exponential sums : For the GL(2) forms we know that

∑
n∼N

λ(n) e(nα) ≪ N
1
2
+ε.

The problem for linear twists of GL(3) forms is to estimate the following sums :

∑
n∼N

λ(n, 1) e(nα),

with smooth weight. One conjecture is that the above sum is bounded by O
(
N1/2+ε

)
.

But the best known bound is O
(
N

3
4
+ε
)
, due to Miller (see [46]).

If we consider a GL(d) automorphic form π then we are interested in estimating non-
trivially

∑
n∼N

λπ(n, 1, . . ., 1) e
(
αnβ

)
.

This problem is completely open for d ≥ 4, even for β = 1 (Linear twist). For d = 2
one can see [27].
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• Shifted convolution sums : Usually, these types of sums arise in the study of subcon-
vexity problems using the moment method and also are some natural examples of this
type of problem. A GL(2) × GL(2) shifted convolution sum problem is to estimate
non-trivially the following sum :

∑
n∼N

λf (n)λg(n+ h),

where f, g are GL(2) cuspidal automorphic forms with λf (n), λg(n) are their respective
normalized Fourier coefficients and h > 0. Here we must mention the additive divisor
problem (see [16], [48]), which asks for asymptotics of the following sum (with power
saving error term) :

∑
n≤N

d2(n) d2(n+ h),

where d2 is the usual divisor function, as N → ∞.

1.3 Long smooth sums vs Short smooth sums

In our examples, we defined “conductor” for many cases, whereas the notion of “conductor”
occurs naturally in the case of automorphic L-functions which can be found in [36]. If the
length of a smooth sum is greater than the square root of the conductor then we will call
that sum to be a “long smooth sum” for which non-trivial cancellation exists due to the
respective functional equation. But if the length of the sum is less than the square root of
the conductor then we will call the sum “short smooth sum” for which, getting non-trivial
cancellation is not easy and becomes one of the centres of attraction in analytic number
theory.

Now consider a smooth sum

S(N) =
∞∑
n=1

a(n) W
( n
N

)
, (1.3)

where W is a nice function supported on [1
2
, 3] and taking value 1 on [1, 2]. Also let the
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corresponding Dirichlet series of the sequence a = {a(n)} be

La(s) =
∞∑
n=1

a(n)

ns
,

which we assume to satisfy the standard properties of an L-function as given in Chapter 5
of [35] (i.e., these L-functions are in Selberg class) with conductor Q(a). Then by the Mellin
inversion formula, (1.3) can be written as

S(N) =
1

2πi

∫
(σ′)

N s W̃ (s)

(
∞∑
n=1

a(n)

ns

)
ds =

1

2πi

∫
(σ′)

N s W̃ (s)La(s) ds, σ′ > 1.

Suppose that the above L-function has polynomial growth, i.e.,

∣∣∣La(s)
∣∣∣ ≤ ∣∣∣La(σ)

∣∣∣ (2 + |t|)A+ε,

for some A > 0. Then by shifting the contour to the line R(s) = σ (< 1 and = 1
2
for our

case) and using the properties of W̃ (s), we have,

S(N) ≪ Nσ
∣∣∣La(σ)

∣∣∣≪ NσQ(a)θ.

This gives a non-trivial cancellation, i.e., S(N) < N , if and only if,

NσQ(a)θ+ε < N , i.e.,N > Q(a)µ+ε,

where µ = θ
1−σ

. We will call this “the range of cancellations” of S(N). Then we will
follow some terminologies :

Trivial range : If the range of cancellations of S(N) is N > Q(a)1/4+ε, i.e., µ = 1
4
, then

we call this range of cancellations of S(N) to be the “Trivial range”. This corresponds to
the trivial or the convexity bound of the corresponding L-function.

Burgess range : If the range of cancellations of S(N) is N > (Q(a))
1
4
− 1

16
+ε, i.e., µ = 1

4
− 1

16
,

then we call this range of cancellations of S(N) to be the “Burgess range”, as it corresponds
to the Burgess strength bound of the L-function.

Weyl range : If the range of cancellations of S(N) is N > (Q(a))
1
4
− 1

12
+ε, i.e., µ = 1

4
− 1

12
,

then we call this range of cancellations of S(N) to be the “Weyl range”, as it corresponds

6



to the Weyl strength bound of the L-function.

Sub-Weyl range : If the range of cancellations of S(N) is N > (Q(a))
1
4
− 1

12
−δ+ε for some

δ > 0, i.e., µ = 1
4
− 1

16
− δ, then we call this range of cancellations of S(N) to be the

“Sub-Weyl range”.

Lindelöf range : If the range of cancellations of S(N) is N > (Q(a))ε, i.e., µ = 0, then
we call this range of cancellations of S(N) to be the “Lindelöf range”. Still now, this is a
conjecture.

Now we will illustrate three examples in the next three following sections.

1.4 Short smooth sums related to Dirichlet characters

Let χ be a primitive Dirichlet character modulo pr for r ≥ 1. Then for this case, one can
note that the convexity bound recovers the conclusion of the Polya-Vinogradov inequality.
Hence subconvexity corresponds to cancellation in shorter sums.

Burgess (see [11]) proved that L(1/2, χ) ≪ε p
3/16+ε which yields a non-trivial bound if

and only if N > p3/8+ε. His method used the Riemann Hypothesis for curves over finite fields.
However, 3/16, the Burgess exponent is larger than the exponent 1/6 established by Weyl.
However, Burgess’s method yields a non-trivial bound for Sχ(N) for any N > p1/4+ε if p is
cube-free (especially for primes). This does not come through the passage to L-functions
as we have sketched above. But this basic idea applies to the scenarios as well, invoking
higher-rank harmonics.

The Burgess-type subconvex bound is known only for some limited special cases. A Weyl
quality bound for quadratic characters of the odd conductor was achieved by Conrey and
Iwaniec (see [13]) using the techniques from automorphic forms and Deligne’s solution of the
Weil conjectures for varieties over finite fields. [4] and [25] considered the cases when the
conductor q of χ runs over prime powers or otherwise has some special factorizations. For
any Dirichlet L-function having a cube-free conductor, recently Petrow and Young (see [54])
proved a Weyl type subconvex bound where they also got subconvex bound having the same
strength for certain L-functions of self-dual GL(2) automorphic forms which arise as twists
of forms of smaller conductor. One can also see the recent work of Nelson (see [53]). The
exponent 3/16 curiously often occurs in various problems, see [2], [6], [8], [12], [19], [63], [64]
as examples. Also, related work on the Burgess-type bounds can be found in the paper of
Munshi (see [51]). These we will discuss in our next section.

Recently, Milicévić (see [45]) got a sub-Weyl subconvex bound when q = pn with n large
by developing the p-adic exponent pair method.
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1.5 Short smooth sums related to Hecke-cusp forms

1.5.1 A brief history

Let us take a holomorphic or Hecke-Maass cusp form, f for SL(2,Z) having normalized
Fourier coefficients λf (n) and a primitive Dirichlet character χ of conductor pr, with r ≥ 1.
Now consider the smooth sum

Sf,χ(N) =
∞∑
n=1

χ(n)λf (n)W
( n
N

)
, (1.4)

where W is a smooth bump function supported on [1, 2] and satisfies W (j)(x) ≪j 1.

One can use information (bounds for L(1/2, f⊗χ)) about L-values L(1/2, f⊗χ) to show
cancellations in the sum Sf,χ(N). Indeed, by the Mellin inversion formula, we have that

Sf,χ(N) =
1

2πi

∫
(σ)

N s W̃ (s)L (s, f ⊗ χ) ds, σ > 1,

where L(s, f ⊗ χ) is given by

L(s, f × χ) =
∞∑
n=1

λf (n)χ(n)

ns
, for R(s) > 1.

Now shifting the contour to R(s) = 1/2-line and estimating trivially, as done in the Section
1.3, we get that

Sf,χ(N) ≪ N1/2

∫
|t|≤Nε

|L(1/2 + it, f ⊗ χ)| dt + O
(
N−A

)
,

for any A > 0.

Now we fix the form f . Then the analytic conductor of L(1/2+ it, f ⊗χ) becomes p2rt2.
Then the convexity bound L(1/2 + it, f × χ) ≪t p

r/2t1/2 would imply that

Sf,χ(N) ≪f N
1/2 pr/2N ε,
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which is non-trivial if N > pr+ε.

By the Burgess exponent (see [7], [8], [12], [19], [51]) we have

L(
1

2
, f ⊗ χ) ≪f,ε p

3/8+ε.

Hence we have the Burgess range

Sf,χ(N) ≪f,ε

√
Np

3
8
+ε < N ⇐⇒ N > p3/4+ε.

For r > 1, sufficiently large, currently Weyl bound is known for L(1/2, f ⊗ χ) which is
L(1/2, f⊗χ) ≪ pr/3+ε, due to Milićević and Blomer [10]; Munshi and Singh [52]. This would
then imply that

Sf,χ(N) ≪f N
1/2 pr/3+εN ε,

which is non-trivial if N > p2r/3+ε.

Currently we do not know how to obtain sub-Weyl bounds for L(1/2, f⊗χ), i.e., L(1/2+
it, f ⊗ χ) ≪ (p2r)

1
3
−η+ε for some η > 0 which would give non-trivial bounds for Sf , χ(N)

whenever N > (pr)
2
3
−2η+ε. It is needless to mention that Lindelöf hypothesis would give

non-trivial bounds for L(1/2, f ⊗ χ) if N > prε.

Let K(n) be a trace function modulo prime p. In [19], Fouvry, Kowalski and Michel
showed that

∑
n

λf (n)K(n)W
( n
N

)
≪f N

1/2p3/8N ε.

This is the Burgess type bound which gives non-trivial bounds for the above sums if
N > p3/4+ε. For general trace functions K(n) the bound of Fouvry, Kowalski, and Michel
[19] is the best-known result.

1.5.2 Our result on the Weyl-type cancellations range for r = 1

Let us take two holomorphic cusp forms g and f with weights kg, kf respectively or two
Hecke-Maass cusp forms corresponding to the Laplacian eigenvalues 1

4
+ ν2g , νg ≥ 1 and

9



1
4
+ν2f , νf ≥ 1, respectively, for SL(2,Z), and χ be a primitive Dirichlet character of modulus

pr, where p is an odd prime and r ≥ 1.

Still, the Weyl type bound is unknown. Without going into the theory of the L-function,
directly analysing the twisted GL(2) short character sums in [20] we achieved the Weyl type
range :

Theorem 1.5.1. Let f, χ be as above with r = 1. Then for any ε > 0 and 0 < θ < 1
10

we
have

Sf,χ(N) ≪f,ε N
3/4+θ/2p1/6(pN)ε +N1−θ(pN)ε,

which becomes non-trivial if p
2
3
+α+ε ≤ N ≤ p, where α = 4θ

1−6θ
.

Remark 1.5.2. Note that the Theorem 1.5.1 improves the range of cancellation from N >
p3/4+ε (Burgess range) to N > p2/3+ε (Weyl range).

1.5.3 Our result on the sub-Weyl type range for r > 1

Similarly to the previous one, we do not have the sub-Weyl type bound for the twisted
GL(2) L-function. But directly analysing the twisted GL(2) short character sums in [22]
with Mallesham, we got that

Theorem 1.5.3. Let f, χ be as above with r > 1 and p be an odd prime such that p ≥ 5.
Then we have

Sf,χ(N) ≪f N
5
9 p

13r
45 N ε,

where the implied constant depends on f only, provided p13r/20+ε ≤ N ≤ p4r/5.

Remark 1.5.4. Our result is a counterpart result to that of Holowinsky, Munshi, and Qi
[27] where they showed a sub-Weyl type range for cancellations in an analytic twist of λf (n).
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1.6 Rankin-Selberg L-functions

1.6.1 A brief history

Let us take two holomorphic cusp forms f and g having weights kf and kg respectively
or Hecke-Maass cusp forms corresponding to the Laplace eigenvalues 1/4 + ν2f and 1/4 + ν2f
respectively for SL(2,Z), having normalized Fourier coefficients λf (n) and λg(n) respectively.
Then the Rankin-Selberg L-function corresponding to f and g is

L(s, f ⊗ g) = ζ(2s)
∞∑
n=1

λf (n)λg(n)

ns
, R(s) > 1. (1.5)

Note that the last series can be continued analytically to all over C, except when g = f (in
which case, the above L-series has a simple pole at s = 1 ). It is also known that the above
Rankin-Selberg L-function is an example of a degree four automorphic L-function (see [57]).

If the weight kg of a holomorphic cusp form g gets fixed and the weight kf of a holomorphic
cusp form f varies then in [58], Sarnak got the following subconvexity bound in the weight
aspect

L(1/2, f ⊗ g) ≪g,ε k
1−7/165+ε
f . (1.6)

Further, the above exponent in (1.6) was improved to 2/3 + ε in [42] using similar ideas.

In the t-aspect, using the representation theoretic approach Michel and Venkatesh [44]
proved subconvexity bounds whereas using a similar method, recently Blomer, Jana and
Nelson [9] got the Weyl type subconvexity bound

L(1/2 + it, f ⊗ g) ≪f,g,ε (1 + |t|)2/3+ε.

In this context, one can see [1] also.

For the level aspect subconvex bound one can see [23], [40], [43], [44] when the level of
g gets fixed and the level of f varies. If we vary the levels Pg and Pf of the forms g and
f , respectively, simultaneously, then Holowinsky and Munshi [28] settled the subconvexity
problem in a certain range using the amplified second-moment method and got that for some
δ(η) > 0 :

L(1/2, g ⊗ f) ≪f,g,ε (PgPf )
1/2−δ(η)+ε.

11



when (Pg, Pf ) = 1 and Pf ∼ P η
g where 0 < η < 2/21. Assuming that the form has a smaller

level being holomorphic, Ye [65] extended this result for all η. For both holomorphic and
Maass forms, Raju generalised Ye’s result in his thesis [56] using the delta method approach
and got a better exponent.

For us, we have considered the case of GL(1) twists of Rankin-Selberg L-functions. If χ
is a primitive Dirichlet character of modulus p, then the L-function associated with f⊗g⊗χ
is given by

L(s, g ⊗ f ⊗ χ) = L(2s, χ2)
∞∑
n=1

χ(n)λg(n)λf (n)

ns
,

for R(s) > 1, which can be analytically extended to C and also satisfies a functional equation
relating s and 1− s (see [35]). In this context the convexity bound is

L(
1

2
, f ⊗ g ⊗ χ) ≪f,g,ε p

1+ε,

for any ε > 0 which can be obtained by using the approximate functional equation and the
Phragmen-Lindelöf principle.

Sun considered the same type of problem in [59] when the character has modulus pκ

where κ > 12 and then fixing the modulus p, she varied it over κ (which is known as depth
aspect). Using [3, Proposition 3.1.], one can see that g ⊗ χ ∈ Mk(p

2, χ2) and then one can
relate this problem with the problems that have been considered in [40], [43] (where in both
of them they assumed that at least one of the forms to be holomorphic) and also in [23]
(where they got the bound to be 1− 1

1324
) though main purpose of our article is to address

the problem as a GL(2)×GL(2)×GL(1) problem using delta method and getting a better
result.

This problem is different from the problem considered in the thesis of Raju (see [56])
where he considered the problem when both f, g have trivial nebentypus but for us, using
[3, Proposition 3.1.], we can say that g ⊗ χ ∈ Mk(p

2, χ2). Eventually, we followed the path
chosen in [56].

1.6.2 Our result on the GL(1) twists of Rankin-Selberg L-functions

In [21], we got the following

12



Theorem 1.6.1. Let f, g be as given above and let χ be a primitive Dirichlet character of
modulus p, an odd prime. Then we have

L(
1

2
, f ⊗ g ⊗ χ) ≪f,g,ε p

22
23

+ε,

for any ε > 0.

Application 1.6.2. As an application of the Theorem 1.6.1, we improve the bounds ob-
tained in [40] for the problem of distinguishing modular forms based on their first Fourier
coefficients.

Corollary 1.6.3. Let us consider a Hecke cusp form f for SL(2,Z), as given in the Theorem
1.6.1. Then there exists a constant C = C(f, ε) such that for any primitive cuspidal newform
g for SL(2,Z) and for any primitive Dirichlet character χ(n) having modulus N(≥ 3), an

odd natural number, there exists n ≤ C N
22
23

+ε with (n,N) = 1, such that

λf (n) ̸= λg(n)χ(n).

Proof. The proof is identical to the proof of [40, Corollary 1.3]. Use the Theorem 1.6.1 in
the place of [40, Theorem 1.1], in the proof.

1.7 Preliminary lemmas

Let us record some lemmas in this section that we have used in the proofs of our results.

1.7.1 Automorphic form for GL(2)

First let us see some basic results on automorphic forms for SL(2,Z) (for more details see
[33], [35]).
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Holomorphic cusp forms :

Let f be a holomorphic Hecke cusp form for SL(2,Z), the full modular group, having weight
kf and normalized Fourier coefficients λf (n)’s, i.e., λf (1) = 1 so that it has a Fourier expan-
sion at ∞ which is given by

f(z) =
∞∑
n=1

λf (n)n
(k−1)/2e (nz) , z ∈ H.

Then the corresponding Hecke L-function is given by

L(s, f) =
∞∑
n=1

λf (n)

ns
=
∏
p

(
1− λf (p)p

−s + p−2s
)−1

, R(s) > 1,

which has an analytic continuation to the whole complex plane C, proved by Hecke, satisfying
the following functional equation

Λ(s, f) = ε(f)Λ(1− s, f),

where f is the dual form of f and ε(f) is the root number. So we have the following complete
L-function :

Λ(s, f) =
1

πs
Γ

(
s+ (1 + kf )/2

2

)
Γ

(
s+ (kf − 1)/2

2

)
L(s, f).

Now for the holomorphic cusp form f let us recall the Voronoi summation formula.

Lemma 1.7.1. For a, q ∈ Z with (a, q) = 1 and a compactly supported, smooth function on
(0,∞), say u, we have

∞∑
n=1

λf (n)e

(
na

q

)
u(n) =

2πikf

q

∞∑
n=1

λf (n)e

(
−nd
q

)
v(n),

where da ≡ 1 mod q and

v(y) =

∫ ∞

0

u(x)Jkf−1

(
4π

√
yx

q

)
dx.
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Proof. See [17, P. 792]. See [40, Theorem A.4] also for the general level.

Remark 1.7.2. From the work of Deligne (see [14]) and Deligne–Serre (see [15]) (the latter
is for k = 1), the Petersson-Ramanujan conjecture for the holomorphic cusp forms is now
well-known:

|λf (n)| ≤ d(n) ≪ nε,

where d(n) denotes the divisor function.

Maass cusp forms :

Let us take a Hecke-Maass cusp form f for SL(2,Z), the full modular group, corresponding
to the Laplacian eigenvalue 1

4
+ν2f and normalized Fourier coefficients λf (n)’s, i.e., λf (1) = 1

so that the Fourier series expansion of f at ∞ becomes

f(z) =
√
y
∑
n̸=0

λf (n)Kiνf (2π|n|y)e(nx),

where Kiνf (y) is the Bessel function of third kind. Then we have the following associated
L-function :

L(s, f) =
∞∑
n=1

λf (n)

ns
, R(s) > 1,

which can be extended as an entire function, satisfying the following functional equation :

Λ(s, f) = ε(f)Λ(1− s, f),

where f is the dual form of f , ε(f) is the root number of f with |ε(f)| = 1. Then we have
the following complete L-function :

Λ(s, f) =
L(s, f)

πs
Γ

(
s+ ε+ iν

2

)
Γ

(
s+ ε− iν

2

)
.
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where ε = 1 if f is odd and ε = 0 if f is even. Let us now state the following lemma
concerning the Rankin-Selberg bound for the Fourier coefficients.

Lemma 1.7.3. We have

∑
1≤n≤x

∣∣∣λf (n)∣∣∣2 ≪ε C(f)
εx1+ε,

where C(f) = k2f if f is holomorphic and C(f) = 1 + ν2f if f is a Maass form.

Proof. See [34, Lemma 1].

Remark 1.7.4. Here we note that the Ramanujan-Petersson conjecture predicts that

|λf (n)| ≤ d(n),

where d(n) is the divisor function. Now if we assume Hθ : λf (n) ≪f,ε d(n)n
θ where d is the

divisor function, as a bound towards the Petersson-Ramanujan conjecture for Maass forms
then towards this, the current record is given by θ = 7

64
, by the work of Kim and Sarnak

[39], [41].

Now we recall the Voronoi summation formula for Maass cusp forms.

Lemma 1.7.5. For a, q ∈ Z with (a, q) = 1 and a compactly supported, smooth function on
(0,∞), say u, we have

∞∑
n=1

λf (n)e

(
an

q

)
u(n) = q

∑
±

∞∑
n=1

λf (n)

n
e

(
∓dn
q

)
H±

(
n

q2

)
,

where we have ad ≡ 1 mod q and

H±(y) =
ε
(1∓1)/2
f

4π2i

∫
σ

(π2x)−s g̃(−s)
(
h+(−s)± h−(−s)

)
ds,
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where

h+(s) =
Γ
(

iνf+1+s

2

)
Γ
(

−iνf+s+1

2

)
Γ
(

−s+iνf
2

)
Γ
(

−s−iνf
2

) , h−(s) =
Γ
(

iνf+s+2

2

)
Γ
(

−iνf+2+s

2

)
Γ
(

−s+iνf+1

2

)
Γ
(

−s−iνf+1

2

) .
Here εf = ±1 depending on whether f is odd or even.

Proof. For details, see [40, Theorem A.4].

1.7.2 Bessel function

Now let us recall some expressions of Bessel functions of the first kind. For an integer k ≥ 2,
let us consider a Bessel function Jk−1 of first kind of order k − 1 which is given by

Jk−1(x) =
1

2π

∫ π

−π

e

(
−x sin τ + (k − 1)τ

2π

)
dτ.

If the order k is fixed then we have the following expression :

Lemma 1.7.6. We have

Jk−1(2πx) = e(−x)W k−1(x) + e(x)Wk−1(x),

where the smooth function Wk−1 satisfies

xj W
(j)
k−1(x) ≪j,k

1√
x
,

whenever j ≥ 0 and x≫ 1.

Proof. See [29, Section 4.5].
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1.7.3 The Mellin transform

The Mellin transform (see [60]) is closely connected to the theory of the Dirichlet series and
is often used in number theory. It is an integral transform of a function F : R → R (wherever
it exists) given by

M(F )(s) := ϕ(s) :=

∫ ∞

0

F (x)xs−1dx,

for s ∈ C (wherever it exists).

Also, we can define the inverse Mellin transform (if it exists) by

M−1(ϕ)(x) := F (x) =

∫ x+I∞

x−I∞

ϕ(s)

xs
ds,

where x ∈ R.

For example, one can see that, the gamma function Γ(z) (Re(z) > 0) is the Mellin transform
of F (x) = e−x for x ∈ R+

0 .

1.7.4 Stationary phase method

We will also utilize a result related to estimating the exponential integrals of the form:

I =

∫ b

a

G(x)e(F (x))dx, (1.7)

where F and G are real valued smooth functions on the interval [a, b]. Let us recall the
following lemma on exponential integrals.

Lemma 1.7.7. Let F and G be real valued twice differentiable functions and let F ′′ ≥ r > 0
or F ′′ ≤ −r < 0, throughout the interval [a, b]. Let G(x)/F ′(x) be monotonic and also let
|G(x)| ≤ A. Then we have

I ≤ 8A√
r
.

Proof. See [61, Lemma 4.5, P. 72]
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1.7.5 Kloosterman Sum

Let a, b,m be natural numbers. Then we define a Kloosterman sum which is a particular
kind of exponential sum, given by the following :

S(a, b; m) =
∑

0≤x≤m−1
(x,m)=1

em(ax+ bx),

where x denotes the inverse of x modulo m. The most famous estimate is due to Weil (see
[33]) and states that :

∣∣∣S(a, b; m)
∣∣∣ ≤ τ(m)

√
gcd(a, b, m)

√
m.

For more information, one can see [33], [35].

1.7.6 Shifted convolution sum

Let N, k, l1, l2, h ∈ N; M1,M2, P1, P2 be real numbers greater than 1. Let χ1 be a character
(not necessarily primitive) to modulus N , and let

f(z) =
∞∑

m=1

a(m)m(k−1)/2 e(mz) ∈ Sk (N, χ1) ,

be a primitive cusp form (i.e., an eigenfunction for all the Hecke operators, arithmetically
normalized by a(1) = 1) of weight k and character χ1 for the congruence subgroup Γ0(N).
Now consider the shifted convolution sum :

Dg (l1, l2, h) :=
∑

l1m1−l2m2=h

a (m1) a (m2) g (m1, m2) ,

where g be a smooth function, supported on [M1, 2M1]× [M2, 2M2] such that
∣∣∣∣∣∣g(ij)∣∣∣∣∣∣

∞
≪i,j

(P1/M1)
i (P2/M2)

j for all i, j ≥ 0. Then we have (see [5, Theorem 1.3], [6, Theorem 1.3])

Dg (l1, l2, h) ≪ε,P1,P2,N,k (l1M1 + l2M2)
1/2+θ+ε ,
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for θ as in the Remark 1.7.4, uniformly in l1, l2, h and also note that here the dependence
on P1, P2, N , and k is polynomial.

1.7.7 p-Adic exponent pair method

In this section, we will discuss the p-adic exponent pair method which is the p-adic analogue
of the analytic exponent pair method, developed by Milicévić (see [45]). Using these ready-
to-use observations, we can estimate short exponential sums with p-adic analytic phase. Here
we will give a short description, for more theory see [45]. To start with, let us discuss some
notations.Let b(t) =

∑∞
k=0 bkt

k be a power series with coefficients bk ∈ Zp. Now for any given
λ ∈ R≥0, let us consider :

I0(Zp) := {b(t) : bk ∈ Zp(k ≥ 0), lim |bk|p = 0},

I0[λ](Zp) := {b(t) ∈ I0(Zp) : ordp(bk) ≥ ⌈kλ⌉ (k ∈ N0)}.

For x ∈ Q+, let ι(x) = max(ordp(x
−1), 0) and ι′(x) = max(ordp(x), 0), so we have ordp(x) =

ι′(x)− ι(x).

Definition 1.7.8. . Let u, κ ∈ N where 1 + ι′(2) ≤ κ, w ∈ Z, λ ∈ ρpN, y ∈ Q+, and also let
ι′ = ι′(y), ι = ι(y), ω′, ω ∈ Z×

p . If f ∈ Q×
p I0(Zp) satisfies the following condition :

f ′(t) = pwω′(1 + pι+κωt)−y + pwγ0 + pu+wg(t),

where g ∈ I0[λ](Zp) and for some γ0 ∈ Zp, then we say that f belongs to the class
F(w, y, κ, λ, u, ω, ω′). We say that f belongs to class F (w, y, κ, λ, u) if for some ω′, ω ∈ Z×

p ,
we have f ∈ F(w, y, κ, λ, u, ω, ω′).

Let us consider the set of prime numbers, P and for any sets X, Y , and any family of
subsets Xp ⊂ X (p ∈ P ), let J(Xp;Y ) be the set of all functions g : Q+×

⊔
p∈P ({p} ×Xp) →

Y such that, for every y ∈ Q+, there is a finite subset P0(y) ⊂ P and a function g0 :
(P\P0(y))×X → Y such that g(y, p, x) = g0(p, x) for every p ∈ P\P0(y) and every x ∈ Xp.

In particular, we consider J(Y ) := J(∅;Y ) for the set of functions g(y, p) : Q+ × P → Y
with the above properties, and J1(Y ) := J

(
N′

p × ρpN; Y
)
(with X = R+ and N′

p = ι′(2)+N)
for the set of such functions g(y, p, κ, λ) : Q+ ×

⊔
p∈P

(
{p} × N′

p × ρpN
)
→ Y .
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Definition 1.7.9. Let us consider the set of all quintuples, Q given by

q = (k, ℓ, r, δ, (n0, u0, κ0, λ0)), (1.8)

where ℓ, k ∈ R, 0 ≤ k ≤ 1
2
≤ ℓ ≤ 1, δ ∈ R+

0 , r ∈ J1(R), u0, n0 ∈ J1(N), κ0 ∈ J(N),
λ0 ∈ J(R+), and κ + ι′(y) < n0(y, p, κ, λ). Then we say that a quintuple q ∈ Q as given
in (1.8) to be a p-adic exponent datum if, for each y ∈ Q+, p ∈ P , w ∈ Z, κ ∈ N with
κ ≥ 1 + ι0(2), λ ∈ ρpN, u, n ∈ N satisfying

κ0(y, p) ≤ κ, λ0(y, p) ≤ λ, w + n0(y, p, κ, λ) ≤ n, u0(y, p, κ, λ) ≤ u,

and for every f ∈ F(w, y, κ, λ, u), M ∈ Z, and 0 < B ≤ pn−w−κ−ι′ we have the following
estimate

∑
M<m≤M+B

e

(
f(m)

pn

)
≪ pr

(
pn−w−κ−ι′

B

)k

Bℓ
(
log pn−w−κ−ι′

)δ
,

where r = r(y, p, κ, λ), and the implied constant depends only on the datum q.

Definition 1.7.10. We call a pair π = (k, ℓ), of non-negative numbers a p-adic exponent
pair if q = (k, ℓ, r, δ, (n0, u0, κ0, λ0)) is a p-adic exponent datum for some r ∈ J1(R), δ ∈ R+

0 ,
n0, u0 ∈ J1(N), κ0 ∈ J(N), λ0 ∈ J(R+

0 ).

Then we observe that (0, 1) is an exponent pair.

Theorem 1.7.11. If (k, ℓ) is a p-adic exponent pair, then so are

A(k, ℓ) =

(
k

2(k + 1)
,
k + ℓ+ 1

2(k + 1)

)
and B(k, ℓ) =

(
ℓ− 1

2
, k +

1

2

)
.

Proof. For the proof see [45].

So using these A-process and B-process, we can generate an exponent pair A3B(0, 1) =(
1
30
, 13
15

)
whenever p ≥ 5.
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1.8 An approach towards the correlation problems

Here we will discuss mainly the “Delta symbol approach” towards these correlation problems.
This works as a separation of variables.

Here we follow the following steps :

• At first we consider the space B of all functions : (N, 2N ] 7→ C where N ∈ Z (we
can also take N ∈ R and we can proceed similarly). Then this is a vector space of
dimension N with natural Hermitian inner product < , >.

• Then note that a = {a(n)}, b = {b(n)} ∈ B and S =< a, b >.

• Suppose {{ψv(n)} : v ∈ B} be an orthonormal basis of the space B. Then ((ψv(n))) is
an N ×N orthonormal matrix so that we have

∑
v∈B

ψv(n)ψv(m) =: δ(n,m) :=

{
1 if n = m ,

0 otherwise .

Here δ is the Kronecker delta symbol.

• The last equation helps us to write

S =< a, b >=
∑
v∈B

< a, ψv >< ψv, b > . (1.9)

• The circle method / delta method gives a way to come up with such basis functions.

• Individual pieces in (1.9) can be “evaluated” using summation formulae (Poisson,
Voronoi etc.) so we will get a sum having dual coefficients. For example

< a, ψv >=
∑
n∼N

a(n)ψv(n) 7→
∑
n∼N∗

a∗(n)ψ∗
v(n),

and

< b, ψv >=
∑
m∼M

b(m)ψv(m) 7→
∑

m∼M†

b†(m)ψ†
v(m).
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• So we arrived at

S =
∑
v∈B

∑
n∼N∗

a∗(n)ψ∗
v(n)

∑
m∼M†

b†(m)ψ†
v(m).

• Now applying the Cauchy-Schwarz inequality to get rid of one of the sequences using
the bound on average in L2-sense we have

S ≪
√
N∗

{∑
n∼N∗

∣∣∣∑
v∈B

ψ∗
v(n)

∑
m∼M†

b†(m)ψ†
v(m)

∣∣∣2}1/2

.

• Finally opening the absolute value square, we mainly need to estimate the sum

∑
n∼N∗

∑∑
v,v′∈B

ψ∗
v(n)ψ

∗
v′(n)

∑∑
m,m′∼M†

b†(m)ψ†
v(m)b†(m′)ψ†

v′(m
′), (1.10)

using some properties or using some summation formula for the sum

∑
n∼N∗

ψ∗
v(n)ψ

∗
v′(n).

• After estimating the above sum, we get some pattern and use that to estimate the
sum (1.10), so that we can apply summation formulae or the cancellation properties
of “short sums” (for example, see [5], [6]). Then we look at what else can be done.

1.9 A short discussion on the Circle method

In the classical circle method, we try to show that these basis vectors, discussed above,
ψv(n)’s can be taken as the trigonometric functions. The classical form is based on trigono-
metric functions or harmonics of the circle group. For the higher rank group, we use har-
monics of that higher rank group and try to get different expressions for the delta symbol
δ(m,n). Though sometimes it may be good to look also at the classical continuous circle
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method (see [62]) where the notion of major and minor arc is used. In the delta method, we
usually focus on major arcs and try to approximate the results.

The skeleton of the GL(1) delta symbol formula is :

1

N

∑
q

∑∗

a mod q

e

(
an

q

)
e

(
am

q

)
≈ δ(n,m),

where the ∗ on the sum denotes that the sum is taken over a satisfying the condition (a, q) = 1
and q is to be chosen appropriately.

Here we basically take v = (a, q) (index) and the basis vectors ψv(n)’s as

ψ(v)(n) =: ψ(a,q)(n) =
1√
N
e

(
an

q

)
,

so that we have

∑
v

ψv(n)ψv(m) ≈ δ(n,m).

The circle method was first introduced by Hardy and Ramanujan in their celebrated paper
(see [24]) on the partition function. Over the years there have been many forms of circle
methods given by many eminent mathematicians (see [25], [33, Chapter 20], [49] etc.) though
for our need we will discuss only two of them - Jutila’s circle method (see [37], [38]) and DFI
delta method (see [26], [33, Chapter 20]).

1.10 Jutila’s Circle method

Let us consider the delta function δ : Z → {0, 1} which is defined as

δ(n) :=

{
0 if n ̸= 0 ,

1 if n = 1 .

As discussed in the previous sections, we need a nice Fourier expansion of δ(n) or at least a
nice approximation of δ(n) in some Lp norm (for us p = 2). For any S ⊂ R, let us consider
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IS to be the respective indicator function or the characteristic function given by IS(x) = 1
for x ∈ S and 0 otherwise. Note that

δ(n) =

∫
R
I[0,1](x) e(nx) dx. (1.11)

Then Φ ⊂ [Q, 2Q], for any collection of positive integers defined as the set of moduli, where
Q ≥ 1 and δ, a positive real number, satisfying Q−2 ≪ δ ≪ Q−1, let us define the following
function

ĨΦ,δ(x) :=
1

2δL

∑
q∈Φ

∑∗

d mod q

I[ d
q
−δ, d

q
+δ](x),

where I[ d
q
−δ, d

q
+δ] is the indicator function of the interval [d

q
− δ, d

q
+ δ]. Here L :=

∑
q∈Φ ϕ(q)

(then we have L≪ Q2) and we will choose Φ in such a way that L ≍ Q2−ε.

Then this becomes an approximation of I[0,1] in the following sense:

Lemma 1.10.1. We have

∫
R

∣∣∣I[0,1](x)− ĨΦ,δ(x)
∣∣∣2 dx≪ Q2+ε

δL2
,

where I is the indicator function of [0, 1].

Proof. This becomes a consequence of the Parseval’s identity from Fourier analysis. For the
proof one can see [37], [49].

1.11 DFI delta method

First let us mention an expression for δ(n) which is due to Duke, Friedlander and Iwaniec
(see [26], [33, Chapter 20]). Let L ≥ 1 be a large real number. Then for n ∈ Z ∩ [−2L, 2L],
we have

δ(n) =
1

Q

∑
1≤q≤Q

∑∗

a mod q

e

(
an

q

)∫
R
g(q, x)e

(
nx

qQ

)
dx, (1.12)
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where Q = 2L1/2 and e(z) = e2πiz and ∗ on the previous sum denotes that the sum is taken
over a with the restricted condition that (a, q) = 1. In the above formula, the function g is
not given explicitly (though one can if one wishes to). The properties of g (for proof, see
[1, Lemma 2.1] and [30, Lemma 15]) that we need in our analysis are given below. For any
A > 1, we have

1. g(q, x) = 1 + h(q, x) where h(q, x) = O

(
1
qQ

(
q
Q
+ |x|

)A)
.

2. |x|j ∂j

∂xj g(q, x) ≪j logQmin
{

Q
q
, 1
|x|

}
, j ≥ 1.

3. g(q, x) ≪ |x|−A.

4.

∫
R
(|g(q, x)|+ |g(q, x)|2)dx≪ε Q

ε. (1.13)

Then from the third property given above, the effective range of the x-integral in (1.12)
becomes [−Qε, Qε]. From the above observations, we have :

Lemma 1.11.1. Let us take a large parameter L ≥ 1 and δ as above. Then, for any
n ∈ [−2L, 2L] with Q = 2L1/2, we have the following expression

δ(n) =
1

Q

∑
1≤q≤Q

∑∗

amod q

e

(
an

q

)∫
R
W

(
x

Qε

)
g(q, x)e

(
nx

qQ

)
dx+O

(
L−2023

)
,

where W (x) is a smooth non-negative bump function supported in [−2, 2], satisfying W (x) =
1 when x ∈ [−1, 1] and W (j)(x) ≪j 1, for j ≥ 0 and the function g satisfies (1.11).

Proof. For the details see [1, Lemma 2.1], [30, Lemma 15] and [35, Chapter 20].
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Chapter 2

Weyl-type bounds for twisted GL(2)
short character sums

In this chapter we will analyse the sum Sf,χ(N), given by (1.4), using a version of δ-method,
without going into L-functions. Our method improves the range of cancellation from N >
p3/4+ε (Burgess range) to N > p2/3+ε (Weyl range). Here let us state our result (see [20])
again:

Theorem 2.0.1. Let f be any Hecke-Maass cusp form for SL(2,Z) and χ be a primitive
Dirichlet character modulo p, an odd prime. Then for any ε > 0 and 0 < θ < 1

10
we have

Sf,χ(N) ≪f,ε N
3/4+θ/2p1/6(pN)ε +N1−θ(pN)ε,

which becomes non-trivial if p
2
3
+α+ε ≤ N ≤ p, where α = 4θ

1−6θ
.

Though this result is implicit in the work of Munshi (see [50]), we are doing it here explicitly.
Actually in that work (see [50]) he aims to get a subconvexity bound for L(1/2 + it, f ⊗ χ)
but here we aim to get a range for N to have a non-trivial bound or more precisely getting
cancellation in our twisted GL(2) short character sum. Here we are using the same strategy
and ideas developed in the work of Munshi (see [50]). We will only present the case of
holomorphic cusp forms for SL(2,Z) as for the Maass forms one can see Munshi’s work (see
[50]) which carried out the Maass form case in detail. The case for Maass forms is similar
as we only need the Ramanujan bound in the L2-sense.

Remark 2.0.2. Here we are considering p to be a prime number for simplicity but also one
can do for p when p is not a prime (one has to deal with the coprimality issues carefully)
using the same method.
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2.1 Sketch of the proof

We will describe our method briefly by taking a holomorphic primitive cusp form f , for
SL(2,Z). Here we are using the method of Munshi (see [50]). At first, we consider the sum

S :=
∑
n∼N

λf (n)χ(n),

forN > p
2
3
+ε, where λf (n)’s are the normalized Fourier coefficients of f and p is the conductor

of χ. Here in the sketch, we will suppress the weight function for notational simplicity. Then
we can write the above sum as

S =
∑∑
n,m∼N

λf (n)χ(m)δn,m,

where δn,m is the Kronecker δ-symbol. To get an inbuilt bilinear structure that comes from
the circle method - which was found by Jutila (see [37], [38]), we use a flexible version of
the circle method though it comes with a satisfactory error term, as long as we allow the
moduli of the circle method to be slightly larger than

√
N (see the Section 2.2). Up to an

admissible error, we see that S is given by

S =
∑∑
n,m∼N

χ(m)λf (n)

∫
R
Ĩ(α)e((n−m)α)dα,

where Ĩ(α) := 1
2δL

∑
q∈Φ
∑⋆

d( mod q) Id/q(α), Id/q is the indicator function of the interval [d
q
−

δ, d
q
+ δ], Q := N1/2+ϵ, Φ is fixed later in a suitable way and L ≍ Q2−ϵ (see the Section 1.10).

Trivial bound at this stage yields N2+ε and we need to establish the bound N1−θ for
some θ > 0, i.e., roughly speaking we need to save N . Observe that by our choice of Q,
there is no analytic oscillation in the weight function e((n−m)α). Hence their weights can
be dropped in our sketch. At first using the GL(2) Voronoi summation formula on the n
sum we get that

∑
n∼N

λf (n)e

(
na

q

)
≈ N

q

∑
n∼Q2

N

λf (n)e

(
−nā
q

)
,

where q is of size Q = N1/2+θ. The left-hand side is trivially bounded by N , whereas the

28



right-hand side is trivially bounded by Q. Hence we have “saved”

√
Initial length

Final length
=

Initial length√
Conductor

=
N

Q
=

√
N

N2θ
.

Now applying the Poisson summation formula to the m sum we arrive at

∑
m∼N

χ(m)e

(
−ma

q

)
≈ Nτχ

p

∑
|m|≪ pQ

N

χ̄(m)χ(q)Ia≡mp̄ mod q,

where Ia≡mp̄ mod q is the indicator function for a ≡ mp̄ mod q on Z. Comparing the trivial
bounds for the two sides we observe that we have “saved” N√

pQ
.

From the a mod q-sum, which will be a Kloosterman sum, we will “save”
√
Q.

With this, the above sum is roughly reduced to

S ≈ N2

Q3p1/2

∑
q∈Φ

∑
n∼N2θ

∑
m∼ pNθ

√
N

λf (n)χ̄(m)χ(q)e

(
−m̄np

q

)
.

So far we have “saved” N1/2−θ × N√
pQ

×
√
Q = N3/2−θ

√
p
. Hence our job is to “save” N

N3/2−θ
√
p

=
√
p

N1/2−θ in the above sum.

Next we choose Q = Q1Q2 and take the set of moduli Φ to be a product of two sets
of primes so that (as discussed in the Subsection 1.10.1 and the Section 2.4) q = q1q2 in
a certain unique way with q1 ≤ Q1 and q2 ≤ Q2 (see the Section 2.4). Then applying the
Cauchy-Schwarz inequality we arrive at

∑
q1∼Q1

∑
m∼ pNθ

√
N

∣∣∣ ∑
n∼N2θ

∑
q2∼Q2

λf (n)χ(q2)e

(
−m̄np
q1q2

) ∣∣∣2.
Now we open the absolute value square and apply the Poisson summation formula to

the m-sum (after appropriate smoothing). Here the diagonal is of length Q2N
2θ and so the

contribution of the zero frequency is given by ≪ pN4θ. Hence the diagonal contribution is
satisfactory if

Q2N
2θ >

p

N1−2θ
, i.e., Q2 >

p

N
.
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Also, the contribution of the off-diagonal is given by ≪ pN6θ. Note that this is satisfactory
if

pN θ/2

N3/4
√
Q2

>
p

N1−2θ
⇐⇒ Q2 < N1/2−3θ.

So we have a choice for Q2 if

p

N
< N1/2−3θ ⇒ p < N3/2−3θ.

Hence as long as N > p2/3+ε for some ε > 0 then the above method yields a non-trivial
bound for S.

Notation

In this section, by ‘≪’ we mean the implied constant will depend on ε, f only, whenever it
occurs and the notation ‘X ≍ Y ’ will mean that Y p−ε ≤ X ≤ Y pε.

2.2 Setting-up the circle method :

Now we apply the circle method to the following smooth sum directly

Sf,χ(N) =
∑
n∈Z

λf (n)χ(n)h1

( n
N

)
,

where the function h1 is smooth, supported in [1, 2] with h
(j)
1 (x) ≪j 1. Now we will approx-

imate the above sum Sf,χ(N) using Jutila’s circle method (see [37], [38] ) by the following
sum :

S̃(N) =
1

L

∑
q∈Φ

∑∗

a mod q

∑∑
m,n∈Z

λf (n)χ(m)e

(
a(n−m)

q

)
F (n,m),

where we denote eq(x) = e2πix/q, and

F (x, y) = h1

( x
N

)
h2

( y
N

) 1

2δ

∫ δ

−δ

e(α(n−m)) dα.
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Here we consider another smooth function h2 having compact support in (0,∞), with h2(x) =
1 for x whenever comes from the support of h1. Also we choose δ = N−1 so that we have

∂i+j

∂ix∂jy
F (x, y) ≪i,j

1

N i+j
.

Then we have the following lemma :

Lemma 2.2.1. Let Φ ⊂ [Q, 2Q], with

L =
∑
q∈Φ

ϕ(q) ≫ Q2−ε,

and δ = 1
N

≫ N2θ

Q2 . Then we must have

Sf,χ(N) = S̃(N) + Of,ε

(√
N
N(QN)ε

Q

)
.

Proof. For the proof of this lemma, one can see the proof of [50, Lemma 3].

We will choose the size of the moduli in the Section 2.4. We shall pick the set of the moduli
to be Q = N1/2+θ. Hence the error term getting from the previous lemma is O(N1−θ+ε) for
some θ > 0. Now we will estimate the sum S̃(N).

2.3 Estimation of S̃(N)

2.3.1 Application of the summation formulae

At first, we assume that each element of the set Φ is coprime to p, the modulus of the
character χ. Let us define

S̃x(N) =
1

L

∑
q∈Φ

∑∗

a mod q

S (a, q, x, f) T (a, q, x, χ) , (2.1)
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where

S (a, q, x, f) :=
∑
n∈Z

λf (n)h1

( n
N

)
e

(
an

q

)
e(nx),

and

T (a, q, x, χ) :=
∑
m∈Z

χ(m)e

(
−am

q

)
h2

(m
N

)
e(−xm),

with |x| < δ. Then from (1.11) of the Section 1.10 we have

S̃(N) = (2δ)−1

∫ δ

−δ

S̃x(N) dx.

Let us first study the n-sum using the Voronoi summation formula 1.7.1.

S (a, q, x, f) =
∞∑
n=1

λf (n)h1

( n
N

)
e

(
an

q

)
e(nx). (2.2)

Then we have the following lemma:

Lemma 2.3.1. We have

S (a, q, x, f) =
N3/4

q1/2

∑
|n|≪Q2

N

λf (n)

n1/4
e

(
− ān
q

)
I1(n, x, q) + O(N−2021), (2.3)

where q ∈ [Q, 2Q], coprime with p and I1(n, x, q) is given by

I1(n, x, q) :=

∫
R
h1(y)e

(
Nxy ± 4π

q

√
Nny

)
W

(
4π

√
Nny

q

)
dy,

where W is a smooth nice function.
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Proof. Applying the Voronoi summation formula 1.7.1 to the n-sum of the equation (2.2),
then we have

∑
n∈Z

λf (n)e

(
an

q

)
e(nx)h1

( n
N

)
=

1

q

∑
n∈Z

λf (n)e

(
− ān
q

)

×
∫
R
h1

( y
N

)
e(xy)Jk−1

(
4π

√
ny

q

)
dy,

where Jk−1 is the Bessel function. By changing y 7→ Ny and using the decomposition 1.7.6,

Jk−1(x) =
W (x)√

x
e(x) +

W̄ (x)√
x
e(−x),

where W (x) is a nice function, the right-hand side integration becomes

N3/4q1/2
∫
R
h1(y)e

(
Nxy ± 4π

q

√
Nny

)
W

(
4π

√
Nny

q

)
dy.

By repeated integral by parts we see that this integral is negligibly small if |n| ≫ Q2Nε

N
.

Hence the Lemma 2.3.1 follows.

Remark 2.3.2. Note that x ≍
√
n√
Nq

, otherwise I1(n, x, q) is negligibly small.

Now let us consider the m-sum of (2.1) given by

T (a, q, x, χ) =
∑
m∈Z

χ(m)e

(
−am

q

)
h2

(m
N

)
e(−xm), (2.4)

for which we have the following lemma:

Lemma 2.3.3. We have

T (a, q, x, χ) =
Nτχ
p

∑
|m|≪ pQ

N

mp̄≡ a mod q

χ(m)χ(q)I2(m,x, q) + O(N−2021), (2.5)
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where

I2(m,x, q) :=

∫
R
h2(y)e(−Nxy)e

(
−mNy

pq

)
dy.

Proof. To the m-sum in the equation (2.4), we apply the Poisson summation formula to get
that

T (a, q, x, χ) =
N

pq

∑
m∈Z

I2(m,x, q)
∑

β mod q

χ(β)e

(
−aβ
q

)
e

(
mβ

pq

)
,

where

I2(m,x, q) :=

∫
R
h2(y)e(−Nxy)e

(
−mNy

pq

)
dy.

Here note that this integral is negligibly small if |m| ≫ pQ
N
N ε.

So we have

T (a, q, x, χ) =
N

pq

∑
|m|≪ pQ

N
Nϵ

I2(m,x, q)
∑

β mod pq

χ(β)e

(
−aβ
q

)
e

(
mβ

pq

)
+O(N−2021).

As we know (p, q) = 1, so that we can write β as β = β1qq̄ + β2pp̄, where β1, β2 runs
through a complete set of residue classes congruent to p, q respectively. Then substituting
these in the place of β we have

T (a, q, x, χ) =
Nτχ
p

∑
|m|≪ pQ

N

mp̄≡ a mod q

χ(m)χ(q)I2(m,x, q) + O(N−2021).

This completes the proof.

From (2.3) and (2.5) we get:
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Proposition 2.3.4. We have

S̃x(N) =
N7/4

√
pL

∑
q∈Φ

χ(q)

q1/2

∑
|n|≪Q2

N

∑
|m|≪ pQ

N

(m,q)=1

λf (n)

n1/4
χ(m)e

(
−pm̄n

q

)
I1(n, x, q)I2(m,x, q)

+ O(N−2021),

(2.6)

where I1(n, x, q), I2(m,x, q) are given by (2.3), (2.5) respectively.

2.4 Further estimation

2.4.1 Application of the Cauchy-Schwarz and Poisson summation
formulae

Le Φ = Φ1Φ2 be the set of moduli, where Φi consists of primes in the dyadic segment
[Qi, 2Qi], coprime to p, for i ∈ {1, 2} and Q1Q2 = Q = N1/2+θ. Also, we consider Q1 and Q2

whose optimal sizes will be chosen later so that the collections Φ1 and Φ2 become disjoint.
Now consider M0 := pQ

N
, N0 := Q2

N
. Here we note that, as 0 < θ < 1/10 so that we have

Q2 > N0 and also we have Q1 > N0.

Now applying the Cauchy-Schwarz inequality to the equation (2.6), we arrive at

S̃x(N) ≪ N7/4
√
M0√

pL
√
Q1

∑
q1∈Φ1

×

 ∑
|m|≪M0

∣∣∣∣∣∣
∑
q2∈Φ2

χ(q2)

q
1/2
2

∑
|n|≪N0

λf (n)

n1/4
I1(n, x, q1q2)I2(m,x, q1q2)e

(
−pm̄n
q1q2

)∣∣∣∣∣∣
21/2

≪ N7/4
√
M0√

pL
√
Q1

∑
q1∈Φ1

Ω(N0, q1, Q2, x)
1/2,

(2.7)
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where Ω(N0, q1, Q2, x) is defined as

∑
|m|≪M0

(m,q)=1

∣∣∣∣∣∣
∑
q2∈Φ2

χ(q2)

q
1/2
2

∑
|n|≪N0

λf (n)

n1/4
I1(n, x, q1q2)I2(m,x, q1q2)e

(
−pm̄n
q1q2

)∣∣∣∣∣∣
2

. (2.8)

Now we apply the Poisson summation formula to the m-sum with the modulus q1q2q
′
2 in

the equation (2.8). To this end, we first split the sum over m into dyadic blocks m ∼ M1,
M1 ≪M0 and then open the absolute value square in the equation (2.8), to get the following,

Ω(N0, q1, Q2, x) =
∑

q2,q′2∈Φ2

χ(q2q̄′2)

(q2q′2)
1/2

∑
|n|,|n|′≪N0

λf (n)λf (n
′)

(nn′)1/4
I1(n, x, q1q2)I1(n′, x, q1q′2)∆,

where

∆ =
∑

M1≪M0

∑
m∈Z

W ′
(
m

M1

)
e

(
m̄p(q′2n− n′q2)

q1q2q′2

)
I2(m,x, q1q2)I2(m,x, q1q′2),

and W ′(x) is a non-negative smooth function supported on [2/3, 3] with W ′(x) = 1 for
x ∈ [1, 2] and W ′(j)(x) ≪j 1.

Now applying the Poisson summation formula to the m-sum it transforms into

M1

q1q2q′2

∑
m∈Z

S(p(q′2n− n′q2),m; q1q2q
′
2)I(m,x, q1, q2, q′2),

where

I(m,x, q1, q2, q′2) :=
∫
R
W ′(y) I2(M1y, x, q1q2) I2(M1y, x, q1q′2) e

(
−mM1y

q1q2q′2

)
dy.

Here note that the integral I is negligibly small if |m| ≫ Q1Q2
2

M1
N ε = Q2Q

M1
N ε.

Let R1 =
Q2Q
M1

. So we get

S̃x(N) =
N7/4

√
M0√

pL
√
Q1

∑
q1∈Φ1

Ω(N0, q1, Q2, x)
1/2 +O(N−2021), (2.9)
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where

Ω(N0, q1, Q2, x) =
∑

M1≪M0

M1

q1

∑
q2,q′2∈Φ2

χ(q2q̄′2)

(q2q′2)
3/2

∑
|n|,|n|′≪N0

λf (n)λf (n
′)

(nn′)1/4

× I1(n, x, q1q2) I1(n′, x, q1q′2)
∑

|m|≪R1

S(p(q′2n− n′q2),m; q1q2q
′
2)I(m,x, q1, q2, q′2).

Lemma 2.4.1. We have

Ω(N0, q1, Q2, x) ≪ (M0N
1/2
0 +N

3/2
0 Q2

2

√
Q1)(Np)

ϵ. (2.10)

The proof of this lemma is given below. The first term of the right-hand side of (2.10) is
coming from m = 0 and the second term is coming from other m’s, i.e., for the terms with
m ̸= 0. For the proof, at first, we consider the zero frequency case, i.e., when m = 0.
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The zero frequency

The zero frequency m = 0 has to be treated differently. Let Σ0 denote the contribution of
the zero frequency to S̃x(N), i.e.,

Σ0 =
∑

M1≪M0

M1

q1

∑
q2,q′2∈Φ2

χ(q2q̄′2)

(q2q′2)
3/2

∑
|n|,|n|′≪No

λf (n)λf (n
′)

(nn′)1/4
S(p(q′2n− n′q2), 0; q1q2q

′
2)

× I1(n, x, q1q2) I1(n′, x, q1q′2) I(0, x, q1, q2, q′2)

=
∑

M1≪M0

M1

q1

∑
q2,q′2∈Φ2

χ(q2q̄′2)

(q2q′2)
3/2

∑
|n|,|n|′≪N0

λf (n)λf (n
′)

(nn′)1/4

×
∑

d|(q1q2q′2,p(q′2n−n′q2))

dµ

(
p(q′2n− n′q2)

d

)
I1(n, x, q1q2) I1(n′, x, q1q′2) I(0, x, q1, q2, q′2)

=
∑

M1≪M0

M1

q1

∑
q2,q′2∈Φ2

χ(q2q̄′2)

(q2q′2)
3/2

∑
d|q1q2q′2

d
∑

|n|,|n′|≪N0

q′2n−n′q2≡0 mod d

λf (n)λf (n
′)

(nn′)1/4

× I1(n, x, q1q2) I1(n′, x, q1q′2) I(0, x, q1, q2, q′2).
(2.11)

Lemma 2.4.2. We have

Σ0 ≪M0N
1/2
0 (Np)ϵ. (2.12)

Proof. For m = 0 we have six cases according to the divisors of q1q2q
′
2 and note that Q =

Q1Q2.

Case 1

Let d = q1q2q
′
2. Then note that size of d for this case is Q1Q

2
2. But size of q

′
2n−n′q2 is Q2N0.

So in this case

q′2n− n′q2 ≡ 0 mod d ⇐⇒ q2 = q′2 and n = n′,
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as size of n is smaller than size of Q2. Hence we have, using the well-known pointwise
Ramanujan bound, given in the Remark 1.7.3,

Σ0 ≪ sup
M1≪M0

M1N
1/2
0 ,

as there are atmost logM0 (≪ pε) many M1’s. Hence we have

Σ0 ≪M0N
1/2
0 .

Case 2

Let d = 1. Then we get that, as done in the previous case,

Σ0 ≪ sup
M1≪M0

M1N
3/2
0

Q
≪ M0N

3/2
0

Q
.

But as N0 ≪ Q for this case, we must have,

Σ0 ≪M0N
1/2
0 .

Case 3

Let d = q1. For this case, we have,

Σ0 ≪ sup
M1≪M0

M1N
3/2
0

Q2

≪ M0N
3/2
0

Q2

.

But as N0 < Q2 for this case again we have,

Σ0 ≪M0N
1/2
0 .
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Case 4

Now consider d = q2. For this case we have,

Σ0 ≪ sup
M1≪M0

M1N
3/2
0

Q1

≪ M0N
3/2
0

Q1

.

But as N0 < Q1 for this case, we must have,

Σ0 ≪M0N
1/2
0 .

For the case d = q′2 we have to proceed similarly and we will get the same bound.

Case 5

Now take d = q1q2. But as size of q′2n − n′q2 is Q2N0 which is less than the size of d, i.e.,
Q1Q2 so for this case we have

q′2n− n′q2 ≡ 0 mod d ⇐⇒ q2 = q′2 and n = n′.

Hence we have

Σ0 ≪ sup
M1≪M0

M1N
1/2
0

Q2

≪ M0N
1/2
0

Q2

.

But then again we have, for this case,

Σ0 ≪M0N
1/2
0 .

For d = q1q
′
2 if we proceed similarly then we will get the same bound.

Case 6

For the last case we have d = q22. This case will be similar to the previous case. By
considering the size of d for this case again we can say that

q′2n− n′q2 ≡ 0 mod d ⇐⇒ q2 = q′2 and n = n′.
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So for this case, we have

Σ0 ≪ sup
M1≪M0

M1N
1/2
0

Q1

≪ M0N
1/2
0

Q1

.

Hence we have, for this case,

Σ0 ≪M0N
1/2
0 .

This completes the proof of the Lemma 2.4.2.

Non-zero frequency

Now we will consider the non-zero frequency case, i.e., when m ̸= 0. In this case, we will
need the following basic lemma:

Lemma 2.4.3. For any x, y ∈ R with x, y ≥ 1 and c ∈ N, we have,

∑
1≤a≤x

∑
1≤b≤y

(a, b, c) = O(xy).

Proof. We have

∑
1≤a≤x

∑
1≤b≤y

(a, b, c) ≤
∑

1≤a≤x

∑
1≤b≤y

(a, b)

≤
∑

1≤d≤min{x,y}

 ∑
d|a

1≤a≤x

1


∑

d|a
1≤b≤y

1

 ≤
∞∑
d=1

x

d
.
y

d
= O(xy).

This completes the proof of this lemma.
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Now the contribution of the non-zero frequency to S̃x(N) is given by the following:

Σ̸=0 =
∑

M1≪M0

M1

q1

∑
q2,q′2∈Φ2

χ(q2q̄′2)

(q2q′2)
3/2

∑
|n|,|n|′≪N0

λf (n)λf (n
′)

(nn′)1/4
I1(n, x, q1q2)I1(n′, x, q1q′2)

×
∑

1≤|m|≪R1

S(p(q′2n− n′q2),m; q1q2q
′
2)I(m,x, q1, q2, q′2).

(2.13)

By the Weil’s bound for Kloosterman sums and estimating the integral trivially, we arrive
at

∑
1≤|m|≪R1

S(p(q′2n− n′q2),m; q1q2q
′
2)I(m,x, q1, q2, q′2)

≪ Q2

√
Q1

∑
1≤|m|≪R1

(p(q′2n− n′q2),m; q1q2q
′
2)

1/2,

Then by the previous lemma 2.4.3, we have,

∑
1≤|m|≪R1

(p(q′2n− n′q2),m; q1q2q
′
2)

1/2 ≪ R1+ϵ
1 .

Hence we get that

∑
|m|≪R1

S(p(q′2n− n′q2),m; q1q2q
′
2) I(m,x, q1, q2, q′2) ≪ R1+ϵ

1 Q2

√
Q1. (2.14)

Now putting values of R1 we get that, using the well-known pointwise Ramanujan bound,
given in the Remark 1.7.3,

Σ̸=0 ≪ (Np)ϵ sup
M1≪M0

M1

Q1

× 1

Q2

×N
3/2
0 × Q2Q

M1

×Q2

√
Q1,

as there are atmost logM0 (≪ pε) many M1’s. So we have,

Σ ̸=0 ≪ N
3/2
0 Q2

2

√
Q1(Np)

ϵ.
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This completes the proof of the Lemma 2.4.1.

2.5 Final estimation

From the equations (2.9) and (2.10) we get the following

S̃x(N) ≪ N7/4
√
M0√

pL
√
Q1

∑
q1∼Q1

(
M0N

1/2
0 +N

3/2
0 Q2

2

√
Q1

)1/2
(Np)ϵ

≪ N7/4
√
Q1M0√
pL

(
M

1/2
0 N

1/4
0 +N

3/4
0 Q2Q

1/4
1

)
(Np)ϵ.

(2.15)

Now the optimal choice of Q1 is obtained by equating the two terms of the equation (2.10)

and using the relations Q1Q2 = Q = N1/2+θ, N0 =
Q2

N
and M0 =

pQ
N
, so that we have

Q1 =
N1+2θ

p2/3
. (2.16)

This satisfies our requirement that p
N
< Q2 < N1/2−3θ. Now putting this value of Q1 in the

equation (2.15), we have

S̃x(N) ≪ N3/4+θ/2p1/6(Np)ϵ.

Therefore we arrive at

Sf,χ(N) ≪ (Np)ϵ(N3/4+θ/2p1/6 +N1−θ) (2.17)

with 0 < θ < 1/10. We choose θ = 1
6
− log p

9 logN
so that

N3/4+θ/2p1/6 = N1−θ (2.18)

Our θ will satisfy the condition 0 < θ < 1
10

if p2/3+α+ε < N < p where α = 4θ
1−6θ

which is
fine.

This completes the proof of the Theorem 2.0.1.
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Chapter 3

Sub-Weyl type range for twisted GL(2)
short sums

First let us state our second result 1.5.3 here again :

Theorem 3.0.1. (see [22]) Let p be an odd prime such that p ≥ 5. Then we have

Sf,χ(N) ≪f N
5
9 p

13r
45 N ε,

where the implied constant depends on f only, and provided p13r/20+ε ≪ N ≤ p4r/5.

Remark 3.0.2. We need condition p ≥ 5 on the prime p to apply the p-adic exponent pair(
1/30, 13/15

)
, as one can see in [45, P. 871] that this p-adic exponent pair is only valid

when p ≥ 5. By applying other exponent pairs one can get a good range but here our main
concern is to get the sub-Weyl range for N .

Remark 3.0.3. Here for simplicity, we are considering f to be a holomorphic Hecke eigen-
form for SL(2,Z). We can get the same kind of bounds for Sf , χ(N) even if we consider
Fourier coefficients λf (n) of Hecke-Maass cusp form f as we only require Ramanujan bound
for the coefficients in L2-sense.

3.1 Sketch of the proof

We take the path of the delta method to bound the sum Sf,χ(n). Our approach is inspired
by the approach of Munshi and Singh [52]. At first, we separate the oscillations λf (n)
and χ(n) using the delta symbol. While separating these oscillations we introduce extra
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additive harmonics in the sum which serve as conductor lowering in the delta method. Our
next step is to dualize these sums. To do that we apply the Voronoi summation (see the
Lemma 1.7.1) and the Poisson summation formulae accordingly. Now we remove the Fourier
coefficients appearing in the dualized sum by applying the Cauchy-Schwarz inequality. In
the resulting expression, we open the absolute square and again we employ the Poisson
summation formula.

To proceed further, we treat the cases of zero frequency and non-zero frequencies sepa-
rately. In the zero frequency, we can not do much better than evaluating trivially. But in
the non-zero frequencies, we observe that we have a sum of the form

∑
R≤m≤2R

e

(
f(m)

pr

)

with R ≤ pr/N and a “nice” phase function f . The main step in our proof is to get some
cancellations in the above sum which we achieve by appealing to the p-adic exponent pair
(1/15, 13/15). The novelty of this paper is the application of p-adic exponent pair to get
better bounds. Note that this p-adic exponent pair has been developed by Milićević in [45].
For a brief introduction to this, one can see the Subsection 1.7.7.

Notations

We write ps ∥ m to denote that ps | m and ps+1 ∤ m. Also by A ≪ B, we mean that
|A| ≤ C|B| for some absolute constant C > 0, depending on f, ε only.

3.2 An application of the circle method

Separating the oscillations λf (n) and χ(n) in the sum Sf,χ(N) by using the delta symbol
“δ”, as given in the Section 1.11, we have

Sf,χ(N) =
∞∑∑

m,n=1

pℓ|(n−m)

λf (n)χ(m) δ

(
n−m

pℓ

)
W
( n
N

)
V
(m
N

)
,

with the condition that pℓ ≤ N and ℓ ≤ r. Now by writing the expression for δ, with the
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choice Q =
√
N/pℓ, in the above sum we arrive at

Sf,χ(N) =
1

Qpℓ

∫
R

∑
1≤q≤Q

g(q, x)

q

∑⋆

a mod q

∑
b mod pℓ

Sf (N ; a, b, q, x)Sχ(N ; a, b, q, x) dx, (3.1)

where

Sf (N ; a, b, q, x) =
∞∑
n=1

λf (n)e

(
(a+ bq)n

pℓq

)
e

(
nx

pℓqQ

)
W
( n
N

)
, (3.2)

and

Sχ(N ; a, b, q, x) =
∞∑

m=1

χ(m)e

(
−(a+ bq)m

pℓq

)
e

(
−mx
pℓqQ

)
V
(m
N

)
. (3.3)

Now in the following section, we dualize these sums by applying summation formulae.

3.3 Application of summation formulae

3.3.1 Applying the Poisson summation formula

We shall apply the Poisson summation formula to the sum over m in the equation (3.3) so
that we have :

Lemma 3.3.1.

Sχ(N ; a, b, q, x) =
N

prq

∑
m∈Z

|m|≤M0

C(a, b, q,m) I(x, q,m) + O
(
N−2022

)
,

with M0 :=
prQ
N
N ε, where

C(a, b, q,m) =
∑

β mod prq

χ(β)e

(
−(a+ bq)β

pℓq
+
mβ

prq

)
,
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and

I(x, q,m) =

∫
R
V (z)e

(
−Nxz
pℓqQ

)
e

(
−Nmz
prq

)
dz.

Proof. We split the m-sum in (3.3) into congruence classes modulo prq. Indeed, we write
m = β + cprq with β mod prq, and c ∈ Z to get

Sχ(N ; a, b, q, x) =
∑

β mod prq

χ(β)e

(
−(a+ bq)β

pℓq

)∑
c∈Z

V

(
β + cprq

N

)
e

(
−(β + cprq)x

pℓqQ

)

=
∑

β mod prq

χ(β)e

(
−(a+ bq)β

pℓq

)∑
m∈Z

∫
R
V

(
β + yprq

N

)
e

(
−(β + yprq)x

pℓqQ

)
e(−my)dy,

where the second equality follows by applying the Poisson summation formula. We now
make the change of variable (β + yprq)/N = z to obtain the value of Sχ(N ; a, b, q, x) to be

N

prq

∑
m∈Z

{ ∑
β mod prq

χ(β)e

(
−(a+ bq)β

pℓq
+
mβ

prq

)}∫
R
V (z)e

(
−Nxz
pℓqQ

)
e

(
−Nmz
prq

)
dz

=
N

prq

∑
m∈Z

C(a, b, q,m) I(x, q,m),

where C(a, b, q,m), I(x, q,m) are given by

C(a, b, q,m) :=
∑

β mod prq

χ(β)e

(
−(a+ bq)β

pℓq
+
mβ

prq

)
,

and

I(x, q,m) :=

∫
R
V (z)e

(
−Nxz
pℓqQ

)
e

(
−Nmz
prq

)
dz.
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We see, by repeated integration by parts, that

I(x, q,m) ≪j

(
1 +

N |x|
pℓqQ

)j (
prq

Nm

)j

,

for any j ≥ 0. Thus, I(x, q,m) is negligibly small unless

|m| ≤M0 :=
prQ

N
N ε.

Since the character sum C(a, b, q,m) involves prime power moduli we can easily evaluate
this sum. The following subsection is devoted to these calculations.

3.3.2 Evaluation of the character sum

We have the following lemma.

Lemma 3.3.2. Let q = pr1q′ with (p, q′) = 1 (i.e., pr1 ∥ q). Then we have

C(a, b, q,m) =

{
q χ(q′) χ

(
m−(a+bq)pr−ℓ

pr1

)
τχ if a ≡ mpr−ℓ mod q′, and pr1 ∥ m,

0 otherwise,

where τχ denotes the Gauss sum.

Proof. Since q = pr1q′ with (p, q′) = 1, the character sum C(a, b, q,m) is given by

∑
β mod pr+r1q′

χ(β)e

(
−(a+ bq)β

pℓ+r1q′
+

mβ

pr+r1q′

)
.
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By writing β = α1q
′q′ +α2 p

r+r1pr+r1 with α1 mod pr+r1 and α2 mod q′ in the above sum
we see that the above character sum changes to

∑
α1 mod pr+r1

χ(α1)e

(
−(a+ bq)α1q′

pℓ+r1
+
mα1q′

pr+r1

)

×
∑

α2 mod q′

e

(
−(a+ bq)α2pr+r1pr−ℓ

q′
+
mα2pr+r1

q′

)
.

Again, considering α1 = β1p
r + β2, where β2 is modulo pr and β1 modulo pr1 , the above

sum becomes

∑
β2 mod pr

χ(β2)e

(
−(a+ bq)pr−ℓβ2q′

pr+r1
+
mβ2q′

pr+r1

) ∑
β1 mod pr1

e

(
−(a+ bq)β1q′p

r−ℓ

pr1
+
mβ1q′

pr1

)

×
∑

α2 mod q′

e

(
−(a+ bq)α2pr+r1pr−ℓ

q′
+
mα2pr+r1

q′

)
.

We execute sums over β1 and α2 to transform the above sum to

q I(m−apr−ℓ≡ 0 mod pr1 ) I(m−apr−ℓ≡ 0 mod q′)

∑
β2 mod pr

χ(β2)e

((
m− (a+ bq)pr−ℓ

)
β2q′

pr+r1

)
.

Since N ≤ pr, we have the inequality pr1 ≤ q ≤ Q =
√
N/pℓ ≤ p(r−ℓ)/2 < pr−ℓ. Thus,

min{r1, r − ℓ} = r1. Hence the congruence m− apr−ℓ ≡ 0 mod pr1 is same as pr1 | m.

Note that, since χ is a primitive character modulo pr, the sum over β2 is Gauss sum
which vanishes unless

(
m− (a+ bq)pr−ℓ

pr1
, p

)
= 1 ⇐⇒ (m/pr1 , p) = 1,
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as r1 < r − ℓ. In this case, we have

∑
β2 mod pr

χ(β2)e

((
m− (a+ bq)pr−ℓ

)
β2q′

pr+r1

)
= χ(q′)χ

(
m− (a+ bq)pr−ℓ

pr1

)

×
∑

β2 mod pr

χ(β2)e

(
β2
pr

)
.

Note that the last sum over β2 is the Gauss sum which completes the proof of the lemma.

After applying the Poisson summation formula, the sum Sf,χ(N) becomes

Sf,χ(N) =
1

Qpℓ

∫
R

⌊ logQ
log p

⌋∑
r1=0

∑
1≤q′≤Q/pr1

(q′,p)=1

g(pr1q′, x)

pr1q′

∑⋆

a1 mod pr1

∑
b mod pℓ

×


τχχ(q

′)N

pr

∑
m′≪M0/pr1

(m′,p)=1

χ
(
m′ − (a+ bq)pr−ℓ−r1

)
I(x, pr1q′, pr1m′)


×

{
∞∑
n=1

λf (n)e

(
(a+ bq)n

pℓq

)
e

(
xn

pℓqQ

)
W
( n
N

)}
dx+OA

(
N−A

)
,

for any real A > 0, where a mod q is determined in terms of a1 mod pr1 and m′. Indeed we
have a ≡ m′p2r1pr−ℓ+r1 + a1q

′q̄′ mod pr1q′ and also q = pr1q′ where pr−ℓ+r1 is the multiplica-
tive inverse of pr−ℓ+r1 modulo q′; q̄′ is the multiplicative inverse of q′ modulo pr1 .

We now split the above expression for Sf,χ(N) as follows

Sf,χ(N) = Sf,χ(N ; r1 = 0) + Sf,χ(N ; r1 ≥ 1).

Here note that r1 ≥ 1 implies (a + bq, pℓq) = 1 which allows us to apply the Voronoi
summation formula directly. But, if r1 = 0, then a+ bq may not be coprime to pℓ. Therefore
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we can not directly apply the Voronoi summation formula. So we need to work with these
two situations separately. Note that except for very small modifications, these two cases can
be dealt with similarly.

The rest of this chapter only focuses on the estimation of Sf,χ(N ; r1 = 0). Similar approach
towards the sum Sf,χ(N ; r1 ≥ 1) gives even better estimates.

Sf,χ(N ; r1 = 0) =
1

Qpℓ

∫
R

∑
1≤q≤Q
(q,p)=1

g(q, x)

q

∑
b mod pℓ

×


τχχ(q)N

pr

∑
m≪M0

(m,p)=1

χ
(
m− (a+ bq)pr−ℓ

)
I(x, q,m)



×

{
∞∑
n=1

λf (n)e

(
(a+ bq)n

pℓq

)
e

(
xn

pℓqQ

)
W
( n
N

)}
dx,

(3.4)

where a ≡ mpr−ℓ mod q. Note that from this congruence relation, it follows that (m, q) = 1.

3.3.3 Application of the Voronoi summation formula

Now we appeal to an application of the Voronoi summation formula to the n-sum in (3.4).
Recall from (3.2) that Sf (N ; a, b, q, x) is same as this n-sum. An application of the Voronoi
summation formula leads to the following lemma.

Lemma 3.3.3. Let (a+ bq, pℓ) = pℓ1 for some 0 ≤ ℓ1 ≤ ℓ. Then we have

Sf (N ; a, b, q, x) =
2πikN3/4

p(ℓ−ℓ1)/2q1/2

∑
ε′∈{±}

∑
1≤n≪N0

λf (n)

n1/4
e

(
−((a+ bq)/pℓ1)n

pℓ−ℓ1q

)

×J (ε′, q, x, n),

where

J (ε′, q, x, n) =

∫
W1,ε′(y) e

(
xNy

pℓqQ

)
e

(
ε′2

√
nNy

pℓ−ℓ1q

)
dy,

51



and N0 = pℓ−2ℓ1 N ε.

Proof. An application of Voronoi summation formula (see the Lemma 1.7.1) transforms the
sum Sf (N ; a, b, q, x) into

2πik

pℓ−ℓ1q

∞∑
n=1

λf (n) e

(
−((a+ bq)/pℓ1)n

pℓ−ℓ1q

)∫
R
W
( y
N

)
e

(
xy

pℓqQ

)
Jk−1

(
4π

√
yn

pℓ−ℓ1q

)
dy,

where k is the weight of the holomorphic Hecke eigenform f and Jk−1(x) is the Bessel
function. We make a change of variables y/N 7→ z in the above integration and use the
expression for the Bessel function (see the Subsection 1.7.6)

Jk−1(x) =
1√
x

∑
ε′∈{±}

Wk,ε′(x) e
iε′x,

where xjW
(j)
k,ε′(x) ≪k,j 1 for x≫ 1, for Bessel function to get

N3/4p(ℓ−ℓ1)/2q1/2

n1/4

∑
ε′∈{±}

∫
W1,ε′(y) e

(
xNy

pℓqQ

)
e

(
ε′2

√
nNy

pℓ−ℓ1q

)
dy,

where W1,ε′(y) = W (y)Wk,ε′

(
4π

√
nNy

pℓ−ℓ1q

)
satisfying yjW

(j)
1,ε′(y) ≪k,j 1 and ε′ ∈ {±1}. Using

integration by parts repeatedly, we can see that the above integral becomes negligibly small
unless

1 ≤ n≪ N0 = pℓ−2ℓ1 N ε.

Thus the lemma follows.

Note that we have the following identities

(
(a+ bq)/pℓ1

)
pℓ−ℓ1q

=
apℓ1pℓ−ℓ1pℓ−ℓ1 + ((a+ bq)/pℓ1)qq̄

pℓ−ℓ1q

=
((a+ bq)/pℓ1) q̄

pℓ−ℓ1
+
m̄prp2(ℓ−ℓ1)

q
.
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In the second equality, we have used the fact that a ≡ mpr−ℓ mod q. The following
proposition is obtained by using this identity and by rearranging all the terms.

Proposition 3.3.4. We have

Sf,χ(N ; r1 = 0) =
τχN

7/42πik

Qpr+
3ℓ
2

∑
ε′∈{±}

ℓ∑
ℓ1=0

pℓ1/2 T (ε′, ℓ1, N),

where

T (ε′, ℓ1, N) =
∑

1≤n≪N0

λf (n)

n1/4

∑
1≤q≤Q

(q,p)=1

χ(q)

q3/2

∑
m≪M0

(m,p)=1

∑†

β mod pℓ−ℓ1

× χ
(
m− βpr−ℓ+ℓ1

)
e

(
−β q̄n
pℓ−ℓ1

− m̄prp2(ℓ−ℓ1)n

q

)
I(ε′, q, n,m),

a + bq = βpℓ1 and ε′ ∈ {±1}. The symbol † on the β-sum means that ((a + bq)/pℓ1 , p) = 1
and

I(ε′, q, n,m) =

∫
R
g(q, x)J (ε′, q, x, n) I(q, x,m) dx.

3.3.4 Bounds for the integrals I(ε′, q, n,m)

In this subsection, we give bounds for the integrals I(ε′, q, n,m), where ε′ ∈ {±1}, which
are useful when we will deal with small q (note that the phase functions, appeared in
I(ε′, q, n,m), oscillate when q is small).

Lemma 3.3.5. We have

I(ε′, q, n,m) ≪ pℓqQ

N
N ε.
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Proof. Recall that I(ε′, q, n,m) is given by

I(ε′, q, n,m) =

∫
R
g(q, x)J (ε′, q, x, n) I(q, x,m) dx.

The function g(q, x) is negligible unless |x| ≤ N ε. Therefore we have

I(ε′, q, n,m) =

∫
|x|≤Nε

g(q, x)

∫
R
W1,ε′(y) e

(
xNy

pℓqQ

)
e

(
ε′2

√
nNy

pℓ−ℓ1q

)

×
∫
R
V (z)e

(
−Nxz
pℓqQ

)
e

(
−Nmz
prq

)
dz dy dx+O

(
N−2022

)
.

(3.5)

Now we consider the z integral. By repeated application of integration by parts, we see that
the z integral is negligible unless

∣∣∣ Nx
pℓqQ

+
Nm

prq

∣∣∣≪ N ε ⇐⇒
∣∣∣x+ mQ

pr−ℓ

∣∣∣≪ pℓqQ

N
N ε.

We know, by properties of the function g(q, x), see the Section 1.11, that

g(q, x) = 1 + O
(
N−2022

)
,

if q ≤ Q1−ε or |x| ≤ N−ε. We can assume that q ≤ Q1−ε otherwise the statement of the
Lemma 3.3.5 follows trivially from the bound g(q, x) ≪ N ε if Q1−ε ≤ q ≤ Q. Therefore we
divide x-integral into two parts and write

I(ε′, q, n,m) =


∫

|x|≤N−ε∣∣∣x+ mQ

pr−ℓ

∣∣∣≪ pℓqQ
N

Nε

+

∫
N−ε≤|x|≤Nε∣∣∣x+ mQ

pr−ℓ

∣∣∣≪ pℓqQ
N

Nε

 g(q, x)

∫
R

∫
R
{y, z} dx dy dz

+O
(
N−2022

)
,
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where {y, z} is the remaining integrand in the variables y, z of (3.5).

In the first integral, we can replace g(q, x) by 1 up to a negligible error term. We treat
everything else trivially in the first x-integral to get this integral to be

≪ pℓqQ

N
N ε.

In the second x-integral, we have the condition that N−ε ≤ |x| ≤ N ε. In this case, we
consider y-integral in (3.5). In this integral we make a change of variable y → y2, and then
the resulting expression of this integral is given by

∫
R
2 yW1,ε′(y

2) e (f(y)) dy,

where the phase function is as follows

f(y) :=
xNy2

pℓqQ
− ε′2

√
nNy

pℓ−ℓ1q
.

The stationary point y0 of f(y) is given by

y0 = ε′
√
nQpℓ1/x

√
N.

Hence we have

f (′′)(y0) =
2xN

pℓqQ
.

Thus we get the following second derivative bound

1√
|f (′′)(y0)|

≪
√
pℓqQ

N
N ε.

Therefore, using the Lemma 1.7.7, this y-integral is at most

≪
√
pℓqQ

N
N ε.
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Thus, the second x-integral is at most

≪
√
pℓqQ

N
N ε

∫
N−ε≤|x|≤Nε∣∣∣x+ mQ

pr−ℓ

∣∣∣≪ pℓqQ
N

Nε

|g(q, x)| dx

≪ pℓqQ

N
N ε

∫
R
|g(q, x)|2 dx

≪ pℓqQ

N
N ε.

Here we have used the L2-bound for the function g(q, x) from the Section 1.11.

3.4 Cauchy-Schwarz and Poisson summation formulae

An application of the Cauchy-Schwarz inequality on the n-sum in T (ε′, ℓ1, N) along with the
Ramanujan bound for the Fourier coefficients λf (n) gives that

T (ε′, ℓ1, N) ≪ N
1/4
0 Θ1/2, (3.6)

where

Θ =
∑
n

W2

(
n

N0

)∣∣∣ ∑
1≤q≤Q
(q,p)=1

χ(q)

q3/2

∑
m≪M0
(m,p)=1

∑†

β mod pℓ−ℓ1

× χ
(
m− βpr−ℓ+ℓ1

)
e

(
−β q̄n
pℓ−ℓ1

− m̄prp2(ℓ−ℓ1)n

q

)
I(ε′, q, n,m)

∣∣∣2,
where W2 is smooth bump function supported on [1, 2]. After opening the absolute square
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and interchanging sums we arrive at

Θ =
∑∑
1≤q1,q2≤Q
(q1q2,p)=1

χ (q1q2)

q
3/2
1 q

3/2
2

∑∑
m1,m2≪M0

(m1m2,p)=1

∑†

β1 mod pℓ−ℓ1

∑†

β2 mod pℓ−ℓ1

× χ
(
m1 − β1p

r−ℓ+ℓ1
)
χ
(
m2 − β2p

r−ℓ+ℓ1
)
T (m1,m2, q1, q2, b1, b2),

where

T (m1,m2, q1, q2, b1, b2) =
∑
n∈Z

W2

(
n

N0

)
e

(
β1 q̄1n− β2 q̄2n

pℓ−ℓ1

)

× e

(
m̄1p

rp2(ℓ−ℓ1)n

q1
− m̄2p

rp2(ℓ−ℓ1)n

q2

)
I(ε′, q1, n,m1)I(ε′, q2, n,m2).

Now we split the sum over n into congruence classes modulo pℓ−ℓ1q1q2. Indeed for any α
modulo pℓ−ℓ1q1q2 we write n = α + kpℓ−ℓ1q1q2 with k ∈ Z. Then by applying the Poisson
summation on the k variable, we arrive at the expression

N0

pℓ−ℓ1q1q2

∑
n∈Z

∑
α mod pℓ−ℓ1q1q2

e

((
β1q̄1q1q2 − β2q̄2q1q2

)
α

pℓ−ℓ1q1q2

)

× e


(
prp2(ℓ−ℓ1)pℓ−ℓ1m̄1q2 − prp2(ℓ−ℓ1)pℓ−ℓ1m̄2q1 + n

)
α

pℓ−ℓ1q1q2

 I1(n, qi,mi, ε
′),

where

I1(n, qi,mi, ε
′) =

∫
W2(y) I(ε

′, q1, N0y,m1)I(ε′, q2, N0y,m2) e

(
− nN0y

pℓ−ℓ1q1q2

)
dy,

for T (m1,m2, q1, q2, b1, b2). Again by repeated integration by parts, we get, I1(n, qi,mi, ε
′) is

negligibly small unless

|n| ≤ q1q2p
ℓ−ℓ1

N0

N ε.
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Therefore after executing the sum over α, the value of T (m1,m2, q1, q2, b1, b2) is given by

N0

∑
|n|≤ q1q2p

ℓ−ℓ1

N0
Nϵ

L(condition)

I1(n, qi,mi, ε
′),

up to a negligible error term and L(condition) denotes the following condition :

β1q̄1q1q2 − β2q̄2q1q2 + prp2(ℓ−ℓ1)pℓ−ℓ1m̄1q2 − prp2(ℓ−ℓ1)pℓ−ℓ1m̄2q1 + n ≡ 0 mod pℓ−ℓ1q1q2 .

The above congruence relation shows that

β1 q2 − β2 q1 + n ≡ 0 mod pℓ−ℓ1 ,

and

pr−ℓ+ℓ1m̄1q2 − pr−ℓ+ℓ1m̄2q1 + n ≡ 0 mod q1q2.

After changing the variables (a1 + b1q1)/p
ℓ1 7→ α1 and (a2 + b2q2)/p

ℓ1 7→ α2, we see that Θ
is given by

Θ = N0

∑∑
1≤q1,q2≤Q

(q1q2,p)=1

χ (q1q2)

q
3/2
1 q

3/2
2

∑∑
m1,m2≪M0

(m1m2,p)=1

∑⋆

α1 mod pℓ−ℓ1

∑⋆

α2 mod pℓ−ℓ1

∑
|n|≤ q1q2p

ℓ−ℓ1

N0
Nϵ

ᾱ1q2−ᾱ2q1+n≡ 0 mod pℓ−ℓ1

pr−ℓ+ℓ1m̄1q2−pr−ℓ+ℓ1m̄2q1+n≡ 0 mod q1q2

× χ
(
m1 − α1p

r−ℓ+ℓ1
)
χ
(
m2 − α2p

r−ℓ+ℓ1
)
I1(n, qi,mi, ε

′).

(3.7)

To estimate Θ we deal with two separate cases depending on the value of n. We treat the
zero frequency (n = 0) and the non-zero frequencies (n ̸= 0) in the following subsections.
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3.4.1 Zero frequency n = 0:

We write Θzero for the contribution of the zero frequency to Θ. In the following lemma, we
give estimates for Θzero.

Lemma 3.4.1. We have

Θzero ≪
pr+

5ℓ
2
−3ℓ1

N3/2
N ε,

provided that N ≥ pr−(ℓ−ℓ1).

Proof. For n = 0, the congruence conditions in (3.7) reduces to

ᾱ1q2 − ᾱ2q1 ≡ 0 mod pℓ−ℓ1 , and

m̄1q2 − m̄2q1 ≡ 0 mod q1q2.

From the second congruence we infer that q1 | q2 and q2 | q1 which implies that q1 = q2 = q,
and we also have that q | m1−m2. Then from the first congruence we immediately conclude
that α1 ≡ α2 mod pℓ−ℓ1 . Therefore Θzero is given by

N0

∑
1≤q≤Q

(q,p)=1

χ(q2)

q3

∑∑
m1,m2≪M0

q|m1−m2

(m1m2,p)=1

χ(m̄1m2)
∑⋆

α1 mod pℓ−ℓ1

× χ
(
1− α1m̄1p

r−(ℓ−ℓ1)
)
χ
(
1− α1m̄2p

r−(ℓ−ℓ1)
)
I1(n, q,mi, ε

′).

For m1 ̸= m2, we evaluate the character sum over α1. To this end note that we have

χ(1 + zpr−(ℓ−ℓ1)) = e

(
−A1p

2r−2(ℓ−ℓ1) z2 − A2p
r−(ℓ−ℓ1) z

pr

)
,
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for some integers A1 and A2 which are coprime to p, as our choice of ℓ satisfies the condition
r − ℓ ≥ r/3 which is same as ℓ ≤ 2r/3 (see [45, Lemma 13]). Thus, the α1 sum is given by

∑⋆

αmodpℓ−ℓ1

e

(
Y1α

2 + Y2α

pr

)
, (3.8)

where

Y1 = A1p
2r−2(ℓ−ℓ1)

(
m̄2

2 − m̄2
1

)
, and

Y2 = A2p
r−(ℓ−ℓ1) (m̄1 − m̄2) .

Note that this character sum is the same as

∑
α mod pℓ−ℓ1

e

(
A1p

r−(ℓ−ℓ1)(m̄2
1 − m̄2

2)α
2 + A2(m̄1 − m̄2)α

pℓ−ℓ1

)

−
∑

α mod pℓ−ℓ1−1

e

(
A1p

r−(ℓ−ℓ1)+1(m̄2
1 − m̄2

2)α
2 + A2(m̄1 − m̄2)α

pℓ−ℓ1−1

)
.

(3.9)

We will proceed with the first term only as treatment for the second term will be similar and it
will be dominated by the first sum. To estimate the first sum, let us write α = α1+p

r−(ℓ−ℓ1)β1
where α1 is modulo pr−(ℓ−ℓ1) and β1 is modulo p2(ℓ−ℓ1)−r. As we can take ℓ < 2r

3
, the first

term in (3.9) becomes

 ∑
α1 mod pr−(ℓ−ℓ1)

e

(
A1p

r−(ℓ−ℓ1)(m̄2
1 − m̄2

2)α
2
1 + A2(m̄1 − m̄2)α1

p(ℓ−ℓ1)

)

×

 ∑
β1 mod p2(ℓ−ℓ1)−r

e

(
A2(m̄1 − m̄2)β1

p2(ℓ−ℓ1)−r

) .

(3.10)

From the above, as g.c.d(A2, p) = 1 we can see that the second sum will be
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p2(ℓ−ℓ1)−rIm1≡m2 mod p2(ℓ−ℓ1)−r .

Now let m̄1 − m̄2 = cm1,m2 p
2(ℓ−ℓ1)−r. Putting this in the first sum of (3.10), it reduces to

∑
α1 mod pr−(ℓ−ℓ1)

e

(
A2 cm1,m2 α1

pr−(ℓ−ℓ1)

)
= pr−(ℓ−ℓ1)Im1≡m2 mod pr−(ℓ−ℓ1) .

Hence (3.10) reduces to

pℓ−ℓ1 Im1≡m2 mod l.c.m(p2(ℓ−ℓ1)−r, pr−(ℓ−ℓ1)).

By substituting the bound for the character sum over α from the above and the bound for
the integral

I1(n, q,mi, ε
′) ≪ p2ℓq2Q2

N2
N ε,

in Θzero, we see that

Θzero ≪ N0

{
pℓ−ℓ1

∑
1≤q≤Q

(q,p)=1

1

q3

∑∑
m1,m2≪M0

q|m1−m2

(m1m2,p)=1

p2ℓq2Q2

N2
Im1≡m2 mod l.c.m(p2(ℓ−ℓ1)−r, pr−(ℓ−ℓ1))

+
∑

1≤q≤Q
(q,p)=1

1

q3

∑∑
m1,m2≪M0

q|m1−m2

(m1m2,p)=1

p2ℓq2Q2

N2

}
N ε

≪ pr+
5ℓ
2
−3ℓ1

N3/2
N ε +

p2r+
3ℓ
2
−2ℓ1

N5/2
N ε

≪ pr+
5ℓ
2
−3ℓ1

N3/2
N ε,

where in the second inequality the first term corresponds to the contribution of m1 = m2,
and the second one corresponds to the contribution of m1 ̸= m2, and in the last inequality
we have used the assumption that N ≥ pr−(ℓ−ℓ1). This concludes the proof of the lemma.
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Let T0(ε
′, ℓ1, N) and Sf,χ(N ; r1 = 0,Θzero) denote the contribution of Θzero to T (ε

′, ℓ1, N)
and Sf,χ(N ; r1 = 0) respectively. Then we have that

T0(ε
′, ℓ1, N) ≪ p

r+3ℓ−4ℓ1
2

N3/4
N ε,

and consequently, we have that

Sf,χ(N ; r1 = 0,Θzero) ≪
√
Npℓ/2N ε,

provided N ≥ pr−ℓ. We record this as the following proposition.

Proposition 3.4.2. We have

Sf,χ(N ; r1 = 0,Θzero) ≪
√
Npℓ/2N ε,

provided N ≥ pr−ℓ.

3.4.2 Non-zero frequency n ̸= 0 :

Assume that n ̸= 0 and also (n, pq1q2) = 1 otherwise we can take the gcd out and then
proceed with a similar approach and we can see that the resulting term will be dominated
by the following case. In this case we have determined that α2 mod pℓ and write m1,m2 in
terms of q1, q2 and n modulo q1, q2, respectively using the congruences. Indeed, we have

α2 ≡ q1(ᾱ1q2 + n) mod pℓ−ℓ1 ,

and

m1 ≡ −n̄pr−(ℓ−ℓ1)q2 mod q1, m2 ≡ n̄pr−(ℓ−ℓ1)q1 mod q2.
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By writing m1 = −n̄pr−(ℓ−ℓ1)q2 + r1q1 and m2 = n̄pr−(ℓ−ℓ1)q1 + r2q2, we see that

Θnon-zero = N0

∑∑
1≤q1,q2≤Q

(q1q2,p)=1

χ (q1q2)

q
3/2
1 q

3/2
2

×
∑

0<|n|≤ q1q2p
ℓ−ℓ1

N0
Nε

∑∑
|r1|≤ pr

N
Nε

|r2|≤ pr

N
Nε

C(r1, r2, q1, q2, n) I1(n, qi,mi, ε
′),

where C(r1, r2, q1, q2, n) is given by

∑⋆

α mod p(ℓ−ℓ1)

χ
(
−n̄pr−(ℓ−ℓ1)q2 + r1q1 − αpr−(ℓ−ℓ1)

)

× χ
(
n̄pr−(ℓ−ℓ1)q1 + r2q2 − q1(ᾱq2 + n)pr−(ℓ−ℓ1)

)
.

3.4.3 Evaluation of the sum over α

The α sum is given by

C(r1, r2, q1, q2, n) =
∑⋆

α mod p(ℓ−ℓ1)

χ
(
r1q1 + (−α− n̄q2) p

r−(ℓ−ℓ1)
)

× χ
(
r2q2 +

(
−q1(ᾱq2 + n) + n̄q1

)
pr−(ℓ−ℓ1)

)
.

Note that

χ(1 + zpr−(ℓ−ℓ1)) = e

(
−A1p

2r−2(ℓ−ℓ1) z2 − A2p
r−(ℓ−ℓ1) z

pr

)
,
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for some integers Ai’s which are coprime to p, as our choice of ℓ satisfies the condition
r− ℓ ≥ r/3 which is same as ℓ ≤ 2r/3. Thus, the character sum C(r1, r2, q1, q2, n) is same as

χ(r1q1)χ(r2q2) e

(
A1n (r1q1 q2 + r2q2 q1) + (−A2n̄

2q̄21 r̄
2
1q

2
2 + A2n̄

2r̄22 q̄
2
2q

2
1) p

r−(ℓ−ℓ1)

pℓ−ℓ1

)

×
∑⋆

α mod pℓ−ℓ1

ᾱq2+n ̸≡ 0 mod pℓ−ℓ1

e

((
A1r1q1 − 2A2n̄r̄

2
1 q̄

2
1q2p

r−(ℓ−ℓ1)
)
α

pℓ−ℓ1

)

× e

(
−
(
A1r2q2q1 + 2A2n̄r̄

2
2 q̄

2
2q

2
1p

r−(ℓ−ℓ1)
)
(ᾱq2 + n)

pℓ−ℓ1

)

× e

(
−A2r̄

2
1 q̄

2
1p

r−(ℓ−ℓ1)α2 + A2r̄
2
2 q̄

2
2q

2
1p

r−(ℓ−ℓ1)(ᾱq2 + n)
2

pℓ−ℓ1

)
.

The above α sum reduces to

∑⋆

α mod pℓ−ℓ1

α+1 ̸≡ 0 mod pℓ−ℓ1

e

((
A1n̄r1q1 − 2A2n̄

2r̄21 q̄
2
1q2p

r−(ℓ−ℓ1)
)
ᾱ

pℓ−ℓ1

)

× e

(
−
(
A1n̄r2q2q1 + 2A2n̄

2r̄22 q̄
2
2q

2
1p

r−(ℓ−ℓ1)
)
(α + 1)

pℓ−ℓ1

)

× e

(
−A2n̄

2r̄21 q̄
2
1p

r−(ℓ−ℓ1)ᾱ2 + A2n̄
2r̄22 q̄

2
2q

2
1p

r−(ℓ−ℓ1)(α + 1)
2

pℓ−ℓ1

)
.

We assume that (ℓ − ℓ1) is an even positive integer to make the exposition simpler and
to keep the ideas clear. The odd case also can be treated similarly. We now evaluate the
above sum by splitting the α variable. We write

α = α1 + α2 p
(ℓ−ℓ1)/2, with α1 (̸= 0, ̸= −1) mod p(ℓ−ℓ1)/2, α2 mod p(ℓ−ℓ1)/2.

64



Thus the α sum can be written as

∑⋆

α1 mod p(ℓ−ℓ1)/2

α1+1 ̸≡ 0 mod p(ℓ−ℓ1)/2

e

(
X1 ᾱ1 +X2 (α1 + 1) +X3 ᾱ1

2 +X4 (α1 + 1)
2

pℓ−ℓ1

)

×
∑

α2 mod p(ℓ−ℓ1)/2

e

−

(
X1 ᾱ

2
1 +X2 (α1 + 1)

2
)
α2

p(ℓ−ℓ1)/2



= p(ℓ−ℓ1)/2
∑⋆

α1 mod p(ℓ−ℓ1)/2

α1+1 ̸≡ 0 mod p(ℓ−ℓ1)/2

X1 ᾱ2
1+X2 (α1+1)

2 ≡ 0 mod p(ℓ−ℓ1)/2

e

(
X1 ᾱ1 +X2 (α1 + 1) +X3 ᾱ1

2 +X4 (α1 + 1)
2

pℓ−ℓ1

)
,

where

X1 = A1n̄r1q1 − 2A2n̄
2r̄21 q̄

2
1q

2
2p

r−(ℓ−ℓ1),

X2 = −
(
A1n̄r2q2q1 + 2A2n̄

2r̄22 q̄
2
2q

2
1p

r−(ℓ−ℓ1)
)
,

X3 = −A2n̄
2r̄21 q̄

2
1p

r−(ℓ−ℓ1),

X4 = A2n̄
2r̄22 q̄

2
2q

2
1p

r−(ℓ−ℓ1).

Note that X1 ≡ A1n̄r1q1 mod p(ℓ−ℓ1)/2, and X2 ≡ −A1n̄r2q2q1 mod p(ℓ−ℓ1)/2 as r−(ℓ−ℓ1) ≥
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(ℓ− ℓ1)/2. Thus this α term inside the above sum is given by

p(ℓ−ℓ1)/2 e

(A1n̄r1q1 − 2A2n̄
2r̄21 q̄

2
1q

2
2p

r−(ℓ−ℓ1)
) (

(r2r̄1)
1/2 (q1q̄2)− 1

)
pℓ−ℓ1



× e

−

(
A1n̄r2q2q1 + 2A2n̄

2r̄22 q̄
2
2q

2
1p

r−(ℓ−ℓ1)
) (

1 + (r2r̄1)
1/2 (q1q̄2)− 1

)
pℓ−ℓ1



× e

−A2n̄
2r̄21 q̄

2
1q

2
2p

r−(ℓ−ℓ1)
(
(r2r̄1)

1/2 (q1q̄2)− 1
)2

pℓ−ℓ1



× e

A2n̄
2r̄22q

2
1 q̄

2
2p

r−(ℓ−ℓ1)
(
1 + (r2r̄1)

1/2 (q1q̄2)− 1
)2

pℓ−ℓ1

 ,

if r2r̄1 ≡ □ mod p(ℓ−ℓ1)/2, otherwise the α sum becomes zero. Note that r2r̄1 is square
modulo p(ℓ−ℓ1)/2 if and only if r2r̄1 is square modulo p. Any m modulo p be such that
r2r̄1 ≡ m2 mod p can be uniquely extended to modulo p(ℓ−ℓ1)/2 with the property that
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r2r̄1 ≡ m2 mod p(ℓ−ℓ1)/2, by Hensel’s lemma.

Therefore, we have

C(r1, r2, q1, q2, n) = p(ℓ−ℓ1)/2 Ir2r̄1 ≡□ mod p χ(r1q1)χ(r2q2)

× e

(
A1n (r1q1 q2 + r2q2 q1)

pℓ−ℓ1

)
e

(
(−A2n̄

2q̄21 r̄
2
1q

2
2 + A2n̄

2r̄22 q̄
2
2q

2
1) p

r−(ℓ−ℓ1)

pℓ−ℓ1

)

× e

(A1n̄r1q1 − 2A2n̄
2r̄21 q̄

2
1q

2
2p

r−(ℓ−ℓ1)
) (

(r2r̄1)
1/2 (q1q̄2)− 1

)
pℓ−ℓ1



× e

−

(
A1n̄r2q2q1 + 2A2n̄

2r̄22 q̄
2
2q

2
1p

r−(ℓ−ℓ1)
) (

1 + (r2r̄1)
1/2 (q1q̄2)− 1

)
pℓ−ℓ1



× e

−A2r̄
2
1n̄

2q̄21q
2
2p

r−(ℓ−ℓ1)
(
(r2r̄1)

1/2 (q1q̄2)− 1
)2

pℓ−ℓ1



× e

A2r̄
2
2n̄

2q21 q̄
2
2p

r−(ℓ−ℓ1)
(
1 + (r2r̄1)

1/2 (q1q̄2)− 1
)2

pℓ−ℓ1

 .

3.4.4 The sum over r2

We now consider the r2 sum which is given by

∆(n, qi, r1, N, ε
′) =

∑
|r2|≤ pr

N

r2r̄1 ≡□ mod p

χ(r2) e

(
g(r2)

pℓ−ℓ1

)
I1(n, qi, r1, r2, ε

′),
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where

g(r2) =A1n̄q̄2q1r̄2 + A2n̄
2q̄22q

2
1p

r−(ℓ−ℓ1)r̄22

+
(
A1n̄r1q1 − 2A2n̄

2r̄21 q̄
2
1q2p

r−(ℓ−ℓ1)
)
(r2r̄1)

1/2

−
(
A1n̄r2q2q1 + 2A2n̄

2r̄22 q̄
2
2q

2
1p

r−(ℓ−ℓ1)
) (

1− (r2r̄1)
1/2
)

− A2r̄
2
1 q̄

2
1p

r−(ℓ−ℓ1)
(
r2r̄1 − 2(r2r̄1)

1/2
)
− A2r̄

2
1 q̄

2
1p

r−(ℓ−ℓ1)
(
r1r̄2 − 2(r2r̄1)

1/2
)
.

By taking dyadic sub-division we see that this sum is at most

∆(n, qi, r1, N, ε
′) ≪ N ε sup

R≤ pr

N

|T (R)|,

where

T (R) =
∑

R≤r2≤2R

r2r̄1 ≡□ mod p

χ(r2) e

(
g(r2)

pℓ−ℓ1

)
I1(n, qi, r1, r2, ε

′).

Remark 3.4.3. Note that we have

∂

∂r2
I1(n, qi, r1, r2, ε

′) ≪ N

pr
p2ℓq2Q2

N2
N ε,

so we can ignore the integral I1(n, qi, r1, r2, ε
′) using partial summation, while estimating

T (R).

In the following lemma, we give an estimate for T (R).

Lemma 3.4.4. We have

T (R) ≪ p14/15 pr/30R1/5N ε.
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Proof. Let κ be a large positive integer but fixed. Then we have that

T (R) =
1

2

∑
1≤m≤pκ

∑
R≤r2≤2R

r2 ≡ r1 m2 mod pκ

χ (r2) e

(
g(r2)

pℓ−ℓ1

)

=
1

2

∑
1≤m≤pκ

χ(r1m
2)

∑
R−r1m

2

pκ
≤t≤ 2R−r1m

2

pκ

χ
(
1 + r̄1m̄

2pκt
)
e

(
g(r1m

2 + tpκ)

pℓ−ℓ1

)

=
1

2

∑
1≤m≤pκ

χ(r1m
2)

∑
R−r1m

2

pκ
≤t≤ 2R−r1m

2

pκ

e

(
f(t)

pr

)
,

where f(t) = a0 logp (1 + pκr1m̄
2t) + pr−(ℓ−ℓ1)g(r1m

2 + tpκ). Note that

f ′(t) = pκ a0r1m̄
2
(
1 + pκr1m̄

2t
)−1

+ pr−(ℓ−ℓ1) h(t),

where h(t) = pκ g′(r1m
2 + pκt). Our phase function f is in the class F(κ, 1, κ, λ, u) for

arbitrarily large positive λ and positive integer u but fixed, from the Section 1.7.7, so that
we can apply p-adic exponent pair (1/30, 13/15), when p ̸= 2, 3, to the above inner sum to
get

T (R) ≪p

(
pr−2κ

R

)1/30

R13/15N ε

≪p p
r
30 R1/5N ε,

where the absolute constant depends on prime p. This concludes the lemma.

As a consequence of the above lemma we have

∆(n, qi, r1, N, ε
′) ≪ p

13r
15 N−5/6N ε. (3.11)
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The following lemma gives an estimate for Θnon-zero.

Lemma 3.4.5. We have

Θnon-zero ≪
p

28r
15

+ℓ− 3ℓ1
2

N4/3
N ε.

Proof. Observe that

Θnon-zero ≪
pr+ℓ− 3ℓ1

2

√
N

sup
qi≤Q

|r1|≤ pr

N

0<|n|≤ q1q2p
ℓ−ℓ1

N0

|∆(n, qi, r1, N, ε
′)|N ε.

By substituting the bound for ∆(n, qi, r1, N, ε
′) from the equation (3.11) in the above in-

equality we get

Θnon-zero ≪
p

28r
15

+ℓ− 3ℓ1
2

N4/3
N ε.

Let T̸=0(ε
′, ℓ1, N) and Sf,χ(N ; r1 = 0,Θnon-zero) denote the contribution of Θnon-zero to

T (ε′, ℓ1, N) and Sf,χ(N ; r1 = 0) respectively. Then we have

T̸=0(ε
′, ℓ1, N) ≪ p14r/15p

3ℓ−5ℓ1
4

N2/3
N ε,

and consequently, we have

Sf,χ(N ; r1 = 0,Θnon-zero) ≪
p13r/30N7/12

pℓ/4
N ε.

Therefore we have the following proposition.
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Proposition 3.4.6. We have

Sf,χ(N ; r1 = 0, Θnon-zero) ≪
p13r/30N7/12

pℓ/4
N ε.

3.5 Conclusion

In this section, we complete the proof of our main Theorem 3.0.1. Since the zero frequency
and the non-zero frequency cases together give Sf,χ(N ; r1 = 0), we have

Sf,χ(N ; r1 = 0) = Sf,χ(N ; r1 = 0,Θzero) + Sf,χ(N ; r1 = 0,Θnon-zero).

From the Propositions 3.4.2 and 3.4.6, we infer that

Sf,χ(N ; r1 = 0) ≪
(√

Npℓ/2 +
p13r/30N7/12

pℓ/4

)
N ε,

provided max{pℓ, pr−ℓ} ≤ N and ℓ ≤ 2r/3. By equating two terms in parenthesis we get the
value of ℓ which is given by

ℓ =

[
26r

45
+

1

9
logpN

]
.

Note that this choice of ℓ satisfies above conditions and ℓ ≤ 2r/3 provided that N ≥
p13r/20 and N ≤ p4r/5 respectively. Therefore we conclude that

Sf,χ(N) ≪ N
5
9 p

13r
45 N ε,

provided p13r/20+ϵ ≪ε N ≤ p4r/5 and absolute value may depend on the prime p. This
concludes the proof of the Theorem 3.0.1.
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Chapter 4

Subconvexity for GL(1) twists of
Rankin-Selberg L-functions

Let f and g be two Hecke-Maass or holomorphic primitive cusp forms for SL(2,Z) and χ be
a primitive Dirichlet character of modulus p, an odd prime. In this chapter, we will prove a
subconvex bound for L(s, f ⊗ g ⊗ χ). Let us state our result (see [21]) here again :

Theorem 4.0.1. Let f and g be two holomorphic or Hecke-Maass primitive cusp forms for
SL(2,Z) and let χ be a primitive Dirichlet character of modulus p, an odd prime. Then we
have

L(
1

2
, f ⊗ g ⊗ χ) ≪f,g,ε p

22
23

+ε,

for any ε > 0.

Remark 4.0.2. The main ingredient of this chapter is to use Jutila’s circle method to reduce
the original problem to a GL(2)×GL(2) shifted convolution sum problem and then appeal
to some available bounds for those shifted sums. An anonymous referee has pointed out that
a similar method was used in Raju’s PhD thesis (see [56]) in the case when n 7→ nit and the
method can be generalised for Dirichlet characters.

Remark 4.0.3. If we assume the Remark 1.7.4 then we would have

L(
1

2
, f ⊗ g ⊗ χ) ≪f,g,ε p

19
20

+ 202
100

θ+ε.

However, for our case, we only need that θ < 1
5
, which is consistent with the current record

for θ as discussed in the Remark 1.7.4.
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Notation

In this chapter, by A ≪ B we mean that |A| ≤ C|B| for some absolute constant C > 0,
depending on f, ε only and the notation ‘X ≍ Y ’ will mean that Y p−ε ≤ X ≤ Y pε.

4.1 Sketch of the proof

At first, we use the approximate functional equation to truncate the sum and then we use
dyadic subdivision to arrive at (see [23, equation 3.8])

L(
1

2
, f ⊗ g ⊗ χ) ≪ε,A sup

N≪p2+ε

|S(N)|√
N

+O
(
p−A

)
, (4.1)

for arbitrary large A > 0, where

S(N) =
∑
n∼N

λf (n)λg(n)χ(n).

Here in the sketch, we will consider the case when N = p2, at the boundary and also
suppress the weight function for notational simplicity and we are using the method of Munshi
(see [50]) to get the following sum

S =
∑∑
n,m∼p2

λf (n)λg(m)χ(m)δn,m,

where δn,m denotes the Kronecker δ-symbol. Here to get an inbuilt bilinear structure in the
circle method itself, we need to use a more flexible version of the circle method - the one
investigated by Jutila (see [37], [38]). This version comes with a satisfactory error term, as
we will find out, as long as we allow the moduli to be slightly larger than

√
N . Upto an

admissible error, we see that S is given by

S =
∑∑
n,m∼N

λf (n)λg(m)χ(m)

∫
R
Ĩ(α)e((n−m)α)dα,

where Ĩ(α) := 1
2δL

∑
q∈Φ
∑⋆

d( mod q) Id/q(α) and Id/q is the indicator function of the interval

[d
q
− δ, d

q
+ δ], Q := N1/2+ε and L ≍ Q2−ε.

Trivial bound at this stage yields N2+ε and we need to establish the bound N1−θ for
some θ > 0, i.e., roughly speaking we need to save N+ something. Observe that by our
choice of Q, there is no analytic oscillation in the weight function e((n−m)α). Hence these
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weights can be dropped in our sketch. At first using the GL(2) Voronoi summation formula
on the n sum we get that

∑
n∼N

λf (n)e

(
na

q

)
≈ N

q

∑
n∼Q2

N

λf (n)e

(
−nā
q

)
,

where q is of size Q ≈
√
Npη/2. The left-hand side is trivially bounded by N , whereas the

right-hand side is trivially bounded by Q. Hence we have “saved” N
Q
.

Again applying the GL(2) Voronoi summation formula 1.7.1 on the m sum we will save
N
pQ

. Also as the a mod q sum will be a Ramanujan sum we will “save” Q in the a-sum. Up
to this step, our total savings becomes

N

Q
× N

pQ
×Q =

N2

pQ
=

N

pη/2
,

so we have already reached the boundary and any savings will work. After this, we used the
Cauchy-Schwarz inequality and then we opened the absolute value squares after that, we
used the shifted convolution sum result done in [6] and also analysed a short twisted GL(2)
character sum where the length of the sum is greater than the size of the conductor. Hence
we got our savings, giving our subconvexity result 4.0.1.

4.2 Setting-up the circle method :

Let us apply the circle method directly to the smooth sum

Sf,g,χ(N) =
∑
n∈Z

λf (n)λg(n)χ(n)h
( n
N

)
,

where the function h is smooth, supported in [1, 2] with h(j)(x) ≪j 1. Now we will approx-
imate the above sum Sf,g,χ(N) using Jutila’s circle method (see [37], [38]) by the following
sum :

S̃(N) =
1

L

∑
q∈Φ

∑∗

a mod q

∑∑
n,m∈Z

λf (n)λg(m)χ(m)e

(
a(n−m)

q

)
F (n,m),
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where

F (x, y) = h
( x
N

)
h∗
( y
N

) 1

2δ

∫ δ

−δ

e(α(n−m)) dα.

Here we consider another smooth function h∗ having compact support in (0,∞), with h2(x) =
1 whenever x comes from the support of h. Also choosing δ = N−1 we have

∂i+j

∂ix∂jy
F (x, y) ≪i,j

1

N i+j
.

Then we have the following lemma :

Lemma 4.2.1. Let Φ ⊂ [1, Q], with

L =
∑
q∈Φ

ϕ(q) ≫ Q2−ε,

and δ ≫ 1
N
. So we arrive at

Sf,g,χ(N) = S̃(N) + Of,ε

(
N

√
Q2

δL2

)
. (4.2)

Proof. Consider

G(x) =
∑∑
n,m∈Z

λf (n)λg(m)χ(m)h
( n
N

)
h∗
(m
N

)
e (x(n−m))) .

One can see that Sf,g,χ(N) =
∫ 1

0
G(x)dx and S̃(N) =

∫ 1

0
ĨΦ,δ(x)G(x)dx. Hence

∣∣∣Sf,g,χ(N)−S̃(N)
∣∣∣ ≤ ∫ 1

0

∣∣∣1−ĨΦ,δ(x)
∣∣∣∣∣∣∑

n∈Z

λf (n)e(xn)h
( n
N

)∣∣∣∣∣∣∑
m∈Z

λg(m)χ(m)e(xm)h∗
(m
N

)∣∣∣dx.
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Here we have used the point-wise bound given by
∑

n∈Z λf (n)e(xn)h
(

n
N

)
≪f,ε N

1
2
+ε for

the middle sum. Using the Cauchy-Schwarz inequality we get

∣∣∣Sf,g,χ(N)−S̃(N)
∣∣∣≪f,ϵ N

1
2
+ϵ
[ ∫ 1

0

∣∣∣1−ĨΦ,δ(x)
∣∣∣2dx]1/2[ ∫ 1

0

∣∣∣∑
m∈Z

λg(m)χ(m)e(xm)h∗
(m
N

)∣∣∣2dx]1/2.
For the last sum, we open the absolute value square and execute the integral. So we are

left with the diagonal only, which has size N . For the other sum, we use the Lemma 1.10.1.
It follows that

∣∣∣Sf,g,χ(N)− S̃(N)
∣∣∣≪f,ε N

√
Q2

δL2
.

As for subconvexity, we need to save N with something more, i.e., we must have δL2 >
Q2pη, i.e., 1

N
≫ δ ≫ pη

Q2 , i.e., Q ≫
√
Npη/2. Here we choose Q =

√
Npη/2+ε and prime to p.

Hence the error term in the Lemma 4.2.1 is bounded by O
(

N
pη/2

)
.

4.3 Estimation of S̃(N)

Here we will estimate S̃(N).

4.3.1 Application of the Voronoi and Poisson summation formulae

At first, we assume that each member of Φ is coprime to p, the modulus of the character χ.
Now let us consider

S̃x(N) =
1

L

∑
q∈Φ

∑∗

a mod q

S(a, q, x, f)T (a, q, x, g), (4.3)

where

S(a, q, x, f) :=
∞∑
n=1

λf (n)eq(an)e(xn)h
( n
N

)
,
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and

T (a, q, x, g) :=
∞∑

m=1

λg(m)χ(m)eq(−am)e(−xm)h∗
(m
N

)
.

Hence from the Section 1.10 we have

S̃(N) =
1

2δ

∫ δ

−δ

S̃x(N)dx. (4.4)

Lemma 4.3.1. We have

S (a, q, x, f) =
N3/4

q1/2

∑
1≤n≪N0

λf (n)

n1/4
e

(
− ān
q

)
I1(n, x, q) + O(N−2023), (4.5)

where N0 :=
Q2

N
and I1(n, x, q) is given by

I1(n, x, q) :=

∫
R
h(y) e

(
Nxy ± 4π

q

√
Nny

)
Wf

(
4π

√
Nny

q

)
dy,

where Wf is a smooth nice function.

Proof. Applying the Voronoi summation formula 1.7.1 to the n-sum of the equation (4.3),
we have

∑
n∈Z

λf (n) e

(
an

q

)
e(nx)h

( n
N

)
=

1

q

∑
n∈Z

λf (n) e

(
− ān
q

)

×
∫
R
h
( y
N

)
e(xy) Jkf−1

(
4π

√
ny

q

)
dy,

where Jkf−1 is the Bessel function. By changing y 7→ Ny and using the decomposition 1.7.6,

Jkf−1(x) =
Wf (x)√

x
e(x) +

W̄f (x)√
x

e(−x),
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where Wf (x) is a nice smooth function, the right-hand side integral becomes

N3/4q1/2
∫
R
h(y) e

(
Nxy ± 4π

q

√
Nny

)
Wf

(
4π

√
Nny

q

)
dy.

By repeated integral by parts we see that this integral is negligibly small if |n| ≫ Q2Nε

N
=: N0.

Hence the lemma follows.

Lemma 4.3.2. We have

T (a, q, x) =
N3/4

τχ
√
pq

∑∗

β mod p

χ(−β)
∞∑

1≤m≪M0

λg(m)

m1/4
e

(
cm

pq

)
I2(q,m, x)

+ O(N−2023),

(4.6)

where c = ap+ βq, (c, pq) = 1,M0 :=
(pq)2

N
, and

I2(q,m, x) =

∫ ∞

0

h∗(y) e

(
Nxy ± 4π

pq

√
Nmy

)
Wg

(
4π

√
Nmy

pq

)
dy. (4.7)

Proof. At first, let us expand χ(m) in terms of additive characters so that we have

χ(m) =
1

τχ

∑
β mod p

χ(β) e

(
βm

p

)
,

where τχ is the Gauss sum associated to χ. Hence the m-sum in (4.3) transforms into

T : = T (a, q, x, g)

=
∞∑

m=1

λg(m)χ(m) e

(
−am
q

)
e(−mx)h∗

(m
N

)

=
1

τχ

∑
β mod p

χ(β)
∞∑

m=1

λg(m) e

(
(βq − ap)m

pq

)
e(−mx)h∗

(m
N

)
.

(4.8)
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Now let us consider c = ap−βq so that (c, pq) = 1. Now applying the Voronoi summation
formula 1.7.1 to the sum S2 with the modulus pq and g(m) = e(−mx)h∗

(
m
N

)
, we arrive at

T =
1

τχ pq

∑∗

β mod p

χ(β)
∞∑

m=1

λg(m) e

(
cm

pq

)
u(m), (4.9)

where

u(m) =

∫ ∞

0

h∗
( y
N

)
e (−yx) Jkg−1

(
4π

√
my

pq

)
dy. (4.10)

Now by changing the variables y 7→ Ny and using the decomposition 1.7.6,

Jkg−1(x) =
Wg(x)√

x
e(x) +

W̄g(x)√
x

e(−x),

where Wf (x) is a nice smooth function, we get that,

u(m) =
N

3
4
√
p
√
q

m1/4

∫ ∞

0

h∗(y) e

(
Nxy ± 4π

pq

√
Nmy

)
Wg

(
4π

√
Nmy

pq

)
dy

:=
N

3
4
√
pq

m1/4
I2(q,m, x).

(4.11)

Here note that by abuse of notation we are using the same notation for the weight
functions (the weight function h∗ appearing above is different from the one we started with,
which satisfies h∗(j)(x) ≪j,kf

1
xj and also supp(h∗) ⊂ [1/2, 5/2]). Now using integration by

parts repeatedly, we have

I2(q,m, x) ≪j 1.

Hence the integral I2(q,m, x) is notably small if

m≫ (pq)2

N
:=M0.

Now plugging in the expression (4.11) of u(m) into (4.9), we get our lemma.

79



Hence we have

Lemma 4.3.3.

S̃x(N) =
N3/2

τχ L
√
p

∑
q∈Φ

1

q

∑
1≤n≪N0

λf (n)

n1/4
I1(n, x, q)

∑
1≤m≪M0

λg(m)

m1/4
I2(q,m, x) C, (4.12)

where the character sum C is given by

∑∗

a mod q

∑∗

β mod p

χ(β) e

(
(c)m

pq

)
e

(
− ān
q

)
. (4.13)

4.3.2 Evaluation of the character sum

Now let us further simplify the character sum so that we get

Lemma 4.3.4.

C = τχ χ(m)χ(q2)
∑
d

∣∣q
m≡ p2n mod d

dµ
(q
d

)
if (p, q) = 1. (4.14)
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Proof. Here (q, p) = 1. So we have

C =
∑∗

a mod q

∑∗

β mod p

χ(β)e

(
(−βq + ap)m

pq

)
e

(
− ān
q

)

=
∑∗

β mod p

χ(β)
∑∗

a mod q

e

(
ap2

q
m

)
e

(
−βq

2

p
m

)
e

(
− ān
q

)

=
∑∗

a mod q

e

(
−ap

2

q
m

)
e

(
− ān
q

) ∑∗

β mod p

χ(β)e

(
−βq

2

p
m

)

= τχ χ(m)χ(q2)
∑∗

a mod q

e

(
ap2m− an

q

)

= τχ χ(m)χ(q2)
∑
d|q

m≡ p2n mod d

dµ
(q
d

)
.

4.4 Further estimation

In this section, first, we apply the Cauchy-Schwarz inequality to the n-sum in (4.15) to get
rid of one GL(2) Fourier coefficients λf (n), given below:

S̃x(N) =
N3/2

L
√
p

∑
q∈Φ

χ(q2)

q

∑
d|q

d

×
∑

1≤n≪N0

1≤m≪M0

m≡ p2n mod d

λf (n)λg(m)

(nm)1/4
χ(m)I1(n, x, q)I2(q,m, x).

(4.15)
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4.4.1 The Cauchy-Schwarz inequality

At first we choose the set of moduli Φ = Φ1Φ3Φ4, where Φi consists of primes qi’s in the
dyadic segment [Qi, 2Qi] (and coprime to p) for i = 1, 3, 4 with q = q1q3q4, and Q1Q3Q4 =
Q =

√
Npη/2 with Q1+ε

1 ≪ Q3 ≪ Q1−ε
4 . Also, we choose Q1, Q3, Q4 (whose optimal sizes

will be determined later) in such a way that the collections Φ1,Φ3,Φ4 are disjoint. Also let

m = p2n + dr so size of r becomes M0−p2n
d

≪ M0

d
and call q2 = q3q4 with Q2 = Q3Q4 and

q2 ∈ Φ2 = Φ3Φ4 so (4.15) reduces to

S̃x(N) =
N3/2

L
√
p

∑
q∈Φ

χ(q2)

q

∑
d

∣∣q1q2 d
∑

1≤r≪M0
d

χ(dr)
∑

1≤n≪N0

λf (n)λg(p
2n+ dr)

(n(p2n+ dr))1/4

× I1(n, x, q)I2(q, p
2n+ dr, x)

=
N3/2

L
√
p

∑
q∈Φ

χ(q2)

q

∑
d

∣∣q1q2 d
∑

1≤r≪M0
d

χ(dr)
∑

1≪n≪N0

(
λf (n)λg(p

2n+ dr)
)

×
(
I1(n, x, q)I2(q, p

2n+ dr, x)

(n(p2n+ dr))1/4

)

(4.16)

Now we have several cases.

Case (4.4.1). Let d = q. For this case we have

Σq :=
N3/2

L
√
p

∑
q∈Φ

q=q1q2

qχ(q2)

q

∑
1≤r≪M0

Q

χ(qr)
∑

1≤n≪N0

(
λf (n)λg(p

2n+ qr)
)

×
(
I1(n, x, q)I2(q, p

2n+ qr, x)

(n(p2n+ qr))1/4

)

=
N3/2

L
√
p

∑
q2∈Φ2

χ(q2)
∑

1≤r≪M0
Q

χ(r)

( ∑
1≤n≪N0

λf (n)

n1/4

)

×

(∑
q1∈Φ1

χ(q1)λg(p
2n+ q1q2r)

I1(n, x, q1q2)I2(q, p
2n+ q1q2r, x)

(p2n+ q1q2r)1/4

)
.

(4.17)
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Now applying the Cauchy-Schwarz inequality to (4.17), as the integrals I1, I2 do not oscillate,
we get that

∣∣∣Σq

∣∣∣≪ N3/2

L
√
p

∑
q2∈Φ2

∑
1≤r≪M0

Q

∑
1≤n≪N0

|λf (n)|2

n1/2


1/2

×

∑
q2∈Φ2

∑
1≤r≪M0

Q

∣∣∣ ∑
q1∈Φ1

χ(q1)λg(p
2n+ q1q2r)

I2(q, p
2n+ q1q2r, x)

(p2n+ q1q2r)1/4

∣∣∣2


1/2

≪ N3/2

L
√
p

(
Q2 ×

M0

Q
×N

1/2
0

)1/2

×

∑
q2∈Φ2

∑
1≤r≪M0

Q

∑
1≤n≪N0

∣∣∣ ∑
q1∈Φ1

χ(q1)λg(p
2n+ q1q2r)

I2(q, p
2n+ q1q2r, x)

(p2n+ q1q2r)1/4

∣∣∣2


1/2

≪ N3/2

L
√
p

(
M0

Q1

×N
1/2
0

)1/2

× S1/2
q ,

(4.18)

where for the bound in the second step, we have used the partial summation formula and
the Ramanujan bound on average and

Sq :=
∑
q2∈Φ2

∑
1≤r≪M0

Q

∑
1≤n≪N0

∣∣∣ ∑
q1∈Φ1

χ(q1)λg(p
2n+ q1q2r)

I2(q, p
2n+ q1q2r, x)

(p2n+ q1q2r)1/4

∣∣∣2.

At first let us club the variables q2r 7→ r, we have

Sq =
∑

Q2≤r≪M0
Q1

∑
1≤n≪N0

∣∣∣ ∑
q1∈Φ1

χ(q1)λg(p
2n+ q1r)

I2(q, p
2n+ q1r, x)

(p2n+ q1r)1/4

∣∣∣2.
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Now opening the absolute value square we have

Sq =
∑

Q2≤r≪M0
Q1

∑
1≤n≪N0

∑
q1∈Φ1

χ(q1)λg(p
2n+ q1r)

I2(q, p
2n+ q1r, x)

(p2n+ q1r)1/4

×
∑
q′1∈Φ′

1

χ(q′1)λg(p
2n+ q′1r)

I2(q, p2n+ q′1r, x)

(p2n+ q′1r)
1/4

= Sq, diag + Sq, off ,

(4.19)

where Sq, diag is the diagonal part when q1 = q′1 and Sq, off is the off-diagonal when q1 ̸= q′1.

For the diagonal case, i.e., for q1 = q′1, we have

Sq, diag ≪
∑

Q2≤r≪M0
Q1

∑
1≤n≪N0

∑
q1∈Φ1

∣∣∣λg(p2n+ q1r)
∣∣∣2 ∣∣∣I2(q, p

2n+ q1r, x)
∣∣∣2

(p2n+ q1r)1/2
. (4.20)

Now changing the variables q1r 7→ r, this reduces to,

Sq, diag ≪
∑

1≤n≪N0

∑
Q≤r≪M0

∣∣∣λg(p2n+ r)
∣∣∣2

(p2n+ r)1/2
≪ N0 ×

M0

M
1/2
0

= N0M
1/2
0 , (4.21)

by the Ramanujan bound on average and the fact that the maximum size of p2n = maximum
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size of q1r =M0.

For the off-diagonal case, i.e., for q1 ̸= q′1, (4.19) becomes

Sq, off ≪
∑

1≤n≪N0

∑
q1∈Φ1

∑
q′1∈Φ′

1

χ(q′1)χ(q1)

×
∑

Q2≤r≪M0
Q1

λg(p
2n+ q1r)λg(p

2n+ q′1r)
I2(q, p

2n+ q1r, x)I2(q, p2n+ q′1r, x)

(p2n+ q1r)1/4(p2n+ q′1r)
1/4

≪
∑

1≤n≪N0

∑
q1∈Φ1

∑
q′1∈Φ′

1

×
∣∣∣ ∑
Q2≤r≪M0

Q1

λg(p
2n+ q1r)λg(p

2n+ q′1r)
I2(q, p

2n+ q1r, x)I2(q, p2n+ q′1r, x)

(p2n+ q1r)1/4(p2n+ q′1r)
1/4

∣∣∣.

(4.22)

Now using the partial summation formula to eliminate the non-oscillating weight function,
as

∂

∂y
I2(q, p

2n+ q1y, x) ≪j 1 and
∂

∂y
I2(q, p

2n+ q′1y, x) ≪j 1,

Our problem boils down to an estimate

∑
1≤n≪N0

∑
q1∈Φ1

∑
q′1∈Φ′

1

1

M
1/2
0

∣∣∣ ∑
Q2≤r≪M0

Q1

λg(p
2n+ q1r)λg(p

2n+ q′1r)
∣∣∣. (4.23)

Indeed define u := p2n + q1r, v := p2n + q′1r, we see that q′1u − q1v = (q′1 − q1)p
2n.

Conversely, given u, v satisfying the equation u := p2n + q1r, v := p2n + q′1r, we can obtain
r in the following manner:

q1 | q′1(u− p2n) =⇒ q1 | u− p2n =⇒ there exists r such that u− p2n = q1r.

Also, this gives

q′1rq1 = q1v − q1p
2n =⇒ q′1r = v − p2n.
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Using the above idea, we can relate the inner sum of the equation (4.23) to a shifted
convolution sum given by

∑∑
M≤u,v≪2M

q′1u−q1v=(q′1−q1)p2n

λg(u)λg(v)W
( u
M

)
V
( v
M

)
. (4.24)

where W,V are nice smooth functions supported on [1/2, 3], taking value 1 on [1, 2] and
W i(x) ≪i

1
xi , V

j(y) ≪j
1
xj and Q+ p2n≪M ≪M0 + p2n.

Now using [11, Theorem 1.3], estimating the shifted convolution sum (4.24), we have

∑∑
M≤u,v≪2M

q′1u−q1v=(q′1−q1)p2n

λg(u)λg(v)W
( u
M

)
V
( v
M

)
≪ (q′1M + q1M)1/2+θ ≪ Q

1/2+θ
1 M1/2+θ. (4.25)

where θ is given in [39], Kim-Sarnak exponent (for holomorphic cusp forms, θ = 0).

So (4.22) reduces to

Sq, off ≪ N0 ×Q2
1 ×Q

1/2+θ
1 M θ

0

≪ N0Q
5/2
1 (Q1M0)

θ.

(4.26)

Then from (4.18), (4.19), (4.21) and (4.26), we have

∣∣∣Σq

∣∣∣≪ N3/2

L
√
p

(
M0

Q1

×N
1/2
0

)1/2

×
(
N0M

1/2
0 +N0Q

5/2
1 (Q1M0)

θ
)1/2

≪ N3/2

L
√
p

(
M0

Q1

×N
1/2
0

)1/2

×
(
N0M

1/2
0

)1/2

≪
√
N × p1+

η
2

Q
1/2
1

,

(4.27)
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which happens if, putting M0 = p2+η,

N0Q
5/2
1 (Q1M0)

θ ≪ N0M
1/2
0

⇐⇒ Q1 ≪ p
2
5
+ η

5
− 12

25
θ(η+2).

(4.28)

Case (4.4.2). Let d = q1 (or q3 or q4). For this case we have

Σq1 :=
N3/2

L
√
p

∑
q∈Φ

q=q1q2

q1χ(q
2)

q

∑
1≤r≪M0

Q1

χ(q1r)

×
∑

1≤n≪N0

(
I1(n, x, q)I2(q, p

2n+ q1r, x)

(n(p2n+ q1r))1/4

)(
λf (n)λg(p

2n+ q1r)
)

≪ N3/2

L
√
p

∑
q2∈Φ2

1

q22

∑
1≤r≪M0

Q1

∑
1≤n≪N0

|λf (n)|2

n1/2


1/2

×

∑
q2∈Φ2

∑
1≤r≪M0

Q1

∣∣∣ ∑
q1∈Φ1

χ(q1r)λg(p
2n+ q1r)

I1(n, x, q1q2)I2(q, p
2n+ q1r, x)

(p2n+ q1r)1/4

∣∣∣2


1/2

.

(4.29)

Now applying the Cauchy-Schwarz inequality to (4.29), as the integrals I1, I2 do not oscillate,
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we get that

∣∣∣Σq1

∣∣∣≪ N3/2

L
√
p

Q2

Q2
2

∑
1≤r≪M0

Q1

∑
1≤n≪N0

|λf (n)|2

n1/2


1/2

×

Q2

∑
1≤r≪M0

Q1

∑
1≤n≪N0

∣∣∣ ∑
q1∈Φ1

χ(q1)λg(p
2n+ q1r)

I2(q, p
2n+ q1r, x)

(p2n+ q1r)1/4

∣∣∣2


1/2

≪ N3/2

L
√
p

(
M0

Q1

×N
1/2
0

)1/2

×

 ∑
1≤r≪M0

Q1

∑
1≤n≪N0

∣∣∣ ∑
q1∈Φ1

χ(q1)λg(p
2n+ q1r)

I2(q, p
2n+ q1r, x)

(p2n+ q1r)1/4

∣∣∣2


1/2

≪ N3/2

L
√
p

(
M0

Q1

×N
1/2
0

)1/2

× S1/2
q1
,

(4.30)

where for the bound in the second step, we have used the partial summation formula and
the Ramanujan bound on average and

Sq1 :=
∑

1≤r≪M0
Q1

∑
1≤n≪N0

∣∣∣ ∑
q1∈Φ1

χ(q1)λg(p
2n+ q1r)

I2(q, p
2n+ q1r, x)

(p2n+ q1r)1/4

∣∣∣2.
Now opening the absolute value square we have

Sq1 =
∑

1≤r≪M0
Q1

∑
1≤n≪N0

∑
q1∈Φ1

χ(q1)λg(p
2n+ q1r)

I2(q, p
2n+ q1r, x)

(p2n+ q1r)1/4

×
∑
q′1∈Φ′

1

χ(q′1)λg(p
2n+ q′1r)

I2(q, p2n+ q′1r, x)

(p2n+ q′1r)
1/4

.

(4.31)
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For the diagonal case, i.e., for q1 = q′1, this reduces to

Sq1, diag =
∑

1≤r≪M0
Q1

∑
1≤n≪N0

∑
q1∈Φ1

∣∣∣λg(p2n+ q1r)
∣∣∣2∣∣∣I2(q, p

2n+ q1r, x)
∣∣∣2

(p2n+ q1r)1/2
. (4.32)

Now clubbing the variables q1, r and then changing the variables q1r + p2n 7→ r, we have,

Sq1, diag ≪
∑

1≤n≪N0

∑
Q1≤r≪M0

∣∣∣λg(r)∣∣∣2
r1/2

≪ N0 ×
M0

M
1/2
0

= N0M
1/2
0 , (4.33)

by the Ramanujan bound on average.

For the off-diagonal case, i.e., for q1 ̸= q′1, (4.31) becomes

Sq1, off ≪
∑

1≤n≪N0

∑
q1∈Φ1

∑
q′1∈Φ′

1

χ(q′1)χ(q1)

×
∑

1≤r≪M0
Q1

λg(p
2n+ q1r)λg(p

2n+ q′1r)
I2(q, p

2n+ q1r, x)I2(q, p2n+ q′1r, x)

(p2n+ q1r)1/4(p2n+ q′1r)
1/4

≪
∑

1≤n≪N0

∑
q1∈Φ1

∑
q′1∈Φ′

1

×
∣∣∣ ∑
1≤r≪M0

Q1

λg(p
2n+ q1r)λg(p

2n+ q′1r)
I2(q, p

2n+ q1r, x)I2(q, p2n+ q′1r, x)

(p2n+ q1r)1/4(p2n+ q′1r)
1/4

∣∣∣.

(4.34)

Then in a similar fashion as done in Case (4.4.1), we have

Sq1, off ≪ N0Q
5/2
1 (Q1M0)

θ. (4.35)

So from (4.31), (4.33), (4.35) we have

Sq1 ≪
(
N0M

1/2
0 +N0Q

5/2
1 (Q1M0)

θ
)
≪ N0M

1/2
0 , (4.36)
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by Case (4.4.1).

By similar arguments as done in Case (4.4.1), we have from (4.30) and (4.36),

∣∣∣Σq1

∣∣∣≪ N3/2

L
√
p
×
(
M0

Q1

×N
1/2
0

)1/2

×
(
N0M

1/2
0

)1/2

≪
√
N × p1+

η
2

Q
1/2
1

.

(4.37)

Case (4.4.3). Let d = q2 with q2 = q3q4 (or q3q1 or q1q4). Replacing q1 by q2 in the previous
case, we have

Σq2 :=
N3/2

L
√
p

∑
q∈Φ

q=q1q2

q2χ(q
2)

q

∑
1≤r≪M0

Q2

χ(q2r)

×
∑

1≤n≪N0

(
I1(n, x, q)I2(q, p

2n+ q2r, x)

(n(p2n+ q2r))1/4

)(
λf (n)λg(p

2n+ q2r)
)

≪ N3/2

L
√
p

(
M0

Q2

×N
1/2
0

)1/2

× S1/2
q2
,

(4.38)

where

Sq2 :=
∑

1≤r≪M0
Q2

∑
1≤n≪N0

∣∣∣ ∑
q2∈Φ2

χ(q2)λg(p
2n+ q2r)

I2(q, p
2n+ q2r, x)

(p2n+ q2r)1/4

∣∣∣2.
Opening the absolute value square we have,

Sq2 =
∑

1≤r≪M0
Q2

∑
1≤n≪N0

∑
q2∈Φ2

χ(q2)λg(p
2n+ q2r)

I2(q, p
2n+ q2r, x)

(p2n+ q2r)1/4

×
∑
q′2∈Φ′

2

χ(q′2)λg(p
2n+ q′2r)

I2(q, p2n+ q′2r, x)

(p2n+ q′2r)
1/4

.

(4.39)
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As done in the previous case, for the diagonal case, i.e., for q2 = q′2, we have,

Sq2, diag ≪
∑

1≤n≪N0

∑
Q2≤r≪M0

∣∣∣λg(r)∣∣∣2
r1/2

≪ N0 ×
M0

M
1/2
0

= N0M
1/2
0 , (4.40)

Now for the off-diagonal case, i.e., for q2 ̸= q′2, we have,

Sq2, off ≪
∑

1≤n≪N0

∑
1≤r≪M0

Q2

∑
q2∈Φ2
q2=q3q4

χ(q2)λg(p
2n+ q2r)

I2(q, p
2n+ q2r, x)

(p2n+ q2r)1/4

×
∑
q′2∈Φ′

2

χ(q′2)λg(p
2n+ q′2r)

I2(q, p2n+ q′2r, x)

(p2n+ q′2r)
1/4

≪

 ∑
1≤n≪N0

∑
q4∈Φ4

∑
q′2∈Φ′

2

∑
1≤r≪M0

Q2

∣∣∣λg(p2n+ q′2r)
∣∣∣2

(p2n+ q′2r)
1/2


1/2

×

 ∑
1≤n≪N0

∑
q′2∈Φ′

2

∑
q4∈Φ4

∑
1≤r≪M0

Q2

∣∣∣ ∑
q3∈Φ3

χ(q3)λg(p
2n+ q3q4r)

I2(q, p
2n+ q3q4r, x)

(p2n+ q3q4r)1/4

∣∣∣2


1/2

(4.41)

Now changing the variables u := p2n + q′2r for the first term and clubbing the variables
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v := q4r for the second term we have, we arrive at

Sq2, off ≪

 ∑
1≤n≪N0

∑
q4∈Φ4

∑
Q2≤u≪M0

∣∣∣λg(u)∣∣∣2
u1/2


1/2

×

 ∑
1≤n≪N0

∑
q′2∈Φ′

2

∑
Q4≤v≪M0

Q3

∣∣∣ ∑
q3∈Φ3

χ(q3)λg(p
2n+ q3v)

I2(q, p
2n+ q3v, x)

(p2n+ q3v)1/4

∣∣∣2


1/2

≪
(
N0Q4M

1/2
0

)1/2
× (Sq2, of2)

1/2

(4.42)

where for the last inequality we have used the Ramanujan bound on average and the partial
summation formula and

Sq2, of2 :=
∑

1≤n≪N0

∑
q′2∈Φ′

2

∑
Q4≤v≪M0

Q3

∣∣∣ ∑
q3∈Φ3

χ(q3)λg(p
2n+ q3v)

I2(q, p
2n+ q3v, x)

(p2n+ q3v)1/4

∣∣∣2.
Opening the absolute value square we have

Sq2, of2 = Q2

∑
1≤n≪N0

∑
Q4≤v≪M0

Q3

∑
q3∈Φ3

∑
q′3∈Φ′

3

χ(q′3)χ(q3)λg(p
2n+ q3v)λg(p

2n+ q′3v)

× I2(q, p
2n+ q3v, x)

(p2n+ q3v)1/4
I2(q, p2n+ q′3v, x)

(p2n+ q′3v)
1/4

.

(4.43)

Now for the diagonal case q′3 = q3, using the partial summation formula and the Ramanujan
bound on average and also clubbing the variables u := p2n+ q3v, we have,

Sq2, of2d = Q2

∑
1≤n≪N0

∑
Q2≤u≪M0

Q3

∣∣∣λg(u)∣∣∣2 1

u1/2

≪ N0Q2M
1/2
0 .

(4.44)
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For the off-diagonal case q′3 ̸= q3, we have,

Sq2, of2od = Q2

∑
1≤n≪N0

∑
Q4≤v≪M0

Q3

∑
q3∈Φ3

∑
q′3∈Φ′

3

χ(q′3)χ(q3)λg(p
2n+ q3v)λg(p

2n+ q′3v)

× I2(q, p
2n+ q3v, x)

(p2n+ q3v)1/4
I2(q, p2n+ q′3v, x)

(p2n+ q′3v)
1/4

≪ Q2

∑
1≤n≪N0

∑
q3∈Φ3

∑
q′3∈Φ′

3∈Φ∗
2

∣∣∣ ∑
Q4≤v≪M0

Q3

λg(p
2n+ q3v)λg(p

2n+ q′3v)

× I2(q, p
2n+ q3v, x)

(p2n+ q3v)1/4
I2(q, p2n+ q′3v, x)

(p2n+ q′3v)
1/4

∣∣∣.

(4.45)

Estimating in the similar manner as done in Case (4.4.1), (4.45) reduces to

Sq2, of2od ≪ N0Q2Q
5/2
3 (Q3M0)

θ. (4.46)

So from (4.43), (4.44) and (4.46) we have

Sq2, of2 ≪
(
N0Q2M

1/2
0 +N0Q2Q

5/2
3 (Q3M0)

θ
)
≪ N0Q2M

1/2
0 , . (4.47)
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where we will take Q3 ≪ p
2
5
+ η

5
− 12

25
θ(η+2).

Then from (4.38), (4.40), (4.42) and (4.47), we have

∣∣∣Σq2

∣∣∣≪ N3/2

L
√
p
×
(
M0

Q2

×N
1/2
0

)1/2

×
(
N0M

1/2
0 +

((
N0Q4M

1/2
0

)1/2
×
(
N0Q2M

1/2
0

)1/2))1/2

≪≪ N3/2

L
√
p
×
(
M0

Q2

×N
1/2
0

)1/2

×
(
N0M

1/2
0 Q

1/2
4 Q

1/2
2

)1/2

≪ N3/2

L
√
p
× M

3/4
0 N0

Q
1/4
3

≪
√
N × p1+

3η
4

Q
1/4
3

.

(4.48)

Case (4.4.4). Let d = 1. For this case we have

Σ1 :=
N3/2

L
√
p

∑
q∈Φ

χ(q2)

q

∑
1≤r≪Mq−p2n

χ(r)

×
∑

1≤n≪Nq

(
I1(n, x, q)I2(q, p

2n+ r, x)

(n(p2n+ r))1/4

)(
λf (n)λg(p

2n+ r)
)

=
N3/2

L
√
p

∑
q∈Φ

χ(q2)

q

∑
1≤n≪Nq

λf (n)

(
I1(n, x, q)

n1/4

)

×
∑

1≤r≪Mq−p2n

λg(r + p2n)χ(r + p2n)

(
I2(q, p

2n+ r, x)

(p2n+ r)1/4

)
.

(4.49)

Now by the Cauchy-Schwarz inequality and partial summation formula and changing vari-
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ables r + p2n 7→ r, (4.49) reduces to

Σ1 ≪
N3/2

L
√
p

(∑
q∈Φ

1

q2

∑
1≤n≪N0

1

N
1/2
0

∣∣∣λf (n)∣∣∣2)1/2

×

(∑
q∈Φ

∑
1≤n≪N0

∣∣∣ 1

M
1/4
0

∑
r∈Z

λg(r)χ(r)W

(
r

M0

) ∣∣∣2)1/2

≪ N3/2

L
√
p
×
(
1

Q
×N

1/2
0

)1/2

×

(
QN0

M
1/2
0

)1/2

×
∣∣∣∑
r∈Z

λg(r)χ(r)W

(
r

M0

) ∣∣∣

≪ N3/2

L
√
p
× N

3/4
0

M
1/4
0

×
∣∣∣∑
r∈Z

λg(r)χ(r)W

(
r

M0

) ∣∣∣,

(4.50)

where W is a nice function supported on [1
2
, 3] and equals to 1 on [1, 2]. Here we have used

the Ramanujan bound on average.

Now consider the twisted GL(2) short character sum of the right-hand side of (4.50). For
this case note that conductor= p2 < M0 = p2+η. Also applying the Mellin inversion formula,

∑
r∈Z

λg(r)χ(r)W

(
r

M0

)
=

1

2πi

∫
(σ)

M s
0W̃ (s)L(s, f ⊗ χ)ds+O(M−A

0 ),

for any A > 0.

As the Mellin transform W̃ (s) decays rapidly on the vertical line, so shifting the contour

to the negative side (i.e., σ < 0), and noting that L(s, f ⊗ χ) ≪ (p2)
1
2
−σ, we have,

∑
r∈Z

λg(r)χ(r)W

(
r

M0

)
= O

((
M0

p2

))
= O(pησ).

As 0 < η < 1, so shifting the contour σ 7→ −∞, we have

∑
r∈Z

λg(r)χ(r)W

(
r

M0

)
≪ pε. (4.51)
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Using (4.51), (4.50) reduces to

Σ1 ≪
N3/2

L
√
p
× N

3/4
0

M
1/4
0

× pϵ ≪
√
N

1

p1+
η
2

. (4.52)

4.5 Final estimation

Now from (4.16), (4.27), (4.37), (4.48) and (4.52) we have

S̃x(N) ≪
√
N ×

(p1+ η
2

Q
1/2
1

+
p1+

η
2

Q
1/2
1

+
p1+

η
2

Q
1/2
3

+
p1+

η
2

Q
1/2
4

+
p1+

3η
4

Q
1/4
3

+
p1+

3η
4

Q
1/4
1

+
p1+

3η
4

Q
1/4
1

+
1

p1+
η
2

+
p

pη/2

)
.

(4.53)

For the best possible estimate let us take

p1+
η
2

Q
1/2
1

=
p1+

3η
4

Q
1/4
3

⇐⇒ Q3 = Q2
1p

η,

with Q3 = Q4. So this with Q1 ≤ Q3 ≤ Q4 and Q = Q1Q3Q4 gives

Q5
1p

2η ≪ p1+
η
2

⇐⇒ Q1 ≪ p
1
5
− 3η

10 .

We take Q1 = p
1
5
− 3η

10 which is compatiable with the condition (4.28) for all η > 0 for
0 < θ < 1

5
(for now we know that θ = 7

64
, see [39]). Also, we have from Q1Q3Q4 = Q = p1+

η
2
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we have Q3 = Q4 = p
2
5
+ 2η

5 .

So that (4.53) reduces to

S̃x(N) ≪
√
N

(
p

9
10

+ 13η
20 +

p

pη/2

)
. (4.54)

For optimal choice of η, equating these we get η = 2
23
. Putting this in the previous equation

we have

S̃x(N) ≪
√
Np

22
23

+ϵ. (4.55)

Hence (4.55) along with (4.1) gives the Theorem 4.0.1.
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