
Variants of vertex and edge colorings of
graphs

Thesis submitted for the degree of

Do˝or of philosophy

in Computer Science

by

Drimit Pattanayak

under the supervision of

Mathew C. Francis

Indian Statistical Institute

Kolkata -700108

July, 2024

“Color is my daylong obsession, joy, and torment.” — Claude Monet

1

To my mother (Latika Pattanayak) and my son Hasu (Aarki Pattanayak)

2

Acknowledgements

With special gratitude, I would like to thank my Ph.D. advisor Mathew Francis. I per-

sonally learned more from him in our intellectual differences than similarities. Special

thanks to Arijit Bishnu for providing many materials to read. Words are not enough

to thank my parents and my wife Arunika for encouraging me all the time. Lastly, I

would like to thank all of my friends for their help and support.

3

Abstract

A k-linear coloring of a graph G is an edge coloring of G with k colors so that each

color class forms a linear forest—a forest whose each connected component is a path.

The linear arboricity χ′
l(G) of G is the minimum integer k such that there exists a

k-linear coloring of G. Akiyama, Exoo and Harary conjectured in 1980 that for every

graph G, χ′
l(G) ≤

⌈
∆(G)+1

2

⌉
where ∆(G) is the maximum degree of G. First, we prove

the conjecture for 3-degenerate graphs. This establishes the conjecture for graphs of

treewidth at most 3 and provides an alternative proof for the conjecture in some classes

of graphs like cubic graphs and triangle-free planar graphs for which the conjecture

was already known to be true. Next, we prove that for every 2-degenerate graph G,

χ′
l(G) =

⌈
∆(G)

2

⌉
if ∆(G) ≥ 5. We conjecture that this equality holds also when ∆(G) ∈

{3, 4} and show that this is the case for some well-known subclasses of 2-degenerate

graphs. All the above proofs can be converted into linear time algorithms that produce

linear colorings of input 3-degenerate and 2-degenerate graphs using a number of colors

matching the upper bounds on linear arboricity proven for these classes of graphs.

Motivated by this, we then show that for every 3-degenerate graph, χ′
l(G) =

⌈
∆(G)

2

⌉
if ∆(G) ≥ 9. Further, we show that this line of reasoning can be extended to obtain

a different proof for the linear arboricity conjecture for all 3-degenerate graphs. This

proof has the advantage that it gives rise to a simpler linear time algorithm for obtaining

a linear coloring of an input 3-degenerate graph G using at most one more color than

the linear arboricity of G.

A p-centered coloring of a graph G, where p is a positive integer, is a coloring of the

vertices of G in such a way that every connected subgraph of G either contains a vertex

with a unique color or contains more than p different colors. As p increases, we get a

hierarchy of more and more restricted colorings, starting from proper vertex colorings,

which are exactly the 1-centered colorings. Debski, Felsner, Micek and Schroder proved

that bounded degree graphs have p-centered colorings using O(p) colors. But since their

method is based on the technique of entropy compression, it cannot be used to obtain

a description of an explicit coloring even for relatively simple graphs. In fact, they ask

if an explicit p-centered coloring using O(p) colors can be constructed for the planar

grid. We answer their question by demonstrating a construction for obtaining such a

coloring for the planar grid.

5

List of publications/communications

• Manu Basavaraju, Arijit Bishnu, Mathew C. Francis, and Drimit Pattanayak. The

linear arboricity conjecture for 3-degenerate graphs. Graph-Theoretic Concepts

in Computer Science - 46th International Workshop, WG 2020, Leeds, UK, June

24–26, 2020, Revised Selected Papers, volume 12301 of Lecture Notes in Computer

Science, pages 376—387. Springer, 2020.

• Mathew C. Francis and Drimit Pattanayak. A p-centered coloring for the grid

using O(p) colors. Published in Discrete Mathematics, volume 347, number 1,

pages 113670, year 2024.

• Manu Basavaraju, Arijit Bishnu, Mathew C. Francis, and Drimit Pattanayak.

The linear arboricity conjecture for graphs of low degeneracy. arXiv:2007.06066

[math.CO]. https://doi.org/10.48550/arXiv.2007.06066.

6

List of symbols

• V (G): Set of vertices of graph G.

• E(G): Set of edges of graph G.

• N̄G(v): Set of incident edges at v ∈ V (G).

• NG(v): Set of neighboring vertices at v ∈ V (G).

• dG(v): Degree of v ∈ V (G).

• ∆(G): Maximum degree of G.

• PG: Set of pivots in G.

• P̄G(v): Set of pivot edges at v ∈ PG.

• LG: Collection of linear colorings of G.

• kLG: Collection of k-linear colorings of G.

• Part(X): Collection of partitions of the set X.

• [x]α: The unique part in partition α that contains x.

List of Figures

1.1 An example of a proper vertex coloring 13

1.2 An example of a proper edge coloring 14

1.3 Planar drawings of two graphs . 14

1.4 An example of a linear forest. 21

1.5 An example of a linear coloring . 22

1.6 An example of a 3-degenerate graph . 22

1.7 An example of a 2-degenerate graph . 22

1.8 Centered coloring and treedepth . 27

3.1 Proof of LAC for 3-degenerate graphs: The inductive step 40

3.2 A maximal 2-degenerate graph of maximum degree 5 that does not con-

tain a Hamiltonian path . 47

3.3 A step in the construction of a 2-linear coloring of partial 2-trees having

maximum degree 4 . 51

6.1 The 5× 5 grid . 91

6.2 A 1-centered coloring of the 5× 5 grid 92

6.3 Two partitions of the grid . 93

7.1 The two cases for 4-degenerate graphs. 100

8

Contents

1 Introduction 11

1.1 Graph coloring . 12

1.2 Linear colorings . 21

1.3 Centered colorings . 26

2 Preliminaries 31

3 Linear arboricity of 3-degenerate and 2-degenerate graphs 34

3.1 Proof Theorem 1 . 35

3.2 2-degenerate graphs . 41

3.2.1 2-degenerate graphs with ∆ > 4 42

3.2.2 2-degenerate graphs with ∆ ≤ 4 43

4 Optimal linear coloring of 3-degenerate graphs 53

4.1 Some preliminary definitions . 53

4.2 Maximum degree at least 9 . 55

4.3 Maximum degree less than 9 . 61

5 Linear time algorithms 68

5.1 Pseudo-k-linear colorings and segments 71

5.1.1 Encoding the graph . 73

9

5.1.2 Encoding the coloring . 74

5.2 Maintaining the Eligible list . 78

5.3 The algorithm . 80

5.4 The 2-degenerate cases . 85

5.5 A simpler algorithm for 3-degenerate graphs 87

6 p-centered colorings of grids 91

6.1 The coloring . 94

6.2 Proof of Theorem 10 . 96

6.3 Generalizing to all values of p . 97

7 Conclusion 99

10

Chapter 1

Introduction

All graphs that we consider in this thesis will be simple and undirected. Thus, a graph

G consists of a set of “vertices”, denoted by V (G), and a set of “edges” E(G), where each

edge is a subset of V (G) of cardinality 2. For two vertices u, v ∈ V (G), we shall denote

the edge {u, v} as simply uv. If uv ∈ E(G), then we say that the vertices u and v are

“adjacent” in G, or that there is an “edge between” u and v. We also say that the edge

uv is “incident on” the vertex u (as well as on the vertex v). The “degree” of a vertex is

the number of edges that are incident on it. A “subgraph” of G is a graph H such that

V (H) ⊆ V (G) and E(H) ⊆ E(G); in other words, it is a graph that can be obtained

by removing some vertices and edges from G (note that the removal of a vertex results

in the removal of all edges incident on that vertex). An “induced subgraph” of G is a

graph H such that V (H) ⊆ V (G) and E(H) = {uv ∈ E(G) : u, v ∈ V (H)}. Thus, an

induced subgraph of G is a graph that can be obtained by G using only the removal of

some vertices. To denote the fact a graph H having V (H) = S is an induced subgraph

of G, we sometimes say that “H is the subgraph induced by S in G”. For an edge

uv ∈ E(G), the graph G′ obtained by the “contraction” of the edge uv is the graph

obtained from G by removing u and v and then adding a new vertex that is adjacent

to the vertices that are neighbours of either u or v in G. A minor of a graph G is a

11

graph which can be obtained by repeatedly applying the operations of edge removal,

vertex removal, or edge contraction.

1.1 Graph coloring

We shall mainly be concerned with the topic of “graph coloring”. Graph coloring is

a subject with a diversity of research directions. Typically, a graph coloring problem

deals with the assignment of labels, which shall be called “colors”, satisfying certain

properties to specific kinds of structures in the graph. For example, the problem of

assigning colors to the vertices of a graph satisfying certain properties is generally

called a “vertex coloring” problem. The problems where edges are to be assigned colors

are called “edge coloring” problems. In most coloring problems, we are interested in

minimizing or maximizing the total number of different colors used. In this thesis, we

shall be mainly concerned with some special vertex and edge coloring problems.

We start by giving the formal definition of a vertex/edge coloring of a graph. A

vertex coloring of a graph is an assignment of colors to the vertices of a graph. Analo-

gously, an edge coloring of a graph is an assignment of colors to the edges of a graph.

As mentioned before, we usually want the colors assigned to the vertices or edges to

satisfy some property; for example, in a proper vertex coloring, we want that any two

vertices that have an edge between them receive different colors (see Figure 1.1 for an

example). In the case of proper vertex coloring, the relevant question is to find such a

coloring using the minimum possible number of colors; in fact, finding a proper vertex

coloring using the maximum possible number of colors is trivial since one could simply

assign each vertex a different color.

More formally, let G be a graph and K be some set of colors. A vertex coloring is a

mapping c : V (G) → K. Similarly, an edge coloring of G is a mapping c : E(G) → K.

For any i ∈ K, the set c−1(i) is called the color class corresponding to the color i; i.e.

12

Figure 1.1: An example of a proper vertex coloring

when c is a vertex (respectively, edge) coloring, a color class of c is a set of vertices

(respectively, edges) all of which receive the same color in the coloring c. Clearly, the

color classes of c partition V (G) (respectively, E(G)) when c is a vertex (respectively,

edge) coloring. Thus a vertex or edge coloring of a graph can also be seen as a partition

of V (G) or E(G) respectively. Thus, a vertex or edge coloring problem is essentially the

problem of finding a partition of the vertex set or edge set satisfying certain properties.

For example, the problem of finding a proper vertex coloring of a graph using the

minimum number of colors is just another way of stating the problem of partitioning

the vertex set of a graph into the minimum number of parts in such a way that each

part is an “independent set”, which is a set of vertices such that no two of them have

an edge between them.

Just like in the case of vertex colorings, an edge coloring is said to be proper when

at each vertex of the graph, no two edges incident to the vertex get the same color (see

Figure 1.2 for an example). One can see that in a proper edge coloring, each color class

forms a “matching”, which is a set of edges such that no two of them have a vertex in

common. As before, since finding a proper edge coloring of a graph using the maximum

number of colors is trivial (each edge can be assigned a different color), the relevant

question here is to find a proper edge coloring of the graph using the minimum possible

number of colors.

The notion of proper vertex and edge colorings of graphs is almost as old as graph

13

Figure 1.2: An example of a proper edge coloring

Figure 1.3: Both the graphs in Figures 1.1 and 1.2 are planar as each of them has a
planar drawing as shown above.

theory itself. In fact, one of the foundational problems of the field of graph theory

was the famous “four color problem”, now known as the Four Color Theorem, since its

resolution in 1975 by Appel, Haken, and Koch [9, 10, 11]. The chromatic number of

a graph G, denoted as χ(G), is the minimum number of colors required in any proper

vertex coloring of the graph. A planar graph is a graph that can be drawn on the plane

in such a way that two edges intersect only at one of their common endpoints, i.e. no

edges “cross”. Such a drawing of a graph is called a “planar drawing” of the graph (see

Figure 1.3). The four color problem was originally stated as the question of whether

the regions of any map can be colored with four colors in such a way that two regions

that share a boundary always get different colors. This question turns out to be just

the question of whether χ(G) ≤ 4 for every planar graph G. The Four Color Theorem

14

showed that this is indeed the case: every planar graph has a proper vertex coloring

using at most 4 colors. There are special kinds of planar graphs that have been studied

in the literature whose chromatic number is smaller than 4. For example, Grötzsch’s

Theorem [36] states that every triangle-free planar graph (a planar graph that does not

contain three mutually adjacent vertices) has chromatic number at most 3. Likewise,

the chromatic number of an outerplanar graph (a graph that has a planar drawing in

which all vertices lie on the boundary of the outermost region), and more generally any

partial 2-tree, is at most 3; in fact, this follows from the fact that the chromatic number

of any 2-degenerate graph is at most 3 (see Section 1.2 for the definition of 2-degenerate

graphs). In fact, the question of what is a necessary and sufficient condition for a planar

graph to have a chromatic number of at most 3 is an interesting open question that has

received considerable attention in the literature (see [66, 18]).

Note that the chromatic number of a graph can be as large as the number of vertices

in the graph, but not any larger since giving a different color to each vertex of the graph

yields a proper vertex coloring. In fact, there are graphs for which these many colors

will be required: a complete graph on n vertices, which we shall denote as Kn, requires

n colors in any proper vertex coloring, since there is an edge between each pair of

vertices in a complete graph. Thus χ(Kn) = n. It is easy to see that a properly vertex

colored graph remains properly vertex colored when edges and/or vertices are removed

from it. This implies that χ(G) ≥ χ(H) for any subgraph H of G. It then follows that

for any graph G, χ(G) ≥ ω(G), where ω(G) is the size of the largest “clique” (a clique

is a set of mutually adjacent vertices) in G. Upper bounds better than n for χ(G) can

be derived by relating it with other graph invariants like the maximum degree. For

example, it can be shown that χ(G) ≤ ∆(G) + 1 for every graph G, where ∆(G) is the

maximum degree of a vertex in G. Brooks’ Theorem [19, 53] states that any connected

graph G has χ(G) ≤ ∆(G) whenever G is not a complete graph or an odd cycle (see

15

next chapter for the definition of the cycle graph). Note that we shall abbreviate ∆(G)

to just ∆ when the graph being referred to is clear from the context.

As for proper edge coloring, the minimum number of colors required in any proper

edge coloring of a graph G is called the chromatic index of G and is denoted as χ′(G).

It is quite easy to see that in any proper edge coloring, all the edges that are incident

with any one vertex have to be given different colors. This means that for any graph

G, χ′(G) ≥ ∆(G). Vizing [70] and Gupta [40] independently proved that any graph G

can be properly edge colored with at most ∆(G) + 1 colors. The graphs which can be

properly edge colored with ∆(G) colors are called class 1 graphs and those which are

not class 1 are called class 2 graphs. Many well known classes of graphs are class 1; for

example, bipartite graphs, planar graphs having maximum degree at least 7 [63].

There are many active research directions in the study of proper vertex and edge

colorings of graphs. There are several unanswered questions about the chromatic num-

ber of graphs that remain open despite considerable effort from researchers over many

decades. The famous Hadwiger Conjecture aims to generalise Four Color Theorem to

much wider classes of graphs. It states that any graph that does not contain Kt as a

minor has chromatic number χ(G) < t (see the next chapter for definition of minor

of a graph). Since planar graphs do not contain K5 as a minor, the case t = 5 of

Hadwiger’s Conjecture implies the Four Color Theorem. This conjecture is known to

be true for t ∈ {1, 2, . . . , 6} [62]. Erdős et al. [16] state that Hadwiger Conjecture is

one of the “deepest unsolved problems in graph theory”. Kostochka [47] and Thoma-

son [68] independently showed that any graph without a Kt minor can be colored with

O(t
√
log t) colors. Hadwiger Conjecture was shown to be true for line graphs by Reed

and Seymour in 2004 [60]. Another famous unsolved problem about the chromatic

number of a graph is Reed’s Conjecture [2], which states χ(G) ≤
⌈
∆(G)+ω(G)+1

2

⌉
. The

Gyárfás-Sumner Conjecture, independently stated by Gyárfás [41] and Sumner [67],

16

asserts that for each tree T there exists a function fT : N → N such that every graph G

satisfying χ(G) ≥ fT (ω(G)) contains an induced subgraph isomorphic to T . As of now,

this conjecture has been shown to be true only for very few kinds of trees (see [64]).

As for proper edge coloring, an as yet unresolved conjecture of Vizing [71] states

that every planar graph having maximum degree 6 is class 1. Note that there are class 2

planar graphs having maximum degree ∆ for each ∆ ∈ {2, 3, 4, 5} [71].

Many variants of vertex and edge colorings have been studied in the literature (refer

to [44] for a detailed overview of many types of graph colorings). We give a brief

overview of a few of them.

Star coloring of a graph is a proper vertex coloring in which any path on 4 vertices

uses at least 3 different colors [31]. It is not difficult to see that these are exactly the

proper vertex colorings in which the union of any two color classes induces a subgraph

that is isomorphic to a disjoint union of “stars”. (A star is the graph K1,t, for some

t ∈ N. See Chapter 2 for the definition of the notation Kn,m). The minimum number of

colors required in any star coloring of a graph G is called the star chromatic number of

G, and is denoted by χs(G). The best known bound on χs(G) in terms of ∆(G) is due

to Esperet and Parreau [29], who showed that for any graph G, χs(G) ≤ 2
√
2∆3/2+∆.

Acyclic vertex coloring is a proper vertex coloring in which each cycle contains

vertices of at least 3 different colors [37]; or in other words, there are no “bi-colored”

cycles in the graph. In this case, it can be seen that these are exactly the proper vertex

colorings that satisfy the property that the union of any two color classes induces a

subgraph isomorphic to a forest. Thus, every star coloring is also an acyclic vertex

coloring, which implies that the minimum number of colors required in any acyclic

vertex coloring of a graph G, denoted by χa(G), is at most χs(G). Alon et al. [6]

showed that χa(G) ≤
⌈
50∆4/3

⌉
and Kostochka and Stocker [48] showed that χa(G) ≤⌊

(∆+1)2

4

⌋
+ 1. The best known bounds on χa(G) for general graphs in terms of the

17

maximum degree are χa(G) ≤ 2.835∆4/3+∆ for all values of ∆ by Sereni and Volec [65],

and χa(G) ≤ 3
2
∆4/3 + 5∆, when ∆ ≥ 24 by Gonçalves et al. [35].

Similarly, an acyclic edge coloring is a proper edge coloring in which each cycle has

at least 3 colors [8]. Thus it is an edge coloring in which every vertex as at most one

edge of each color incident on it, and also the union of any two color classes forms a

subgraph that is isomorphic to a forest. The minimum number of colors required in any

acyclic edge coloring of a graph G is known as its acyclic chromatic index, denoted by

χ′
a(G). The Acyclic Edge Coloring Conjecture, stated independently by Fiamčík [32]

and Alon et al. [8], asserts that every graph G has an acyclic edge coloring using at

most ∆(G) + 2 colors; i.e. for every graph G, χ′
a(G) ≤ ∆(G) + 2. Despite much

work on this conjecture, the best bound on χ′
a(G) in terms of ∆(G) that is known is

χ′
a(G) ≤ 4∆− 4 [29].

A total coloring of a graph is a coloring of vertices and edges so that no pair of

adjacent vertices, no pair of adjacent edges, and no edge and one of its end vertices get

the same color. The total chromatic index χ′′(G) of a graph G is the minimum number

of colors required in any total coloring of the graph. The Total Coloring Conjecture,

independently stated by Behzad [13] and Vizing [69], states that χ′′(G) ≤ ∆(G) + 2.

The conjecture remains open for general graphs. Bollobás and Harris [17] showed

that χ′′(G) ≤ 11
6
∆(G), when ∆(G) is large enough, and Kostochka [46] showed that

χ′′(G) ≤ 3∆(G), when ∆(G) ≥ 6. Molloy and Reed [54] showed that there is a constant

c such that for every graph G, χ′′(G) ≤ ∆(G) + c.

In a strong edge coloring of a graph G, the edges in each color class has to be a

matching and the edges should also form an induced subgraph of G. The minimum

number of colors required in any strong edge coloring of a graph G is denoted by χ′
s(G),

and is called the strong chromatic index of the graph. This notion was introduced by

Erdős and Nešetřil (see [42]), who also conjectured that for any graph G, χ′
s(G) ≤

18

5
4
∆(G)2 when ∆(G) is even and χ′

s(G) ≤ 5∆(G)2−2∆(G)+1
4

when ∆(G) is odd. This

conjecture also remains open despite much research on the topic (see [76] for a survey).

There also variants of vertex and edge colorings in which the colorings need not be

proper. Note that if we do not require a vertex (resp. edge) coloring to be proper, then

we are relaxing our condition that each color class has to be an independent set (resp.

matching). Thus many problems that are stated in terms of partitioning the vertex

set or edge set of a graph can be reformulated as coloring problems. For example, a

conjecture of Erdős and Gallai [28] states that the edge set of every graph on n vertices

can be partitioned into at most
⌈
n
2

⌉
paths. This can be reformulated as follows: the

edges of every graph on n vertices can be colored with at most
⌈
n
2

⌉
colors in such a

way that the edges in each color class form a path. Another example is the notion

of conflict-free colorings on open neighbourhoods of graphs. These are vertex colorings

of graphs in which the neighbourhood of every vertex x contains a uniquely colored

vertex; i.e. a vertex whose color is different from that of every other neighbour of x

(see [1, 14]).

Graph coloring problems have found applications in a variety of different problems

in computer science; for example, clustering algorithms [52] and register allocation [20].

In such contexts, the algorithmic complexity of computing a coloring of the required

type becomes important. Unfortunately, for most coloring problems, it turns out that

computing a coloring using the optimum number of colors is NP-complete. The problem

of determining if an input graph has a proper vertex coloring using 3 colors was one of

the earliest problems that was shown to be NP-complete [34]. Even more interestingly,

even though it follows from Vizing’s Theorem that every graph G of maximum degree

∆ has chromatic index either ∆ or ∆ + 1, it is NP-hard to determine for an input

graph which of these is the case; i.e. determining if a graph is class 1 or class 2 is NP-

hard [51]. In a similar vein, even though every planar graph is known to have a proper

19

vertex coloring using at most 4 colors, it is NP-hard to determine if the chromatic

number given planar graph is at least 4 [34].

Even then, the proofs for many known upper bounds on coloring problems are con-

structive and they can be used to construct efficient algorithms that compute a coloring

of the required type using at most the number of colors given by the upper bound. For

example, the proof of the Four Color Theorem yields an O(n2) time algorithm that

produces a coloring of any input planar graph on n vertices using at most 4 colors [61].

In this thesis, we shall derive upper bounds for two coloring problems: one a variant

of edge coloring and the other a vertex coloring.

The first problem that we study is a kind of edge coloring known as linear coloring. A

graph whose each connected component is a path is called a linear forest. Linear coloring

of a graph is an edge coloring of the graph in which each color class is a linear forest.

We prove that a well-known conjecture called the “Linear Arboricity Conjecture” is true

for a certain class of graphs called “3-degenerate graphs” (see Section 1.2 for details).

We also construct efficient algorithms to compute linear colorings using optimal or close

to optimum number of colors for 2-degenerate and 3-degenerate graphs.

We then study a form of vertex coloring known as p-centered coloring (here, p is a

natural number). A vertex coloring of a graph G is said to be a p-centered coloring if in

any connected subgraph H of G, either there is a vertex whose color is different from that

of every other vertex of H, or H contains more than p different colors. It turns out that

1-centered colorings are the same as proper vertex colorings and 2-centered colorings are

the same as star colorings. Thus as p increases, we get proper colorings with additional

special properties. We answer a question asked in the literature regarding the existence

of p-centered colorings using O(p) colors for the infinite grid. The next two sections

explain these results in more detail. We refer [24] for any terms not defined here.

20

Figure 1.4: An example of a linear forest.

1.2 Linear colorings

As defined above, a linear forest is a graph whose each component is a path. Note

that linear forests are exactly the acyclic graphs having maximum degree at most 2.

A linear coloring of a graph G is an edge coloring α such that for every color i ∈

α(E(G)), the subgraph of G formed by the edges α−1(i) is a linear forest. The class

of all linear colorings of G is denoted by LG. Note that a proper edge coloring of a

graph G is also a linear coloring of G. For any graph G, the linear chromatic index

χ′
l(G) = min{|ρ(E(G))| : ρ ∈ LG}, i.e. it is the minimum number of colors required in

any linear coloring of G.

A graph G is d-degenerate if any subgraph H of G has a vertex u satisfying dH(u) ≤

d. Alternatively, it is a graph from which one can repeatedly remove a vertex of degree

at most d until no vertices remain.

Note that for any graph G, χ′
l(G) ≥

⌈
∆(G)

2

⌉
, since in any linear coloring of G, there

can be at most 2 edges of the same color incident with any vertex. In fact, as noted

by Harary [43], if G is a ∆-regular graph, then χ′
l(G) ≥

⌈
∆+1
2

⌉
. The Linear Arboricity

Conjecture suggests that this lower bound for regular graphs is also an upper bound

21

Figure 1.5: An example of a linear coloring: thin and thick edges form two linear forests

Figure 1.6: An example of a 3-degenerate graph

Figure 1.7: An example of a 2-degenerate graph

22

for the linear arboricity of general graphs.

We state the conjecture below.

Conjecture 1 (Akiyama, Exoo, Harary (1981)). For any graph G, χ′
l(G) ≤

⌈
∆(G)+1

2

⌉
.

The conjecture has been proven for all graphs G such that ∆(G) ∈ {3, 4, 5, 6, 8, 10}

[3, 4, 27, 38] and was shown to be true for planar graphs by Wu and Wu [73, 74]. Cygan

et al. [22] proved that the linear arboricity of planar graphs which have ∆ ≥ 10 is
⌈
∆
2

⌉
.

Yang et al. [75] have recently verified the conjecture for graphs that do not contain K5

as a minor.

Works of Alon [5], Alon and Spencer [7], and Ferber et al. [30] show that the con-

jecture holds asymptotically; in particular, for any ϵ > 0 there exists a ∆0 such that

χ′
l(G) ≤ (1

2
+ ϵ)∆(G) whenever ∆(G) ≥ ∆0. The best bound in this direction currently

is the result of Lang and Postle [50], who showed in 2023 that for every graph G having

a large enough maximum degree ∆(G), χ′
l(G) ≤ ∆

2
+ 3

√
∆ log4∆.

From Vizing’s Theorem [70], which says that any graph can be properly edge colored

with ∆ + 1 colors, we get that χ′
l(G) ≤ ∆(G) + 1 for any graph G. The best known

general bound for linear arboricity is
⌈
3∆
5

⌉
when ∆ is even and

⌈
3∆+2

5

⌉
for ∆ odd,

obtained by Guldan [38, 39].

Kainen [45] showed that χ′
l(G) ≤

⌈
∆(G)+k−1

2

⌉
for every k-degenerate graph G. This

result implies that the linear arboricity conjecture is true for 2-degenerate graphs. In

fact, a stronger statement is known to be true for 2-degenerate graphs: the acyclic

chromatic index of 2-degenerate graphs is at most ∆ + 1 [12]. Thus the edges of any

2-degenerate graph G can be properly colored using at most ∆(G) + 1 colors such that

the union of any two color classes is a forest. Since the union of any two color classes

in such a coloring will always be a linear forest, we get that χ′
l(G) ≤

⌈
χ′
a(G)
2

⌉
, and so

the linear arboricity conjecture for 2-degenerate graphs follows from the fact that for

every 2-degenerate graph G, χ′
a(G) ≤ ∆(G) + 1.

23

Although arboricity (minimum number of colors required to color the edges of a

graph so that all the color classes are forests) can be computed in polynomial time [33],

computing linear arboricity is NP-hard [58]. As χ′
l(G) ≥

⌈
∆
2

⌉
for any graph G, a 2-

factor approximation algorithm for computing linear arboricity can be obtained using

Vizing’s Theorem. Cygan et al. [22] showed an O(n log n) algorithm that produces a

linear coloring of every planar graph on n vertices with the optimum number of colors

when ∆(G) ≥ 9. Duncan, Eppstein and Kobourov [26] gave an O(n) algorithm to

construct a 2-linear coloring of a graph of maximum degree 3 using depth-first search.

Our results

In Chapter 3, we prove the Linear Arboricity Conjecture for 3-degenerate graphs (Sec-

tion 3.1). A consequence of this result is that the conjecture holds for the class of graphs

having treewidth at most 3 (also called partial 3-trees; refer Chapter 2 for definition of

treewidth). Our method can also serve as an alternative proof for the validity of the

Linear Arboricity Conjecture on triangle-free planar graphs, Halin graphs, and cubic

graphs, for which the conjecture is already known to be true [4]. Note that 3-degenerate

graphs generalize cubic graphs, and that they can be non-planar and can have arbitrar-

ily large treewidth. We can take a graph G of arbitrarily large treewidth and construct

a graph G′ by subdividing each edge (for every edge, we delete it and introduce a new

vertex whose only neighbours are the end points of the deleted edge). It is easy to see

that G′ is 2-degenerate, and hence also 3-degenerate. Since G′ contains G as a minor,

it follows that the treewidth of G′ is at least as large as that of G.

Cygan et al. [22] showed that for every planar graph G, χ′
l(G) ≤

⌈
∆(G)

2

⌉
, if ∆(G) ≥

10. This upper bound does not hold for all planar graphs with ∆ ≤ 5 and for the range

6 ≤ ∆ ≤ 9, it is open whether every planar graph has a
⌈
∆
2

⌉
-linear coloring.

We show in Section 3.2 that every 2-degenerate graph G has χ′
l(G) =

⌈
∆(G)

2

⌉
if

24

Graph class ∆ ≤ 2 3 ≤ ∆ ≤ 4 5 ≤ ∆ ≤ 8 ∆ ≥ 9

2-degenerate
⌈
∆+1
2

⌉ ⌈
∆+1
2

⌉⋆ ⌈
∆
2

⌉ ⌈
∆
2

⌉
3-degenerate

⌈
∆+1
2

⌉ ⌈
∆+1
2

⌉⋆ ⌈
∆+1
2

⌉⋆ ⌈
∆
2

⌉
Table 1.1: Upper bounds on linear arboricity: The improved bounds due to results
obtained in this thesis are shown in blue. The bounds marked by ⋆ are not known to
be tight.

∆(G) ≥ 5. The statement is not true when ∆ ≤ 2 (any cycle is a counterexample),

but we conjecture that χ′
l(G) = 2 for every 2-degenerate graph G when ∆(G) ∈ {3, 4}.

As evidence towards this conjecture, we prove in Section 3.2.2 the existence of 2-linear

colorings in various subclasses of 2-degenerate graphs having ∆ ≤ 4. An implication

of one of these results is that every 2-degenerate graph on n vertices with maximum

degree 4 and having 2n − 3 edges (the maximum possible number of edges) contains

a Hamiltonian path. Outerplanar graphs are 2-degenerate graphs; so our results on

2-degenerate graphs also hold for outerplanar graphs.

In Chapter 4, we show that for every 3-degenerate graph G, χ′
l(G) =

⌈
∆(G)

2

⌉
if

∆(G) ≥ 9. This proof, which is based on an approach different from that of Chapter 3,

also yields a different proof for the Linear Arboricity Conjecture on 3-degenerate graphs.

This approach has the benefit that converting this proof into a linear-time algorithm is

more straightforward. Moreover, the linear colorings constructed using this approach

have some special properties.

We show in Chapter 5 how all our proofs can be converted into linear time algorithms

that generate linear colorings of input graphs using a number of colors that matches

the upper bounds obtained.

Table 1.1 summarizes the upper bounds on linear arboricity that were obtained.

25

1.3 Centered colorings

A centered coloring is a vertex coloring such that every connected subgraph contains

a vertex having a unique color. Nešetřil and Ossona de Mendez [55] introduced the

treedepth of a graph and showed that it is exactly the minimum number of colors needed

in a centered coloring of the graph. The treedepth of a graph G is defined as follows. A

rooted forest is a graph whose each connected component is a rooted tree. The “height”

of a rooted forest is the maximum length of a path from a root to a leaf in the rooted

forest. Let G be a graph and let FG be a rooted forest of minimum height having the

property that any two adjacent vertices in G have an ancestor-descendant relationship

in the forest FG; i.e. if uv ∈ E(G), then both u and v lie on some path from a root to

a leaf in FG. The height of FG is called the treedepth of G. The minimum number of

colors required in a centered coloring of a graph G is the same as the treedepth of G.

The treedepth of a graph also turns out to be equal to some other graph parameters

that were known in the literature (we refer the reader to [55, 49] for more details).

In Figure 1.8, a graph G is shown with a centered coloring using 4 colors. The

corresponding tree FG of height 4 is also shown in the figure. It is not difficult to see

that there is no centered coloring for this graph using 3 colors. If at all it were possible,

then there must exist a rooted forest FG having height at most 3. Since G is connected

FG must be a rooted tree, and since the graph contains triangles, the height of FG must

be exactly equal to 3. Then as xpq is a triangle, one of x, p or q is the root of T .

But since ysr is also a triangle, one of y, s, r also has to be the root of FG; this is a

contradiction.

Centered colorings have connections to notions such as “conflict-free coloring” of

hypergraphs. A hypergraph is a pair H = (V,E) where V = V (H) (vertex set) is any

set and E = E(H) (edge set) is a collection of subsets of V (H). A vertex coloring of

a hypergraph is a mapping f : V → C where C is a set of colors. A vertex coloring

26

u

v

wx y

p

q

r

s

x

p

q

y

r

s

v

u
w

Figure 1.8: An example of a graph G with a centered coloring using 4 colors, and a
rooted forest FG of height 4 rooted at x

g of a hypergraph H is conflict-free if for any e ∈ E(H) there is a vertex v ∈ e such

that g(v) /∈ g(e \ {v}). Conflict-free coloring was introduced in [57]. From a graph G

we can define a hypergraph HG where we take V (HG) = V (G) and we define edge set

E(HG) = {V (A) : A is a connected subgraph of G}. Notice that a centered coloring of

G is nothing but a conflict-free coloring of HG.

A vertex coloring of a graph G is p-centered if in any connected subgraph of G,

either there is a uniquely colored vertex or there are more than p colors, where p ∈ N.

It is not difficult to see that a p-centered coloring of a graph G is a coloring of V (G)

such that for every i ≤ p, the union of i color classes induces a subgraph of G whose

each connected component has a centered coloring using at most i colors. Thus, a

p-centered coloring can be said to be a “low treedepth coloring”.

It can be seen that a 1-centered coloring is nothing but a proper vertex coloring as

follows. In a vertex coloring, if any two adjacent vertices receive the same color, then the

connected subgraph containing those two vertices and the edge between them contains

no unique color and also does not contain more than one color. This means that 1-

27

centered colorings are all proper vertex colorings. On the other hand, any connected

subgraph containing at least two vertices in a properly vertex colored graph contains

at least one edge, and therefore contains more than one color. Thus proper vertex

colorings are 1-centered colorings.

Now consider a 2-centered coloring of a graph. As a 2-centered coloring is also a

1-centered coloring, we know that it is a proper vertex coloring too. If any path on four

vertices is colored using just 2 colors, then the path is a connected subgraph that neither

contains a unique color, nor contains more than 2 colors, which contradicts the fact that

the coloring is a 2-centered coloring. Thus, in a 2-centered coloring of a graph, any path

of four vertices must contain at least three colors. This shows that 2-centered colorings

are star colorings. Now consider a star coloring of a graph G. Suppose that it is not

a 2-centered coloring of G. Then it contains a connected subgraph H that contains at

most 2 colors, say “red” and “blue”, and contains no uniquely colored vertex. Consider

any vertex v in H. If in H, there is no vertex that is at a distance 2 from v, then every

vertex in V (H) \ {v} is a neighbour of v, which implies that v is a uniquely colored

vertex in H, a contradiction. Thus we can assume that every vertex has some vertex

at distance 2 from it. Now let v be any vertex in H. Assume without loss of generality

that v is colored “red”. Let u ∈ V (H) be a vertex that is at distance 2 from v in H.

Let x ∈ V (H) be the middle vertex on a path of length 2 between u and v; i.e. x is a

common neighbour of u and v. Clearly, x is colored “blue” and u is colored “red”. Now

by our earlier observation, we know that there is a vertex y at distance 2 from x. Let z

be the middle vertex on a path of length 2 between x and y. As before, we have that z is

colored “red” and that y is colored “blue”. Clearly, either z ̸= u or z ̸= v. Let us assume

without loss of generality that z ̸= u. Then uxzy is a path on four vertices in H, and

therefore it is a path on four vertices in G containing just 2 colors. This contradicts the

fact that the coloring of G that we have is a star coloring. Thus, 2-centered colorings

28

are exactly the star colorings. For larger values of p, p-centered colorings become more

and more restricted.

The notion of p-centered colorings of graphs was introduced by Nešetřil and Ossona

de Mendez [55] in the course of their development of the theory of “structurally sparse”

graph classes. In 2004, DeVos et al. [23] showed that every proper minor closed class

of graphs has a low treewidth coloring : there exists a function f : N → N such that the

vertex set of any graph in the class can be partitioned into f(p) parts in such a way

that for every i ≤ p, the union of any i parts induces a subgraph of treewidth at most

i− 1. Since the treedepth of a graph is always at least one more than its treewidth [15]

(in fact, one more than its pathwidth) and the treewidth of any graph is equal to the

maximum of the treewidth of its connected components, low treedepth colorings are a

generalization of low treewidth colorings. The following generalization of the result of

DeVos et al. was shown in [55]: for every proper minor closed class of graphs, there

exists a function f : N → N such that for every integer p ≥ 1, every graph in the

class has a p-centered coloring using at most f(p) colors. In a landmark paper, Nešetřil

and Ossona de Mendez [56] improved this further and showed that the classes of graphs

having low treedepth colorings, the classes of graphs having low treewidth colorings, the

classes of graphs for which there exists a function f : N → N such that every graph in

the class has a p-centered coloring using at most f(p) colors for every p ≥ 1, are all the

same and characterized these classes as the classes of graphs with bounded expansion

(see [56] for details).

It was first shown by Pilipczuk and Siebertz [59] that for every proper minor closed

family of graphs, there exists a polynomial function f : N → N such that for every

positive integer p, every graph in the class has a p-centered coloring using at most

f(p) colors; or in other words, proper minor closed families of graphs “admit polyno-

mial centered colorings”. Dębski, Felsner, Micek and Schröder [25] combined different

29

techniques to obtain several path-breaking results on p-centered colorings, including

substantial improvements to and tightening of some bounds in [59]. Perhaps the most

surprising result in their work is their proof using entropy compression that graphs

of bounded degree have p-centered colorings using just O(p) colors: they showed that

for any positive integer p, every graph G having maximum degree ∆ has a p-centered

coloring using O(∆2− 1
pp) colors.

Our result

The technique of Dębski, Felsner, Micek and Schröder does not provide an explicit

construction of a p-centered coloring using O(p) colors for graphs of bounded maximum

degree, and they remark that an explicit construction of such a coloring is not known

even for the planar grid. In Chapter 6, we give a simple and direct construction of a

p-centered coloring of the planar grid, also known as the two dimensional grid, using

O(p) colors.

30

Chapter 2

Preliminaries

We give some common graph theoretic definitions here. For any graph G, the notation

V (G) and E(G) shall denote its vertex set and edge set respectively. When u, v ∈

V (G), and uv ∈ E(G), we say that u and v are adjacent in G, or that u and v are

neigbhours of each other. All graphs that we consider will be loopless and simple; i.e.

no vertex is adjacent to itself, and there is at most one edge between any pair of vertices.

For a vertex u ∈ V (G), the “neighbourhood of u in G”, denoted as NG(u) is the set

{v ∈ V (G) : uv ∈ E(G)}. The set of edges “incident on u”, denoted by N̄G(u) is the set

{xy ∈ E(G) : x = u}. The “degree” of a vertex u ∈ V (G) is dG(u) = |NG(u)| = |N̄G(u)|.

The “maximum degree” of G, denoted by ∆(G) = max{u ∈ V (G) : d(u)}. Whenever G

is clear from the context, we write N(u) for NG(u) and d(u) for dG(u), for u ∈ V (G),

and ∆ instead of ∆(G). A graph H is a subgraph of a graph G, if V (H) ⊆ V (G) and

E(H) ⊆ E(G). If H is a subgraph of G, we write H ⊆ G. For any U ⊆ V (G), let G[U]

denote the induced subgraph of G on U . That is V (G[U]) = U and E(G[U]) = {uv ∈

E(G) : u, v ∈ U}. A “connected component”, or simply “component”, of a graph G is

a maximal connected subgraph of the graph G. If U ⊆ E(G), then G − U is a graph

satisfying V (G−U) = V (G) and E(G−U) = E(G) \U . For e ∈ E(G), we abbreviate

G−{e} to just G−e. If U ⊆ V (G), then G−U is a graph with V (G−U) = V (G)\U and

31

E(G− U) = E(G) \
⋃

u∈U N̄G(u). For v ∈ V (G), we abbreviate G− {v} to just G− v.

Planar graphs are those graphs which can be drawn on the Euclidean plane such that

no two edges cross (such a drawing of a planar graph is called a planar embedding of

the graph). Trees and forests, Halin graphs are examples of planar graphs. Outerplanar

graphs are planar graphs which have a planar embedding in which every vertex lies on

the boundary of the unbounded face.

We let Kn denote the complete graph of n vertices and Cn the cycle on n vertices.

We denote by Km,n the complete bipartite graph whose two partite sets are of size m

and n.

Let G be a graph. A tree decomposition of G is a pair (T, {Xt}t∈V (T)) where T is a

tree and for each t ∈ V (T), Xt ⊆ V (G) such that:

1.
⋃

t∈V (T) Xt = V (G). That is for any v ∈ V (G) there is a t ∈ V (T) such that

v ∈ Xt.

2. If uv ∈ E(G), then there is t ∈ V (T) such that u, v ∈ Xt.

3. For any v ∈ V (G), if K = {t ∈ V (T) : v ∈ Xt}, then the induced subgraph T [K]

of T is connected.

If s = min{|Xt| : t ∈ V (T)}, then the width of (T, {Xt}t∈V (T)) is defined as s− 1. The

minimum width among all tree decompositions of G is the treewidth of G, denoted by

tw(G).

The treewidth of Kn is n− 1. The treewidth of any tree is 1. It is easy to see that

treewidth is a “minor monotone” property: if H is a minor of G, then tw(H) ≤ tw(G).

Every graph G is tw(G)-degenerate. A k-tree is a graph G which is either a Kk+1 or

is the graph obtained by adding a vertex of degree k to a k-tree such that neighbors

of the newly added vertex form a clique. It is folklore that an edge maximal graph of

treewidth k is a k-tree. A subgraph of a k-tree is a partial k-tree. Note that partial k-

32

trees are exactly the graph of treewidth at most k. Outerplanar graphs have treewidth

at most 2; i.e. they are partial 2-trees. Partial 2-trees form a subclass of planar graphs

and are also known as “series-parallel graphs”.

Planar graphs are the class of graphs that contain no K5 or K3,3 as a minor (Kura-

towski’s Theorem, see [24]). Partial 2-trees are exactly the graphs that do not contain

a K4 as a minor. Outerplanar graphs are exactly graphs that do not contain a K4 or

a K2,3 as a minor. Being partial 2-trees, outerplanar graphs are 2-degenerate. Even

though outerplanar graphs have treewidth at most 2, planar graphs can have arbitrarily

large treewidth. A common example is the n× n grid (a 5× 5 is shown in Figure 1.7),

which has treewidth Ω(n). Nevertheless, every planar graph is 5-degenerate.

33

Chapter 3

Linear arboricity of 3-degenerate and

2-degenerate graphs

Let c be an edge coloring of a graph G. Observe that
⋃

i∈c(E(G)){c−1(i)} is a partition of

the edge set E(G) and that c =
⋃

e∈E(G){(e, c(e))} ⊆ E(G)×K. Recall that the class of

all linear colorings of G is denoted by LG. We also define kLG = {α ∈ LG : |α(E(G))| =

k}. Any coloring α ∈ kLG is called a k-linear coloring of G. Let G be a graph and

CG =
⋃

H⊆G LH . We define a binary operation ⊕ on CG. Let f ∈ LA and g ∈ LB where

A,B ⊆ G. We define f ⊕ g = (f ∪ g) \
⋃

e∈E(A)∩E(B){(e, f(e))}. If f is a linear coloring

of the graph A and g is a linear coloring of the graph B then f⊕g is an edge coloring of

the graph A∪B (where V (A∪B) = V (A)∪ V (B) and E(A∪B) = E(A)∪E(B)). In

E(A)\E(B) the coloring takes color from f and E(B) takes the colors from g. For any

graph G, the linear chromatic index χ′
l(G) = min{|ρ(E(G))| : ρ ∈ LG} is the minimum

number of colors used in any linear coloring of G.

Recall that a graph G is d-degenerate if any H ⊆ G has a vertex u ∈ V (H) satisfying

dH(u) ≤ d; this is equivalent to saying that one can repeatedly remove a vertex of degree

at most d from a d-degenerate graph until no vertices remain. We define a set PG for

any d-degenerate graph G. When ∆(G) > d, let U = {v ∈ V (G) : dG(v) ≤ d}. For this

34

case PG = {u ∈ V (G) \ U : dG−U(u) ≤ d}. If ∆(G) ≤ d, then PG = V (G). The set

PG is called the set of pivots of G. For any v ∈ PG we define P̄G(v) = {uv ∈ N̄G(v) :

dG(u) ≤ d}. The set P̄G(v) is called the set of pivot edges of G at v ∈ PG. Note that

PG ⊆ V (G) and for v ∈ PG, P̄G(v) ⊆ N̄G(v) ⊆ E(G). Note that every vertex in PG has

at most d neighbors having degree more than d.

Definition 1. Let G be a graph and u, v ∈ V (G) satisfying uv /∈ E(G) and NG(u) ∩

NG(v) = ∅. We define G/(u, v) to be a graph with V (G/(u, v)) = V (G) \ {v} and

E(G/(u, v)) = (E(G) \ N̄G(v)) ∪ {uy : y ∈ NG(v)}. We say that G/(u, v) is a graph

obtained from G by identifying v with u.

For any graph G, a vertex v ∈ V (G) and linear coloring α : E(G) → K we define

three sets Onceα(v) = {s ∈ α(E(G)) : |α−1(s) ∩ N̄G(v)| = 1}, Twiceα(v) = {s ∈

α(E(G)) : |N̄G(v)∩α−1(s)| = 2} and Missingα(v) = K \ (Onceα(v)∪Twiceα(v)). Also

we define Colorsα(v) = Onceα(v) ∪ Twiceα(v). Whenever the coloring is understood,

we simply write Missing(v), Once(v), Twice(v) and Colors(v).

The first result that we prove in this chapter is that the Linear Arboricity Conjecture

holds for 3-degenerate graphs. Our theorem that leads to this result is stated below.

Theorem 1. For any 3-degenerate graph G, if ∆(G) ≤ 2k − 1, where k ∈ N, then

χ′
l(G) ≤ k.

This is an extension of the result for subcubic graphs (subcubic graphs are graphs

having maximum degree at most 3; it is easy to see that they form a subclass of 3-

degenerate graphs) by Akiyama, Exoo and Harary [3].

3.1 Proof Theorem 1

Note that if G contains isolated vertices, then we can simply remove them and compute

a k-linear coloring of the resulting graph; this will be a k-linear coloring of G. So we

35

assume that G contains no isolated vertices. For any 3-degenerate graph G we consider

the set PG and for v ∈ PG we have P̄G(v) ̸= ∅. Let uv ∈ P̄G(v). The proof is by

induction on |E(G)|. If E(G) = ∅ the theorem is true. Let us assume that |E(G)| > 0.

Assume that the theorem is true for all 3-degenerate graphs having less than |E(G)|

edges and ∆(G) ≤ 2k − 1. We show that χ′
l(G) ≤ k. Clearly, dG(u) ≤ 3.

Lemma 1. If dG(v) < 2k − 1, then χ′
l(G) ≤ k.

Proof. Let H = G−uv. Hence |E(H)| < |E(G)|. From the induction hypothesis, there

is an α ∈ kLH .

Observe that |Onceα(v)| + 2|Twiceα(v)| = dH(v) ≤ 2k − 3 and |Onceα(v)|+

|Twiceα(v)| +|Missingα(v)| = k. Simplifying, we get 2|Missingα(v)|+ |Onceα(v)| ≥ 3.

Hence we get the following two possibilities.

1. |Onceα(v)| ≥ 3 when Missingα(v) = ∅.

2. |Onceα(v) ∪Missingα(v)| ≥ 2 when |Missingα(v)| ≥ 1.

For the first case we select a color i ∈ Onceα(v)\Colorsα(u) and β = α⊕{(uv, i)} ∈ kLG.

For the second case let i ∈ Missingα(v). If Colorsα(u) ̸= {i}, then α⊕{(uv, i)} ∈ kLG.

Otherwise, let j ∈ (Onceα(v) ∪ Missingα(v)) \ {i} and α ⊕ {(uv, j)} ∈ kLG. This

completes the lemma.

Here onwards we shall assume that dG(v) = 2k − 1. Also we assume that k ≥ 2

as the case when k = 1 is easy. Observe that v has at most 3 neighbors of degree

more than 3. Therefore, v has at least 2k − 4 neighbors of degree at most 3. If k = 2

then ∆(G) ≤ 3. This implies that every neighbor of v has degree at most 3. If k ≥ 3,

then also there exists 2 neighbors of v of degree at most 3. Thus, there always exists

w ∈ NG(v) \ {u} such that dG(w) ≤ 3.

36

Lemma 2. If uw ∈ E(G), then χ′
l(G) ≤ k.

Proof. Let x ∈ NG(u) \ {v, w} and y ∈ NG(w) \ {v, u}. If x does not exist then add

a new vertex x with dG(x) = 1 adjacent to u. Similarly, if y does not exist add a new

vertex y with dG(y) = 1 adjacent to w. Let us assume that H = G − {u,w}. At

first assume that x ̸= y. Since |E(H)| < |E(G)|, by the induction hypothesis, there

exists an α ∈ kLH . Observe that dH(x) ≤ 2k − 2. Therefore, there exists a color

i ∈ Onceα(x) ∪Missingα(x). Let β = α ⊕ {(ux, i)}. Now, dH(v) = 2k − 3. We know

that either of the following is true:

1. |Onceα(v)| = 3.

2. |Missingα(v)| = 1 and |Onceα(v)| = 1.

For the first case, let j, t ∈ Onceα(v) \ {i} and Onceα(v) \ {j, t} = {l}. Let β1 =

β ⊕ {(uv, j), (uw, t), (vw, l)}. Observe that dH(y) ≤ 2k − 2. Thus we have either

Missingα(y) ≥ 1 or Onceα(y) ≥ 2. Let m ∈ Missingα(y)∪ (Onceα(y) \ {l}). Then we

have β1 ⊕ {(yw,m)} ∈ kLG.

Now, we consider the second case. Let Missingα(v) = {t} and Onceα(v) = {j}.

Let β1 = β ⊕ {(uv, t), (uw, j), (vw, t)}. Notice that dH(y) ≤ 2k − 2. Hence, either

|Missingα(y)| ≥ 1 or |Onceα(y)| ≥ 2. Let us assume that l ∈ Missingα(y)∪(Onceα(y)\

{i}). Then, we have β1 ⊕ (yw, l) ∈ kLG.

Now we consider the case when x = y. Clearly in H, dH(x) ≤ 2k − 3. There are

the following possibilities for x.

1. |Onceα(x)| ≥ 3.

2. |Onceα(x) ∪Missingα(x)| ≥ 2 and |Missingα(x)| ≥ 1.

At first assume that {i, j, k} ⊆ Onceα(x) and Onceα(v) = {p, q, r}. Let β = α ⊕

{(uv, p), (vw, q), (uw, r)}. Now let s ∈ Onceα(x) \ {p, r}, and t ∈ Onceα(x) \ {s, q}.

Then β ⊕ {(xu, s), (xw, t)} ∈ kLG.

37

Now let us assume that Onceα(v) = {p, q, r} and i ∈ Missingα(x) and j ∈

(Missingα(x) ∪ Onceα(x)) \ {i}. Let β = α ⊕ {(xu, i), (uw, i), (xw, j)}. Let s ∈

Onceα(v) \ {i} and t ∈ Onceα(v) \ {s, j}. Then β ⊕ {(uv, s), (vw, t)} ∈ kLG. The

case when |Once(x)| ≥ 3, |Missing(v)| = 1 and |Once(v)| = 1 can be handled simi-

larly.

Now let us assume that p ∈ Missingα(v) and q ∈ (Missingα(v) ∪ Onceα) \

{p} and i ∈ Missingα(x) and j ∈ (Missingα(x) ∪ Onceα(x)) \ {i}. Let β = α ⊕

{(uv, p), (uw, q), (vw, p)}. Let β1 = β ⊕ {(xu, i), (xw, j)}. Then β1 ∈ kLG.

Lemma 3. If (NG(u) ∩NG(w)) \ {v} ≠ ∅, then χ′
l(G) ≤ k.

Proof. Let z ∈ (NG(u)∩NG(w))\{v}. We assume that u /∈ NG(w). From Lemma 2 we

assume that x ∈ NG(u) \ {v, z} and y ∈ NG(w) \ {v, z}. Let us define H = G−{u,w}.

Since |E(H)| < |E(G)| there is an α ∈ kLH . Also dH(v) = 2k − 3 and also dH(z) ≤

2k− 3. There are two possibilities for v and z. Hence if b ∈ {v, z}, the following holds.

1. |Onceα(b)| ≥ 3.

2. |Missingα(b)| ≥ 1 and |Missingα(b) ∪Onceα(b)| ≥ 2.

Since, dH(x), dH(y) ≤ 2k− 2 if b ∈ {x, y} there are the following two possibilities if we

assume that x ̸= y.

1. |Onceα(b)| ≥ 2.

2. Missingα(b) ̸= ∅.

We treat v and z symmetrically. First let us assume that x ̸= y. Suppose that

|Onceα(z)| ≥ 3, |Missingα(v) ∪ Onceα(v)| ≥ 2 and |Missingα(v)| ≥ 1. Let i ∈

Missingα(v), j ∈ (Missingα(v) ∪ Onceα(v)) \ {i} and {p, q, r} ⊆ Onceα(z) so that

p, q, r are all distinct from each other. Also let t ∈ Missingα(y) ∪ (Onceα(y) \ {j}),

38

s ∈ Missingα(x) ∪ Onceα(x), l ∈ {p, q, r} \ {t, j} and m ∈ {p, q, r} \ {s, l}. Let

β = α⊕ {(uv, i), (vw, j), (wy, t), (ux, s), (wz, l), (uz,m)}. Clearly, β ∈ kLG.

Now let |Onceα(z)| ≥ 3 and |Onceα(v)| ≥ 3. Suppose that {i, j, l} ⊆ Onceα(v)

and {p, q, r} ⊆ Onceα(z). Let t ∈ Missingα(y) ∪ (Onceα(y) \ {j}) and h ∈ {i, l} \ {t}.

Assume that β = α⊕{(vw, j), (wy, t), (uv, h)}. Let s ∈ Missingα(x)∪(Onceα(x)\{h}).

Let β1 = β⊕{(ux, s)}. If h ∈ {p, q, r}, then let f = h otherwise let f ∈ {p, q, r}\{t, j}.

Let β2 = β1 ⊕ {(zw, f)}. Let m ∈ {p, q, r} \ {f, s}. Thus β2 ⊕ {(uz,m)} ∈ kLG.

Now let us consider the case |Missingα(v)|,|Missingα(z)| ≥ 1 and |Missingα(v) ∪

Onceα(v)| ≥ 2 and |Missingα(z) ∪ Onceα(z)| ≥ 2. Let i ∈ Missingα(v), j ∈

(Missingα(v)∪Onceα(v)) \ {i}, p ∈ Missingα(z) and q ∈ (Missingα(z)∪Onceα(z)) \

{p}. If i ̸= p, then let β = α⊕{(uv, i), (wv, i), (zu, p), (zw, p)} else let β = α ⊕

{(uv, i), (zw, i), (vw, j), (zu, q)}. Let s ∈ Missingα(x) ∪ (Onceα(x) \ {β(uz)}) and

t ∈ Missingα(y) ∪ (Onceα(y) \ β(wv)). Then β ⊕ {(ux, s), (wy, t)} ∈ kLG.

Now we consider the case x = y. The possibilities for x are the same that for v

and z since dH(x) ≤ 2k − 3. We treat v, x and z symmetrically. Then there are four

possibilities.

First let us assume that |Onceα(x)| ≥ 3, |Onceα(v)| ≥ 3 and |Onceα(z)| ≥ 3. Let

{i, j} ⊆ Onceα(v), p ∈ Onceα(x) \ {j}, and q ∈ Onceα(x) \ {p, i}. If i ∈ Onceα(z), we

define s = i, else we let s ∈ Onceα(z) \ {p, j}. Finally, let t ∈ Onceα(z) \ {s, q, i}. Let

β = α⊕ {(uv, i), (vw, j), (xw, p), (xu, q), (zw, s), (uz, t)}. Then β ∈ kLG.

For the second case let us assume that i ∈ Missingα(x), j ∈ (Onceα(x)∪

Missingα(x))\ {i}, |Onceα(v)| ≥ 3, and |Onceα(z)| ≥ 3. Let {p, q} ⊆ Onceα(v).

We assume without loss of generality that j ̸= q. Let s ∈ Onceα(z) \ {j, q} and

t ∈ Onceα(z) \ {s, p}. Then α⊕{(uv, p), (vw, q), (xw, j), (ux, i), (zw, s), (zu, t)} ∈ kLG.

For the third case let us assume that i ∈ Missingα(x), j ∈ (Onceα ∪Missingα) \

{i}. Let s ∈ Missingα(v) and t ∈ (Missingα(v) ∪ Onceα(v)) \ {s}. Let β = α ⊕

39

u
v

w
y

x
a

b

u
v

y
x

a

b

Figure 3.1: Deleting edges uv, vw, wx to obtain the graph H (left), and identifying w
with u to get H ′ (right).

{(ux, i), (xw, j), (vw, s), (uw, t)}. Let q ∈ Onceα(z)\{p, t}. Then β⊕{(zw, p), (zu, q)} ∈
kLG.

For the fourth case let us assume that i ∈ Missingα(x), j ∈ (Onceα ∪Missingα) \

{i}. Let s ∈ Missingα(v) and t ∈ (Missingα(v) ∪ Onceα(v) \ {s}). Also assume that

p ∈ Missingα(z) and q ∈ Onceα(z)∪Missingα(z). Let β = α⊕{(ux, i), (wx, j), (uv, t),

(wv, s)}. Let q ∈ Onceα(z)\{j} and p ∈ Onceα(z)\{q, t}. Then β⊕{(zu, p), (zw, q)} ∈
kLG.

Now we are ready to prove the theorem. Let x, y ∈ NG(w) \ {v} (we can always

add degree 1 vertices x, y when they do not exist). By Lemma 2 we assume that

uw /∈ E(G). Also by Lemma 3 we assume that NG(u) ∩ NG(w) = {v}. Let H =

G−{uv, vw,wx} and H ′ = H/(u,w) (see Figure 3.1). Observe that H ′ is a 3-degenerate

graph. As |E(H ′)| < |E(G)| there is a linear coloring α′ ∈ kLH′ . Let t = α′(uy). Let

α = (α′ \ {(uy, t)}) ∪ {(wy, t)}. Observe that dH(x) ≤ 2k − 2. Therefore, either

|Missingα(x)| ≥ 1 or |Onceα(x)| ≥ 2. Let i ∈ Missingα(x) ∪ (Onceα(x) \ {α(wy)}).

Assume that β = α⊕ {(wx, i)}. As dH(v) = 2k − 3 we have the following possibilities.

1. |Missingα(v)| = 1 and |Onceα(v)| = 1.

2. |Onceα(v)| = 3.

For the first case let Missingα(v) = {i′} and Onceα(v) = {j}. First let us as-

sume that either i′ ∈ Twiceβ(u) or i′ ∈ Twiceβ(w). From the symmetry of u and

40

w let us assume that i′ ∈ Twiceβ(u). Let β1 = β ⊕ {(uv, j), (vw, i′)}. Notice,

that i′ ∈ Twiceβ(w) will imply that α′ /∈ kLH′ . Thus β1 ∈ kLG. So let us as-

sume that i′ /∈ Twiceβ(u) ∪ Twiceβ(w). If j ∈ Twiceβ(u) ∪ Twiceβ(w) then let

β1 = β ⊕ {(uv, i′), (vw, i′)}. Observe that β1 is a linear coloring. Therefore, let us

assume that i′, j /∈ Twiceβ(u)∪ Twiceβ(w). If there is a path between u and v of color

j in β, then let β1 = β ⊕ {(uv, i′), (vw, j)}. Otherwise, let β1 = β ⊕ {(uv, j), (vw, i′)}.

In both the cases we have β1 ∈ kLG.

For the second case let us assume that Onceβ(v) = {i′, j, l}. Let L ⊆ Onceβ(v) such

that if b ∈ L then there is a b colored path having end vertices u and v in β. Notice

that L ⊆ Onceβ(u) ∩Onceβ(v). As dH(u) ≤ 2, we have 0 ≤ |L| ≤ 2. Also observe that

if Twiceβ(u) ̸= ∅ then L = ∅. Let |L| = 2 and s ∈ L \ Twiceβ(w) and t ∈ {i′, j, l} \ L.

Let us assume that β1 = β⊕{(vw, s), (uv, t)}. Otherwise, let r ∈ {i′, j, l} \Colorsβ(w)

and m ∈ {i′, j, l} \ {r} ∪ Twiceβ(u) ∪ L. Define β1 = β ⊕ {(uv,m), (vw, r)}. Then,

β1 ∈ kLG.

This proves Theorem 1.

As a corollary, we get that the Linear Arboricity Conjecture is true for 3-degenerate

graphs.

Corollary 1. For every 3-degenerate graph G, χ′
l(G) ≤

⌈
∆(G)+1

2

⌉
.

We present an alternate proof of this result in Chapter 4.

3.2 2-degenerate graphs

We prove some results on 2-degenerate graphs in the section. These are continuations

of our results on 3-degenerate graphs. For any 2-degenerate graph G, the definition of

PG and P̄G(v) are same as before.

41

3.2.1 2-degenerate graphs with ∆ > 4

Theorem 2. Let G be any 2-degenerate graph with ∆(G) ≤ 2k, where k ∈ N\{0, 1, 2}.

Then χ′
l(G) ≤ k.

Proof. Again, note that we can assume that G contains no isolated vertices. The proof

is by induction on |E(G)|. If E(G) = ∅ then the theorem is true. Let us assume that

|E(G)| > 0. Observe that there exists v ∈ PG and uv ∈ P̄G(v). Notice that dG(u) ≤ 2.

Let H = G − uv. First assume that dG(v) < 2k. From the induction hypothesis,

we assume that there is a linear coloring α ∈ kLH . Since dH(v) = |Onceα(v)| +

2|Twiceα(v)| ≤ 2k − 2 and |Missingα(v)| + |Onceα(v)| + |Twiceα(v)| = k, it is true

that 2|Missingα(v)|+ |Onceα(v)| ≥ 2. Hence there are the following two possibilities.

1. |Missingα(v)| = 0 and |Onceα(v)| ≥ 2.

2. |Missingα(v)| ≥ 1.

Note that dH(u) ≤ 1. When |Missingα(v)| = 0 let i ∈ Onceα(v) \ Colorsα(u) else

let i ∈ Missingα(v). The coloring β = α⊕{(uv, i)} ∈ kLG. Therefore, we assume that

dG(v) = 2k and therefore dH(v) = 2k − 1. Notice that since k ≥ 3, we have 2k ≥ 6.

Therefore, |P̄G(v)| ≥ 4. Let {vx, vw, vu} ⊂ P̄G(v). Let H ′ = H − {vw, vx}. From the

induction hypothesis there exists a linear coloring α′ ∈ kLH′ . Notice that |Onceα′(v)|+

2|Twiceα′(v)| = dH′(v) = 2k − 3 and |Missingα′(v)| + |Onceα′(v)| + |Twiceα′(v)| = k.

Combining, we get 2|Missingα′(v)|+ |Onceα′(v)| = 3. One of the following is true.

1. |Onceα′(v)| = 3 when |Missingα′(v)| = 0.

2. |Onceα′(v)| = 1 when |Missingα′(v)| = 1.

At first let us consider that |Onceα′(v)| = 3 and Onceα′(v) = {c0, c1, c2}. Notice that

dH′(u) = dH′(w) = dH′(x) = 1. For all i ∈ {0, 1, 2}, let f(ci) denote the other end vertex

of the path of color ci starting at v. Let us assume that A = {f(c0), f(c1), f(c2)} ∩

42

{u,w, x}. If f(ci) ∈ A then c(i+1) mod 3 is chosen for the edge vf(ci). The remaining

colors are given arbitrarily to remaining edges. This gives a k-linear coloring of G.

Now let us consider the case when |Missingα′(v)| = 1 and |Onceα′(v)| = 1. Assume

that Missingα′(v) = {a} and Onceα′(v) = {b}. Without loss of generality, let us

assume that if at all there is any a colored path (in the coloring α′ of H ′) between

any two vertices in {u,w, x} it is between w, x. Also without loss of generality let us

assume that the b colored path starting from v does not end at x. Then the coloring

α′ ⊕ {(uv, a), (wv, a), (xv, b)} ∈ kLG.

Corollary 2. For any 2-degenerate graph G, χ′
l(G) =

⌈
∆(G)

2

⌉
, whenever ∆(G) ≥ 5.

3.2.2 2-degenerate graphs with ∆ ≤ 4

We conjecture that any 2-degenerate graph of maximum degree 4 has a linear coloring

with 2 colors.

Conjecture 2. For any 2-degenerate graph G, with ∆(G) ≤ 4, it is true that χ′
l(G) ≤ 2.

Graphs with large number of edges

We prove the Conjecture 2 when |E(G)| ≥ 2|V (G)|−5 (note that a 2-degenerate graph

G of more than 1 vertex can have at most 2(|V (G)| − 3) + 3 = 2|V (G)| − 3 edges).

We define a class Fk (where k ∈ N) of 2-degenerate graphs of maximum degree at

most 4. The class Fk contains those 2-degenerate graphs G satisfying ∆(G) ≤ 4 and

|E(G)| = 2|V (G)| − k. Observe that {Fk : k ≥ 2} is a partition of the class of 2-

degenerate graphs of maximum degree at most 4. It is to be noted that F2 = {K1}.

Observe that for all G ∈ Fk and any v ∈ V (G) with dG(v) ≤ 2, we have G − v ∈ Fl

where l ≤ k.

43

Lemma 4. If G ∈ ∪5
k=2Fk and disconnected, then G has at most two components and

at least one component of G is a K1.

Proof. Let G1, G2, . . . , Gr be the components of G. It can be seen that |E(G)| =

2(|V (G1)|+|V (G2)|+. . .+|V (Gr)|)−(l1+l2+. . .+lr) where Gi ∈ Fli and i ∈ {1, 2, . . . , r}.

Notice that 2 ≤ li ≤ 5 for i ∈ {1, 2, . . . , r}. If r > 2, then |E(G)| ≤ 2|V (G)| − 6 <

2|V (G)| − k such that k ∈ {2, 3, 4, 5}. Which is a contradiction. Therefore we assume

that r ≤ 2. When r = 2, it is a contradiction when l1, l2 ≥ 3. Therefore at least one of

l1,l2 is 2. That is there is a component that is a K1. This completes the proof.

Definition 2. Let α ∈ LG. We define a set Mα,G = {v ∈ V (G) : dG(v) = 2 and

|Colorsα(v)| = 1}. We call the set Mα,G the set of monochromatic vertices of G with

respect to the linear coloring α.

Theorem 3. Every 2-degenerate graph G having ∆(G) ≤ 4 and |E(G)| ≥ 2|V (G)| − 5

has a 2-linear coloring α satisfying |Mα,G| ≤ 1.

Proof. Let k ∈ {2, 3, 4, 5}. Let G ∈ Fk. The proof is by induction on |E(G)|. Notice

that when ∆(G) ≤ 2, G is a collection of cycles or paths and the graph G has a 2-linear

coloring with at most one monochromatic vertex (color the edges alternatively). By

Lemma 4, there can be at most one component that is not K1 of G. So G has a linear

coloring with 2 colors such that |Mα,G| ≤ 1 (it is a linear coloring in which only odd

cycles have a monochromatic vertex). In this case the theorem is true. The base case

is when |E(G)| = 0. The base case is trivially true. Now we let that |E(G)| > 1 and

∆(G) > 2. Since ∆(G) > 2 there is a v ∈ PG such that dG(v) > 2 and uv ∈ P̄G(v)

(where u ∈ NG(v)). Clearly, dG(u) ≤ 2.

If dG(u) = 1, then let H = G − u. Observe that H ∈ Fl where 2 ≤ l < 5.

As |E(H)| < |E(G)| there is a linear coloring α of H such that |Mα,H | ≤ 1. Notice

that Onceα(v) ∪ Missingα(v) ̸= ∅. Let i ∈ Onceα(v) ∪ Missingα(v). The coloring

α⊕ {(uv, i)} is a linear coloring of G with 2 colors.

44

Now assume that dG(u) = 2. Let dG(v) = 3. Let H = G− u. Notice that H ∈ Fk.

Therefore there is a linear coloring α of H with colors i, j such that |Mα,H | ≤ 1. As

dH(v) = 2, without loss of generality we assume one of the following is true.

1. Missingα(v) = {i}.

2. Onceα(v) = {i, j}.

Let NG(u) = {v, w}. Observe that since dH(w) < 4 there exists t ∈ Missingα(w) ∪

Onceα(w). Let α′ = α⊕ {(uw, t)}.

Let Colorsα′(u) = {i}. Then for the first case let β = α′⊕{(uv, i)}. For the second

case let β = α′ ⊕ {(uv, j)}. Now let Colorsα′(u) = {j}. Then as the first case we

assume that β = α′ ⊕{(uv, i)}. For the second case we assume that β = α′ ⊕{(uv, i)}.

It can be seen that β is a linear coloring of G with two colors satisfying |Mα′,G| ≤ 1.

Now let us consider that dG(v) = 4. Clearly, there is wv ∈ P̄G(v) \ {uv}. We

assume that dG(w) = 2. Otherwise, we are in the case when d(u) = 1, which was

already handled earlier. Let us assume the case when NG(u) = NG(w) = {v, x}. Note

that x ∈ PG. Therefore, we assume that dG(x) = 4. Let H = G − {u,w}. Notice

that H ∈ Fk. Therefore, we can assume that there is a linear coloring α of H with

colors i, j such that |Mα,H | ≤ 1. Without loss of generality, we assume that either

Mα,H ∩ {x, v} = {v} or Mα,H ∩ {x, v} = ∅. For the former case, we assume that

Missingα(v) = {i} and let β = α ⊕ {(uv, i), (wv, i), (xu, i), (xw, j)}. For the latter

case let β = α⊕ {(uv, j), (wv, i), (xu, i), (xw, j)}. Therefore in both the cases β ∈ 2LG

satisfying |Mβ,G| ≤ 1.

Now let us consider that NG(u) = {v, xu} and NG(w) = {v, xw} and xu ̸= xw. Let

H = G−{uv, wv} and H ′ = H/(u,w). As H ′ ∈ Fk we assume that there is a linear col-

oring α′ of H ′ with colors i, j satisfying |Mα′,H′| ≤ 1. Let α = (α′ \ {(uxw, α
′(uxw))})∪

{(wxw, α
′(uxw))}. Let Colorsα(v) = {i, j}. Also assume that Colorsα(u) = {i}. Sup-

pose that there is a path of color i having end vertices v and u in the coloring alpha of

45

H ′. Then we define β = α⊕{(uv, j), (vw, i)}. Since u and w are symmetric, we can now

assume that there is no monochromatic path to u or w from v. Then we again declare β

in the same way. Now assume that Colorsα(v) = {i}. Now let us assume without loss

of generality that Colorsα(u) = {i}, Colorsα(w) = {j}. Let β = α⊕ {(uv, j), (wv, j)}.

In all the cases β is a linear coloring with 2 colors of G satisfying |Mα,G| ≤ 1.

We say that a 2-degenerate graph G is “maximal” if |E(G)| ≥ 2|V (G)| − 3.

Corollary 3. Any maximal 2-degenerate graph G of maximum degree at most 4 contains

a Hamiltonian path.

Proof. Let G = F2 ∪ F3. If G = K1, this is trivially true. Therefore, we assume that

G ∈ F3. By Theorem 3, G has a linear coloring with 2 colors. Since the color classes

are linear forests, each of these color classes can contain at most |V (G)| − 1 edges. As

|E(G)| = |V (G)| − 3 we must have a color class with |V (G)| − 1 edges. Clearly, the

edges in this color class form a Hamiltonian path of G.

Neither of the two conditions in the above corollary can be relaxed: the graph K2,4

and the 2-tree on 6 vertices shown in Figure 3.2 have no Hamiltonian paths. Note

that the former is a 2-degenerate graph having maximum degree 4, but is not maximal,

whereas the latter is a maximal 2-degenerate graph, but has maximum degree more

than 4.

Bipartite graphs

Theorem 4. Any bipartite 2-degenerate graph G of maximum degree at most 4 has a

linear coloring α with 2 colors where |Mα,G| = 0.

Proof. Let G be a bipartite 2-degenerate graph with ∆(G) ≤ 4. We do an induction on

both |V (G)| and |E(G)|. That is the theorem is true for graphs having either smaller

46

Figure 3.2: A maximal 2-degenerate graph with ∆ = 5 without any Hamiltonian path.

number of vertices or smaller number of edges than G. The base case is when |V (G)| = 1

or G is a disjoint union of paths or cycles (even). In both the cases, the theorem is

true since any proper edge coloring of G is a 2-linear coloring having no monochromatic

vertices. Therefore, we assume that ∆(G) > 2. Thus there exist v ∈ PG and uv ∈ P̄G(v)

such that dG(v) > 2.

Let us first assume that dG(u) = 1. Let H = G− uv. Since |E(H)| < |E(G)| there

exists a linear coloring α of H with 2 colors satisfying Mα,H = ∅. As dH(v) ∈ {2, 3},

Missingα(v) ∪ Onceα(v) ̸= ∅. Let i ∈ Missingα(v) ∪ Onceα(v). Now, α ⊕ (uv, i) is a

linear coloring of G with 2 colors satisfying |Mα,G| = 0.

Thus we assume that dG(u) = 2. First we assume that dG(v) = 3. Let H = G−uv.

Observe that |E(H)| < |E(G)|. Thus there exists a linear coloring α of H with colors i, j

satisfying |Mα,H | = 0. Notice that dH(v) = 2. Clearly, Colorsα(v) = {i, j}. Without

loss of generality, let Colorsα(u) = {i}. The coloring α ⊕ {(uv, j)} is our desired

coloring.

47

Now we shall assume that dG(v) = 4. Note that there exists w ∈ NG(v) \ {u}.

If w is of degree 1 in G, we follow the previous argument. Therefore we assume that

dG(w) = 2. First assume that NG(u) ∩ NG(w) = {v, x}. Notice that x ∈ PG. If

dG(x) = 3, we follow the previous argument. Therefore, we assume that dG(x) = 4.

Let us assume that H = G−{u,w}. As |V (H)| < |V (G)| there exists a linear coloring

α of H with colors i, j satisfying |Mα,H | = 0. Observe that Colorsα(x) = Colorsα(v) =

{i, j}. The coloring α ⊕ {(uv, i), (xu, j), (wv, j), (xw, i)} is a linear coloring with 2

colors of G satisfying |Mα,G| = 0. Now let us assume that NG(u) \ {v} = {xu},

NG(w) \ {v} = {xw} and xu ̸= xw. Let H = G − {uv, wv} and H ′ = H/(u,w).

As |E(H ′)| < |E(G)| there exists a linear coloring α′ of H ′ with colors i, j such that

|Mα′,H′| = 0. Let α = (α′ \ {(uxw, α
′(uxw))}) ∪ {(wxw, α

′(uxw))}. Clearly, α ∈ 2LH .

Note that Colorsα(u) ̸= Colorsα(w) since otherwise u would have been monochromatic

in α. So without loss of generality let us assume that Colorsα(u) = {i}, Colorsα(w) =

{j} and Colorsα(v) = {i, j}. We see that β = α ⊕ {(uv, j), (vw, i)} is a valid linear

coloring for the graph G using 2 colors and having Mβ,G = ∅.

Partial 2-trees

A partial 2-tree is a graph G which has a tree decomposition of width at most 2.

Partial 2-trees are 2-degenerate graphs and are closed under taking minor. We state

the following folklore result as an observation.

Observation 1. Every partial 2-tree G contains one of the following configurations.

1. A vertex of degree at most one,

2. Two adjacent vertices each of degree two,

3. Two non-adjacent vertices of degree two that have the same neighborhood,

48

4. A triangle containing a vertex of degree 2, a vertex of degree 3, and a vertex of

degree at least 3,

5. Two triangles having no common edges, but having a common vertex of degree 4,

and in each triangle, apart from the common vertex, there is a vertex of degree 2

and a vertex of degree at least 4.

Definition 3. Let G be a graph and V ′ = {v ∈ V (G) : dG(v) = 2}. We let P(V ′)

denote the power set of V ′. Define T (G) = {S ⊆ P(V ′) : for every S ∈ S, |S| = 2 and

for distinct S, S ′ ∈ S, we have S ∩ S ′ = ∅}. For some S ∈ T (G), the linear coloring

f ∈ 2LG is said to “satisfy” S if |Mf,G ∩ S| ≤ 1 for every S ∈ S.

Theorem 5. Let G be a partial 2-tree having maximum degree at most 4. If S ∈ T (G),

then there is an f ∈ 2LG such that f satisfies S.

Proof. We shall prove by induction on |V (G)|. The theorem is true when |V (G)| = 1.

We prove when |V (G)| > 1. By Observation 1, G contains one of the configurations

from (1)− (5). In each case we show how to find a linear coloring satisfying S.

(1) Let u ∈ V (G) such that dG(u) = 1 and NG(u) = {v}. Let H = G − u. Using

the induction hypothesis, assume that there exists f ∈ 2LH such that f(E(H)) =

{1, 2} satisfying S \ {S : v ∈ S ∈ S}. Let i ∈ Missingf (v) if dG(v) = 2 else let

i ∈ {1, 2} \ Twicef (v). Clearly, g = f ⊕ {(uv, i)} ∈ 2LG. Also observe that g satisfies

S.

(2) Suppose that G contains two adjacent vertices u, v such that dG(u) = dG(v) =

2. Consider the partial 2-tree H = G − uv. If there exist u′, v′ ∈ V (G) such that

{{u, u′}, {v, v′}} ⊆ S, let S ′ = (S ∪ {{u′, v′}}) \ {{u, u′}, {v, v′}}, otherwise let S ′ =

S\{S : u ∈ S or v ∈ S}. By the induction hypothesis, there exists f ∈ 2LH satisfying S ′

(since H satisfies (1),H has a 2-linear coloring that satisfies S ′). For any x ∈ V (G) we

denote by x′ a vertex such that {x, x′} ∈ S if such x′ exists. If u′ does not exist, u′ = v

49

(which means that {u′, v′} = {u, v} = {u, u′} = {v, v′}), or if u′ is not monochromatic,

then color uv with a color so that v is not monochromatic (since we can afford to let u

be monochromatic). Otherwise, color uv with a color so that u is not monochromatic.

It is easy to see that we have a 2-linear coloring of G. Clearly, if one of u′, v′ does not

exist, or if {u′, v′} = {u, v}, then the 2-linear coloring that we have constructed satisfies

S. Otherwise, {u′, v′} ∈ S ′, and so only at most one of u′, v′ can be monochromatic in

the coloring f of H given by the induction hypothesis. So in this case too, we have a

2-linear coloring of G that satisfies S.

(3) Suppose that G contains two non-adjacent degree 2 vertices u, v such that

NG(u) = NG(v) = {x, y}. Let H = G−{u, v}. Clearly, H is a partial 2-tree. If there ex-

ist u′, v′ ∈ V (G) such that {u, u′}, {v, v′} ∈ S, let S ′ = (S∪{{u′, v′}})\{{u, u′}, {v, v′}},

otherwise let S ′ = S \ {S : u ∈ S or v ∈ S}. If dH(x) = dH(y) = 2, then define

S ′′ = S ′ ∪{{x, y}}, otherwise define S ′′ = S ′. By the induction hypothesis, there exists

a 2-linear coloring f of H that satisfies S ′′. We construct a 2-linear coloring of G as

follows. Assign every edge e ∈ E(G− {u, v}) the color f(e). Note that as {x, y} ∈ S ′′,

at least one of x, y is non-monochromatic in the coloring f of H. This means that in

order to construct a 2-linear coloring of G, we can color the edges ux, vx, uy, vy in such

a way that u is not monochromatic and also in such a way that v is not monochromatic.

As before, if u′ does not exist, u′ = v or if u′ is not monochromatic, then we color the

edges ux, vx, uy, vy such that v is not monochromatic, otherwise we color those edges so

that u is not monochromatic. It is easy to verify that the 2-linear coloring constructed

in this manner satisfies S.

(4) Suppose that the vertices u, v, w form a triangle in G and dG(u) = 2 and dG(v) ≥

3, dG(w) ≥ 3. Consider the partial 2-tree H = G − {u}. If there is u′ ∈ V (G) such

that {u, u′} ∈ S then we let S ′ = (S \ {u, u′}) ∪ {{v, u′}} otherwise we let S ′ = S.

By the induction hypothesis there is a 2-linear coloring f of H using the colors {1, 2}

50

that satisfies S ′. We will now construct a 2-linear coloring of G by assigning colors to

the edges uv and uw. First we color uw with an arbitrary color from Missingf (w) ∪

Oncef (w) (this set is nonempty as dH(w) ≤ 3). Note that dH(v) = 2 and if u′ exists,

only one of u′ or v can be monochromatic in the coloring f of H. If v is monochromatic

in H, then we color uv with the color in Missingf (v), and otherwise we color uv with

a color in {1, 2} that is different from the color of uw. It is easy to verify that we now

have a 2-linear coloring of G that satisfies S.

a

x y

u v

1
1

1
12 2

2 21 1

(i)

a

x y

u v

a

x y

u v

1
1

2
22 1

2 11 2

(ii)

a

x y

u v

a

x y

u v

1
2

1
21 2

2 11 2

(iii)

a

x y

u v

a

x y

u v

1
2

1
12 2

1 21 1

(iv)

Figure 3.3: Constructing a 2-linear coloring of G from a 2-linear coloring of H in
case (5).

(5) Suppose that both {a, u, x} and {a, v, y} induce triangles in G, where dG(u) =

dG(v) = 2 and dG(x) = dG(y) = 4. We consider the partial 2-tree G = H − {u, v, a}.

Note that dH(x) = dH(y) = 2. If there exists u′ ̸= v such that {u, u′} ∈ S, then define

A = (S \ {{u, u′}}) ∪ {{y, u′}}, otherwise let A = S. Now if there exists v′ ̸= u such

that {v, v′} ∈ A, then we let A′ = (A \ {{v, v′}}) ∪ {{x, v′}} otherwise let A′ = A.

51

Finally, we define S ′ = A′ \ {{u, v}}. Let f be a 2-linear coloring of H using the

colors {1, 2} that satisfies S ′ that exists by the induction hypothesis. We shall assign

colors to the edges ux, ua, va, vy, ax, ay to construct a 2-linear coloring of G. If both

x and y are monochromatic or if both x and y are non-monochromatic, then we can

color these edges in such a way that both u and v are non-monochromatic as shown

in Figures 3.3(i)–3.3(iii). If y is monochromatic and x is non-monochromatic, then we

can color these edges as shown in Figure 3.3(iv) so that v is non-monochromatic and u

is monochromatic. Symmetrically, if x is monochromatic and y is non-monochromatic,

then we can color these edges in such a way that u is non-monochromatic and v is

monochromatic. It is easy to verify that in all cases, we have a 2-linear coloring of G

that satisfies S.

52

Chapter 4

Optimal linear coloring of

3-degenerate graphs

Recall that given a graph with a linear coloring, a vertex in it is called a monochromatic

vertex if it has degree 2 and both edges incident to it have the same color. In this

chapter, we first prove that every 3-degenerate graph G has a
⌈
∆(G)

2

⌉
-linear coloring

containing no monochromatic vertices if ∆(G) ≥ 9. We then extend the techniques

used to show that every connected 3-degenerate graph G has a
⌈
∆(G)+1

2

⌉
-linear coloring

that contains no monochromatic vertices unless G is an odd cycle (in which case it has

a 2-linear coloring containing exactly one monochromatic vertex).

4.1 Some preliminary definitions

Let G be a 3-degenerate graph having ∆(G) ≥ 3. If ∆(G) = 3, then every vertex is a

pivot and every edge is a pivot edge; in this case, we denote by v some vertex having

dG(v) = 3. On the other hand, if ∆(G) > 3, we denote by v a pivot having dG(v) ≥ 4.

Let F be the set of pivot edges incident on v (F = P̄G(v)). It can be seen that F ̸= ∅.

Define X = {x ∈ V (G) : xv ∈ F}. Clearly, for each x ∈ X, we have dG(x) ≤ 3. Let

53

I = {xx′ ∈ E(G) : x, x′ ∈ X and dG(x) = dG(x
′) = 2}. Let H = G − (F ∪ I). Let

W = {x ∈ X : dH(x) = 1}. It is not difficult to see that W is an independent set in

H as well as in G. For each vertex w ∈ W , let w denote its unique neighbor in H. In

H, we now choose a maximal set of pairs of vertices from W such that the vertices in

each pair can be identified with each other without introducing multiple edges. For this

purpose, we define an auxiliary graph A with V (A) = W and E(A) = {xy : x ̸= y}.

Let M be a maximal matching of A. Let W ′ denote the vertices of V (A) = W that

remain unmatched by M . Due to the maximality of M , for any two vertices a, b ∈ W ′,

we have a = b. Thus if W ′ ̸= ∅, there exists a vertex w̃ ∈ V (H) \ (W ∪ {v}) such that

w̃ = w for every w ∈ W ′. We can now identify the vertices in W which are matched to

each other by M to construct a graph H ′ from H.

It is easy to see that the graph H ′ is a 3-degenerate graph having ∆(H ′) ≤ ∆(G).

Note that any linear coloring cH′ of H ′ that contains no monochromatic vertices can

be converted into a linear coloring cH of H containing no monochromatic vertices and

using the same number of colors by just splitting back the vertices that were identified

during the construction of H ′ from H. We say that cH is the linear coloring of H

“corresponding to” the linear coloring cH′ of H ′.

For any set S ⊆ W , we say that “S satisfies property P” if |S| ≥ 3 and for each

x ∈ S, if there exists x′ ∈ W such that xx′ ∈ M , then we also have x′ ∈ S.

Claim 1. Let cH′ be a linear coloring of H ′ containing no monochromatic vertices,

and let cH be the linear coloring of H corresponding to cH′. Let S ⊆ W . If S satisfies

property P, then there exist x, y ∈ S such that the colors of the edges xx, yy are different

in cH .

Proof of claim. Suppose S satisfies property P . Assume for the sake of contradiction

that for each x ∈ S, cH(xx) = 1 (say). Suppose that there exist u,w ∈ S such that

uw ∈ M . Then the edges uu and ww got their colors in cH from the colors of two edges

54

incident on a degree 2 vertex in cH′ . Then this vertex has two edges of color 1 incident

on it in cH′ , which contradicts the fact that there are no monochromatic vertices in

cH′ . As S satisfies property P , we can now conclude that S ⊆ W ′. As |S| ≥ 3, we

have three distinct vertices p, q, r ∈ S such that cH(pp) = cH(qq) = cH(rr) = 1. Since

S ⊆ W ′, we have that p = q = r = w̃. Thus cH(pw̃) = cH(qw̃) = cH(rw̃) = 1. Then

three edges incident on the vertex w̃ have the same color in cH , contradicting the fact

that cH is a linear coloring of H. This proves the claim.

4.2 Maximum degree at least 9

Theorem 6. Every 3-degenerate graph G having maximum degree ∆(G) ≤ k, where

k ≥ 9, has a
⌈
k
2

⌉
-linear coloring in which there are no monochromatic vertices.

Proof. We prove this by induction on |E(G)|. If ∆(G) ≤ 2, then G is a disjoint union

of cycles and paths; in this case, G clearly has a 3-linear coloring in which there is no

monochromatic vertex, and we are done. So we can assume that ∆(G) ≥ 3.

Let the sets F , I, X, W , and the graphs H, H ′ be as defined in Section 4.1. Since

|E(H ′)| < E(G)|, and ∆(H ′) ≤ ∆(G) ≤ k, we have by the induction hypothesis that

there is a
⌈
k
2

⌉
-linear coloring cH′ of H ′ in which there are no monochromatic vertices.

Let cH be the linear coloring of H corresponding to cH′ . We show how to construct

a
⌈
k
2

⌉
-linear coloring of G that does not contain any monochromatic vertices, starting

from the coloring cH . We first construct a
⌈
k
2

⌉
-linear coloring c of G − I that does

not contain any monochromatic vertices by extending cH . Once this is done, the linear

coloring c can be easily further extended to the required
⌈
k
2

⌉
-linear coloring of G by

assigning to each edge xx′ ∈ I a color that is different from both c(vx) and c(vx′) (this

can be done since
⌈
k
2

⌉
≥ 5). We describe below how the

⌈
k
2

⌉
-linear coloring c of G− I

is constructed. Note that W is exactly the set of vertices in X that have degree 2 in

55

G− I. In the following, we denote by d(u) the degree of a vertex u in the graph G− I.

Let C denote the set of edge colorings (that are not necessarily linear colorings) of

G−I using colors in {1, 2, . . . ,
⌈
k
2

⌉
} that can be obtained from cH by coloring the edges

in F using the colors from Missing(v) ∪Once(v) such that every color in Missing(v)

is given to at most two edges of F and every color in Once(v) is given to at most one

edge of F (here, the sets Missing(v) and Once(v) are with respect to the coloring cH).

In other words, C is the set of edge colorings of G−I that are extensions of cH in which

at most two edges of the same color are incident on v. Notice that C ̸= ∅, since we can

always generate a coloring that belongs to C by the following procedure: each color in

Missing(v) is assigned to some two edges of F , and each color in Once(v) is assigned

to some edge in F , so that every edge in F gets colored. This can be done because

d(v) ≤ ∆(G) ≤ k. We make the following observation.

Since cH did not contain any monochromatic vertex, in every coloring in C, no

vertex has more than two edges of the same color incident on it.

Thus, for any coloring in C, the subgraph formed by the edges having the same color

is a disjoint union of cycles and paths. Note that given any coloring in C, permuting

the colors on the edges in F always gives another coloring in C.

Among the colorings in C, let c denote a coloring that contains the smallest possible

number of monochromatic vertices, and subject to that, contains the smallest possible

number of monochromatic cycles. We claim that c is a linear coloring of G − I that

does not contain any monochromatic vertices. From here onward, the sets Missing(v)

and Once(v) shall be with respect to the coloring c.

Suppose that there exists a monochromatic vertex u in c. Since there are no

monochromatic vertices in cH and d(v) ≥ 3, we can conclude that u ∈ W . Sup-

pose first that there exists a color i ∈ Missing(v) ∪ (Once(v) \ {c(uv)}). Then we can

change the color of uv to i so that u is no longer a monochromatic vertex. It is easy

56

to see that we have not introduced any new monochromatic vertex, and hence we have

a coloring in C that has fewer monochromatic vertices than c, which contradicts our

choice of c. So we can assume that Missing(v) = ∅ and that Once(v) ⊆ {c(uv)}, which

implies that |Missing(v)∪Once(v)| ≤ 1. This means that d(v) ≥ k− 1 (note that this

immediately implies that d(v) ≥ 8). As v is a pivot, it follows that |F | = |X| ≥ k − 4.

Next, suppose that there exists x ∈ X \W . Then d(x) ∈ {1, 3}. If c(uv) ̸= c(xv),

then we can interchange the colors of uv and xv so as to obtain a coloring in C having

a smaller number of monochromatic vertices than c, which contradicts our choice of c.

So we can assume that for every y ∈ X \W , c(uv) = c(yv). Since at most one edge in F

other than uv can have the color c(uv), we can now assume that X \W = {x}, and also

that c(xv) = c(uv). Note that this implies that for every y ∈ W \ {u}, c(yv) ̸= c(uv).

Since |X| ≥ k − 4, we now have |W | ≥ k − 5. Let S = W . As k ≥ 9, we then have

|S| ≥ 4. Clearly, S satisfies property P . By Claim 1, we know that there exists y ∈ S

such that c(yy) ̸= c(uu) = c(uv) (note that y ̸= u). We can then interchange the

colors of yv and uv to obtain a coloring in C that has fewer monochromatic vertices

than c, which contradicts the choice of c. So we can assume that X \ W = ∅, or in

other words X = W . If there exists w ∈ W \ {u} such that c(vw) = c(uv), then

let S = W \ ({w} ∪ {w′ ∈ W : ww′ ∈ M}); otherwise, let S = W . It is easy to

see that |S| ≥ |W | − 2 = |X| − 2 ≥ k − 6 ≥ 3. Thus S satisfies property P . By

Claim 1, it follows that there exists y ∈ S such that c(yy) ̸= c(uu) = c(uv). Now, by

interchanging the colors of the edges uv and yv, we can obtain a coloring in C that has

fewer monochromatic vertices than c, which contradicts the choice of c. We can thus

conclude that there are no monochromatic vertices in c.

Next let us suppose that c contains a monochromatic cycle. Let each edge of this

cycle have color 1 (say). As there are no monochromatic cycles in cH , we can infer that

an edge uv ∈ F is contained in this monochromatic cycle. Let u′v be the other edge

57

incident to v that is contained in the monochromatic cycle. Clearly, c(uv) = c(u′v) = 1.

As there are no monochromatic vertices in c, we have d(u) ≥ 3 and d(u′) ≥ 3, which

implies that u, u′ /∈ W . As uv ∈ F , we further have that d(u) = 3. Let 2 be the

color of the edge incident on u that is not part of the monochromatic cycle. We denote

by P the monochromatic path from v to u containing only edges colored 1, and not

containing the edge uv; i.e. it is the path obtained by removing the edge uv from the

monochromatic cycle. Since there is only one edge colored 2 incident on u, we know

that there is a maximal monochromatic path, all of whose edges are colored 2, having

one endpoint u. Let us denote this path by Q.

Suppose that there exists i ∈ Missing(v)∪(Once(v)\{2}). Then we can change the

color of uv to i so as to obtain a coloring in C that does not contain any monochromatic

vertices and contains fewer monochromatic cycles than c. As this is a contradiction

to the choice of c, we can assume that Missing(v) = ∅ and Once(v) ⊆ {2}. This

implies that d(v) ≥ k − |Once(v)|. As before, since v is a pivot, we have |F | = |X| ≥

k − |Once(v)| − 3. Note that since |Once(v)| ≤ 1, this means that |F | = |X| ≥ k − 4.

Claim 2. Let xv ∈ F such that x /∈ {u, u′}. Let c′ be the coloring in C obtained from c by

exchanging the colors of the edges uv and xv. If c′ does not have fewer monochromatic

cycles than c, then c(xv) = c′(uv) = 2 and c′ contains a monochromatic cycle colored 2

containing the edge uv.

Proof of claim. It is clear that the monochromatic cycle colored 1 in c is no longer

a monochromatic cycle in c′, since c′(uv) = c(xv) ̸= 1. If there is a new monochromatic

cycle in c′, then clearly, it has to contain either the edge xv or the edge uv. In the

former case, i.e. there is a monochromatic cycle colored 1 in c′ containing the edge xv,

since P is a path colored 1 from v to u in c′ as well, we have that u also belongs to this

cycle. But this contradicts the fact that there is only one edge colored 1 incident on u

in c′. Thus, if at all a new monochromatic cycle arises in c′, it has to be one containing

58

the edge uv. Since the only color other than 1 that appeared on the edges incident on

u in c was 2, it follows that this new monochromatic cycle is colored 2, which implies

that c′(uv) = c(xv) = 2. This proves the claim.

First, suppose that v is not contained in Q. If there exists x ∈ X \ (W ∪ {u, u′}),

then we exchange the colors of the pivot edges xv and uv to obtain a new coloring c′ in

C. Clearly, the coloring c′ does not contain any monochromatic vertices. By Claim 2

and our choice of c, we have that c′ contains a monochromatic cycle colored 2 containing

the edge uv, which we shall denote by C. Then C − uv is a path in c′, all of whose

edges are colored 2, from u to v. The edge xv is not on this path since c′(xv) = 1,

and therefore C − uv is a path colored 2 in c too, implying that v is contained in the

path Q in c, contradicting our assumption that v is not contained in Q. So we can

assume that X \ W ⊆ {u, u′}. As |X| ≥ k − 4, we now have |W | ≥ k − 6 ≥ 3. Let

S = W . It is easy to see that S satisfies property P , and therefore by Claim 1, we

have that there exists y ∈ S such that c(yy) ̸= 1. We now exchange the colors of the

edges uv and yv to obtain a new coloring c′ in C. By our choice of y, it follows that

there are no monochromatic vertices in c′. Then by our choice of c, we have that c′

does not have fewer monochromatic cycles than c, which implies by Claim 2 that there

is a monochromatic cycle colored 2 containing the edge uv in c′. As before, this implies

that there is a monochromatic path colored 2 between u and v in c, which contradicts

our assumption that v does not lie on Q.

So we can assume that v is contained in Q. Let zv be the first edge on Q that

is incident on v (when traversing the path Q starting from u), and let Qz denote the

subpath of Q between u and z. Since there are no monochromatic vertices in c, we

know that d(z) ≥ 3. Suppose that zv ∈ F , i.e. z ∈ X. Then we exchange the colors of

zv and uv to obtain a new coloring c′ in C. It is easy to see that this does not create any

monochromatic vertices. By our choice of c, we then have that c′ does not contain fewer

59

monochromatic cycles than c. Then by Claim 2, we know that c′ has a monochromatic

cycle colored 2 containing the edge uv, which we shall denote by C. Note that even in

the coloring c′, the path Qz is a monochromatic path colored 2 between u and z. Thus,

the fact that u is contained in C implies that z is contained in C, which contradicts

the fact that exactly one edge colored 2 is incident on z in c′. We can thus conclude

zv /∈ F , or in other words, z /∈ X.

If there exists x ∈ X \W such that c(xv) /∈ {1, 2}, then we can exchange the colors

of the edges xv and uv to obtain a new coloring c′ in C. Clearly, c′ does not contain

any monochromatic vertices, and therefore by our choice of c, it should contain at least

as many monochromatic cycles as c. Then by Claim 2, we have that c(xv) = 2, which

contradicts the fact that c(xv) /∈ {1, 2}. We can thus assume that for every x ∈ X \W ,

c(xv) ∈ {1, 2}. Since there can be at most two edges of each color incident on v, and

zv /∈ F is an edge colored 2 incident on v, we have that |X \W | ≤ 3−|Once(v)|. Thus,

|W | ≥ |X| − 3 + |Once(v)|. Recalling that |X| ≥ k − |Once(v)| − 3, we now have that

|W | ≥ k − 6 ≥ 3. Note that for every y ∈ W , we have c(yv) ̸= 1, since u, u′ /∈ W .

Suppose that there exists y ∈ W such that c(yy) ̸= 1 and c(yv) ̸= 2, then we exchange

the colors of yv and uv to obtain a new coloring c′ in C. Clearly, c′ does not contain

any monochromatic vertices, and therefore by the choice of c and Claim 2, it follows

that c′(uv) = 2, which contradicts the fact that c(yv) ̸= 2. So we can assume that for

every y ∈ W such that c(yv) ̸= 2, we have c(yy) = 1.

Let S = W . Since S satisfies property P , we have by Claim 1 that there exists y ∈ S

such that c(yy) ̸= 1. Then by the above observation, we have that c(yv) = 2. Since zv

and yv are two edges colored 2 incident on v, we now have that for every p ∈ X \ {y},

c(pv) ̸= 2, and also that |Once(v)| = 0. Then using our previous observation that for

every x ∈ X \W , c(xv) ∈ {1, 2}, we can conclude that for every x ∈ X \W , c(xv) = 1.

This implies that |X\W | ≤ 2. This gives |W | ≥ |X|−2 ≥ k−|Once(v)|−5 = k−5 ≥ 4.

60

Thus there exists w ∈ W \ {y} such that c(wv) ̸= c(yy). Notice that c(wv) ̸= 2,

which implies by our observation from the previous paragraph that c(ww) = 1. We

now construct a new coloring c′ in C by setting c′(uv) = c(wv), c′(yv) = c(uv) = 1,

c′(wv) = c(yv) = 2, and by giving every other edge the same color as it has in c.

Then c′ is a coloring in C containing no monochromatic vertices. Since c(wv) /∈ {1, 2},

we have that there is no monochromatic cycle containing uv in c′. Since y and w are

not monochromatic vertices in c′, it is clear that neither yv nor wv are contained in

monochromatic cycles in c′. This implies that c′ contains fewer monochromatic cycles

than c, which contradicts our choice of c.

Corollary 4. Every 3-degenerate graph G having ∆(G) ≥ 9 has a
⌈
∆(G)

2

⌉
-linear color-

ing.

4.3 Maximum degree less than 9

Theorem 7. Any 3-degenerate graph G having ∆(G) ≤ 7 has a 4-linear coloring con-

taining no monochromatic vertices.

Proof. We prove this by induction on |E(G)|. Clearly, if ∆(G) ≤ 2, then G has a

4-linear coloring containing no monochromatic vertices. So we assume that ∆(G) ≥ 3.

Let the sets F , I, X, W , and the graphs H, H ′ be as defined in Section 4.1. As

|E(H ′)| < |E(H)|, by the induction hypothesis, there is a 4-linear coloring cH′ of H ′ that

contains no monochromatic vertices. Let cH be the 4-linear coloring of H containing no

monochromatic vertices corresponding to cH′ . We assume that the colors used in cH′

and cH are from {1, 2, 3, 4}. As in the earlier proof, let C denote the edge colorings using

colors {1, 2, 3, 4} of G− I obtained by extending cH by coloring the edges in F in such

a way that no color occurs more than twice on the edges incident on v. Again, it is easy

to see that any coloring in C has the property that each vertex has at most two edges

61

of the same color incident on it. Let c be a coloring in C containing the least number

of monochromatic vertices, and subject to that, the least number of monochromatic

cycles. In the following, the sets Missing(v), Once(v), and Twice(v) are with respect

to the coloring c, and we denote by d(u) the degree of a vertex u in G− I.

Claim 3. There are no monochromatic vertices in c.

Proof of claim. For the sake of contradiction, let us assume that u is a monochro-

matic vertex in c. Clearly, u ∈ W . If there exists any color i ∈ (Missing(v)∪Once(v))\

{c(uv)}, we can recolor uv with i to obtain a coloring in C having lesser number of

monochromatic vertices than c, contradicting our choice of c. Therefore, we assume that

Missing(v) = ∅ and Once(v) ⊆ {c(uv)}. This means that |Missing(v)∪Once(v)| ≤ 1,

which implies that d(v) ≥ 7. Since ∆(G) ≤ 7, we have d(v) = 7 and therefore

Once(v) = {c(uv)}, and also that |X| ≥ 4. If there is a vertex w ∈ X \ W , then

we can exchange the colors of wv and uv to obtain a coloring in C that contains fewer

monochromatic vertices than c, which again contradicts our choice of c. So we assume

that X = W , which implies that |W | ≥ 4. The set W satisfies property P . Then by

Claim 1, there exists z ∈ W such that c(zz̄) ̸= c(uū). Now exchanging the colors on the

edges uv and zv gives a coloring in C with fewer monochromatic vertices than c, again

leading to the same contradiction (notice that c(zv) ̸= c(uv) since Once(v) = {c(uv)}).

This proves the claim.

Claim 4. There are no monochromatic cycles in c.

Proof of claim. Let C be a monochromatic cycle in c. Then as cH did not contain

any monochromatic cycles, there exists wv ∈ E(C) ∩ F . Using Claim 3, we infer that

d(w) = 3, which means that w ∈ X \ W . Let us denote by 1 the color of the edges

in C, and by 2 the color of the edge incident on w that is not in E(C). Let P be

the maximal path formed by edges of color 2 starting from w. Let x denote the end

62

vertex of P other than w. Notice that since d(v) ≤ 7, there exists i ∈ Once(v) ∪

Missing(v). Clearly, i ̸= 1. If x ̸= v, then we can recolor wv with the color i to

obtain a coloring in C with no monochromatic vertices and fewer monochromatic cycles

than c, which contradicts our choice of c. So we assume that x = v. If there is any

i ∈ (Once(v) ∪ Missing(v)) \ {2}, then we can recolor wv with i to again obtain a

coloring in C that contains no monochromatic vertices and fewer monochromatic cycles

than c, which contradicts our choice of c. So we infer that d(v) = 7 and Once(v) = {2}.

If there exists u ∈ (X \ {w}) ∩ V (C), then recoloring uv with 2 gives a coloring in C

that contradicts the choice of c. Therefore, we can assume that (X \ {w})∩ V (C) = ∅.

Then if there is any u ∈ X \ {w}, then c(uv) ̸= 1, and exchanging the colors on the

edges wv and uv gives a coloring in C that contradicts our choice of c. Hence we can

assume that X \W = {w} and therefore |W | ≥ 3. Then W satisfies property P , and

by Claim 1, there exists u ∈ W such that c(uū) ̸= 1. Now we can exchange the colors

on the edges uv and wv to again get a coloring in C with no monochromatic vertices

and fewer monochromatic cycles than c, which contradicts our choice of c. This proves

the claim.

From Claims 3 and 4, it follows that c is a 4-linear coloring of G− I containing no

monochromatic vertices. We can now extend c to a 4-linear coloring of G that does not

contain any monochromatic vertices by coloring each edge xx′ ∈ I using a color that is

different from c(vx) and c(vx′). This completes the proof.

Theorem 8. A 3-degenerate graph G having ∆(G) ≤ 5 has 3-linear coloring.

Proof. As before, we prove this by induction on |E(G)|. Since G has a 3-linear coloring

containing no monochromatic vertices if ∆(G) ≤ 2, we assume that ∆(G) ≥ 3.

Let the sets F , I, X, W , and the graphs H, H ′ be as defined in Section 4.1. As

|E(H ′)| < |E(H)|, by the induction hypothesis, there is a 3-linear coloring cH′ of H ′

that contains no monochromatic vertices. We now construct a new 3-linear coloring c′H′

63

of H ′, also containing no monochromatic vertices, by modifying cH′ a little if required.

Let W = {u,w} and ū = w̄ = x (say). Suppose that cH′(ux) = cH′(wx). Since x has

degree at most 5 in H ′, there is a color i of cH′ that does not occur twice on the edges

incident on x. We now recolor one of the edges ux or wx in cH′ with the color i to

obtain a new edge coloring c′H′ of H ′. It is easy to see that c′H′ is also a 3-linear coloring

of H ′ having no monochromatic vertices. If |W | ̸= 2 or if W = {u,w}, but ū ̸= w̄ or

cH′(uū) ̸= cH′(ww̄), then we let c′H′ = cH′ . Thus, the coloring c′H′ of H ′ has the special

property that if W = {u,w} and ū = w̄, then c′H′(uū) ̸= c′H′(ww̄).

Let cH be the 3-linear coloring of H containing no monochromatic vertices corre-

sponding to c′H′ . We assume that the colors used by c′H′ and cH are from {1, 2, 3}.

We again let C denote the edge colorings using colors in {1, 2, 3} of G− I obtained by

extending cH by coloring the edges in F in such a way that no color occurs more than

twice on the edges incident on v. As before, every coloring in C has the property that

each vertex has at most two edges of the same color incident on it. Let c be a coloring

in C containing the least number of monochromatic vertices, and subject to that, the

least number of monochromatic cycles. In the following, the sets Missing(v), Once(v),

and Twice(v) are with respect to the coloring c, and we denote by d(u) the degree of a

vertex u in G− I.

Claim 5. There are no monochromatic vertices in c.

Proof of claim. Let u be a monochromatic vertex in c. Let i ∈ (Once(v) ∪

Missing(v)) \ {c(uv)}. Then we can recolor the edge uv with the color i to obtain

a coloring in C that contains fewer monochromatic vertices than c, which contradicts

our choice of c. So Missing(v) = ∅ and Once(v) ⊆ {c(uv)}. This implies that d(v) ≥ 5.

Since ∆(G) ≤ 5, we have d(v) = 5, which implies that Once(v) = {c(uv)} and |X| ≥ 2.

If w ∈ X \W , then we can exchange the colors of uv and wv to get a coloring in C with

fewer monochromatic vertices, again contradicting our choice of c. So |W | = |X| ≥ 2.

64

If c(uv) = c(uū) ̸= c(ww̄) for some w ∈ W , then we can exchange the colors on the

edges uv and wv to obtain a coloring in C which will lead to the usual contradiction to

our choice of c. Hence it must be the case that c(uū) = c(ww̄) for all w ∈ W . From

Claim 1, it follows that |W | = 2. Let W = {u,w}. Since c(uū) = c(ww̄), and the fact

that there are no monochromatic vertices in c′H′ , we get that ū = w̄ = x (say). Note

that we have c′H′(uū) = c(uū) = c(ww̄) = c′H′(ww̄). We now have a contradiction to

the special property of c′H′ that was observed above. This proves the claim.

Claim 6. There are no monochromatic cycles in c.

Proof of claim. Suppose that there is a monochromatic cycle C in the coloring c

of G − I. Since there are no monochromatic cycles in cH , we have that there exists

uv ∈ E(C) ∩ F . Let 1 denote the color of the edges of C. From Claim 5 it must be

that d(u) = 3. Let 2 denote the color of the edge incident on u that does not belong

to C. Let P be the maximal path whose edges are colored 2 that starts at u, and

let x denote its end vertex other than u. Suppose first that x ̸= v. Clearly, since

d(v) ≤ 5, there exists i ∈ Once(v) ∪Missing(v). We can recolor the edge uv with the

color i to obtain a coloring in C having no monochromatic vertices and having fewer

monochromatic cycles than c, which contradicts our choice of c. So let us assume that

x = v. Now if there exists i ∈ (Once(v) ∪Missing(v)) \ {2}, then we can recolor the

edge uv with i to obtain a coloring in C, which will again lead to the same contradiction

to the choice of c. So we can assume that Missing(v) = ∅ and Once(v) = {2}. Note

that this implies that d(v) = 5. Suppose there exists w ∈ W . Notice that since there

are no monochromatic vertices in c, we have c(wv) /∈ {1, 2}. If c(ww̄) ̸= 1, then we

can exchange the colors on the edges uv and wv to obtain a coloring in C which will

again lead to the same contradiction. On the other hand, if c(ww̄) = 1, then we can

color uv with c(wv) and wv with 2 to get another coloring in C which will also lead to

the same contradiction. So we can assume that W = ∅. Since d(v) = 5, this implies

65

that |X \W | ≥ 2. Thus there exists w ∈ (X \W) \ {u}. If wv ∈ E(C), we can recolor

the edge wv with 2 to get a coloring in C which again will contradict our choice of c

as before. So we can assume that wv /∈ E(C), which means that c(wv) ̸= 1. Then we

can exchange the colors of the edges uv and wv to again get a coloring in C with no

monochromatic vertices and fewer monochromatic cycles, contradicting our choice of c.

This proves the claim.

From Claims 5 and 6, it follows that there is a 3-linear coloring of G− I containing

no monochromatic vertices. Now as before, we can color every edge xx′ ∈ I with a color

not in {c(vx), c(vx′)} to obtain a 3-linear coloring of G containing no monochromatic

vertices.

Theorem 9. Any connected graph of maximum degree at most 3 is either an odd cycle

or has a 2-linear coloring without any monochromatic vertex.

Proof. We prove this by induction on |E(G)|. Let G be a connected graph of maximum

degree 3. Observe that if G is an odd cycle, then for any vertex u ∈ V (G), there is

a 2-linear coloring of G in which the only monochromatic vertex is u. If G is an even

cycle or a path, then any proper edge coloring of G using 2 colors is a 2-linear coloring

of G having no monochromatic vertex. Suppose that G contains a vertex u such that

dG(u) = 1. Let NG(u) = {v}. Let H = G − u. Clearly, H is a connected graph.

Notice that |E(H)| < |E(G)|. If H is an odd cycle, then we have by the induction

hypothesis that H has a 2-linear coloring c in which v is the only monochromatic

vertex. Otherwise, we have by the induction hypothesis that H has a 2-linear coloring

c having no monochromatic vertices. In either case, we extend c to a 2-linear coloring

of G containing no monochromatic vertices by coloring the edge uv with a color in

Once(v) ∪Missing(v).

So we assume that G contains no vertex of degree 1. If there is no vertex of degree

more than 2, then G is a cycle, in which case we are already done as noted above. So

66

there exists v ∈ V (G) such that dG(v) = 3. Let u ∈ NG(v). Let H = G− uv.

First, suppose that H is disconnected. Clearly, H has two connected components,

say Cu and Cv, containing u and v respectively. By the induction hypothesis, we can

assume that Cu (resp. Cv) has a 2-linear coloring cu (resp. cv) using the colors {1, 2},

such that if Cu (resp. Cv) is an odd cycle, then the only monochromatic vertex in cu

(resp. cv) is u (resp. v) and both edges incident on u (resp. v) are colored 1 in cu (resp.

cv); otherwise, cu (resp. cv) contains no monochromatic vertices. Moreover, we assume

that if u is a degree 1 vertex in Cu, then the only edge incident on u is colored 1 in cu.

We construct a 2-linear coloring of G as follows. First, color the edges of Cu with the

colors they have in cu and the edges of Cv with the colors they have in cv. Now, we

color uv with 2 to obtain the required 2-linear coloring of G.

Next, suppose that H is connected. If H is an odd cycle, then by the induction

hypothesis, there is a 2-linear coloring c of H in which v is the only monochromatic

vertex. Now coloring uv with the color in Missing(v) gives a 2-linear coloring of

G with no monochromatic vertices. On the other hand, if H is not an odd cycle,

then by the induction hypothesis, there exists a 2-linear coloring c of H using the

colors {1, 2} containing no monochromatic vertices. If there exists i ∈ Missing(u) ∪

Missing(v), then we can color uv with i to obtain a 2-linear coloring of H containing

no monochromatic vertices. So we assume that Missing(u) = Missing(v) = ∅. If for

some color i ∈ {1, 2}, there is no path of color i between u and v in the coloring c of

H, then we color uv with i to obtain the required 2-linear coloring of G. So we can

assume that there is both a path of color 1 and a path of color 2 between u and v in

the coloring c of H. Let w ∈ NG(v) \ {u}. Let us assume without loss of generality

that c(vw) = 1. Now changing the color of vw to 2 and then coloring uv with 1 gives

a 2-linear coloring of H with no monochromatic vertices.

67

Chapter 5

Linear time algorithms

We now show that the proofs of all the upper bounds we have derived for linear arboric-

ity can be converted into linear-time algorithms that produce a linear coloring of an

input 3-degenerate or 2-degenerate graph using at most the number of colors given by

the corresponding upper bound. We describe the algorithmic framework in detail for

the case of 3-degenerate graphs, as that is more technically involved than the algorithms

for 2-degenerate graphs.

We first present an algorithm that computes a k-linear coloring of a 3-degenerate

graph G having ∆(G) ≤ 2k − 1. Our algorithm will be a linear time algorithm; i.e.

having a running time of O(n + m), where n and m are the number of vertices and

edges in G respectively. Since G is 3-degenerate, we have m ≤ 3n − 6, and therefore

our algorithm will also be an O(n)-time algorithm. We assume that the input graph G

is available in the form of an adjacency list representation.

Our general strategy will be to convert the inductive proof of Theorem 1 into a

recursive algorithm, but there are some important differences, the main one being that

the algorithm computes a more general kind of edge coloring using k colors, which may

not always be a k-linear coloring. The algorithm follows the proof of Theorem 1 and

removes some edges and if needed identifies two vertices to obtain a smaller graph G′

68

for which an edge coloring of the desired kind is found by recursing on it. The graph G′

is changed back into G by splitting back any identified vertices and adding the removed

edges. The newly added edges are then colored to obtain an edge coloring of the desired

kind for G. During this process, we never change the color of an edge that is already

colored. We shall first discuss why our algorithm needs to compute a generalized version

of k-linear coloring.

If the algorithm were to construct a k-linear coloring of G from a k-linear coloring

of G′ according to the proof of Theorem 1, and still have overall linear runtime, we

would like to be able to decide the right color to be given to an uncolored edge uv in

O(1) time. This means that we need data structures that allow us to determine in O(1)

time a color i for uv such that:

(i) i /∈ Twice(u) ∪ Twice(v), and

(ii) if i ∈ Once(u) ∩Once(v), there is no path colored i having endvertices u and v.

The requirement (i) can be met by storing the sets Once(u) and Missing(u) for

every vertex u as described in Section 5.1.2.

For (ii), we could store a collection of “path objects” representing the monochro-

matic paths in the current coloring in such a way that by examining these objects, we

can determine in O(1) time whether there is a monochromatic path of color i having

endvertices u and v. In particular, for a monochromatic path P having endvertices u

and v, we could store the pointer to the path object representing P on the vertices u

and v or on the first and last edges of P . In this way, given a vertex u and a color

i ∈ Once(u), we can determine in O(1) time the other endvertex of the path colored

i starting at u. Note that as an edge uv gets colored with color i, a path of color i

can get extended (if i ∈ Once(u) ∩Missing(v) or i ∈ Missing(u) ∩ Once(v)) or two

paths of color i can get fused into one path of color i (if i ∈ Once(u) ∩ Once(v)). If

we store the pointer to a path object in each vertex (or each edge) of the path, then

69

it becomes difficult to fuse two paths in O(1) time as we cannot afford to visit every

vertex (or edge) of the path to change the pointer stored on that vertex (or edge). It is

sufficient if we store the pointer to the path object only on the endvertices of the path

as mentioned above, since we never need to know what the internal vertices of a path

are. This also allows us to fuse two paths in O(1) time. Since no edge that already

has a color is ever recolored, a monochromatic path never gets split into two paths or

gets shortened when an edge is colored. But a monochromatic path might need to get

split into two monochromatic paths when a vertex is split into two. Since the internal

vertices of a path do not store the pointer to the corresponding path object, the vertex

to be split does not provide us with a pointer to the path object corresponding to the

monochromatic path that needs to be split. In short, we cannot update the path ob-

jects so as to split this monochromatic path into two paths. We solve this problem by

making sure that two paths that meet at a point that will be split later are never fused

together into one path. This is explained in more detail below.

We say that a path having an endvertex u and containing the edge uv is “ending

at u through uv”. Suppose that a vertex w is identified with a vertex u when G′ is

constructed from G. It is clear from the proof of Theorem 1 that in G′, the vertex u

has degree at most 3, and there is possibly an edge uy that corresponds to an original

edge wy in G. Before recursing to find the coloring for G′, we mark the vertex-edge pair

(u, uy) as “special” (we call this a “special vertex-edge incidence”; more details given in

Section 5.1). This mark, which can be stored inside the adjacency list of u, indicates

that while computing the coloring for G′, a monochromatic path ending at u through

uy should not be fused with another monochromatic path ending at u, even if they have

the same color. Thus, while splitting the vertex u back into u and w, no path needs to

be split. Note that this means that after the coloring for G′ is computed, we might have

a path object for a path P colored i ending at u through uy and another path object

70

for a path Q also colored i and ending at u, but through a different edge (as these

paths will not be fused). If the other endvertices of P and Q are x and x′ respectively,

then we can no longer detect that in this coloring of G′, there is a monochromatic path

colored i starting at x and ending at x′, as there is no path object having endvertices

x and x′. This means that the edge xx′, if it exists, could get colored i, creating a

monochromatic cycle colored i. We will allow this to happen, since this monochromatic

cycle will anyway get destroyed when the vertex u is split into u and w while recovering

G back from G′. Thus, at any stage of the recursion, we compute a coloring for a graph

in which certain vertex-edge pairs have been marked as special, and this coloring is not

a k-linear coloring any more as it could contain monochromatic cycles. We call this

kind of coloring a “pseudo-k-linear coloring”. Since the path objects that we store do

not correspond to maximal monochromatic paths anymore, we call them “segments”

instead of paths. We now define these notions more rigorously.

5.1 Pseudo-k-linear colorings and segments

We define a vertex-edge incidence of a graph G to be a pair consisting of a vertex and

an edge incident with it; i.e. it is a pair of the form (u, uv) where u, v ∈ V (G) and

uv ∈ E(G). A subgraph H of G is said to contain in its interior a vertex-edge incidence

(u, uv) if it contains the edge uv and dH(u) ≥ 2.

Given a graph G and a set S of vertex-edge incidences in it, a mapping c : E(G) →

{1, 2, . . . , k} is said to be a pseudo-k-linear coloring of (G,S) if each color class is a

disjoint union of paths and cycles such that every such cycle contains in its interior at

least one vertex-edge incidence in S .

Note that a pseudo-k-linear coloring of (G, ∅) is a k-linear coloring of G and also that

a k-linear coloring of G is a pseudo-k-linear coloring of (G,S) for any set S of vertex-

edge incidences of G. Our algorithm computes a pseudo-k-linear coloring for an input

71

(G,S), where G is a graph with ∆(G) ≤ 2k− 1 and S is a set of vertex-edge incidences

of G. Observe that a path that has u as an endvertex does not contain in its interior the

vertex-edge incidence (u, uv) even if uv belongs to the path. A segment in a graph G is

a list (e1, e2, . . . , ek) of edges of G, where k ≥ 1, such that for each i ∈ {1, 2, . . . , k− 1},

ei and ei+1 are both incident with a common vertex, and no vertex is incident with

more than two edges in {e1, e2, . . . , ek}. Clearly, the union of the edges in a segment

gives a path or a cycle in the graph G. Given a segment (e1, e2, . . . , ek), we define the

terminal vertices of this segment as follows. If k = 1, then the two endpoints of e1

are the terminal vertices of the segment. If k > 1, then the endpoint of e1 that is not

incident with e2 and the endpoint of ek that is not incident with ek−1 are the terminal

vertices of this segment. Further, if u is a terminal vertex incident with the edge e1

and v is a terminal vertex incident with the edge ek, then (u, e1) and (v, ek) are said to

be the terminal vertex-edge incidences of the segment. In this case, we also sometimes

say that this segment is “ending at u through e1” and “ending at v through ek”. Note

that every segment has exactly two terminal vertex-edge incidences. A segment is said

to contain in its interior a vertex-edge incidence (u, uv) if the segment contains uv but

u is not a terminal vertex.

Let c be a pseudo-k-linear coloring of (G,S) and let H be a monochromatic path or

cycle of color i in a color class of c. A maximal segment of H that does not contain in its

interior any vertex-edge incidences from S is called a monochromatic segment of (G,S)

having color i (the coloring c is assumed to be clear from the context). Observe that

H decomposes into a collection of pairwise edge-disjoint monochromatic segments in a

unique way. A monochromatic cycle that contains in its interior a single vertex-edge

incidence (u, uv) ∈ S thus decomposes into a single monochromatic segment whose first

and last edges are the two edges of the cycle incident on u. We say that a monochromatic

segment of (G,S) is clean if neither of its terminal vertex-edge incidences are in S. At

72

a given point of time, we maintain a set of segment objects, one corresponding to

each monochromatic segment of (G,S) under the current pseudo-k-linear coloring. The

segment object corresponding to a monochromatic segment stores just the terminal

vertex-edge incidences of the segment.

Observation 2. We can extend a pseudo-k-linear coloring c of (G−uv, S) to a pseudo-

k-linear coloring of (G,S), for some uv ∈ E(G), by giving uv a color i if:

(i) i /∈ Twice(u) ∪ Twice(v), and

(ii) there is no clean monochromatic segment of color i having u and v as the terminal

vertices.

5.1.1 Encoding the graph

We assume that the input graph G is available in the following representation (if not,

this representation can be easily computed in linear time in the initialization phase).

We maintain a list Edges of the edges of the graph. For each vertex u, we maintain a

list Adj(u) of the edges incident with u. The node in Adj(u) corresponding to an edge

e incident with u stores the pointer to the node for e in the list Edges. For an edge

uv, let Nu and Nv be the nodes corresponding to uv in the lists Adj(u) and Adj(v)

respectively. The node for uv in the list Edges stores (u,Nu, v, Nv). For every vertex u,

we store its degree dG(u) in the current graph G. The degree d(u) of a vertex u in the

original input graph is assumed to be known at all times. Thus if we have the pointer

to the node for an edge uv in the list Edges, the list Adj(u), or the list Adj(v), then

the edge can be removed from the graph in O(1) time. It is easy to see that adding

an edge, identifying a vertex of degree at most 1 with another of degree at most 2,

and splitting a vertex of degree at most 3 into two vertices can all be done in O(1)

time in this representation. If (u, uv) ∈ S, then this fact is stored by setting a binary

73

flag in the node corresponding to the edge uv in Adj(u) to true. Note that using our

representation, given just the pointer to a node in the Adj(u), we can find u in O(1)

time using the Edges list.

5.1.2 Encoding the coloring

We color the edges of the graph using the integers {1, 2, . . . , k}. Every node in the

list Edges also contains a field in which the color assigned to the corresponding edge

is stored. Every vertex u maintains two lists of colors Onc(u) and Miss(u), to store

the sets Once(u) and Missing(u) respectively. We simply let Onc(u) be a list that

contains one node for each color in Once(u). The node corresponding to a color i in

Onc(u) also stores the pointer to the node in Adj(u) corresponding to the edge colored

i incident with u. But we cannot store all the colors in Missing(u) in the list Miss(u),

because if we do, then initializing these lists for all the vertices will take too long (Ω(nk)

time). To overcome this, we will use a trick from [21]: we store in Miss(u) only the

colors in Missing(u)∩{1, 2, . . . ,min{d(u)+2, k}}, where d(u) is the degree of u in the

graph given as input to the algorithm. Note that at any stage of the algorithm, if G is

the graph being colored by the recursive coloring procedure, for any vertex u ∈ V (G),

dG(u) ≤ d(u). This way of storing the list Miss(u) ensures that the total size of these

lists
∑

u∈V (Ĝ) |Miss(u)| ≤
∑

u∈V (Ĝ)(d(u)+2) which is O(n+m) = O(n) (as 3-degenerate

graphs have at most 3n− 6 edges, for n ≥ 3), where Ĝ is the initial input graph. Thus

we can initialize all these lists in linear time. This trick works even though Miss(u)

may not contain all the colors in Missing(u) because we never need to check if some

particular color is in Missing(u) unless dG(u) ≤ 3, in which case we can do it in O(1)

time by just checking the colors of all the edges incident with u. For every vertex u

such that dG(u) > 3, we will only need to find some two colors in Missing(u). The

following observation shows we will never go wrong when trying to do this.

74

Observation 3. If Miss(u) ̸= Missing(u), then |Miss(u)| ≥ 2.

Proof. If d(u) + 2 > k, we store all the colors in Missing(u) in Miss(u), so we

have nothing to prove. So let us assume that d(u) + 2 ≤ k. Then both the sets

{1, 2, . . . , d(u) + 2} and Missing(u) are subsets of {1, 2, . . . , k}. This implies that

|Miss(u)| = |Missing(u) ∩ {1, 2, . . . , d(u) + 2}| ≥ |Missing(u)| + d(u) + 2 − k. Since

|Missing(u)| ≥ k − dG(u) and dG(u) ≤ d(u), we get |Miss(u)| ≥ 2.

The list Miss(u) needs to be updated when an edge incident with u gets colored,

say with a color i, that is in Miss(u). Now that we have colored uv with i, we need to

remove i from the list Miss(u). We may not have the pointer to the node corresponding

to i in Miss(u) since we may have determined that i ∈ Missing(u) by checking the

adjacency list of u (as dG(u) ≤ 3). We cannot afford to search the list Miss(u) to

find and remove the node corresponding to the color i (note that the length of Miss(u)

could be d(u) + 2 which can much larger than dG(u)). For this purpose, we follow [21]

and maintain an array missingindex(u) of size min{d(u)+ 2, k} that contains pointers

to the nodes in the list Miss(u). For each i ∈ Miss(u), the i-th element of the array

Ptrs(u) will store the pointer to the node in Miss(u) corresponding to the color i. Thus,

given a color i in the list Miss(u), we can use the array Ptrs(u) to remove the node

corresponding to i from the list Miss(u) in O(1) time. It is clear that the array Ptrs(u)

can also be initialized in linear time during the initialization phase and updated in O(1)

time whenever a node is removed from the list Miss(u).

Let (G,S) be the graph and set of vertex-edge incidences at any stage of the algo-

rithm. We maintain a “segment object” corresponding to each monochromatic segment

of (G,S) under the current pseudo-k-linear coloring. For a monochromatic segment

having terminal vertex-edge incidences (u, uv) and (x, xy), we store the pointer to its

segment object in the node for uv in Adj(u) and the node for xy in Adj(x). The segment

object will store the pointers to these two nodes as well. Note that by our definition

75

of monochromatic segments, in a pseudo-k-linear coloring of (G,S), if monochromatic

segments σ and σ′ (possibly σ = σ′) having the same color end at a vertex u through

distinct edges e and e′, then at least one of (u, e) or (u, e′) is in S. Every time we extend

a pseudo-k-linear coloring by coloring an uncolored edge, we have to update the collec-

tion of segment objects so that they correspond exactly to the monochromatic segments

under the new coloring. Our strategy for doing this will be as follows. When an edge

uv gets colored i, we first create a new segment object corresponding to the segment

containing just uv. At this point, we may have two segment objects corresponding to

two segments having u or v as a common terminal vertex, and so the segment objects

may not necessarily correspond to monochromatic segments under the new coloring. In

order to correct this, whenever some segment objects represent segments whose union

gives a monochromatic segment under the new coloring, we “fuse” them into a single

segment object that represents the new monochromatic segment.

Observation 4. A new segment object containing a single edge can be created in O(1)

time. Two segment objects can be fused into a single segment object in O(1) time.

Proof. If we want to create a segment object containing a single edge uv, the pointer

to whose node in the list Edges is known, we first use this node to find the nodes Nu

and Nv in the lists Adj(u) and Adj(v) respectively corresponding to uv. We create a

segment object σ and store in it the pointers to Nu and Nv and we store the pointer to

σ in Nu and Nv. It is clear that this process takes just O(1) time.

Suppose that we have two segment objects σ1 and σ2 corresponding to segments

ending at a vertex u through distinct edges e1 and e2 incident with u respectively. Let

(u′
1, e

′
1) be the terminal vertex-edge incidence of σ1 other than (u, e1) and (u′

2, e
′
2) be the

terminal vertex-edge incidence of σ2 other than (u, e2). From the segment objects σ1

and σ2, we can find the nodes N1 in Adj(u′
1) and N2 Adj(u′

2) corresponding to e′1 and e′2

respectively. We now create a new segment object σ containing the pointers to N1 and

76

N2—i.e. it represents a segment having terminal vertex-edge incidences (u′
1, e

′
1) and

(u′
2, e

′
2). We replace the pointers to σ1 and σ2 in N1 and N2 respectively with pointers

to σ. We can now destroy the objects σ1 and σ2 and remove their pointers from the

nodes corresponding to e1 and e2 in Adj(u). It is easy to see that all this can be done

in O(1) time.

The following observation is easy to see.

Observation 5. For a vertex u ∈ V (G) such that dG(u) ≤ 3, we can compute Once(u),

Twice(u) and Colors(u) in O(1) time.

Lemma 5. Let c be a pseudo-k-linear coloring of (G− uv, S). Then c can be extended

in O(1) time to a pseudo-k-linear coloring of (G,S ∪ S ′), where S ′ ⊆ {(u, uv), (v, uv)},

by coloring the edge uv with a color i provided that dG(u) ≤ 3, i /∈ Twice(u), the pointer

to a node containing color i in either Miss(v) or Onc(v) is known, and there is no clean

monochromatic segment of color i having terminal vertices u and v.

Proof. It is clear that by coloring the edge uv with the color i, we obtain a pseudo-

k-linear coloring of (G,S ∪ S ′). We only need to show that we can update our data

structures encoding the coloring in O(1) time.

We assume that we have the pointer to the node Nuv for uv in the list Edges and

also the pointer to a node Nv containing the color i in one of the lists Miss(v) or Onc(v).

We first set the color field in Nuv to i and create a new segment object for a segment

σ colored i with terminal vertex-edge incidences (u, uv) and (v, uv).

Since dG(u) ≤ 3, we can use Observation 5 to check if i ∈ Once(u). If i /∈ Once(u),

then we know that i /∈ Colors(u). In this case, we use the array missingindex(u) to

find the node for i in Miss(u) and remove it in O(1) time if i ≤ d(u) + 2, and we do

nothing if i > d(u) + 2. Add to Onc(u) a node containing the color i and the pointer to

the node corresponding to the edge uv in Adj(u). Let us now suppose that i ∈ Once(u);

77

i.e. there is an edge eu colored i incident with u. We can traverse Onc(u) to find the

node containing i (and eu) and remove it in O(1) time as |Onc(u)| ≤ dG(u) − 1 ≤ 2.

Furthermore, from the node for eu in Adj(u), we find the pointer to the segment object

representing the monochromatic segment σu colored i ending at u through eu. If neither

(u, eu) nor (u, uv) are in S ∪ S ′, then we fuse the segments σu and σ into a single

segment. By Observation 4, this can be done in O(1) time, and since σu cannot be a

clean segment having u and v as terminal vertices (by the assumption in the lemma)

the segment represented by the new segment object cannot be a monochromatic cycle

that contains no vertex-edge incidence from S ∪ S ′ in its interior.

Now if Nv is a node from the list Miss(v), we can easily remove it from the list

Miss(v) in O(1) time. From the node Nuv in the list Edges, we can find a pointer

to the node for uv in the list Adj(v). We add to the list Onc(v) a node containing i

and this pointer, and we are done. So let us suppose that Nv is a node from the list

Onc(v). From Nv, we can find the node in the list Adj(v) corresponding to the edge

ev incident with v colored i. From this node, we can find the pointer to the segment

object that represents the monochromatic segment σv colored i ending at v through

ev. In the current collection of segment objects, let σ′ be the segment containing the

edge uv. Now if neither (v, uv) nor (v, ev) are in S ∪ S ′ (this implies that σ′ ̸= σv as

there was no clean monochromatic segment with terminal vertices u and v), fuse σ′

and σv into a single monochromatic segment. Again this can be done in O(1) time by

Observation 4.

5.2 Maintaining the Eligible list

The Eligible list stores the pivots that have at least one neighbor of degree at most 3.

Each vertex stores a pointer to its node in the list, in case it is in the list. Thus, we can

check in O(1) time if a particular vertex is in the list Eligible and if needed, also remove

78

it from the list. Recall that for each vertex u, we maintain a variable dG(u) that stores

its current degree. In addition, we also store another variable d′G(u) that maintains

the number of neighbors of u that have degree at most 3. Note that a vertex u is a

pivot when dG(u) − d′G(u) ≤ 3. We make sure that the list Eligible always contains

exactly those vertices u for which dG(u) − d′G(u) ≤ 3 and d′G(u) ≥ 1. Whenever our

algorithm removes some edges or identifies two vertices in order to create a smaller

graph, we update the Eligible list accordingly. Note that for both these operations,

we can update dG(u) and d′G(u), for any vertex u for which these parameters change,

in O(1) time. For example, if an edge uv is removed, we update the Eligible list as

follows. As will be seen in Section 5.3, our algorithm always removes an edge uv such

that dG(u) ≤ 3. When this happens, we decrease dG(u) and dG(v) by one, and since u

had degree at most 3 before, we decrease d′G(v) by one. If v also had degree at most

3 before, we decrease d′G(u) also by one. If now d′G(u) = 0 or d′G(v) = 0, we remove

that vertex from the list Eligible if it is present in the list. Note that when the edge

uv is removed, u or v will not become eligible to be in the Eligible list if it was not

already in the list. If v has now become a vertex of degree exactly 3, for each neighbor

w of v (there are 3 such neighbors), we increment d′G(w) by 1, and if for any of them

this results in dG(w) − d′G(w) ≤ 3 (clearly, d′G(w) ≥ 1), we add w to the Eligible list

if it is not already present in the list. Observe that all of these operations associated

with the removal of an edge take only O(1) time in total. Similarly, we can update the

Eligible list in O(1) time after an identification operation too as follows. Note that we

always identify a vertex w of degree at most 1 with a vertex u of degree at most 2. We

update dG(u) and d′G(u) and remove w from the list Eligible if it is present in the list.

Further, if now d′G(u) ≥ 1, we add u to the list Eligible if it is not already in it.

79

5.3 The algorithm

We now describe the algorithm. The proof of correctness of the algorithm and the fact

that it runs in O(1) time shall be clear from the description that we provide.

The initialization phase of the algorithm consists of doing some preprocessing in

order to compute the degrees of each vertex, determine the pivots, and to construct the

list Eligible of pivots that have at least one pivot edge incident with them. It is easy to

see that this stage takes linear time. The data structures required to encode the graph

and the k-linear coloring (see Sections 5.1.1 and 5.1.2) are also initialized during this

phase. Note that after the initialization, no edges are colored, so for every vertex u, we

will have Onc(u) = ∅ and Miss(u) will contain all the colors in {1, 2, . . . ,min{d(u) +

2, k}}. Also, there will be no segment objects. Then we invoke a recursive procedure

Color(G,S), setting S = ∅, which works as follows.

The procedure Color(G,S)

The procedure does not take G and S as parameters, but rather expects that they

are encoded in the data structures: i.e. it assumes that the graph G is encoded in

the lists Edges and the lists Adj(u), for each vertex u ∈ V (G), and that the set S of

vertex-edge incidences is available in the form of binary-valued flags inside nodes in

the Adj lists of the vertices (i.e. the flag is set to true for the node corresponding to

an edge uv in Adj(u) if and only if (u, uv) ∈ S). The procedure returns a pseudo-k-

linear coloring of (G,S) by filling data in the lists Miss and Onc of each vertex and

also by constructing a collection of segment objects representing the monochromatic

segments of (G,S) under the coloring, as explained in Section 5.1.2. We now describe

the procedure in detail. Note that whenever we say “color e with i”, where e is an edge

and i a color, we mean that we use Lemma 5 to assign the color i to the edge e in O(1)

time.

If the list Eligible is empty, then the graph G is empty, and therefore the procedure

80

simply returns without constructing any coloring. Suppose that the list Eligible is not

empty. Then let v be the first vertex in Eligible. Determine a neighbor u of v such

that dG(u) ≤ 3. This will take only O(1) time as v, being a pivot, has at most three

neighbors having degree more than 3 and being in the list Eligible, v has at least one

neighbor of degree at most 3.

If dG(v) < 2k − 1, then modify G to G′ = G − uv. As mentioned in Sections 5.1.1

and 5.2, we can do this in O(1) time. Note that even though we remove the nodes

Nuv, Nu, Nv corresponding to uv from Edges, Adj(u), Adj(v) respectively, we retain

them for later use, as the nodes Nu and Nv contain information about S in their binary

flags. Observe that the set S has now become S ′ = S \ {(u, uv), (v, uv)}. Construct a

pseudo-k-linear coloring of (G′, S ′) by invoking Color(G′, S ′). Modify G′ back to G

by adding the edge uv. While doing this, we add back the stored nodes Nuv, Nu and Nv

to the lists Edges, Adj(u) and Adj(v) respectively. Note that this restores S from S ′.

If there is a color i in Onc(v) such that i /∈ Colors(u) (this check can be performed in

O(1) time by Observation 5), then color uv with i. Note that since |Colors(u)| ≤ 2, we

will never need to traverse beyond the third element in Onc(v) to find the color i and

hence this check can be performed in O(1) time. Otherwise, it must be the case that

|Onc(v)| ≤ 2, which implies that Missing(v) ̸= ∅ and that |Missing(v)∪Once(v)| ≥ 2.

By Observation 3, we have that Miss(v) ̸= ∅. Let i be the first color in the list Miss(v).

If i /∈ Twice(u), we color the edge uv with i. Otherwise, if |Missing(v)| ≥ 2, then

we have from Obesrvation 3 that |Miss(v)| ≥ 2, so we take the second color j in the

missing list and give that color to uv. Lastly, if |Missing(v)| = 1, then |Once(v)| ≥ 1,

and therefore we take the first color j in Onc(v) and color uv with j. We thus obtain a

pseudo-k-linear coloring of (G,S) in O(1) time.

So let us now assume that dG(v) = 2k− 1. As explained in the proof of Theorem 1,

then there exists a vertex w ∈ NG(v) \ {u} such that dG(w) ≤ 3. Clearly, this vertex

81

can be found in O(1) time as v is a pivot. We first check if uw ∈ E(G). Note that this

check can be done in O(1) time as dG(u), dG(w) ≤ 3. If uw ∈ E(G), then we can follow

the steps in the proof of Lemma 2 to compute a pseudo-k-linear coloring for (G,S) as

we did before. Similarly, if there exists a vertex z ∈ (N(u) ∩ N(w)) \ {v} (again this

can be checked in O(1) time as dG(u), dG(w) ≤ 3), we follow the steps in the proof of

Lemma 3 to compute a pseudo-k-linear coloring for (G,S). In the both the above cases,

it can be easily seen that the steps outside the recursive call to the procedure Color

can be done in O(1) time.

Now suppose that uw /∈ E(G) and that N(u) ∩N(w) = {v}. The algorithm in this

case too follows the proof of Theorem 1 closely. We shall only describe the algorithm

for the case when dG(w) = 3, as the procedure for other cases can be easily deduced

from this procedure (or we could add dummy vertices of degree 1 as neighbors of w

to make dG(w) = 3). Let N(w) = {v, x, y}. Remove the edges uv, vw,wx from G

(the pointers to the nodes for these edges in Edges can be obtained in O(1) time as

dG(u), dG(w) ≤ 3, and hence they can be removed in O(1) time). Observe that as

the nodes corresponding to these edges have disappeared from Adj(u), Adj(v), Adj(w)

and Adj(x), the set of special vertex-edge incidences S has now changed to S1 = S \

{(u, uv), (v, uv), (v, vw), (w, vw), (w,wx), (x,wx)}. We now identify the vertex w with

u—in other words, the edge wy has to change one of its endpoints from w to u. We do

this by modifying the node N corresponding to wy in the list Edges. Further, we add

a node Nu containing a pointer to N to Adj(u) and remove the node Nw containing

the pointer to N from Adj(w) (also decrease the degree of w to zero and update the

Eligible list as mentioned in Section 5.2). Let us call the graph so obtained G′. Note

that the set of special vertex-edge incidences S1 has now changed to S2 = S1\{(w,wy)}

if (y, wy) /∈ S1 or to S2 = (S1 \ {(w,wy), (y, wy)}) ∪ {(y, uy)} if (y, wy) ∈ S1.

We now modify the set S2 to S ′ = S2 ∪ {(u, uy)} by essentially setting the requisite

82

binary flag to true in the node Nu in the list Adj(u). The procedure Color(G′, S ′)

is invoked to construct a pseudo-k-linear coloring of (G′, S ′). In order to modify this

into a pseudo-k-linear coloring of (G,S), we first split the vertex u back into u and w.

For this, we just change the endpoint u to w in the node N , remove the node Nu from

Adj(u) and add Nw back to Adj(w), while increasing the degree of w to 1. Note that

this step automatically recovers S1 from S ′. Add the edges uv, vw,wx. While doing

this, we restore the nodes that we removed from Adj(u), Adj(v), Adj(w) and Adj(x), so

that the set S1 changes back to S. We now color these edges as explained in the proof

of Theorem 1, with the only difference being that instead of checking whether there is

a path of some color i having u and v as endvertices, we check whether there is a clean

monochromatic segment of color i having u and v as terminal vertices. We explain in

detail below.

Observation 6. Given vertices u, v and an edge e incident with v, we can check in

O(1) time if there exists a clean monochromatic segment having (v, e) as a terminal

vertex-edge incidence and u as a terminal vertex.

Proof. We assume that we have the node N for e in Adj(v). We check if the pointer

to some segment object is stored in N . If not, then we can immediately conclude that

the clean monochromatic segment that we seek does not exist. So let us suppose that

N contains the pointer to a segment object σ. Let N ′ be the node other than N whose

pointer is stored σ. If N ′ ∈ Adj(u) (this can be checked in O(1) time as mentioned in

Section 5.1.1) and the binary flags in N and N ′ indicating membership in S are both

set to false, we conclude that σ represents a clean monochromatic segment having (v, e)

as a terminal vertex-edge incidence and u as a terminal vertex. Clearly, all this takes

only O(1) time.

As noted in the proof of Theorem 1, we first color wx. If Miss(x) ̸= ∅, then we color

wx with a color in Miss(x). Otherwise, by Observation 3, we have that Missing(x) = ∅,

83

which implies that |Onc(x)| ≥ 2. By checking at most the first two nodes of Onc(x),

we find a color i in Onc(x) that is different from the color of wy. Color wx with i. We

shall now color uv and vw, again following the proof of Theorem 1.

We have two cases: either |Missing(v)| = 1 and |Once(v)| = 1, or |Once(v)| = 3. In

the former case, we have |Onc(v)| = 1 and by Observation 3, we also have |Miss(v)| = 1.

Let i be the color in Miss(v) and j the color in Onc(v). If i ∈ Twice(u), then color

uv with j and vw with i. Otherwise, if i ∈ Twice(w), then color vw with j and uv

with i. So let us consider the case when i /∈ Twice(u)∪ Twice(w). Again following the

proof, if j ∈ Twice(u)∪Twice(w), we color both uv and vw with i. So we assume that

j /∈ Twice(u)∪ Twice(w). From the node in Onc(v) containing the color j, we can find

the node in Adj(v) containing an edge ej colored j incident with v. Using this node,

we determine if there is a clean monochromatic segment having (v, ej) as a terminal

vertex-edge incidence and u as a terminal vertex as described in Observation 6. If there

is, we color uv with i and vw with j, and otherwise, we color uv with j and vw with i.

This works even though the coloring we have now is a pseudo-k-linear coloring (which

may contain monochromatic cycles) .

Observation 7. Let G be a graph that is the disjoint union of paths and cycles. If P1

and P2 are two distinct non-zero-length paths in G such that V (P1) ∩ V (P2) ̸= ∅, then

one of the endvertices of P1 or one of the endvertices of P2 must be a vertex of degree

two in G.

Thus since j ∈ Once(v) and j /∈ Twice(u) ∪ Twice(w), if there is a path colored j

from v to u, then by Observation 7, there can be no path colored j from v to w. Since

clean monochromatic segments colored j are also paths colored j, there cannot be two

clean monochromatic segments colored j, one having terminal vertices u, v and another

having terminal vertices v, w.

We shall now consider the case when |Once(v)| = 3. For this case, our algorithm

84

and its proof of correctness differs slightly from the proof of Theorem 1. We traverse

the nodes of Onc(v) to find the three colors i, j, ℓ in Once(v). From these nodes, we

can find the nodes in Adj(v) corresponding to the edges ei, ej, eℓ incident with v having

colors i, j, ℓ respectively. Using Observation 6, we determine the set L = {p ∈ {i, j, ℓ} :

there exists a clean monochromatic segment having (v, ep) as a terminal vertex-edge

incidence and u as a terminal vertex}. It is clear that |L| ≤ 2 as u has at most two

colored edges incident with it.

Claim 7. If Twice(u) ̸= ∅, then L ⊆ Twice(u) and |L| ≤ 1.

If there exists p ∈ Twice(u), then both the colored edges incident with u have color

p, i.e. Colors(u) = Twice(u) = {p}. Then any monochromatic segment having u as a

terminal vertex must have color p, which implies that L ⊆ {p} = Twice(u). Clearly,

this also means that |L| ≤ 1. This proves the claim.

Suppose that |L| = 2. Then by the above claim, Twice(u) = ∅. Let p ∈ L\Twice(w)

(p exists as |Twice(w)| ≤ 1). Clearly, there is at most one edge colored p incident with

each of u, v, w. Thus, by Observation 7, there is no path having color p between v

and w, and therefore there is no monochromatic segment having color p and terminal

vertices v, w. Therefore, in this case, we color vw with p and uv with the color in

{i, j, ℓ} \ L. If |L| ≤ 1, color vw with a color r ∈ {i, j, ℓ} \ Colors(w) and uv with a

color in {i, j, ℓ} \ ({r} ∪ Twice(u) ∪ L) (note that this set is nonempty by our claim

above). This completes the description of the algorithm.

5.4 The 2-degenerate cases

We now outline how the proofs of the upper bounds obtained for the linear arboricity

of 2-degenerate graphs can also be converted into linear-time algorithms that compute

linear colorings that use the same number of colors as the corresponding upper bounds.

85

The proof of Theorem 2 can be converted into a linear time algorithm that outputs

a
⌈
∆(G)

2

⌉
-linear coloring of an input 2-degenerate graph G having ∆(G) ≥ 5 by utilizing

the framework described above (note that the algorithm can just use k-linear colorings

instead of pseudo-k-linear colorings as we never identify vertices and split them later, so

no monochromatic paths ever get split into two paths). Note that this means that the

problem of computing linear arboricity is linear time solvable in 2-degenerate graphs

having maximum degree at least 5.

It can be seen that using the techniques and data structures described in this section,

the proof of Theorem 3 can be converted into a linear time algorithm that given an

input 2-degenerate graph G having ∆(G) ≤ 4 and |E(G)| ≥ 2|V (G)| − 5 constructs a

2-linear coloring of G containing at most one monochromatic vertex. Again, it is not

hard to see that the proof of Theorem 4 can be converted into a linear time algorithm

that computes a 2-linear coloring with no monochromatic vertex for any input bipartite

2-degenerate graph having maximum degree at most 4.

The proof of Theorem 5 can also be converted into a linear time algorithm that

computes a 2-linear coloring of any input partial 2-tree having maximum degree at

most 4 as explained below. Note that since we do not identify a pair of vertices and

then split them back during the induction step, no monochromatic paths need to be

split during the algorithm, which means that it can work with just 2-linear colorings

instead of pseudo-2-linear colorings. For the algorithm to work in linear time, one of

the five configurations listed in Observation 1 has to be found in O(1) time during the

induction step. This can be accomplished, for example, as follows. For any vertex u,

we can determine whether it is part of a configuration of one of the types mentioned

in Observation 1 by doing a local search starting from u. Since every vertex has at

most 4 neighbors, this can be done in O(1) time. At every stage of the algorithm, we

maintain a list of all the configurations in the current graph. At the start, we compute

86

the list of all configurations in the original graph G in linear time by performing the

local search starting from all vertices of G. With each vertex, we also store a list of

pointers to the configurations that it is a part of. (Note that a vertex cannot be part

of more than O(1) configurations. Further, note that a naive approach may lead to

the same configuration being detected more than once—the local search from each of

its vertices may detect the configuration. Therefore the list of all configurations may

contain duplicates, but this does not affect the runtime complexity of the algorithm as

a configuration is duplicated only as many times as the number of vertices in it; i.e.

O(1) times.) During the induction step, we remove vertices or edges to obtain a smaller

graph, and in this process the degrees of at most five vertices in the resultant graph

will be different from their degrees in the original graph. We remove all configurations

that these vertices were a part of, and then determine all configurations that they are a

part of in the new graph by again doing a local search starting from them. This takes

only O(1) time. The only remaining detail is regarding the implementation of the list

S of pairs of degree two vertices. We do not explicitly store the list S, but instead,

each pair {u, v} of this list can be encoded by storing a pointer to v on u and a pointer

to u on v. It is easy to see that these pointers can be easily manipulated for achieving

the modifications to the list S that we need.

5.5 A simpler algorithm for 3-degenerate graphs

The proof of Theorem 6 can also be converted into a linear-time algorithm that produces

a
⌈
∆(G)

2

⌉
-linear coloring of an input 3-degenerate graph G having ∆(G) ≥ 9 as follows.

The input to the algorithm is a 3-degenerate graph having maximum degree at most

k, where k ≥ 9, and the algorithm generates a
⌈
k
2

⌉
-coloring of the graph (which can

be retrieved from the Edges list, as in previous algorithms) that does not contain any

monochromatic vertices. At every step, the algorithm modifies the current graph to

87

obtain a smaller graph on which it recurses to generate a
⌈
k
2

⌉
-coloring that does not

contain monochromatic vertices, which is then extended to a
⌈
k
2

⌉
-coloring of the current

graph that also does not contain any monochromatic vertices. Following the proof of

Theorem 6, the algorithm converts the graph G at any particular stage into the smaller

graph H ′ by picking a pivot v, removing all the pivot edges incident on v as well as any

edges between two neighbours of v each having degree two, and then finally pairing up

and identifying as many degree one vertices as possible that were earlier neighbours of

v—in the language of the proof of Theorem 6, we remove all edges in F ∪ I and then

pair up the vertices in W and identify them to construct H ′. It is not difficult to see

that if the number of pivot edges incident on v in G is t = |F |, then G can be modified

into the graph H ′ in O(t) time. In fact, it is straightforward to see that the graph

G can be modified into the graph H = G − (F ∪ I) in O(t) time. For converting H

to H ′, we initialize a list L of “sets” (which are again implemented as lists). Initially,

L = {{u} : u ∈ W}. We now arbitrarily choose two vertices u, u′ from two different sets

in L and check if their single neighbour in H is the same vertex. If yes, we merge the

two sets from which u and u′ were chosen. Otherwise, we identify u with u′ and remove

both u and u′ from their respective sets in L. If some set in L becomes empty in the

process, we remove it from L. In O(t) time, the list L will either become empty or will

contain only a single set. If L is nonempty, then the single set that it contains is the

set W ′ from the proof of Theorem 6. The algorithm now recurses on H ′ to produce a⌈
k
2

⌉
-coloring of H ′ that contains no monochromatic vertices. Once this is done, we split

back the vertices that were identified to obtain the graph H back from H ′, but retaining

the colors on the edges. Note that while doing this, no monochromatic path will get

split, since the vertices in H ′ that get split have degree two and are not monochromatic

in the coloring of H ′. This means that even though we identify vertices and split them

back, we can work with just
⌈
k
2

⌉
-linear colorings and do not need pseudo

⌈
k
2

⌉
-linear

88

colorings. Now it only remains to be shown that the edges in F ∪ I can be added back

to H and colored in just O(t) time in order to obtain a
⌈
k
2

⌉
-linear coloring of G. Since

dG(v) ≤ t+3, and coloring the edges of I once we have the required
⌈
k
2

⌉
-linear coloring

of G−I is easy, we only need to show that the
⌈
k
2

⌉
-linear coloring of H can be extended

to a
⌈
k
2

⌉
-linear coloring of G−I containing no monochromatic vertices in O(dG(v)) time.

We start by iterating through the available colors 1, 2, . . . ,
⌈
k
2

⌉
in ascending order. For

each color i ∈ {1, 2, . . . ,
⌈
k
2

⌉
}, we assign i to two as yet uncolored edges in F if i does

not appear on the (at most three) edges incident on v in H, and we assign i to one as

yet uncolored edge in F if i appears on exactly one of the edges incident on v in H

(if i occurs twice on the edges incident on v, we do not assign i to any edges in F).

Each time an edge uv in F gets colored with a color i in this way, we update the color

of that edge in the Edges list, and also modify the lists Miss(v), Onc(v), Miss(u), and

Onc(u) as usual. But we do not modify any of the “path objects”—i.e., we do not alter

our record of the monochromatic paths in the coloring at this stage; in fact, the edge

coloring of G− I that we have at this stage may contain monochromatic cycles and/or

monochromatic vertices, both of which we want to avoid. Nevertheless, it is clear that

it takes only O(dG(v)) time to color all the edges of F in this way. We now follow

the proof of Theorem 6 in order to permute the colors on the edges in F so as to get

the required
⌈
k
2

⌉
-linear coloring of G − I. Note that the path objects can be used for

detecting the presence of monochromatic cycles and also for eliminating them in the

way described in the proof of Theorem 6. It is not difficult to see that the same kind

of data structures can be used to encode the partial linear colorings generated during

the various stages of the algorithm implying that the linear arboricity of 3-degenerate

graphs having maximum degree at least 9 is linear time computable.

The same ideas can be adopted for converting the proofs of Theorem 7 and Theo-

rem 8 into linear-time algorithms that generate linear colorings for 3-degenerate graphs

89

of maximum degree 7 and 5 using at most 4 and at most 3 colors respectively. It is also

straightforward to convert the proof of Theorem 9 into a linear-time algorithm that

constructs a 2-linear coloring for 3-degenerate graphs of maximum degree 3.

90

Chapter 6

p-centered colorings of grids

In this chapter, we prove that the “two dimensional grid graph” (see Definition 4) (shown

in Figure 6.1) has a p-centered coloring using O(p) colors, for every positive integer p.

We require the following definitions for the purpose of proof.

For any set X, a partition α of X is a collection of nonempty subsets of X such

that for any x ∈ X, |{A ∈ α : x ∈ A}| = 1. Sets in α are called parts. For any x ∈ X,

[x]α is the unique part in α containing x. We denote by Part(X) the collection of all

partitions of X. For any set X, a partition α of X, and any nonempty set Y , a partition

of Y ∩X induced by α is αY = {A ∩ Y : A ∈ α} \ {∅}. A vertex coloring of a graph G

is an element α ∈ Part(V (G)). If α ∈ Part(V (G)) and v ∈ V (G) we declare that the

Figure 6.1: The 5× 5 grid

91

Figure 6.2: A 1-centered coloring of the 5× 5 grid

color of v is [v]α. Note that for any graph G and p ∈ N\{0}, a p-centered coloring of G

is a vertex coloring ρ of G such that for any connected subgraph H of G, if |ρV (H)| ≤ p,

then there is a part A ∈ ρV (H) such that |A| = 1.

Definition 4. The two dimensional grid is a graph G with V (G) = N2 and E(G) =

{(a, b)(c, d) : (a, b), (c, d) ∈ N2 and |a− c|+ |b− d| = 1}.

We now describe a p-centered coloring of the two dimensional grid and prove that

the coloring is indeed p-centered. Here onwards, we denote by G the two dimensional

grid. We state our result below.

Theorem 10. For the two dimensional grid G, for every p ∈ N there is a p-centered

coloring ρ such that |ρ| ≤ f(p) where f : N → N such that f(p) ∈ O(p) .

Note that the two dimensional grid G is a bipartite graph. The two partite sets

are A = {(x, y) ∈ V (G) : x + y is even} and V (G) \ A. Since 1-centered coloring is

just a proper vertex coloring, there is a 1-centered coloring with 2 colors for the two

dimensional grid. From here onwards, we assume that p > 1.

92

Figure 6.3: The figure shows the two partitions of V (G). The cell at position (i, j) is:
(a) white if (i, j) ∈ R and gray if (i, j) ∈ C, (b) hatched if (i, j) ∈ B and not hatched
if (i, j) ∈ A.

93

6.1 The coloring

Definition 5. For two natural numbers a, b ∈ N, we define the interval [a, b] = {n ∈

N : a ≤ n ≤ b}. Notice that when a > b, [a, b] = ∅.

Definition 6. For (a, b) ∈ N2, we define πx : N2 → N, (a, b) 7→ a and πy : N2 →

N, (a, b) 7→ b.

For any a, b ∈ Z we define mod(a, b) = a − b
⌊
a
b

⌋
. For a ∈ N and A ⊆ N we write

aA = {a · b : b ∈ A}. We define lg for log with base 2. First partition the set N2 into

{R,C}. Define R = {(x, y) ∈ N2 : mod(
⌊
x
3

⌋
+
⌊
y
3

⌋
, 2) = 0} and C = N2 \ R. Also, we

partition V (G) into {A,B}, such that A = {(a, b) ∈ V (G) : 2 | (mod(a, 3)+mod(b, 3))}(

for a, b ∈ Z write b | a when mod(a, b) = 0 and b ∤ a when mod(a, b) ̸= 0) and

B = V (G) \A. We define a partition ρ =
⋃6p+5

i=0 {{(a, b) ∈ R ∩A : mod(a, 6p+ 6) = i}}

of R ∩ A. Also we define a partition λ =
⋃6p+5

i=0 {{(a, b) ∈ C ∩ A : mod(b, 6p+ 6) = i}}

of C ∩ A. Notice that |ρ| = |λ| = 6p + 6. Refer Figure 6.3 for an illustration of the

partition of N2 into {R,C} and also into {A,B}.

Now let us partition N2 in another way. Let p be a power of 2. We define Pi =

π−1
x (4p/2iN)∪π−1

y (4p/2iN) where i ∈ [0, lg(4p)]. Let us define Qi = Pi \
⋃

j∈[0,i−1] Pj for

each i ∈ [0, lg(4p)]. Now for each Qi where i ∈ [0, lg(4p)] we define a partition αi. We

declare that for any (a, b), (x, y) ∈ Qi and for any i ∈ [0, lg(4p)], [(a, b)]αi
= [(x, y)]αi

whenever 8p/2i | (x − a) and 8p/2i | (b − y)}. We define α =
⋃

i∈[0,lg(4p)] αi. Observe

that |α| ≤ 2

 ∑
i∈[0,lg(4p)]

8p

2i

 ≤ 32p.

We define a new partition β on B. We declare that for any (a, b), (x, y) ∈ B,

[(a, b)]β = [(x, y)]β whenever mod(a, 3) = mod(x, 3) and mod(b, 3) = mod(y, 3) and

[(
⌊
a
3

⌋
,
⌊
b
3

⌋
)]α = [(

⌊
x
3

⌋
,
⌊
y
3

⌋
)]α.

We claim that β ∪ ρ ∪ λ is our desired coloring. Notice that β ∪ ρ ∪ λ ≤ 4(32p) +

2(6p+ 6) = 140p+ 12.

94

Lemma 6. For any subgraph G′ of G, if πx(V (G′)) and πy(V (G′)) are some intervals

such that |πx(V (G′))| ≤ 4p and |πy(V (G′))| ≤ 4p, then there exists q ∈ αV (G′) such that

|q| = 1.

Proof. Let i = min{j ∈ [0, lg(4p)] : Qj ∩ V (G′)}. If i = 0, then the lemma is true as

|πx(V (G′))| ≤ 4p < 8p and |πy(V (G′))| ≤ 4p < 8p. Let (x, y) ∈ Qi ∩ V (G′). We claim

that [(x, y)]αV (G′)
| = 1. So we assume that i > 0. Suppose that there exists (x′, y′) ∈

[(x, y)]αiV (G′)
\ {(x, y)}. As (x, y), (x′, y′) ∈ Qi, we infer that (x, y), (x′, y′) ∈ Pi and

(x, y), (x′, y′) /∈ Pi−1. We see that 8p/2i | (x′−x) and 8p/2i | (y′−y). If x ̸= x′, without

loss of generality, let us assume that x < x′. Notice that 4p/2i−1 ∤ x and 4p/2i−1 ∤ x′

(4p/2i−1 = 8p/2i). Therefore, there is always a c ∈ [x, x′] \ {x, x′} ⊂ πx(V (G′)) such

that 8p/2i | c. As πx(V (G′)) is an interval, there exists (c, d) ∈ V (G′). Now it is clear

that (c, d) ∈ Pi−1 ∩ V (G′). Hence, we can conclude that (c, d) ∈ Qj for some j < i.

This is a contradiction. Thus, we have that x = x′. Similarly, we conclude that y = y′.

This completes the proof.

Lemma 7. For any connected subgraph G′ of G if |πx(V (G′))| ≥ 6p+9 then |ρV (G′)| > p.

Proof. As G′ is connected there is a subpath P of G′ such that |πx(V (P))| ≥ 6p + 9.

Let us partition N into the collection κ = {[t, t+5] : t ∈ N and 6 | t}. Let S = {a ∈ κ :

|a∩πx(V (P))| = 6}. Notice that it is not possible that |S| < p and there is a c ∈ κ such

that |c ∩ πx(V (P))| = 5 when |S| = p. Let S ′ ⊆ S such that |S ′| = p + 1 and
⋃

a∈S′ a

is also an interval when |S| > p or S ′ = S ∪ {c ∩ πx(V (P))} when |S| = p. Therefore

|S ′| = p+1. Note that if a ∈ S ′, a is an interval. Let a ∈ S ′. Observe that, there is t ∈ a

such that 3 | t and also [t−2, t+1] ⊂ a as |a| ≥ 5. Since P is connected there is an edge

(t− 1, y)(t, y) ∈ E(P) such that y ∈ N. Observe that either (t− 1, y) ∈ R or (t, y) ∈ R.

First let us assume that (t, y) ∈ R. If (t, y) /∈ A then 2 ∤ mod(t, 3) +mod(y, 3) which

implies that mod(y, 3) = 1. Since |πx(V (P))∩a| ≥ 5 there is (x′, y′) ∈ N(t, y)∩V (P)∩R

such that 2 | mod (x′, 3) + mod (y′, 3) which implies that (x′, y′) ∈ A (recall that

95

for any vertex (x, y) in G, N(x, y) = {(x′, y′) ∈ N2 : |x − x′| + |y − y′| = 1}). Now

let (t − 1, y) ∈ R. If (t − 1, y) /∈ A, then 2 ∤ mod(t − 1, 3) + mod(y, 3) which implies

that mod(y, 3) = 1. Thus there is a (x′, y′) ∈ N(t − 1, y) ∩ V (P) ∩ R such that

2 | mod(x′, 3) +mod(y′, 3) which implies that (x′, y′) ∈ A . Therefore, π−1
x (a)∩ V (P)∩

R ∩ A ̸= ∅ for any a ∈ S ′. Note that |S ′| = p + 1 and for each a ∈ S ′ we get an

unique element f(a) ∈ π−1
x (a) ∩ V (P) ∩ R ∩ A(for each a we choose a vertex u in

π−1
x (a) ∩ V (P) ∩ R ∩ A as f(a) such that πx(u) is the minimum). Note that for two

distinct a, b ∈ S ′, πx(f(a)) ̸= πx(f(b)) and |πx(f(a))− πx(f(b))| ≤ 6p+ 5 which imply

that [f(a)]ρ ̸= [f(b)]ρ. Therefore |ρV (G′)| > p as |S ′| > p.

Lemma 8. For any connected subgraph G′ of G if |πy(V (G′))| ≥ 6p+9, then |λV (G′)| >

p.

Proof. The proof is similar to that of Lemma 7.

Now we are ready to prove the theorem. We define a map I : N2 → N2, (x, y) 7→

(
⌊
x
3

⌋
,
⌊
y
3

⌋
).

6.2 Proof of Theorem 10

Let H be a connected subgraph of G. If either |πx(V (H))| ≥ 6p + 9 or |πy(V (H))| ≥

6p+9 then from Lemma 7 and Lemma 8 either |ρV (H)| > p or |λV (H)| > p, respectively.

Therefore, let us assume that |πx(V (H))| < 6p + 9 and |πy(V (H))| < 6p + 9. We

claim that the components of the induced subgraph of G on A are C4 or K1. Let

(a, b) ∈ A. If mod(a, 3) = mod(b, 3) = 1, then N((a, b)) \ {(a, b)} ⊂ B. Thus for this

case the connected component of G[A] containing (a, b) is K1. The other case is when

(a, b) ∈ A \ {x ∈ N : mod(x, 3) = 1}2. Let (a, b) ∈ R. Without loss of generality let

us assume that mod(a, 3) = 0 and mod(b, 3) = 2. Let (x, y) ∈ N((a, b)) ∩ A. Then

only possibility is that (x, y) ∈ C. Similarly, one can show that if (a, b) ∈ C and

96

(x, y) ∈ N((a, b)) ∩ A then (x, y) ∈ R. Also observe that |N((a, b) ∩ A| = 2 and if

(x, y), (x′, y′) ∈ N((a, b)) ∩ A ((x, y) and (x′, y′) are distinct), then | y−y′

x−x′ | = 1. Observe

that if (a, b), (c, d) ∈ R ∩ (A \ {x ∈ N : mod(x, 3) = 1}2) and |a − b| + |c − d| = 2,

then N((a, b)) = N((c, d)). Therefore any component in the induced subgraph on

V (G) \ {x ∈ N : mod(x, 3) = 1}2 is a C4. Hence if V (H) ∩ B = ∅, then H must be a

subgraph of either C4 or K1. In both the cases, from the definition of the partitions λ

and ρ there is a A ∈ λV (H) ∪ ρV (H) such that |A| = 1. Now assume that V (H)∩B ̸= ∅.

We claim that πx(I(V (H) ∩ B)) and πy(I(V (H) ∩ B)) are intervals. We only show

that πx(I(V (H) ∩ B)) is an interval since proof of the other claim is similar. Let us

suppose that x, x′ ∈ πx(I(V (H) ∩ B)). Let b ∈ ([x, x′] \ {x, x′}). Clearly, there exists

(b1, b2) ∈ [3x, 3x + 2] × [3x′, 3x′ + 2] ∩ πx(V (H))2. Since 3b + 1 ∈ [b1, b2] \ {b1, b2} and

πx(V (H)) is an interval we have 3b+1 ∈ πx(V (H)). Thus there exists a ∈ N such that

(3b + 1, a) ∈ V (H). If (3b + 1, a) /∈ B, then mod(a, 3) = 1. Since (3b + 1, a) ∈ V (H)

and H is connected and |V (H)| > 1, there exists some neighbour u of (3b + 1, a)

such that u ∈ V (H) ∩ B. Note that πx(I(u)) = b. Thus, πx(I(V (H) ∩ B)) is an

interval. Symmetrically, πx(I(V (H) ∩ B)) is an interval. As |πx(V (H))| ≤ 6p + 8 and

|πy(V (H))| ≤ 6p+8, |πx(I(V (H)∩B))| ≤ 2p+4 and |πy(V (H)∩B)| ≤ 2p+4. As p > 1

we have 2p+4 ≤ 4p. Therefore applying Lemma 6 we get that there exists q ∈ αI(V (H))

such that |q| = 1. Let u ∈ I−1(q) ∩ V (H) then [u]βV (H)
= {u}. This completes the

proof.

6.3 Generalizing to all values of p

The above theorem is applicable to all values of p ∈ N. Let us assume that p = 1. A

two dimensional grid is a bipartite graph. So there is a proper coloring with only 2

colors. Any proper coloring is an 1-centered coloring. Suppose that p > 1. Let p′ be

the smallest power of 2 that is greater than p. Observe that p′ ≥ 2 and p′ ≥ 2p. By the

97

above construction we get a p′-centered coloring with at most 140p′ +12 colors. Notice

that any p′-centered coloring of the two dimensional grid is also a p-centered coloring

of the two dimensional grid as p ≤ p′. Thus for any p > 2 we get a p-centered coloring

with at most 280p+12 colors. Thus for any value of p ∈ N there is a p-centered coloring

of the two dimensional grid using O(p) colors.

98

Chapter 7

Conclusion

In this work we studied two graph coloring problems. We give below some concluding

remarks and thoughts on future research directions on these two problems.

Linear colorings

The work done on the first problem, namely the Linear Arboricity Conjecture, has

established that this long standing conjecture is true for the class of 3-degenerate graphs,

which has many interesting and well-studied subclasses. A natural way to build further

upon this work would be to try to prove the conjecture for 4-degenerate graphs. It

should become harder since if one could prove the conjecture for k-degenerate graphs

for every k ∈ N, then the Linear Arboricity Conjecture itself would be proved. Our

approach for proving the conjecture on 3-degenerate graphs crucially hinges on the

operation of identifying a pair of nonadjacent vertices. In both proofs that we have

presented, we identify a pair of nonadjacent vertices u and v such that d(u)+ d(v) ≤ 3,

so that the new vertex created by the identification is a vertex of degree at most 3. This

guarantees that the new graph after the identification operation is also a 3-degenerate

graph, albeit with a lesser number of vertices, and we can argue inductively on this

99

u
v

w
y

xa

b

c

z

u
v

w
y

xa

b

c

z

Figure 7.1: The two cases for 4-degenerate graphs.

graph. If one were to repeat this approach for 4-degenerate graphs, in the final step of

the proof of Theorem 1, we will have two ways to construct the graph H, as shown in

Figure 7.1. In both cases, we construct H ′ from H by identifying the vertex w with the

vertex u. Now we inductively construct a linear coloring of H ′ using at most k colors

(recall that ∆(G) ≤ 2k − 1), and obtain a partial linear coloring c of H by splitting

back the identified vertex into u and w. We now have to find colors that can be given to

edges that were removed to obtain H from G. For the case that is shown on the left of

Figure 7.1, we need to color the edges wx and wz. But it is possible that in the partial

coloring c of H, we have Missing(x) = Missing(z) = {i} and Once(x) = Once(z) = ∅.

This forces us to extend c into a linear coloring of H by assigning the color i to both

wx and wz. But it is possible that c(wy) = i, and therefore c cannot be extended into

a linear coloring of H. Similarly, for the case shown on the right of Figure 7.1, it could

happen that c(wy) = c(wz) = i, Missing(x) = {i}, and Once(x) = ∅. Once again,

we cannot extend c into a linear coloring of H. These kinds of problems also come up

when trying to adapt the proof of the Linear Arboricity Conjecture for 3-degenerate

graphs given in Chapter 4 to 4-degenerate graphs.

p-centered colorings

An end goal of our research on p-centered colorings is to produce a constructive proof

for Dębski, Felsner, Micek and Schröder’s result that every graph G having maximum

100

degree ∆ has a p-centered coloring using O(∆2− 1
pp) colors. We sought to understand

how such a proof would look like by trying to construct p-centered colorings using O(p)

colors for specific graphs with bounded degree. A natural next step would be to try

to extend our proof to bounded degree graphs similar to the two dimensional grid, like

the three dimensional grid, or the two dimensional grid with diagonals added in each

cycle of length four. But adapting the technique that we used for the two dimensional

grid to these graphs doesn’t look straightforward.

In our approach to color the two dimensional grid, we implicitly use a centered

coloring with O(p) colors for the p× p grid. This was possible since the treedepth of a

p× p grid is O(p). The treewidth of a p× p× p grid is Ω(p2) [72]. Since the treewidth

of any graph is at most its treedepth [15], this means that any centered coloring of

a p × p × p grid has to use Ω(p2) colors. This leads us to believe that a different

approach will be required to construct a p-centered coloring using O(p) colors for the

three dimensional grid.

As for the two dimensional grid with diagonals added in each cycle of length four,

which we shall call the “extended grid”, our approach fails for a different reason. One

of the crucial ingredients in our proof for the grid graph was a coloring that contained

no “large violators”; i.e. a coloring such that every connected subgraph that spans more

than some c · p rows or columns, for some constant c, contains more than p colors. It

seems difficult to construct such a coloring for the extended grid. For the normal grid

graph, we could divide the vertices into two classes R and C, so that we could color

each vertex in the class R with its row number modulo c · p, for some constant c, and

each vertex in the class C with its column number modulo c · p. Then any connected

subgraph H has the property that if it intersects vertices in two adjacent columns,

then it has to intersect a vertex of class C from at least one of those columns. Thus,

any connected subgraph that spans c · p columns contains vertices of type C from at

101

least c·p
2

of those columns. The reason why this happens is that removal of vertices of

type C from any two adjacent columns disconnects the graph. Moreover, since induced

subgraph of formed by the vertices that we removed consists of only isolated vertices, we

could use one color, or a constant number of colors, to color all of those vertices. On the

other hand, if we attempt to partition the vertices of the extended grid into classes such

that removal of some number of vertices from one of the classes disconnects the graph

into two components, neither of which are “small”, then the removed vertices would

induce a “large” connected subgraph in the extended grid, and therefore if we use just

a constant number of colors to color all of them, then this connected subgraph would

be “large violator”. Therefore, we feel that as a first step towards finding a p-centered

coloring using O(p) colors for the extended grid, one first needs to find a coloring for

the extended grid that does not contain any “large violators”.

Open problems

We would like to present some open problems that we tried but failed. These are the

problems which we believe need to be studied if one is to expand upon the work done

in this thesis.

1. Is there a linear coloring with
⌈
∆(G)+1

2

⌉
colors for 4-degenerate graphs?

2. Is there a 2-linear coloring for any 2-degenerate graph with maximum degree 4?

3. It seems natural to ask the following question: Is the problem of computing linear

arboricity NP-hard when restricted to 2-degenerate graphs of maximum degree

at most 4? We do not know the answer to this question, but would like to remark

here that this problem seems similar to Conjecture 4 in [22].

4. Show an explicit construction for a p-centered coloring using O(p) colors for the

3-dimensional grid.

102

5. Show an explicit construction for a p-centered coloring using O(p) colors for the

planar grid with both diagonals added inside each cycle of length four.

103

Bibliography

[1] Zachary Abel, Victor Alvarez, Erik D. Demaine, Sandor P. Fekete, Aman Gour,

Adam Hesterberg, Phillip Keldenich, and Christian Scheffer. Conflict-free coloring

of graphs. SIAM J. Discrete Math., 32(4):2675–2702, 2018.

[2] Gholamreza Abrishami and Ahmad Erfanian. A note on Reed’s conjecture for

triangle-free graphs. Discrete Mathematics, 346(12):113609, 2023.

[3] Jin Akiyama, Geoffrey Exoo, and Frank Harary. Covering and packing in graphs

III: Cyclic and acyclic invariants. Mathematica Slovaca, 30(4):405–417, 1980.

[4] Jin Akiyama, Geoffrey Exoo, and Frank Harary. Covering and packing in graphs

IV: Linear arboricity. Networks, 11:69–72, 10 2006.

[5] Noga Alon. The linear arboricity of graphs. Israel Journal of Mathematics,

62(3):311–325, 1988.

[6] Noga Alon, Colin McDiarmid, and Bruce Reed. Acyclic coloring of graphs. Random

Structures & Algorithms, 2(3):277–288, 1991.

[7] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Publishing, 4th

edition, 2016.

[8] Noga Alon, Benny Sudakov, and Ayal Zaks. Acyclic edge colorings of graphs.

Journal of Graph Theory, 37:157–167, 2001.

104

[9] Kenneth Appel and Wolfgang Haken. Every map is four colourable. Bulletin of

the American Mathematical Society, 82:711–712, 1976.

[10] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. Part I:

Discharging. Illinois Journal of Mathematics, 21:429–490, 1977.

[11] Kenneth Appel, Wolfgang Haken, and John Koch. Every planar map is four col-

orable. Part II: Reducibility. Illinois Journal of Mathematics, 21:491–567, 1977.

[12] Manu Basavaraju and L. Sunil Chandran. Acyclic edge coloring of 2-degenerate

graphs. Journal of Graph Theory, 69(1):1–27, 2012.

[13] M. Behzad. Graphs and Their Chromatic Numbers. PhD thesis, Michigan State

University, 1965.

[14] Sriram Bhyravarapu, Subrahmanyam Kalyanasundaram, and Rogers Mathew.

Conflict-free coloring bounds on open neighborhoods. Algorithmica, 84(8):2154–

2185, 2022.

[15] Hans L. Bodlaender, John R. Gilbert, Hjálmtýr Hafsteinsson, and Ton Kloks. Ap-

proximating treewidth, pathwidth, frontsize, and shortest elimination tree. Journal

of Algorithms, 18(2):238–255, 1995.

[16] B. Bollobás, P. A. Catlin, and Paul Erdős. Hadwiger’s conjecture is true for almost

every graph. European Journal of Combinatorics, 3:195–199, 1980.

[17] B. Bollobás and A. Harris. List-colorings of graphs. Graphs and Combinatorics,

1:115–127, 1985.

[18] O. V. Borodin and André Raspaud. A sufficient condition for planar graphs to be

3-colorable. Journal of Combinatorial Theory, Series B, 88:17–27, 2003.

105

[19] R. L. Brooks. On colouring the nodes of a network. Mathematical Proceedings of

the Cambridge Philosophical Society, 37:194–197, 1941.

[20] Gregory J. Chaitin. Register allocation & spilling via graph coloring. In SIGPLAN

Conferences and Workshops, 1982.

[21] Richard Cole and Łukasz Kowalik. New linear-time algorithms for edge-coloring

planar graphs. Algorithmica, 50:351–368, 2008.

[22] Marek Cygan, Jian-Feng Hou, Łukasz Kowalik, Borut Lužar, and Jian-Liang Wu.

A planar linear arboricity conjecture. Journal of Graph Theory, 69(4):403–425,

2012.

[23] Matt DeVos, Guoli Ding, Bogdan Oporowski, Daniel P. Sanders, Bruce Reed, Paul

Seymour, and Dirk Vertigan. Excluding any graph as a minor allows a low tree-

width 2-coloring. Journal of Combinatorial Theory, Series B, 91(1):25–41, 2004.

[24] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, Au-

gust 2005.

[25] Michał Dębski, Stefan Felsner, Piotr Micek, and Felix Schröder. Improved bounds

for centered colorings. Advances in Combinatorics, 2021:8, 28pp, 2021.

[26] Christian A. Duncan, David Eppstein, and Stephen G. Kobourov. The geometric

thickness of low degree graphs. In Proceedings of the Twentieth Annual Symposium

on Computational Geometry, SoCG ’04, pages 340–346. Association for Computing

Machinery, 2004.

[27] Hikoe Enomoto and Bernard Peroche. The linear arboricity of some regular graphs.

Journal of Graph Theory, 8(2):309–324, 1984.

106

[28] Paul Erdős and Tibor Gallai. On maximal paths and circuits of graphs. Acta

Math. Acad. Sci. Hungar., 10:337–356, 1959.

[29] Louis Esperet and Aline Parreau. Acyclic edge-coloring using entropy compression.

European Journal of Combinatorics, 34(6):1019–1027, 2013.

[30] Asaf Ferber, Jacob Fox, and Vishesh Jain. Towards the linear arboricity conjecture.

Journal of Combinatorial Theory, Series B, 2019.

[31] Guillaume Fertin, André Raspaud, and Bruce Reed. Star coloring of graphs. Jour-

nal of Graph Theory, 47:163–182, 2004.

[32] J. Fiamčík. The acyclic chromatic class of a graph. Mathematica Slovaca, 28:139–

145, 1978.

[33] Harold Gabow and Herbert Westermann. Forests, frames, and games: Algorithms

for matroid sums and applications. Algorithmica, 7(5-6):465–497, 1992.

[34] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph

problems. Theoretical Computer Science, 1(3):237–267, 1976.

[35] Daniel Gonçalves, Mickael Montassier, and Alexandre Pinlou. Acyclic coloring of

graphs and entropy compression method. Discrete Mathematics, 343(4):111772,

2020.

[36] Herbert Grötzsch. Zur theorie der diskreten gebilde, VII: Ein dreifarbensatz für

dreikreisfreie netze auf der kugel. Wiss. Z. Martin-Luther-U., Halle-Wittenberg,

Math.-Nat. Reihe, 8:109–120, 1959.

[37] Branko Grünbaum. Acyclic colorings of planar graphs. Israel Journal of Mathe-

matics, 14:390–408, 1973.

107

[38] Filip Guldan. The linear arboricity of 10-regular graphs. Mathematica Slovaca,

36(3):225–228, 1986.

[39] Filip Guldan. Some results on linear arboricity. Journal of Graph Theory,

10(4):505–509, 1986.

[40] R. P. Gupta. The chromatic index and the degree of a graph. Notices Amer. Math.

Soc., 13:714–719, 1966.

[41] András Gyárfás. On Ramsey covering-numbers. Infinite and Finite Sets, 2:801–

816, 1975.

[42] András Gyárfás and Zsolt Tuza. The strong chromatic index of graphs. Ars

Combinatoria, 29:205–211, 1990.

[43] Frank Harary. Covering and packing in graphs, I. Annals of the New York Academy

of Sciences, 175(1):198–205, 1970.

[44] Jensen and Toft. Graph Coloring Problems. Wiley, December 1994.

[45] Paul Kainen. Upper bound for linear arboricity. Applied Mathematics Letters,

4:53–55, 1991.

[46] Alexander V. Kostochka. An analogue of Shannon’s estimate for complete colorings

(in Russian). Diskret. Analiz., 30:13–22, 1977.

[47] Alexander V. Kostochka. Lower bound of the hadwiger number of graphs by their

average degree. Combinatorica, 4:307–316, 1984.

[48] Alexandr V. Kostochka and Christopher J. Stocker. Graphs with maximum degree

5 are acyclically 7-colorable. Ars Mathematica Contemporanea, 4(1):153–164, 2011.

108

[49] Jeremy Kun, Michael O’Brien, and Blair Sullivan. Treedepth bounds in linear

colorings. Algorithmica, 83:361–386, 2021.

[50] Richard Lang and Luke Postle. An improved bound for the linear arboricity con-

jecture. Combinatorica, 43:547–569, 2023.

[51] Daniel Leven and Zvi Galil. NP completeness of finding the chromatic index of

regular graphs. Journal of Algorithms, 4(1):35–44, 1983.

[52] András London, Ryan R. Martin, and András Pluhár. Graph clustering via gen-

eralized colorings. Theoretical Computer Science, 918:94–104, 2022.

[53] László Lovász. Three short proofs in graph theory. Journal of Combinatorial

Theory, Series B, 19:269–271, 1975.

[54] M. Molloy and B. Reed. A bound on the total chromatic number. Combinatorica,

18:241–280, 1998.

[55] Jaroslav Nešetřil and Patrice Ossona de Mendez. Tree-depth, subgraph coloring

and homomorphism bounds. European Journal of Combinatorics, 27(6):1022–1041,

2006.

[56] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded

expansion I. Decompositions. European Journal of Combinatorics, 29(3):760–776,

2008.

[57] János Pach and Géza Tóth. Conflict-free colorings. In Boris Aronov, Saugata Basu,

János Pach, and Micha Sharir, editors, Discrete and Computational Geometry: The

Goodman-Pollack Festschrift, pages 665–671. Springer Berlin Heidelberg, 2003.

[58] Bernard Peroche. Complexité de l’arboricité linéaire d’un graphe. RAIRO-Oper.

Res., 16(2):125–129, 1982.

109

[59] Michał Pilipczuk and Sebastian Siebertz. Polynomial bounds for centered colorings

on proper minor-closed graph classes. Journal of Combinatorial Theory, Series B,

151:111–147, 2021.

[60] Bruce Reed and Paul Seymour. Hadwiger’s conjecture for line graphs. European

J. Math., 25:873–876, 2004.

[61] Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas. Efficiently

four-coloring planar graphs. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing, STOC ’96, pages 571–575, New York, NY,

USA, 1996.

[62] Neil Robertson, Paul Seymour, and Robin Thomas. Hadwiger’s conjecture for

K6-free graphs. Combinatorica, 13:279–361, 1993.

[63] Daniel P. Sanders and Yue Zhao. Planar graphs of maximum degree seven are

class I. Journal of Combinatorial Theory, Series B, 83(2):201–212, 2001.

[64] Alex Scott and Paul Seymour. A survey of χ-boundedness. Journal of Graph

Theory, 95(3):473–504, 2020.

[65] Jean-Sébastien Sereni and Jan Volec. A note on acyclic vertex-colorings. Journal

of Combinatorics, 7(4):725–737, 2016.

[66] Richard Steinberg. The state of the three color problem. In John Gimbel, John W.

Kennedy, and Louis V. Quintas, editors, Quo Vadis, Graph Theory?, volume 55 of

Annals of Discrete Mathematics, pages 211–248. Elsevier, 1993.

[67] David P. Sumner. Subtrees of a graph and chromatic number. The Theory and

Applications of Graphs, pages 557–576, 1981.

110

[68] Andrew Thomason. An extremal function for contractions of graphs. Mathematical

Proceedings of the Cambridge Philosophical Society, 95:261–265, 1984.

[69] V. Vizing. Some unsolved problems in graph theory. Russian Math Surveys,

23:125–141, 1968.

[70] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz,

3:25–30, 1964.

[71] V. G. Vizing. Critical graphs with given chromatic class (in Russian). Metody

Diskret. Analiz., 5:9–17, 1965.

[72] David R. Wood. Treewidth of cartesian products of highly connected graphs.

Journal of Graph Theory, 73(3):318–321, 2013.

[73] Jian-Liang Wu. On the linear arboricity of planar graphs. Journal of Graph Theory,

31(2):129–134, 1999.

[74] Jian-Liang Wu and Yu-Wen Wu. The linear arboricity of planar graphs of maxi-

mum degree seven is four. Journal of Graph Theory, 58(3):210–220, 2008.

[75] Fan Yang, Jian-Liang Wu, and Huimin Song. The linear arboricity of K5-minor

free graphs. Discrete Applied Mathematics, 322:49–60, 2022.

[76] Gexin Yu and Rachel Yu. Strong edge-coloring of 2-degenerate graphs. Discrete

Applied Mathematics, 336:11–14, 2023.

111

