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Abstract

Boolean functions are fundamental objects in computer science and mathematics, repre-
senting decision problems in a binary format. This thesis investigates Boolean functions
through the lens of the query complexity model and its related complexity measures. Query
complexity measures the number of input bits examined to determine the function’s output.
This provides a lower bound on the time complexity. Depending on other available resources
like randomness and quantum resources, other query complexity measures have been de-
fined in this area, known as randomized and quantum query complexity, respectively. In
addition to deterministic, randomized, and quantum query complexities, there are various
other combinatorial complexity measures like sensitivity, block sensitivity, and certificate
complexity. There are also complexity measures that analyze Boolean functions represented
as polynomials, such as degree and approximate degree.

The analysis of Boolean functions has gone through extensive exploration, resulting in a
diverse and rich literature. The problems investigated in this area can be categorized into
distinct types, each representing unique directions of interest and applications. This thesis
will be developed along three main directions:

• How are two different complexity measures related to each other? Understanding the
relationship between various combinatorial measures involves two parts:
(1) Relation - Proving that one measure is upper bounded by a function of another
measure.
(2) Separation - Constructing functions that demonstrate separation between two
measures.

• The upper and lower bound concerning any particular complexity measure.

• How the complexity measure behaves under composition.

This study explores the above three problems in light of symmetry. In particular, we
investigate and prove results for the above three questions for classes of functions with partial
symmetry, aiming to provide a deeper understanding of the role of symmetry and other struc-
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tural properties in the behavior of complexity measures. Important classes of functions that
capture partial symmetry include transitive functions, junta-symmetric functions, recursive
functions, and many more.

The main contribution of this thesis is divided into two parts:

Part I investigates the relationship between complexity measures for transitive functions
and lower bounds on non-deterministic degree complexity for some special classes of
symmetric functions. It explores by constructing transitive functions by modifying the known
example of functions separating various complexity measures for general Boolean functions
and discusses the challenges of partial symmetric structures. All the separation results also
match the best-known separations for general Boolean functions. Additionally, it addresses
the non-deterministic degree of symmetric functions, providing lower bounds for a special
class of symmetric functions.

Part II explores composition theorems for randomized query complexity and approximate
degree, particularly focusing on the effects of symmetry. It establishes composition theorems
for both measures, extending the classes of outer functions for which composition holds.

In the approximate degree case, we prove composition theorems in terms of the block
sensitivity of the outer functions. We also prove composition theorems for the classes of
(strongly) junta-symmetric functions (when the outer function is junta-symmetric and the
inner function can be anything) and for the classes of recursive functions (when the outer
function is a recursive function and the inner function can be anything, as well as when the
outer function can be anything while the inner function is a recursive function). In the case
of randomized query complexity, we prove composition theorems when the outer function
has full randomized query complexity and also for the classes of (strongly) junta-symmetric
functions (when the outer function is junta-symmetric).
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Chapter 1

Introduction

Boolean functions are one of the central objects in the study of computer science and
mathematics. Any decision problem can be expressed as a Boolean function that takes an
n-bit string as input and gives a single-bit output. Formally, it has the following structure:

f : {True,False}n →{True,False}.

Depending upon context there are various representations of Boolean functions that have
been used in literature, for example, f : {0,1}n →{0,1} or f : {−1,1}n →{−1,1} etc. The
versatility of Boolean functions in capturing various problems in a simple form makes it
crucial to understand their different properties. To understand the various computational
aspects of Boolean functions, various models of computation are considered. A model defines
the rules of computations and the associated costs. Specifically, how to access the input to the
function, what resources are available for computations, what the costs of computations are,
and what the correctness requirements are - these are the questions that the model specifies.
Given a model of computation, the associated costs of computation define the complexity
measures for the Boolean functions.

In the literature, various computational models and the associated complexity measures
have been studied. Some of the well-known and classical complexity measures are time
complexity, space complexity, circuit complexity, etc ([AB09]). As the name suggests,
the time complexity is the amount of time taken by an algorithm to solve a problem (as a
function of the input size). On the other hand, space complexity quantifies the amount of
memory space required by an algorithm to solve a problem (as a function of the input size).
Another important complexity measure is Boolean circuit complexity ([Bei93, Bop97]),
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which depends on the size, depth, number of fan-ins, and fan-outs of the circuits calculating
a Boolean function. The communication complexity ([KN96, NW95, BVdW07]) model is
another computational model, where the inputs are distributed among parties and the cost
is the number of communications or messages passed to compute the output value of the
functions. This model has been foundational in proving lower bounds in computational
complexity theory for many years. Another complexity measure that is extensively studied
in this area is query complexity. Here, the cost is the number of bits needed to be queried to
decide the output value of the function at that input. In this model, the function is known
but the input is not known, where one can query the i-th bit of the input upon which the i-th
bit will be revealed. Note that for a Boolean function f defined on a n-bit string, if all the n
many bits get revealed, the answer can be decided always. Here the challenge is to read as
few bits as possible and decide the output value of the function.

Depending on the other aspects of the model of computation various variants of the
above complexity measures are studied. For example, if the computation is performed
in a deterministic setup, then the associated measures are the deterministic complexity
measures. If the computation is performed in a randomized setup with the available random
resources, then randomized time complexity, randomized space complexity, etc can be
defined depending on the models. While solving the same problem, if the computation is
done in a quantum setup, then the associated complexity measures will be quantum time
complexity, quantum query complexity, etc. There are complexity measures concerned with
the type of computations, such as non-deterministic time complexity and non-deterministic
space complexity defined in the non-deterministic model of computations.

In this thesis, we will focus on the query model, different variants of query complexity
measures, and the related complexity measures. The query model, also known as the decision
tree model, is one of the simplest models of computation for studying Boolean functions. As
we have already mentioned, query complexity measures the minimum number of queries or
tests required to determine the output of a Boolean function f for all possible inputs. Any
deterministic query algorithm gives rise to a binary tree-like structure, which is called a
‘deterministic decision tree’ computing the Boolean function f ([Bd02]). In particular, the
depth of the tree is the worst-case deterministic decision tree complexity (or deterministic
query complexity of that Boolean function) which is denoted by D( f ). Note that in this
setup we are not concerned with time complexity, but it provides a lower bound on the time
complexity, making this model crucial to study.

Randomized query complexity (R( f )) is the randomized version of query complexity that
measures the minimum number of queries required by a randomized algorithm to compute
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a Boolean function correctly with probability at least 2
3 . A randomized query algorithm

can be thought of as a probability distribution over all the deterministic decision trees of
depth at most R( f ), such that for each input, x, the fraction of trees (weighted according to
the probability distribution) that computes f (x) correctly is at least 2/3. Note that here the
algorithm can make errors but the probability of making an error is at most 1

3 . Precisely this
is called bounded error randomized query complexity of a Boolean function f . Depending
upon the error parameter, other versions of randomized query complexity can be defined,
for example, one-sided error randomized query complexity or zero error randomized query
complexity. See [Nis89, Bop97] for an overview of such complexity measures.

The quantum setup is quite different compared to the deterministic and randomized
decision tree complexities. Here, the unit of computation is a qubit. With a quantum
source available, we can define the quantum query complexity (Q( f )) of a Boolean function.
The minimum number of quantum queries needed by an optimal quantum algorithm to
decide the output value of a Boolean function with probability at least 2

3 is defined to be
(bounded-error) quantum query complexity of that Boolean function f . See [NC10] for
more details. Just like in the case of randomized query setup, here also different types of
quantum query complexity can be defined depending on the error parameter. For example,
exact quantum query complexity, where the quantum algorithm needs to decide the output
value of the function with probability 1. We refer to [BdW02] for a formal definition of all
these complexity measures.

All these variants of query complexity measures lead us to the fundamental question: do
these available random sources or quantum sources offer any advantages over deterministic
computations? These are important questions in computational complexity theory that have
been investigated for many years. Consequently, it propels investigation and exploration
into the possible benefits and constraints of randomness and quantum resources within
computational contexts.

Other than the different variants of query complexity, there are various combinatorial
complexity measures that are closely related to the query complexity measures, such as
sensitivity (s( f ) [CDR86]), block sensitivity (bs( f ) [Nis89]), certificate complexity (C( f )),
randomized certificate complexity (RC( f )), unambiguous certificate complexity (UC( f )),
and many more. When we talk about the representation of the Boolean function, representing
the Boolean function in terms of polynomials is one of the popular and useful forms. From
this representation some natural analytic measure comes into the picture like degree (deg( f )),
approximate degree (d̃eg( f )), spectral sensitivity (λ ( f )), etc. For over four decades, under-
standing these measures has been an active area of research in computational complexity
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theory. These combinatorial measures have applications in many other areas of theoretical
computer science, making the above a question central. Usually one puts these studies under
the heading of “analysis of Boolean functions.”

The analysis of Boolean functions through various combinatorial complexity measures
has received considerable attention over the years, leading to developments in various
directions and resulting in interesting new phenomena in diverse fields. Despite this attention
and development, many long-standing open problems remain in this area. Some notable
examples include the Aaronson-Ambainis conjecture [AA14], the log-rank conjecture, the
Sensitivity Conjecture [NS94], the approximate degree composition lower bound, and the
randomized query complexity lower bound. In the last couple of years, some celebrated
conjectures have been resolved, such as the quadratic relation between sensitivity and the
degree of Boolean functions (known as Sensitivity Conjecture) [Hua19]. Many more central
open questions continue to drive progress in the community, resulting in a long list of
significant works that have served as foundational building blocks throughout computational
theory [NS94, NW95, BBC+01a, Aar08, RS12]. Various beautiful surveys in this area can
be found in [BdW02, HKP11, ABK+21a], offering insightful introductions to this area.

1.1 Important Meta Questions in this area

Analysis of Boolean function has gone through extensive exploration and study, resulting in
a diverse and rich literature. However, most of the problems investigated can be categorized
into distinct types, each representing a unique direction of interests and applications, of which
we will be describing three main directions towards which this thesis will be developed.

Let us start with an example to see the type of problems that can be addressed by analyz-
ing and understanding the relationship between complexity measures. Suppose we have a
deterministic query algorithm for a specific function and we want to design a randomized
algorithm for that function. Naturally, we anticipate some improvement in the query com-
plexity, but the question arises: to what extent? Is it reasonable to expect an exponential
improvement compared to the deterministic algorithm? Considering the scenario, it has been
already established by [Mid04] that for all total Boolean functions, D( f ) is upper bounded
by R( f )3. This says that one can not expect exponential improvement for your randomized
algorithm. Hence we can only get polynomial improvement. Similarly, one may be interested
to study how much low can one complexity measure be compared to another for any Boolean
function.

Question 1.1. How are two different complexity measures related to each other?
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Understanding the relationship between various combinatorial measures involves two
parts:

1. Relationships - proving that one measure is upper bounded by a function of another
measure. Precisely, for any two complexity measure M1 and M2 if there exists some
function p1 such that M1( f ) = O(p1(M2( f ))) for all Boolean function f then we say
M2 gives upper bound on the complexity measure M1.

For example, for any Boolean function f , deg( f )≤ s( f )2 and D( f )≤ R( f )3.

2. Separations - constructing functions that demonstrate separation between two mea-
sures. Precisely, if there exists a Boolean function g and some polynomial p2 such
that M1(g) = Ω(p2(M2(g))), then we say there exists some function that achieves a
polynomial separation between M1 and M2.

For example, there exists a Boolean function f with deg( f )≥ s( f )2. Also, there exists
another Boolean function g with D(g)≥ R(g)2.

Obtaining tight bounds between pairs of combinatorial measures - that is when the
relationship and the separation results match - is the holy grail of this area of research. In
other words, the goal is to obtain functions p1 and p2 (for the above questions) which are
asymptotically equal or close. The current best-known results for different pairs of functions
in general have been nicely compiled in [ABK+21b].

Another very natural and well-studied problem is the upper bound and lower bound on a
complexity measure for some Boolean functions in terms of the arity of the functions. That
is fix some Boolean function on n variables, for example, OR. Now the question to ask what
is the deterministic query complexity or quantum query complexity of OR on n bits? So, the
second type problem that has been widely studied in different context in this area is:

Question 1.2. The upper bound and lower bound concerning any particular complexity
measure?

For example, consider the degree of a Boolean function f : {0,1}n →{0,1}. How much
lower can the degree go if f depends on n variables? That is, what is the minimum possible
degree of a non-constant Boolean function that depends on all the variables? [NS94] proved
that degree of such Boolean functions is at least Ω(logn).

Another crucial step towards understanding a complexity measure is: how does the
complexity measure behave when two Boolean functions are combined to obtain a new
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function (i.e., what is the relationship between the measure of the resulting function and the
measures of the two individual functions) [BKT19, BDGKW20, GSS16, Tal13]?

Let M(·) be a complexity measure of Boolean functions. A central question in complexity
theory is the following.

Question 1.3 (Composition question for M). Is the following true for all Boolean functions
f and g:

M( f ∗1 g) = Θ̃(M( f )∗2 M(g))?

where ∗1 is some algebraic operations that are used to combine two Boolean functions
the outer function, f , and the inner function, g, and create a new Boolean function f ∗1 g.
The ∗2 is some other binary operation that acts on M(g),M( f ). The notation Θ̃(·) hides
poly-logarithmic factors of the arity of the outer function f .

One particularly natural combination of functions is called composition, and it takes
a central role in complexity theory. For any two Boolean functions f : {0,1}n → {0,1}
and g : {0,1}m → {0,1}, the composed function f ◦g : {0,1}nm → {0,1} is defined as the
function

f ◦g(x1, . . . ,xn) = f (g(x1), . . . ,g(xn)),

where xi ∈ {0,1}m for i ∈ [n]. For the function f ◦ g, the function f is called the outer
function, and g is called the inner function. The composition of Boolean functions with
respect to different complexity measures is a very important and useful tool in areas like
communication complexity, circuit complexity, and many more. To take an example, a
popular application of composition is to create new functions demonstrating better separations
(refer to [NS94, Tal13, Amb05, GSS16] for some other results of similar flavor). Precisely
for composition Question 1.3 asks the following:

M( f ◦g) = Θ̃(M( f ) ·M(g))?

It is known that the answer to the above-mentioned question is in the affirmative for
complexity measures like deterministic decision tree complexity [Sav02, Tal13, Mon14],
degree [Tal13] and quantum query complexity [Rei11a, LMR+11, Kim13a]. While it is
well understood how several complexity measures behave under composition, there are
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two important measures (even though well studied) for which this problem remains wide
open: randomized query complexity (denoted by R) and approximate degree (denoted by
d̃eg) [She12, NS94, Amb05, She13a, BT13, She13b]. (See Definition 2.2 and Definition 2.16
for their respective formal definitions.)

For both R and d̃eg the upper bound inequality is known, i.e., R( f ◦g) = Õ(R( f ) ·R(g))
(folklore) and d̃eg( f ◦g)=O(d̃eg( f ) · d̃eg(g)) [She13d]. But the corresponding lower bounds
for both these measures are still major open problems in this area.

1.2 Special Kind of Functions - Role of Symmetry

All the above-mentioned problems can be studied for various different classes of Boolean
functions and the answers to the question may be different for various classes. Exploring
special classes of Boolean functions represents another extensively studied area within this
field. For example, when a function possesses specific properties, it often leads to variations
in both the relationships between measures and the results of separations compared to those
observed in general Boolean functions. For example, while it is known that there exists f
such that bs( f ) = Θ(s( f )2) [Rub95], for a symmetric function, if we take the function to be
‘monotone’ (a function is monotone if the output value doesn’t increase with setting more
variables to 1) then the relation becomes bs( f ) = Θ(s( f )) for all monotone Boolean function
f . On the other hand, the best-known upper bound of bs( f ) in terms of sensitivity for general
Boolean functions is s( f )4 [Hua19]. Similarly, for graph properties, one may obtain tighter
bounds compared to general functions.

So depending upon the properties of the function the complexity measure behaves
differently. This takes a central space in the area of analysis of Boolean functions due
to it’s usefulness in understanding the behaviour of Boolean function. Various important
classes of function have got attention in the literature. For example linear threshold function,
polynomial threshold function, read-once formulas, monotone functions, graph properties,
cyclically invariant functions are many more. One crucial aspect of Boolean functions that is
often central to the definitions of these classes is “symmetry". One may quantify symmetry
in various ways. In this thesis we will concentrate on exploring the classes of functions
derived from the presence of symmetry within their structure.
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1.2.1 Symmetric functions

Any Boolean function f : {0,1}n →{0,1} is symmetric if it is invariant under any permuta-
tion from Sn on the input strings where Sn denotes the set of all permutations on [n]. There
are other ways of characterizing symmetric functions. Namely, a symmetric function is one
whose value on any input depends only on the Hamming weights of the input. Examples
of symmetric functions include OR, AND, PARITY, etc. Symmetric functions have got-
ten significant attention for their applications in cryptography, coding theory, and various
other fields, as well as for their inherent structural elegance. Consequently, the classes of
symmetric functions have been extensively studied over many years and are almost well-
understood. Here is some of the important work that was done for the classes of symmetric
functions [Pat92, OWZ11, BBGK18a].

1.2.2 Partially Symmetric functions

Now, we will define classes of Boolean functions that demonstrate partial symmetry but
lack comprehensive understanding. Unlike the highly constrained nature of completely
symmetric functions, which can be defined in terms of the Hamming weights of the inputs,
these partially symmetric functions offer more flexibility due to their relaxed symmetry
requirements. Various intriguing classes of functions emerge when we loosen the condition
of complete symmetry. Note that partial symmetry can be defined in different ways; for
instance, we can demand that the function remains invariant under subsets of Sn, or we
can say the function is symmetric on some parts of the input bits while leaving other bits
asymmetrical. In the following discussion, we will outline two important classes of partially
symmetric functions, which have gained attention and are being studied in various contexts:

• Weakly symmetric functions or Transitive functions,

• Partly symmetric functions or Junta-symmetric functions.

Transitive Functions or weakly symmetric functions

One of the most well-studied classes of Boolean functions that nicely captures the idea of
partial symmetry is the classes of transitive functions. A group G ≤ Sn is transitive if for all
i, j ∈ [n] there exists a σ ∈ G such that σ(i) = j and we say a function f : {0,1}n →{0,1} is
transitive if there is a transitive group G ≤ Sn such that the function value remains invariant
even after the indices of the input is acted upon by a permutation from G. Note that, when
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G = Sn then the function is symmetric, hence the classes of transitive functions also capture
the classes of Symmetric functions.

Transitive functions are also called “weakly symmetric” functions and have been studied
extensively in the context of various complexity measures. It is expected that functions
with more symmetry must have less variation among the various combinatorial measures.
For example, consider the classes of symmetric functions, where the transitive group is Sn,
most of the combinatorial measures become the same up to a constant 1. Another example
of transitive functions is the graph properties. The input is the adjacency matrix, and the
transitive group is the graph isomorphism group acting on the bits of the adjacency matrix.
A series of works [Tur84, Sun11, LS17, GMSZ13] have tried to obtain tight bounds on the
relationship between sensitivity and block sensitivity for graph properties. Those works also
investigate how low can sensitivity and block sensitivity go for graph properties.

In papers like [SYZ04, Cha11, Sun07, Dru11] it has been studied how low can the
combinatorial measures go for transitive functions. The behavior of transitive functions can
be very different from general Boolean functions. For example, it is known that there are
Boolean functions for which the sensitivity is as low as Θ(logn) where n is the number of
effective variables2, it is known (from [Sun07] and [Hua19]) that if f is a transitive function
on n effective variables then its sensitivity s( f ) is at least Ω(n1/8)3. Similar behavior can be
observed in other complexity measures also. For example, it is easy to see that for a transitive
function the certificate complexity is Ω(

√
n), while the certificate complexity for a general

Boolean function can be as low as O(logn). A naturally related question is:

What is the tight relationship between various pairs of combinatorial measures for transitive
functions?

By definition, the known ‘relationship’ results for general functions hold for transitive
functions. But tighter ‘relationship’ results may be obtained for transitive functions. On
the other hand, the existing ‘separations’ don’t extend easily since the example used to
demonstrate separation between certain pairs of measures may not be transitive. For example,
some of the celebrated function constructions like the pointer function [ABB+17], used
for demonstrating tight separations between various pairs like D( f ) and R0( f ) (Check
Definition 2.3), are not transitive. Similarly, the functions constructed using the cheat sheet

1There are still open problems on the tightness of the constants.
2A variable is effective if the function is dependent on it.
3Note that, [Nis89] showed that bs( f ) = Ω(

√
C( f )), which combined with C( f ) = Ω(

√
n) ( [SYZ04])

implies bs( f ) = Ω(n1/4) for transitive function. It is still an open problem ( [Cha11, Dru11]) that what is the
best possible c > 0 such the sensitivity of a transitive function is Ω(nc)?
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techniques [ABK16] used for separation between quantum query complexity and degree, or
approximate degree are not transitive. Constructing transitive functions that demonstrate
tight separations between various pairs of combinatorial measures is very challenging. In this
thesis, we explore these directions of constructing transitive function that gives separations
that match the known separations of general functions.

Junta-Symmetric functions or partly symmetric functions

A function f : {0,1}n →{0,1} is called a k-junta symmetric function if there exists a set J
of size k of variables such that the function value depends on assignments to the variables
in J as well as on the Hamming weight of the whole input. k-junta symmetric functions
can be seen as a mixture of symmetric functions and k-juntas. This class of functions has
been considered previously in the literature, particularly in [CFGM12, BWY15] where these
functions play a crucial role. [CFGM12] even presents multiple characterisations of k-junta
symmetric functions for constant k.

Note that by definition an arbitrary k-junta (i.e., a function that depends on k variables) is
also a k-junta symmetric function since we can consider the dependence on Hamming weight
to be trivial. Thus, this notion loses out on the symmetry of the function considered. But
there are other ways to define Junta symmetric functions in a bit more restricted which we
call strongly k-junta symmetric functions. A k-junta symmetric function is called strongly
k-junta symmetric if every variable is influential. In other words, there exists a setting for
the junta variables such that the function value depends on the Hamming weight of the
whole input in a non-trivial way. Precisely we can express a k-junta symmetric function on n
bit input x as f (x1, . . . ,xk, |x|) where strongly k-junta function depends nontrivially on the
hamming weights of the input strings |x|. That is, there exist Hamming weights such that
changing them can change the output of the functions. On the other hand, we can take any
k-junta function and it is also a junta symmetric function, |x| being irrelevant.

In terms of composition theorems of d̃eg and R it was proved in [BBGK18a] and
[GJPW18a] that d̃eg and R respectively composes when the outer function is symmetric.
So it is natural to ask can we extend the class for which composition theorem is true? In
particular, can we ask,

Can we prove the composition theorem when the outer function is partly symmetric?

As we have mentioned the main goal of investigating the above-mentioned problems
for some classes of functions gives a better understanding of general classes of functions.
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That is, what are the results or understandings that are needed and have been produced while
exploring the problems for the classes of functions with partial symmetry?

1.2.3 Recursive functions

Here we will define another class of functions that have played an important role from the
dawn of Boolean function literature, which is recursive functions. For any Boolean function
f : {0,1}t →{0,1} we define recursive function f d : {0,1}td →{0,1} by f d = f ◦ f ◦ . . .◦ f︸ ︷︷ ︸

d times

.

Recursive functions are an important class of Boolean functions that are studied in various
different contexts in the analysis of Boolean functions, mainly in proving various lower
bounds [Amb05, Sni85, SW86a, NS94, NW95, BHT17]. For example, the Kushilevitz’s
function [NW95] which is the only known non-trivial example of functions with low degree
and high sensitivity is a recursive function of a carefully chosen base function. Recursive
majority, MAJORITYd

3 , is another recursive function that has been studied extensively in
the literature for its different properties [SW86b, JKS03, Leo13, MNS+16]. Boppana (see,
e.g., [SW86b]) used it to provide the first evidence that the randomized query is more
powerful than the deterministic query [SW86b]. In the same article, they show a similar
separation using recursive AND2 ◦OR2 function too. In a different application of recursive
AND2 ◦OR2, [JRSW99] shows the separation between deterministic tree-size complexity
and the number of monomials in the minimal DNF or CNF.

Note that one of the central motivations of studying composition theorem for various
complexity measures is that: composition has been a very useful tool to prove lower bound
for various problems. Let us take a simple example. It is known that for all Boolean functions
f , sensitivity is less than or equal to the square of the degree of f . Suppose we want to create
a Boolean function that archives the separations between degree and sensitivity. Naturally,
we need a function for which sensitivity is high and degree is low. One standard approach in
this field is to start with a function that works on a small number of bits and has the properties
we want. Then, we repeat or "compose" this function recursively to make a bigger one.
Ideally, the measures we’re interested in, like sensitivity and degree, behave nicely when we
compose functions recursively, and this helps us see a polynomial difference between them.
One classic example of this is Kushilevitz’s function [NS94, Bd02] which demonstrates a
polynomial difference between degree and sensitivity through recursive composition. So, it
is natural to ask,

Does composition theorem hold for the classes of recursive functions?



12 Introduction

1.3 Overview of the Results and Organization

The thesis is divided into two parts where in the first part we have studied Problem 1 and
Problem 2. Precisely in the first part we have studied the relationship between complexity
measures for Transitive functions and lower bounds on complexity measure for some classes
of symmetric functions. In part II we have explored the composition theorem, mainly two
big open problem in this area, randomized query complexity composition and approximate
degree composition lower bounds. Here again we have explored the problem to see the
effects of symmetry on those problems and our result extend the boundary of known results
in this direction.

1.3.1 Part I

Our results on Question 1

We try to answer Question 1 regarding the relationship between various pairs of measures
for the classes of Transitive functions. In particular, our main contribution is to construct
transitive functions that have similar complexity measures as the pointer functions.

Our results and the current known relations between various pairs of complexity measures
of transitive functions are compiled in Table 5.2. This table is along the lines of the table
in [ABK+21b] where the best-known relations between various complexity measures of
general Boolean functions were presented.

Chapter 4

Deterministic query complexity and zero-error randomized query complexity are two of
the most basic measures and yet the tight relation between these measures was not known
until recently. In [Sni85] they showed that for the “balanced NAND-tree” function, ∧̃-tree,
D(∧̃-tree)≥ R0(∧̃-tree)1.33. Although the function ∧̃-tree is transitive, the best known ‘rela-
tionship’ was quadratic, that is for all Boolean function f , D( f ) = O(R0( f )2). In [ABB+17]
a new function, A1, was constructed for which deterministic query complexity and zero-
error randomized query complexity can have a quadratic separation between them, and this
matched the known ‘relationship’ results. The function in [ABB+17] was a variant of the
pointer functions - a class of functions introduced by [GPW18] that has found extensive
usage in showing separations between various complexity measures of Boolean functions.
The function, A1, also gave (the current best known) separations between deterministic query
complexity and other measures like quantum query complexity and degree. But the function
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A1 is not transitive. Using the A1 function we construct a transitive function that demon-
strates a similar gap between deterministic query complexity and zero-error randomized
query complexity, quantum query complexity, and degree.

Theorem 1.4 ([CKP21]). There exists a transitive function F1.4 such that

D(F1.4) = Ω̃(Q(F1.4)
4), D(F1.4) = Ω̃(R0(F1.4)

2), D(F1.4) = Ω̃(deg(F1.4)
2).

In [ABB+17, BHT17] various variants of the pointer function have been used to show
separation between other pairs of measures like R0 with R, QE, deg, and Q, R with d̃eg,
deg, QE and sensitivity. Inspired by these functions we construct transitive versions that
demonstrate similar separation for transitive functions as that of general functions. The
construction of these functions, though more complicated and involved, are similar in flavor
to that of F1.4. The proof of Theorem 1.4 is presented in Section 4.5 of Chapter 4.

Chapter 5

Our proof techniques also help us make transitive versions of other functions like that used
in[ABK16] to demonstrate the gap between Q and certificate complexity. Precisely we prove
the following:

Theorem 1.5 ([CKP21]). There exists a transitive function F1.5 : {0,1}N →{0,1} such that

Q(F1.5) = Ω̃(C(F1.5)
2).

The result is presented in Chapter 5. All our results are compiled (and marked in green)
in Table 5.2.

One would naturally ask what stops us from constructing transitive functions analogous
to the other functions, like cheat sheet-based functions. In fact, one could ask why to use
ad-hoc techniques to construct transitive functions (as we have done in most of our proofs)
and instead, why not design a unifying technique for converting any function into a transitive
function that would display similar properties in terms of combinatorial measures 4. If one
could do so, all the ’separation’ results for general functions (in terms of separation between
pairs of measures) would translate to separation for transitive functions. We have discussed

4In [BCG+20] they have demonstrated a technique that can be used for constructing a transitive partial
function that demonstrates gaps (between certain combinatorial measures) similar to a given partial function
that need not be transitive. But their construction need not construct a total function even when the given
function is total.
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why such a task is challenging. We argue the challenges of making transitive versions of the
cheat sheet functions.

Our results on Question 2

Towards Problem 2 we consider the complexity measure of the non-deterministic degree
(ndeg) of symmetric polynomials and prove a lower bound on the complexity measures for a
special kind of symmetric functions. A non-deterministic polynomial representing a Boolean
function is nonzero iff f (x) = 1. In has been used to characterize non-deterministic version
of quantum algorithms. More related detailed explorations can be found in the work of
[dW00, Mid04].

Chapter 6

While proving the lower bound on ndeg, we have considered a well-studied problem from
discrete geometry known as the ‘Covering problem’. In particular, this problem seeks for
a degree lower bound on a polynomial that vanishes on a subset of {0,1}n and non-zero
everywhere else on the Boolean cube. In this direction our result gives a lower bound when
the polynomial is non-zero on a layer of a Boolean cube, that is when a polynomial is
non-zero on all points {x : |x|= k} (Hamming weight of x is k ) where k ∈ [n]. In particular,
our theorem gives a more generalized result that takes zeros of higher order into account.
Formally, we say that a polynomial P ∈ R[x1, . . . ,xn] has a zero of multiplicity at least t at a
point v ∈ Rn if all derivatives of P up to order t −1 vanish at v and P(v) = 0. In this paper,
we prove the following generalization of Theorem 6.1.

Theorem 1.6 ([GKN23]). Given t ∈ N and k ∈ [n], let P ∈ R[x1, . . . ,xn] be a polynomial
such that at each point u ∈ {0,1}n \{x : |x|= k}, P has a zero of multiplicity at least t and
at each point v ∈ {x : |x|= k}, P has a zero of multiplicity exactly (t −1). Then

deg(P)≥ max{k,n− k}+2t −2.

Putting t = 1 we get a lower bound on ndeg of a symmetric polynomial which does not
vanish on subsets like {x : |x|= k}.

This part is based on:

• Title: Separations between Combinatorial Measures for Transitive Functions
Author: Sourav Chakraborty, Chandrima Kayal, Manaswi Paraashar
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• Part of the following paper:
Almost covering all the layers of the hypercube with multiplicities
Author: Arijit Ghosh, Chandrima Kayal, Soumi Nandi
Published: Discrete Mathematics, volume 346(7), 113397, 2023.
https://doi.org/10.1016/j.disc.2023.113397

1.3.2 Part II

Our results on Question 3

The initial steps taken towards answering the composition question for R were to show
a lower bound by using a weaker measure of outer function than the randomized query
complexity. In particular, it was shown that R( f ◦g) = Ω(s( f ) ·R(g)) [GJPW18a, AKK16],
where s( f ) is the sensitivity of f (Definition 7.10). Since s( f ) = Θ(R( f )) ([BdW02]) for
any symmetric function5 f , these results show that R composes when the outer function
is a symmetric function (like OR, AND, Majority, Parity, etc.). The lower bound was later
improved to obtain R( f ◦ g) = Ω(fbs( f ) ·R(g)) [BDG+20, BDB20a], where fbs( f ) is the
fractional block sensitivity of f (Definition 2.12).

Unfortunately, at this stage, there could even be a cubic gap between R and fbs; the best-
known bound is R( f )=O(fbs( f )3) [ABK+21b]. Given that there are already known Boolean
functions with quadratic gaps between fbs( f ) and R( f ) (e.g., BKK function [ABK16]), it is
natural to consider composition question for randomized query complexity when R is big but
fbs is small. We take a step towards this problem by showing that composition for R holds
when the outer function has full randomized query complexity, i.e., R( f ) = Θ(n), where n is
the arity of the outer function f .

For the composition of d̃eg, Sherstov [She12] already showed that d̃eg( f ◦g) composes
when the approximate degree of the outer function f is Θ(n), where n is the arity of the
outer function. Thus approximate degree composes for several symmetric functions (having
approximate degree Θ(n), like Majority and Parity). Though, until recently it was not
even clear if d̃eg(OR◦AND) = Ω(d̃eg(OR) d̃eg(AND)) (arguably the simplest of composed
functions). OR has approximate degree O(

√
n), and thus the result of [She12] does not prove

d̃eg composition when the outer function is OR (similarly for AND). In a long series of work

5Functions that depend only on the Hamming weight of their input.

https://doi.org/10.4230/LIPIcs.ICALP.2022.36
https://doi.org/10.1016/j.disc.2023.113397


16 Introduction

by [NS94, Amb05, She13a, BT13, She13b], the question was finally resolved; it was later
generalized to the case when the outer function is symmetric [BBGK18a].

In contrast to R composition, no lower bound on the approximate degree of composed
function is known with a weaker measure on the outer function. It is well known that for
any Boolean function f ,

√
s( f )≤

√
bs( f ) = O(d̃eg( f )) [NS94]. So a natural step towards

proving d̃eg composition is: prove a lower bound on d̃eg( f ◦ g) by
√

bs( f ) · d̃eg(g). We
show this result by generalizing the approach of [BBGK18a].

While the techniques used for the composition of R and d̃eg are quite different, one can
still observe similarities between the classes of outer functions for which the composition of
R and d̃eg is known to hold respectively. We further expand these similarities, by extending
the classes of outer functions for which the composition theorem hold.

Chapter 7

Our result related to approximate degree is the following:

Theorem 1.7 ([CKM+23a]). For all non-constant (possibly partial)6 Boolean functions
f : {0,1}n →{0,1} and g : {0,1}m →{0,1}, we have

d̃eg( f ◦g) = Ω̃(
√

bs( f ) · d̃eg(g)).

We also prove that if the outer function is strongly
√

n-junta symmetric (“strongly”
indicating that the dependence on the Hamming weight is non-trivial) then d̃eg composes.

Theorem 1.8 ([CKM+23a]). Let k = O(
√

n). For any strongly k-junta symmetric function
f : {0,1}n →{0,1} and any Boolean function g : {0,1}m →{0,1}, we have

• d̃eg( f ◦g) = Θ̃(d̃eg( f ) · d̃eg(g)).

Chapter 8

In the case of approximate degree composition, while the lower bound is known when
the outer function is symmetric, it doesn’t yield a nice lower bound for functions that are
recursive compositions of symmetric functions on a smaller number of bits. For example,
consider the recursive majority MAJORITYd

3 that we will obtain by composing MAJORITY3

with itself d times. Clearly, this is a repeated composition of symmetric functions. But

6For definitions of block sensitivity and approximate degree in the context of partial functions, please see
Definitions 7.10 and 7.11.
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known results, like that of [BBGK18b], do not give a composition theorem for such functions,
because the logn factor (hiding in the Ω̃ notation) adds up after repeated composition. On the
other hand, the approximate degree of MAJORITYn is full (Θ(n)), but MAJORITYd

3 doesn’t
have full approximate degree, and hence the result of [She12] is not useful in proving the
lower bound in this case. Our result related to recursive functions are the following:

Theorem 1.9 ([CKM+23b]). Let f : {0,1}n →{0,1} and g : {0,1}n →{0,1}. Then

d̃eg( f ◦hd) = Ω̃(d̃eg( f ) d̃eg(hd)),

d̃eg(hd ◦g) = Ω̃(d̃eg(hd) d̃eg(g)),

where h is either MAJORITY3 : {0,1}3 → {0,1} or AND2 ◦OR2 : {0,1}4 → {0,1}}, d ≥
C log logn for a large enough constant C and Ω̃(·) hides polylog(n) factors.

Using the previous theorem we prove a more general result which holds for almost all
the recursive functions:

Theorem 1.10 ([CKM+24]). Let f : {0,1}n → {0,1} and g : {0,1}m → {0,1} be two
Boolean functions and d = Ω(log logn). Then,

d̃eg( f ◦g) = Ω

(
d̃eg( f )d̃eg(g)

polylog(n)

)
,

if either of the following conditions hold:

1. f = hd , for any Boolean function h.

2. g = hd , for any Boolean function h with constant arity and not equal to AND or OR.

In light of the above theorem, understanding the composition of approximate degree
when inner function is OR is the central case for making progress towards the general
composition question.

Chapter 9

We gave the composition theorem for R when the outer function have full symmetry and we
gave the composition theorem for d̃eg in terms of block sensitivity.

Theorem 1.11 ([CKM+23a]). Let f be a partial Boolean function on n-bits such that
R( f ) = Θ(n). Then for all partial functions g, we have

R( f ◦g) = Ω(R( f ) ·R(g)).
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On the other hand, Theorem 1.11 implies that R composes for any strongly k-junta
symmetric functions (as long as n− k = Θ(n)).

Theorem 1.12 ([CKM+23a]). Let n−k = Θ(n). For any strongly k-junta symmetric function
f : {0,1}n →{0,1} and any Boolean function g : {0,1}m →{0,1}, we have

• R( f ◦g) = Θ̃(R( f ) ·R(g)).

Apart from symmetry there are some other results that we proved using the properties of
symmetry that hold for general classes of functions as we have already mentioned. Here is a
table representing our result in the scenario of composition theorem.

In terms of bs( f ) In terms of arity of f

R R( f ◦g) = Ω̃(bs( f ) ·R(g)) R( f ◦g) = Ω̃(R( f ) ·R(g)) when R( f ) = Θ(n)
[GJPW18a] Theorem 1.11

d̃eg d̃eg( f ◦g) = Ω̃(
√

bs( f ) · d̃eg(g)) d̃eg( f ◦g) = Ω̃(d̃eg( f ) · d̃eg(g)) when d̃eg( f ) = Θ(n)
Theorem 1.7 [She12]

Table 1.1 Composition of R and d̃eg depending on the complexity of the outer function in
terms of block-sensitivity and arity.

This part is based on:

• On the Composition of Randomized Query Complexity and Approximate Degree
Author: Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar,
Swagato Sanyal, Nitin Saurabh
Published in RANDOM 2023, volume 275, pages 63:1–63:23, 2023.
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.63

• Approximate degree composition for Recursive functions
Author: Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar and
Nitin Saurabh
Published in RANDOM 2024, volume 317, pages 71:1–71:17, 2024.
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.71

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.63
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.71


Chapter 2

Preliminaries

Here we will start by noting some useful definitions of complexity measures and some well-
known and important classes of Boolean functions that we will be using throughout. We refer
the reader to the survey [BdW02] for an introduction to the complexity of Boolean functions
and complexity measures. Several additional complexity measures and their relations among
each other can also be found in [BHT17] and [ABK+21b]. Similar to the above references,
we define several complexity measures of Boolean functions that are relevant to this thesis.

2.1 Combinatorial Complexity measures of Boolean func-
tions

We refer to [BdW02] and [ABB+17] for a more detailed introduction of the deterministic
query model, randomized query model, and quantum query model for Boolean functions.

Definition 2.1 (Deterministic query complexity). The deterministic query complexity of
f : {0,1}n →{0,1}, denoted by D( f ), is the worst-case cost of the best deterministic query
algorithm computing f .

Definition 2.2 (Randomized query complexity (R)). Let f : {0,1}n → {0,1,∗} be a (pos-
sibly partial) Boolean function. A randomized query algorithm A computes f if ∀x ∈
Dom( f ),Pr[A(x) ̸= f (x)] ≤ 1/3, where the probability is over the internal randomness of
the algorithm. The cost of the algorithm A, cost(A), is the number of queries made in the
worst case over any input as well as internal randomness. The randomized query complexity
of f , denoted by R( f ), is defined as
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R( f ) = min
A computes f

cost(A).

Definition 2.3 (Zero-error randomized query complexity). The zero-error randomized query
complexity of f : {0,1}n →{0,1}, denoted by R0( f ), is the minimum worst-case expected
cost of a randomized query algorithm that computes f to zero-error, that is, on every input x
the algorithm should give the correct answer f (x) with probability 1.

Definition 2.4 (Quantum query complexity). The quantum query complexity of f : {0,1}n →
{0,1}, denoted by Q( f ), is the worst-case cost of the best quantum query algorithm comput-
ing f to error at most 1/3.

Definition 2.5 (Exact quantum query complexity). The exact quantum query complexity
of f : {0,1}n → {0,1}, denoted by QE( f ), is the minimum number of queries made by a
quantum algorithm that outputs f (x) on every input x ∈ {0,1}n with probability 1.

All the complexity measures we have defined above is different variant of query com-
plexity measures that are defined depending upon different available sources. There are some
combinatorial measures that are closely related with the query measures. In this these we
will be closely analyzing such combinatorial measures, which we will define next.

Now, we define the notion of partial assignment that will be used to define several other
complexity measures.

Definition 2.6 (Partial assignment). A partial assignment is a function p : S →{0,1} where
S ⊆ [n] and the size of p is |S|. For x ∈ {0,1}n we say p ⊆ x if x is an extension of p, that is
the restriction of x to S denoted x|S = p.

Definition 2.7 (Certificate complexity). A 1-certificate is a partial assignment that forces the
value of the function to 1 and similarly, a 0-certificate is a partial assignment that forces the
value of the function to 0. The certificate complexity of a function f on x, denoted as C(x, f ),
is the size of the smallest f (x)-certificate that can be extended to x.

Also, define 0-certificate of f as C0( f ) = max{C( f ,x) : x ∈ {0,1}n, f (x) = 0} and 1-
certificate of f as C1( f ) = max{C( f ,x) : x ∈ {0,1}n, f (x) = 1}. Finally, define the certificate
complexity of f : {0,1}n →{0,1}, denoted by C( f ), to be max{C0( f ),C1( f )}.

The complexity measure we are going to define next can be seen as a generalization of
certificate complexity, known as Unambiguous certificate complexity.
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Definition 2.8 (Unambiguous certificate complexity). For any Boolean function f : {0,1}n →
{0,1}, a set of partial assignments U is said to form an unambiguous collection of 0-
certificates for f if

1. Each partial assignment in U is a 0-certificate (with respect to f )

2. For each x ∈ f−1(0), there is some p ∈U with p ⊆ x

3. No two partial assignments in U are consistent.

We then define UC0( f ) to be the minimum value of maxp∈U |p| over all choices of such
collections U. We define UC1( f ) analogously, and set UC( f ) = max{UC0( f ),UC1( f )}. We
also define the one-sided version, UCmin( f ) = min{UC0( f ),UC1( f )}.

Unambiguous certificate complexity is also known as partition complexity [AKK16].

Next we define randomized certificate complexity (see [Aar08]).

Definition 2.9 (Randomized certificate complexity). A randomized verifier for input x is
a randomized algorithm that, on input y in the domain of f accepts with probability 1 if
y = x, and rejects with probability at least 1

2 if f (y) ̸= f (x). If y ̸= x but f (y) = f (x), the
acceptance probability can be arbitrary. The Randomized certificate complexity of f on input
x is denoted by RC( f ,x), is the minimum expected number of queries used by a randomized
verifier for x. The randomized certificate complexity of f , denoted by RC( f ), is defined as
max{RC( f ,x) : x ∈ {0,1}n}.

Here is two very popular combinatorial complexity measure, one is sensitivity which
was first introduced in [CDR86], another is block sensitivity, which were first introduced
in [Nis89]. Block sensitivity can be thought of generalisation of sensitivity. Over the
decades this has been an attraction in theoretical computer science community to understand
the connection between sensitivity and block sensitivity, precisely known as ‘sensitivity
conjecture’.

Definition 2.10 (Sensitivity). The sensitivity of f on an input x is defined as the number of
bits on which the function is sensitive: s( f ,x) = |{i : f (x) ̸= f (xi)}|. We define the sensitivity
of f as s( f ) = max{s( f ,x) : x ∈ {0,1}n}

We also define 0-sensitivity of f as s0( f ) = max{s( f ,x) : x ∈ {0,1}n, f (x) = 0}, and
1-sensitivity of f as s1( f ) = max{s( f ,x) : x ∈ {0,1}n, f (x) = 1}.

Definition 2.11 (Block sensitivity). The block sensitivity bs( f ,x) of a function f : {0,1}n →
{0,1} on an input x is the maximum number of disjoint subsets B1,B2, . . . ,Br of [n] such that
for all j, f (x) ̸= f (xB j), where xB j ∈ {0,1}n is the input obtained by flipping the bits of x in
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the coordinates in B j. The block sensitivity of f , denoted by bs( f ), is max{bs{( f ,x)} : x ∈
{0,1}n}.

Block sensitivity can be thought of as a generalization of sensitivity where in the sensi-
tivity case block size is restricted to be at most 1.

Here we will now define fractional block sensitivity where the blocks are allowed to have
weights.

Definition 2.12 (Fractional Block Sensitivity). Let W ( f ,x) := {B ⊆ [n] : f (xB) ̸= f (x)}
denote the set of all sensitive blocks for the input x ∈ {0,1}n. The fractional block sensitivity
of f at x, denoted by fbs( f ,x) is the value of the linear program:

fbs( f ,x) := max ∑
w∈W ( f ,x)

bw

s.t.
∀i ∈ [n], ∑

w∈W ( f ,x):i∈w
bw ≤ 1

and
∀w ∈W ( f ,x), bw ∈ [0,1].

The fractional block sensitivity of f is defined as:

fbs( f ) := max
x∈{0,1}n

fbs( f ,x).

Note that restricting the linear program for fbs( f ,x) to only integral values gives bs( f ,x).

The fractional measures fbs and RC were introduced in [Tal13]. There it was observed
that for all x ∈ {0,1}n we have : fbs( f ,x) = RC( f ,x) since the linear program for Fractional
Certificate Complexity and Fractional Block Sensitivity are the primal-dual of each other
and are also feasible.

Note that the following inequalities follows from the definitions of the above complexity
measures:

Lemma 2.13. s( f )≤ bs( f )≤ fbs( f ) = RC( f )≤ C( f ) for all Boolean function f .
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Here we are defining Spectral sensitivity from [ABK+21b]. For more details about
Spectral sensitivity and it’s updated relationship with other complexity measures we refer
[ABK+21b].

Definition 2.14 (Spectral sensitivity). Let f : {0,1}n →{0,1} be a Boolean function. The
sensitivity graph of f , G f =(V,E) is a subgraph of the Boolean hypercube, where V = {0,1}n,
and E = {(x,x⊕ ei) ∈ V ×V : i ∈ [n], f (x) ̸= f (x⊕ ei)}, where x⊕ ei ∈ V is obtained by
flipping the ith bit of x. That is, E is the set of edges between neighbors on the hypercube
that have different f -value. Let A f be the adjacency matrix of the graph G f . We define the
spectral sensitivity of f as the largest eigenvalue of A f .

Definition 2.15 (Degree). A polynomial p : Rn → R represents f : {0,1}n → {0,1} if for
all x ∈ {0,1}n, p(x) = f (x). The degree of a Boolean function f , denoted by deg( f ), is the
degree of the unique multilinear polynomial that represents f .

Definition 2.16 (Approximate degree). A polynomial p : Rn → R approximately represents
a function f : {0,1}n → {0,1} if for all x ∈ {0,1}n, |p(x)− f (x)| ≤ 1

3 . The approximate
degree of a Boolean function f , denoted by d̃eg( f ), is the minimum degree of a polynomial
that approximately represents f .

There are several works exploring the understanding between different complexity
measures, one of the most celebrated result is the following:

Theorem 2.17 ([NS94]). bs( f ) = O(d̃eg( f )2) for all Boolean function f .

As a consequence, bs( f ) = O(deg( f )2), since approximate degree is always at most
exact degree.

The following is a known relation between degree and one-sided unambiguous certifi-
cate complexity measure ([BHT17]). Note that we can express the function f in terms of
polynomial by summing up the polynomials corresponding to the minimal unambiguous
certificates.

Observation 2.18 ([BHT17]). For any Boolean function f , UCmin( f )≥ deg( f ).

One often tries to understand how the complexity measure of a composed function
compares with respect to the measures of the individual functions. The following folklore
theorem that we will be using multiple times in our paper. Here the notion of the composition
is the following:

Definition 2.19 (Composition of functions). Let f : {0,1}nk → {0,1} and g : {0,1}m →
{0,1}k be two functions. The composition of f and g, denoted by f ◦g : {0,1}nm →{0,1},
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is defined to be a function on nm bits such that on input x = (x1, . . . ,xn) ∈ {0,1}nm, where
each xi ∈ {0,1}m, f ◦g(x1, . . . ,xn) = f (g(x1), . . . ,g(xn)). We will refer f as outer function
and g as inner function.

Note the above definition of composition is not a standard one.

Theorem 2.20. Let f : {0,1}nk →{0,1} and g : {0,1}m →{0,1}k be two Boolean functions
then

1. D( f ◦g) = Ω(D( f )/k), assuming g is an onto function.

2. Q( f ◦g) = Ω(Q( f )/k), assuming g is onto.

3. R0( f ◦g) = O(R0( f ) ·m) and if g is onto then R0( f ◦g) = O(R0( f )/m)

4. R( f ◦g) = O(R( f ) ·m) and if g is onto then R( f ◦g) = O(R( f )/m).

5. deg( f ◦g) = O(deg( f ) ·m)

6. d̃eg( f ◦g) = O(d̃eg( f ) ·m).

If the inner function g is Boolean valued then we can obtain some tighter results for the
composed functions.

Theorem 2.21. Let f : {0,1}n →{0,1} and g : {0,1}m →{0,1} be two Boolean functions
then

1. ([Tal13, Mon14]) D( f ◦g) = Θ(D( f ) ·D(g)).

2. ([Rei11a, LMR+11, Kim13b]) Q( f ◦g) = Θ(Q( f ) ·Q(g)).

3. (folklore) deg( f ◦g) = Θ(deg( f ) ·deg(g)).

2.2 Some Boolean functions and their properties

In this section we define some standard functions that are either mentioned in the Table 5.2
or used somewhere in the paper. We also state some of their properties that we need for our
proofs. We start by defining some basic Boolean functions.

Definition 2.22. Define PARITY : {0,1}n →{0,1} to be the PARITY(x1, . . . ,xn)=∑ximod 2.
We use the notation ⊕ to denote PARITY.

Definition 2.23. Define AND : {0,1}n →{0,1} to be the AND(x1, . . . ,xn) = 0 if and only if
there exists an i ∈ [n] such that xi = 0. We use the notation ∧ to denote AND.
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Definition 2.24. Define OR : {0,1}n → {0,1} to be the OR(x1, . . . ,xn) = 1 if and only if
there exists an i ∈ [n] such that xi = 1. We use the notation ∨ to denote OR.

Definition 2.25. Define MAJORITY : {0,1}n →{0,1} as MAJORITY(x) = 1 if and only if
|x|> n

2 .

We need the following definition of composing iteratively with itself.

Definition 2.26 (Iterative composition of a function). Let f : {0,1}n → {0,1} a Boolean
function. For d ∈ N we define the function f d : {0,1}nd → {0,1} as follows: if d = 1 then
f d = f , otherwise

f d(x1, . . . ,xnd) = f
(

f d−1(x1, . . . ,xnd−1), . . . , f d−1(xnd−n+1, . . . ,xnd)
)
.

Definition 2.27. For d ∈N define NAND-tree of depth d as NANDd where NAND : {0,1}2 →
{0,1} is defined as: NAND(x1,x2) = 0 if and only if x1 ̸= x2. We use the notation ∧̃-tree to
denote NAND-tree.

The now define a function that gives a quadratic separation between sensitivity and block
sensitivity.

Definition 2.28 (Rubinstein’s function ([Rub95])). Let g : {0,1}k → {0,1} be such that
g(x) = 1 iff x contains two consecutive ones and the rest of the bits are 0. The Rubinstein’s
function, denoted by RUB : {0,1}k2 →{0,1} is defined to be RUB= ORk ◦g.

Theorem 2.29. [Rub95] For the Rubinstein’s function in Definition 2.28 s(RUB) = k and
bs(RUB) = k2/2. Thus RUB witnesses a quadratic gap between sensitivity and block sensi-
tivity.

[NS94] first introduced a function whose deg is significantly smaller than s or bs. This
appears in the footnote in [NW95] that E. Kushilevitz also introduced a similar function with
6 variables which gives slightly better gap between s and deg. Later Ambainis computed QE

of that function and gave a separation between QE and D [Amb16]. This function is fully
sensitive at all zero input, consequently this gives a separation between QE and s.

Definition 2.30 ([NS94]). Define NW as follows:

NW(x1,x2,x3) =

1 iff xi ̸= x j for some i, j ∈ {1,2,3}

0 otherwise.

Now define the d-th iteration NWd on (x1,x2, . . . ,x3d) as Definition 2.26 where d ∈ N.
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Definition 2.31 (Kushilevitz’s function). Define K as follows:

K(x1,x2,x3,x4,x5,x6) = Σxi +Σxiyi + x1x3x4 + x1x4x5 + x1x2x5 + x2x3x4 + x2x3x5 + x1x2x6

+x1x3x6 + x2x4x6 + x3x5x6 + x4x5x6.

Now define the d-th iteration Kd on (x1,x2, . . . ,x6d) as Definition 2.26 where d ∈ N.

Next we will describe two example that was introduced in [GSS16] and gives the
separation between C vs. RC and RC vs. bs respectively . They also have introduces some
new complexity measures for iterative version of a function and how to use them to get the
critical measure between two complexity measures. For more details we refer to [GSS16].

Definition 2.32 ([GSS16]). Let n be an even perfect square, let k = 2
√

n and d =
√

n. Divide
the n indices of the input into n/k disjoint blocks. Define GSS1 : {0,1}n →{0,1} as follows:
GSS1(x) = 1 if and only if |x| ≥ d and all the 1’s in x are in a single group. Define GSSd

1

with GSS1
1 = f .

Definition 2.33 ([GSS16]). Define GSS2 : {0,1}n → {0,1} where n is of the form
(t

2

)
for

some integer t. Identify the input bits of GSS2 with the edges of the complete graph Kt . An
input x ∈ {0,1}n induces a subgraph of Kt consisting of edges assigned 1 by x. The function
GSS2(x) is defined to be 1 iff the subgraph induces by x has a star graph.

Definition 2.34. For Σ = [nk] the function k-sum : Σn →{0,1} is defined as follows: on input
x1,x2, . . . ,xn ∈ Σ, if there exists k element xi1, . . . ,xik , i1, . . . , ik ∈ [n], that sums to 0 (mod |Σ|)
then output 1, otherwise output 0.

Theorem 2.35 ([ABK16, BS13]). For the function k-sum : Σn →{0,1}, if |Σ| ≥ 2
(n

k

)
then

Q(k-sum) = Ω(nk/(k+1)/
√

k).

Next, we define the cheat sheet version of a function from [ABK16].

Definition 2.36. We define cheat sheet version of f as follows: the input to fCS consist of
logn inputs to f , each of size n , followed by n blocks of bits of size C( f )× logn each. Let
us denote the input to fCS as X = (x1,x2, . . . ,xlogn,Y1,Y2, ...,Yn), where xi is an input to f ,
and the Yi are the aforementioned cells of size C( f )× logn. The first part x1,x2, . . . ,xlogn of
the string, we call them as input section and the rest of the part we call as certificate section
of the whole input. Define fCS : {0,1}n×logn+n×(C( f ) logn → {0,1} to be 1 if and only if the
following conditions hold:
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• For all i,xi is in the domain of f . If this condition is satisfied, let l be the positive
integer corresponding to the binary string ( f (x1), f (x2), ..., f (xlogn)).

• Yl certifies that all xi are in the domain of f and that l equals the binary string formed
by their output values, ( f (x1), f (x2), ..., f (xlogn)).

Finally, we present the pointer functions and its variants introduced in [ABB+17]. They
are used for demonstrate separation between several complexity complexity measures like
deterministic query complexity, Randomized query complexity, Quantum query complexity
etc. These functions was originally motivated from [GPW18] function. The functions that
we construct for many of our theorems is a composition function whose outer function is
these pointer function, or a slight variant of these. In the next section we present the formal
definition of pointer functions.

Definition 2.37 (Pointer matrix over Σ). For m,n ∈N, let M be a (m×n) matrix with m rows
and n columns. We refer to each of the m×n entries of M as cells. Each cell of the matrix is
from a alphabet set Σ where Σ = {0,1}× P̃× P̃× P̃ and P̃ = {(i, j)|i ∈ [m], j ∈ [n]}∪{⊥}.
We call P̃ as set of pointers where, pointers of the form {(i, j)|i ∈ [m], j ∈ [n]} pointing
to the cell (i, j) and ⊥ is the null pointer. Hence,each entry x(i, j) of the matrix M is a
4-tuple from Σ. The elements of the 4-tuple we refer as value, left pointer, right pointer and
back pointer respectively and denote by Value(x(i, j)), LPointer(x(i, j)), RPointer(x(i, j)) and
BPointer(x(i, j)) respectively where Value ∈ {0,1}, LPointer,RPointer,BPointer ∈ P̃. We call
this type of matrix as pointer matrix and denote by Σn×n.

A special case of the pointer-matrix, which we call Type1 pointer matrix over Σ, is when
for each cell of M, BPointer ∈ {[n]∪ ⊥} that is backpointers are pointing to the columns of
the matrix.

Also, in general when, BPointer ∈ {(i, j)|i ∈ [m], j ∈ [n]} ∪ {⊥}, we call it a Type2

pointer matrix over Σ.

Now we will define some additional properties of the domain that we need to define
[ABB+17] function.

Definition 2.38 (Pointer matrix with marked column). Let M be an m× n pointer-matrix
over Σ. A column j ∈ [n] of M is defined to be a marked column if there exists exactly one
cell (i, j), i ∈ [m], in that column with entry x(i, j) such that x(i, j) ̸= (1,⊥,⊥,⊥) and every
other cl in that column is of the form (1,⊥,⊥,⊥). The cl (i, j) is defined to be the special
element of the marked column j.



28 Preliminaries

Let n be a power of 2. Let T be a rooted, directed and balanced binary tree with n-leaves
and (n−1) internal vertices. We will use the following notations that will be used in defining
some functions formally.

Notation 2.39. Let n be a power of 2. Let T be a rooted, directed and balanced binary tree
with n-leaves and (n−1) internal vertices. Labels the edges of T as follows: the outgoing
edges from each node are labeled by either le f t or right. The leaves of the tree are labeled
by the elements of [n] from left to right, with each label used exactly once. For each leaf
j ∈ [n] of the tree, the path from the root to the leaf j defines a sequence of le f t and right of
length O(logn), which we denote by T ( j).

When n is not a power of 2, choose the largest k ∈ N such that 2k ≤ n, consider a
complete balanced tree with 2k leaves and add a pair of child node to to each n−2k leaves
starting from left. Define T ( j) as before.

More details about partial assignment and certificates can be found in Definition 2.7.
Now we are ready to describe the Variant 1 of [ABB+17] function.

Definition 2.40 (Variant 1 [ABB+17]). Let Σm×n be a Type1 pointer matrix where BPointer
is a pointer of the form { j| j ∈ [n]} that points to other column and LPointer, RPointer are
as usual points to other cell. Define A1(m,n) : Σm×n →{0,1} on a Type1 pointer matrix such
that for all x = (xi, j) ∈ Σm×n, the function A1(m,n)(xi, j) evaluates to 1 if and only if it has a
1- cell certificate of the following form:

1. there exists exactly one marked column j⋆ in M,

2. There is a special cell, say (i⋆, j⋆) which we call the special element in the the marked
column j⋆ and there is a balanced binary tree T rooted at the special cell,

3. for each non-marked column j ∈ [n]\{ j⋆} there exist a cell l j such that Value(l j) = 0
and BPointer(l j) = j⋆ where l j is the end of the path that starts at the special element
and follows the pointers LPointer and RPointer as specified by the sequence T ( j). l j

exists for all j ∈ [n]\{ j⋆} i.e. no pointer on the path is ⊥. We refer l j as the leaves of
the tree.

The above function achieves the separation between D vs. R0 and D vs. Q for m = 2n.

There are other variants of Pointer functions which were used to give optimal separations
between various complexity measures [ABB+17]. A more details can be found in Chapter 4.
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Chapter 3

Classes of Boolean functions with
Symmetry

3.1 Symmetric Boolean Function

Definition 3.1 (Symmetric Boolean function). Any Boolean function f : {0,1}n → {0,1}
whose output value is invariant under all possible permutations on the input string is a
Symmetric Boolean function.

Examples of Symmetric Functions and their complexity measures:

Symmetric function Hamming weight for (1-input)
AND : {0,1}n →{0,1} |x|= n
OR : {0,1}n →{0,1} |x| ≥ 1
XOR : {0,1}n →{0,1} |x| is even

MAJORITY : {0,1}n →{0,1} |x|> n
2

k-Threshold function |x| ≥ k

Table 3.1 Examples of Symmetric functions

Note 3.2. Symmetric Boolean function can be defined in terms of Hamming weight of the
input string. So, an alternative definition of a symmetric Boolean function is the following:

A function that depends only on the Hamming weight of the input is a Symmetric Boolean
function.
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3.2 Properties of Symmetric Boolean functions

Since symmetric Boolean function can be visualize as a function f : {0,1, . . . ,n}→ {0,1}
on {0,1, . . . ,n} there are comparatively easy to study compared to general Boolean functions.
Here we are presenting some of the important properties of Symmetric Boolean functions.

Proposition 3.3. If f is non-constant and symmetric Boolean function,then s( f )≥ ⌈n+1
2 ⌉.

Proof. Let f : {0,1}n −→ {0,1} be a non-constant symmetric Boolean function. Since
f depends only on the weight of the inputs, let f (x) = 1 if wt(x) = k and f (x) = 0 if
wt(x) = (k−1). Then for inputs with wt(x) = k, s( f ,x)≥ k and for inputs with wt(x) = k−1,
s( f ,x)≥ (n− (k−1)). So, s( f )≥ max{k,(n− (k−1))}= ⌈n+1

2 ⌉.

Note 3.4. This proposition is tight as sensitivity of ⌊n
2⌋-Threshold function is ⌈n+1

2 ⌉

Some well-known symmetric functions and their complexity measures:

Example of functions D R d̃eg Q

AND N N
√

N
√

N
OR N N

√
N

√
N

MAJORITY N N N N
PARITY N N N N

Table 3.2 Example of complexity measures for some well-known Symmetric functions

Observation 3.5. From Proposition 3.3 it follows that for non-constant symmetric Boolean
Function s( f ) = Θ(n). Consequently, bs( f ) = Θ(n) and C( f ) = Θ(n). These bounds are
tight because there exists a non-constant symmetric Boolean function reaching these bounds.

Since the Symmetric function can be viewed as real values polynomial with domain
points being integer in [n] there are various exploration in terms of degree and representation
of symmetric Boolean functions. Like other complexity measures degree of a Symmetric
function is also high.

Proposition 3.6. If f is a non-constant symmetric Boolean function deg( f )≥ (n
2).

Proof. If f is a non-constant Boolean function then either f or ¬ f have at least Ω(n) number
of roots in [n]. Since the degree of f and ¬ f is same, it follows that deg( f )≥ n

2 .

Precisely, [vZGR97] proved the following:
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Complexity Measure Upper Bound Lower Bound
D N N

PARITY PARITY
R0 N N

PARITY PARITY
R N N

PARITY PARITY
C N N

PARITY PARITY
RC N N

PARITY PARITY
bs N N

PARITY PARITY
s N N

PARITY PARITY

λ N
√

N
PARITY AND

QE N N
PARITY PARITY

deg N N
PARITY PARITY

Q N
√

N
PARITY AND

d̃eg N
√

N
PARITY AND

Table 3.3 Upper and Lower bound on Complexity measures for Symmetric functions

Theorem 3.7 ([vZGR97]). If f is non-constant symmetric Boolean function then deg( f ) =
n−O(n0.548). If n+1 is a prime, then deg( f ) = n.

Conjecture 3.8 ([vZGR97]). Gathen and Roche conjecture that deg( f ) = n−O(1) for all
non-constant symmetric Boolean function.

The best-known result so far is that deg( f ) = n−
√

n.

For the approximate degree of Boolean function there is a fundamental result in this area
by [Pat92] is the following:

Theorem 3.9 ([Pat92]). For any non-constant Symmetric Boolean function, d̃eg( f ) =
Θ(

√
nk) where n is the arity of the Boolean function f and k ≤ n

2 (otherwise let k be



34 Classes of Boolean functions with Symmetry

defined to be n− k) be the closest integer to n
2 such that f gives different output value on the

string of Hamming weight k and k+1.

Note that the above result is tight and completely characterizes the approximate degree
for the classes of Symmetric functions.

Note that since approximate degree gives a lower bound on quantum query complexity
of a Boolean function, we have the following lower bound for symmetric functions:

Corollary 3.10. For any non-constant Symmetric Boolean function f on n bits, Q( f ) =
Ω(

√
N) where n is the arity of the Boolean function f and k ≤ n

2 (otherwise let k be defined
to be n−k) be the closest integer to n

2 such that f gives different output value on the string of
Hamming weight k and k+1.

We also have a matching upper bound for quantum query complexity of symmetric
Boolean function by [dW08].

From the above corollary we have the following ‘relation’ between the degree and
quantum query complexity of Boolean functions:

Theorem 3.11. For non-constant Symmetric Boolean function Q( f )≥ (deg( f ))2.

3.3 Separations between Complexity Measures for Sym-
metric Boolean Function
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Table 3.4 best-known separations between combinatorial measures for Symmetric Boolean functions.

× D R0 R C RC bs s λ QE deg Q d̃eg

D
× 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 2 : 2 1 : 1 1 : 1 2 : 2 2, 2

AND AND AND AND AND AND AND AND AND AND AND

R0
1 : 1 × 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 2 : 2 1 : 1 1 : 1 2 : 2 2 : 2
AND AND AND AND AND AND AND AND AND AND AND

R
1 : 1 1 : 1 × 1 : 1 1 : 1 1 : 1 1 : 1 2 : 2 1 : 1 1 : 1 2 : 2 2 : 2
AND AND AND AND AND AND AND AND AND AND

C
1 : 1 1 : 1 1 : 1 × 1 : 1 1 : 1 1 : 1 2 : 2 1 : 1 1 : 1 2 : 2 2, 2
AND AND AND AND AND AND AND AND AND AND AND

RC
1 : 1 1 : 1 1 : 1 1 : 1 × 1 : 1 1 : 1 2, 2 1 : 1 1 : 1 2, 2 2, 2
AND AND AND AND AND AND AND AND AND AND AND

bs
1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 × 1 : 1 2, 2 1 : 1 1 : 1 2, 2 2, 2
AND AND AND AND AND AND AND AND AND AND AND

s
1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 × 2, 2 1 : 1 1 : 1 2, 2 2, 2
AND AND AND AND AND AND AND AND AND AND AND

λ
1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1, 1 × 1, 1 1, 1 1, 1 2, 2
AND AND AND AND AND AND AND AND AND AND AND

QE
1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 × 1 : 1 2, 2 2 : 2
AND AND AND AND AND AND AND AND AND AND AND

deg
1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 × 2, 2 2, 2
AND AND AND AND AND AND AND AND AND AND AND

Q
1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1, 1 1 : 1 × 2 : 2
AND AND AND AND AND AND AND AND AND AND AND

d̃eg
1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1 : 1 1, 1 1, 1 1, 1 ×
AND AND AND AND AND AND AND AND AND AND AND

(1 Entry a;b in row A and column B represents: for any transitive function f , A( f ) = O(B( f ))b+o(1), and there exists a
Symmetric Boolean function g such that A(g) = Ω(B(g))a.
Entry a;b in row A and column B represents: for any transitive function f , A( f ) = O(B( f ))b+o(1), and there exists a
transitive function g such that A(g) = Ω(B(g))a.





Chapter 4

Separation results via Transitive Pointer
function

4.1 Introduction

For a Boolean function f : {0,1}n → {0,1} what is the relationship between its various
combinatorial measures, like deterministic query complexity (D( f )), bounded-error ran-
domized and quantum query complexity (R( f ) and Q( f ) respectively), zero -randomized
query complexity (R0( f )), exact quantum query complexity (QE( f )), sensitivity (s( f )), block
sensitivity (bs( f )), certificate complexity (C( f )), randomized certificate complexity (RC( f )),
unambiguous certificate complexity (UC( f )), degree (deg( f )), approximate degree (d̃eg( f ))
and spectral sensitivity (λ ( f ))1? For over three decades, understanding the relationships
between these measures has been an active area of research in computational complexity
theory. These combinatorial measures have applications in many other areas of theoretical
computer science, and thus the above question takes a central position.

In the last couple of years, some of the more celebrated conjectures have been answered -
like the quadratic relation between sensitivity and degree of Boolean functions [Hua19]. We
refer the reader to the survey [BdW02] for an introduction to this area.

Understanding the relationship between various combinatorial measures involves two
parts:

• Relationships - proving that one measure is upper bounded by a function of another
measure. For example, for any Boolean function f , deg( f )≤ s( f )2 and D( f )≤ R( f )2.

1We provide formal definitions of the measures used in this Chapter in Section 2.1.
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• Separations - constructing functions that demonstrates separation between two mea-
sures. For example, there exists a Boolean function f with deg( f )≥ s( f )2. Also there
exists another Boolean function g with D(g)≥ R(g)2.

Obtaining tight bounds between pairs of combinatorial measures - that is, when the relation-
ship and the separation results match - is the holy grail of this area of research. The current
best known results for different pairs of functions have been nicely compiled in [ABK+21b].

For special classes of Booleans functions the relationships and the separation results
might be different than that of general Boolean functions. For example, while it is known that
there exists f such that bs( f ) = Θ(s( f )2) [Rub95], for a symmetric function a more tighter
result is known, bs( f ) = Θ(s( f )). The best known ’relationship’ of bs( f ) for a general
Boolean functions is s( f )4 [Hua19]. How the various measures behave for different classes
of functions has been studied since the dawn of this area of research.

Transitive Functions: One of the most well-studied classes of Boolean functions is that of
the transitive functions. A function f : {0,1}n → {0,1} is transitive if there is a transitive
group G ≤ Sn such that the function value remains unchanged even after the indices of the
input is acted upon by a permutation from G. Note that, when G = Sn then the function
is symmetric. Transitive functions (also called “weakly symmetric” functions) has been
studied extensively in the context of various complexity measure. This is because symmetry
is a natural measure of the complexity of a Boolean function. It is expected that functions
with more symmetry must have less variation among the various combinatorial measures. A
recent work [BCG+20] has studied the functions under various types of symmetry in terms
of quantum speedup. So, studying functions in terms of symmetry is important in various
aspects.

For example, for symmetric functions, where the transitive group is Sn, most of the
combinatorial measures become the same up to a constant 2. Another example of transitive
functions is the graph properties. The input is the adjacency matrix, and the transitive group
is the graph isomorphism group acting on the bits of the adjacency matrix. [Tur84, Sun11,
LS17, GMSZ13] tried to obtain tight bounds on the relationship between sensitivity and
block sensitivity for graph properties. They also tried to answer how low can sensitivity and
block sensitivity go for graph properties?

In papers like [SYZ04, Cha11, Sun07, Dru11] it has been studied how low can the
combinatorial measures go for transitive functions. The behavior of transitive functions can

2There are still open problems on the tightness of the constants.
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be very different from general Boolean functions. For example, while it is known that there
are Boolean functions for which the sensitivity is as low as Θ(logn) where n is the number of
effective variables3, it is known (from [Sun07] and [Hua19]) that if f is a transitive function
on n effective variables then its sensitivity s( f ) is at least Ω(n1/12)4. Similar behavior can be
observed in other measures too. For example, it is easy to see that for a transitive function
the certificate complexity is Ω(

√
n), while the certificate complexity for a general Boolean

function can be as low as O(logn). In Table 5.1 we summarize the best-known separations
of the combinatorial measures for transitive functions. A natural related question is:

What is the tight relationship between various pairs of combinatorial measures for transitive
functions?

By definition, the known ‘relationship’ results for general functions hold for transitive
functions. But tighter ‘relationship’ results may be obtained for transitive functions. On
the other hand, the existing ‘separations’ doesn’t extend easily since the example used to
demonstrate separation between certain pairs of measures may not be transitive. Some
of the most celebrated examples are not transitive. For example some of the celebrated
function construction like the pointer function [ABB+17], used for demonstrating tight
separations between various pairs like D( f ) and R0( f ), are not transitive. Similarly, the
functions constructed using the cheat sheet techniques [ABK16] used for separation between
quantum query complexity and degree, or approximate degree are not transitive. Constructing
transitive functions that demonstrate tight separations between various pairs of combinatorial
measures is very challenging.

4.2 Our Results

We try to answer the above question for various pairs of measures. More precisely, our main
contribution is to construct transitive functions that have similar complexity measures as the
pointer functions. Hence for those pairs of measures where pointer functions can demonstrate
separation for general functions, we prove that similar separation can also be demonstrated
by transitive functions.

Our results and the current known relations between various pairs of complexity measures
of transitive functions are compiled in Table 5.2. This table is along the lines of the table

3A variable is effective if the function is dependent on it.
4It is conjectured that the sensitivity of a transitive function is Ω(n1/3).
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in [ABK+21b] where the best-known relations between various complexity measures of
genral Boolean functions were presented.

Deterministic query complexity and zero-error randomized query complexity are two
of the most basic measures and yet the tight relation between these measures was not
known until recently. In [Sni85] they showed that for the “balanced NAND-tree” function,
∧̃-tree, D(∧̃-tree) ≥ R0(∧̃-tree)1.33. Although the function ∧̃-tree is transitive, the best
known ’relationship’ was quadratic, that is for all Boolean function f , D( f ) = O(R0( f )2).
In [ABB+17] a new function, A1, was constructed for which deterministic query complexity
and zero-error randomized query complexity can have a quadratic separation between them,
and this matched the known ’relationship’ results. The function in [ABB+17] was a variant of
the pointer functions - a class of functions introduced by [GPW18] that has found extensive
usage in showing separations between various complexity measures of Boolean functions.
The function, A1, also gave (the current best known) separations between deterministic
query complexity and other measures like quantum query complexity and degree. But
the function A1 is not transitive. Using the A1 function we construct a transitive function
that demonstrates a similar gap between deterministic query complexity and zero-error
randomized query complexity, quantum query complexity, and degree.

Theorem 4.1 (Restatement of Theorem 1.4). There exists a transitive function F1.4 such that

D(F1.4) = Ω̃(Q(F1.4)
4), D(F1.4) = Ω̃(R0(F1.4)

2), D(F1.4) = Ω̃(deg(F1.4)
2).

[ABB+17] considered two more variants of the pointer function. The first of these
variants gives separation between zero-error randomized query complexity and other mea-
sures like one-sided randomized query complexity, exact quantum query complexity and
degree. The second variant gives separation between randomized query complexity and other
measures like approximate degree and degree. Once again both these functions were not
transitive. Inspired from these function we construct transitive versions that demonstrate
similar separation for transitive functions as that of general functions. The construction of
these functions, though more complicated and involved, are similar in flavor to that of F1.4.

Consequently, we have the following theorems

Theorem 4.2. There exists a transitive function F4.2 such that

R0(F4.2) = Ω̃(R(F4.2)
2), R0(F4.2) = Ω̃(QE(F4.2)

2), R0(F4.2) = Ω̃(deg(F4.2)
2).
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Theorem 4.3. There exists a transitive function F4.3 such that

R(F4.3) = Ω̃(d̃eg(F4.3)
4), R(F4.3) = Ω̃(deg(F4.3)

2).

Theorem 4.4. There exists a transitive function F4.4 such that R0(F4.4) = Ω̃(Q(F4.4)
3).

Theorem 4.5. There exists a transitive function F4.5 such that R(F4.5) = Ω̃(QE(F4.5)
1.5).

4.2.1 Notations and basic definitions

We use [n] to denote the set {1, . . . ,n}. {0,1}n denotes the set of all n-bit binary strings. For
any X ∈ {0,1}n the Hamming Weight of X (denoted |X |) will refer to the number of 1 in X .
0n and 1n denotes all 0’s string of n-bit and all 1’s string of n-bit, respectively.

We denote by Sn the set of all permutations on [n]. Given an element σ ∈ Sn and a n-bit
string x1, . . . ,xn ∈ {0,1}n we denote by σ [x1, . . . ,xn] the string obtained by permuting the
indices according to σ . That is σ [x1, . . . ,xn] = x

σ (1), . . . ,xσ (n). This is also called the action
of σ on the x1, . . . ,xn.

Following are a couple of interesting elements of Sn that will be used in this paper.

Definition 4.6. For any n= 2k the flip swaps (2i−1) and 2i for all 1≤ i≤ k. The permutation
Swap 1

2
swaps i with (k+ i), for all 1 ≤ i ≤ k. That is,

flip= (1,2)(3,4) . . .(n−1,n) & Swap 1
2
[x1, . . . ,x2k] = xk+1, . . . ,x2k,x1 . . . ,xk.

Every integer ℓ ∈ [n] has the canonical logn bit string representation. However the
number of 1’s and 0’s in such a representation is not same for all ℓ ∈ [n]. The following
representation of ℓ ∈ [n] ensures that for all ℓ ∈ [n] the encoding has same Hamming weight.

Definition 4.7 (Balanced binary representation). For any ℓ ∈ [n], let ℓ1, . . . , ℓlogn be the
binary representation of the number ℓ where ℓi ∈ {0,1} for all i. Replacing 1 by 10 and 0 by
01 in the binary representation of ℓ, we get a 2logn-bit unique representation, which we call
Balanced binary representation of ℓ and denote as bb(ℓ).

In this paper all the functions considered are of form F : {0,1}n →{0,1}k. By Boolean
functions we would mean a Boolean valued function that is of the form f : {0,1}n →{0,1}.
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An input to a function F : {0,1}n → {0,1}k is a n-bit string but also the input can be
thought of as different objects. For example, if the n = NM then the input may be thought of
as a (N ×M)-matrix with Boolean values. It may also be thought of as a (M×N)-matrix.

If Σ = {0,1}k then Σ(n×m) denotes an (n×m)-matrix with an element of Σ (that is, a
k-bit string) stored in each cell of the matrix. Note that Σ(n×m) is actually {0,1}mnk. Thus, a
function F : Σ(n×m) →{0,1} is actually a Boolean function from a {0,1}nmk to {0,1}, where
we think of the input as an (n×m)-matrix over the alphabet Σ.

One particular nomenclature that we use in this paper is that of 1-cell certificate.

Definition 4.8 (1-cell certificate). Given a function f : Σ(n×m) →{0,1} (where Σ = {0,1}k)
the 1-cell certificate is a partial assignment to the cells which forces the value of the function
to 1. So a 1-cell certificate is of the form (Σ∪{∗})(n×m). Note that here we assume that the
contents in any cell is either empty or a proper element of Σ (and not a partial k-bit string).

Another notation that is often used is the following:

Notation 4.9. If A ≤ Sn and B ≤ Sm are groups on [n] and [m] then the group A×B act on
the cells on the matrix. Thus for any (σ ,σ ′) ∈ A×B and a M ∈ Σ(n×m) by (σ ,σ ′)[M] we
would mean the permutation on the cell of M according to (σ ,σ ′) and move the contains in
the cells accordingly. Note that the relative position of bits within the contents in each cell is
not touched.

Finally the following observation proves that composition of transitive functions is also
a transitive function.

Observation 4.10. Let f : {0,1}n →{0,1} and g : {0,1}m →{0,1} be transitive functions.
Then f ◦g : {0,1}nm →{0,1} is also transitive.

Proof. Let Tf ⊆ Sn and Tg ⊆ Sm be the transitive groups corresponding to f and g, respec-
tively. On input x = (X1, . . . ,Xn), Xi ∈ {0,1}m for i ∈ [n], the function f ◦g is invariant under
the action of the group Tf ≀Tg - the wreath product of the Tf with Tg. The group Tf ≀Tg acts
on the input string through the following permutations:

1. any permutation π ∈ Tf acting on indices {1, . . . ,n} or

2. any permutations (σ1, . . . ,σn) ∈ (Tg)
n acting on X1, . . . ,Xn i.e. (σ1, . . . ,σn) sends

X1, . . . ,Xn to σ1(X1), . . . ,σn(Xn).
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Over the years a number of interesting Boolean functions has been constructed to
demonstrate differences between various measures of Boolean functions. Some of the
functions have been referred to in the Table 5.2. We have described various important
Boolean functions in the Preliminaries 2.2.

4.2.2 Transitive Groups and Transitive Functions

Example The central objects in this paper are transitive Boolean functions. We first define
transitive groups.

Definition 4.11. A group G ≤ Sn is transitive if for all i, j ∈ [n] there exists a σ ∈ G such
that σ(i) = j.

Definition 4.12. For f : An →{0,1} and G ≤ Sn we say f is invariant under the action of G,
if for all α1, . . . ,αn ∈ A.

f (α1, . . . ,αn) = f (ασ(1), . . . ,ασ(n)).

Observation 4.13. If A ≤ Sn and B ≤ Sm are transitive groups on [n] and [m] then the group
A×B is a transitive group acting on the cells on the matrix.

There are many interesting transitive groups. The symmetric group is indeed transitive.
The graph isomorphism group (that acts on the adjacency matrix - minus the diagonal - of a
graph by changing the ordering on the vertices) is transitive. The cyclic permutation over all
the points in the set is a transitive group. The following is another non-trivial transitive group
on [k] that we will use extensively in this paper.

Definition 4.14. For any k that is a power of 2, the Binary-tree-transitive group Btk is a
subgroup of Sk. To describe its generating set we think of group Btk acting on the elements
{1, . . . ,k} and the elements are placed in the leaves of a balanced binary tree of depth logk -
one element in each leaf. Each internal node (including the root) corresponds to an element
in the generating set of Btk. The element corresponding to an internal node in the binary
tree swaps the left and right sub-tree of the node. The permutation element corresponding to
the root node is called the Root-swap as it swaps the left and right sub-tree to the root of the
binary tree.

Claim 4.15. The group Btk is a transitive group.

Proof. For any i, j ∈ [k], we have to show that there exists a permutation π ∈ Btk such that
π(i) = j. Let us form a complete binary tree of height logk in the following way:
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• (Base case:) Start from root node, label the left and right child as 0 and 1 respectively.

• For every node x, label the left and right child as x0 and x1 respectively.

Note that our complete binary tree has k leaves, where each of the leaf is labeled by a binary
string of the form x1x2 . . .xlogk, which is the binary representation of numbers in [k]. Similarly
any node in the tree can be labeled by a binary string x1x2 . . .xt , where 0 ≤ t ≤ logk and t is
the distance of the node from the root.

Now for any i, j ∈ [k], let the binary representation of i be (x1x2 . . .xlogk) and that of j be
(y1y2 . . .ylogk). Now we will construct the permutation π ∈ Btk such that π(i) = j. Without
loss of generality, we can assume i ̸= j.

Find the least positive integer ℓ ∈ [logk] such that xℓ ̸= yℓ, then go to the node labeled
x1x2 . . .xℓ−1 and swap it’s left and right child. Let πx1...xℓ−1 ∈ Sk be the corresponding
permutation of the leaves of the tree, in other words on the set [k]. Note that, by definition,
the permutation πx1...xℓ−1 ∈ Sk is in Btk. Also note that the permutation πx1...xℓ−1 acts of the
set [k] as follows:

• πx1...xℓ−1(z1 . . .zlogk) = z1 . . .zlogk if z1 . . .zℓ−1 ̸= x1 . . .xℓ−1

• πx1...xℓ−1(x1 . . .xℓ−10zℓ+1 . . .zlogk) = (x1 . . .xℓ−11zℓ+1 . . .zlogk)

• πx1...xℓ−1(x1 . . .xℓ−11zℓ+1 . . .zlogk) = (x1 . . .xℓ−10zℓ+1 . . .zlogk)

Since i = x1 . . .xℓ−1xℓ . . .xlogk and j = y1 . . .yℓ−1yℓ . . .ylogk with x1 . . .xℓ−1 = y1 . . .yℓ−1

and xℓ ̸= yℓ, so
πx1...xℓ−1(i) = y1 . . .yℓ−1yℓxℓ+1 . . .ylogk

So the binary representation of πx1...xℓ−1(i) and j matching in the first ℓ positions which
is one more that the number of positions where the binary representation of i and j matched.
By doing this trick repeatedly, that is by applying different permutations from Btk one after
another we can map i to j.

The following claim describes how the group Btk acts on various encoding of integers.
Recall the balance-binary representation (Definition 4.7).

Claim 4.16. For all γ̂ ∈ Bt2logn there is a γ ∈ Sn such that for all i, j ∈ [n], γ̂[bb(i)] = bb( j)
iff γ(i) = j.

Proof. Recall the group Bt2logn: assuming that the elements of [2logn] are placed on
the leaves of the binary tree of depth log(2logn), the group Bt2logn is generated by the
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permutations of the form “pick a node in the binary tree of and swap the left and right
sub-tree of the node”. So it is enough to prove that for any elementary permutation γ̂ of the
form “pick a node in the binary tree and swap the left and right sub-tree of the node” there is
a γ ∈ Sn such that for all i, j ∈ [n], γ̂[bb(i)] = bb( j) iff γ(i) = j.

Any node in the binary tree of depth log(2logn) can be labeled by a 0/1-string of length
t, where 0 ≤ t ≤ log(2logn) is the distance of the node from the root. We split the proof of
the claim into two cases depending on the value of the t - the distance from the root.

If t = log(2logn): This is the case when the node is at the last level - just above the leaf
level. Let the node be u and let s be the number of whose binary representation is the label of
the node u. Let the numbers in the leaves of the tree corresponds to the bb(i) - the balanced
binary representation of i ∈ [n]. Note that because of the balanced binary representation the
children of u are

• 0 (left-child) and 1 (right-child) if the s-th bit in the binary representation of i is 0

• 1 (left-child) and 0 (right-child) if the s-th bit in the binary representation of i is 1

So the permutation (corresponding to swapping the left and right sub-trees of u) only change
the order of 0 and 1 - which corresponds to flipping the s-th bit of the binary representation
of i. And so in this case the γ acting on the set [n] is just collection transpositions swapping i
and j iff the the binary representation of i and j are same except for the s-th bit.

So in this case for all i, j ∈ [n], γ̂[bb(i)] = bb( j) iff γ(i) = j.

If t < log(2logn): Let the node be v. Note that in this case since the node keeps the order
of the 2r−1 and 2r bits unchanged (for any 1 ≤ r ≤ logn), so it is enough we can visualise
the action by an action of swapping the left and right sub-trees of the node v on the binary
representation of i (instead of the balance binary representation of i). And so we can see
that the action of the permutation (corresponding to swapping the left and right sub-trees
of v) automatically gives a permutation of the binary representations of numbers between
1 and n, as was discussed in the proof of Claim 4.15. And hence we have for all i, j ∈ [n],
γ̂[bb(i)] = bb( j) iff γ(i) = j.

Now let us consider another encoding that we will using for the set of rows and columns
of a matrix.
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Definition 4.17. Given a set R of n rows r1, . . . ,rn and a set C of n columns c1, . . . ,cn we
define the balanced-pointer-encoding function E : (R×{0})∪ ({0}×C)→{0,1}4logn, as
follows:

E (ri,0) = bb(i) ·02logn, and, E (0,c j) = 02logn ·bb( j).

The following is a claim is easy to verify.

Claim 4.18. Let R be a set of n rows r1, . . . ,rn and C be a set of n columns c1, . . . ,cn and
consider the balanced-pointer-encoding function E : (R×{0})∪ ({0}×C)→ {0,1}4logn.
For any elementary permutation σ̂ in Bt4logn (other than the Root-swap) there is a σ ∈ Sn

such that for any (ri,c j) ∈ (R×{0})∪ ({0}×C)

σ̂ [E (ri,c j)] = E (rσ(i),cσ( j)),

where we assume r0 = c0 = 0 and any permutation of in Sn sends 0 to 0.

If σ̂ is the root-swap then for any (ri,c j) ∈ (R×{0})∪ ({0}×C)

σ̂ [E (ri,c j)] = Swap 1
2
(E (ri,c j)) = E (c j,ri).

4.3 Pointer functions and their properties

For the sake of completeness first we will describe the function introduced in [ABB+17]
that achieves separation between several complexity complexity measures like Deterministic
query complexity, Randomized query complexity, Quantum query complexity etc. This
function was originally motivated from [GPW18] function. There are three three variants
of [ABB+17] function that have some special kind of non-Boolean domain, which we call
Pointer matrix. Our function is a special “encoding” of that non-Boolean domain such that
the resulting function becomes transitive and achieves the separation between complexity
measures that matches the known separation between the general functions. Here we will
define only the first variant of [ABB+17] function. Rest of the variants are defined in
Section 4.3.1 of Chapter 2.

Definition 4.19 (Pointer matrix over Σ). For m,n ∈N, let M be a (m×n) matrix with m rows
and n columns. We refer to each of the m×n entries of M as cells. Each cell of the matrix is
from a alphabet set Σ where Σ = {0,1}× P̃× P̃× P̃ and P̃ = {(i, j)|i ∈ [m], j ∈ [n]}∪{⊥}.
We call P̃ as set of pointers where, pointers of the form {(i, j)|i ∈ [m], j ∈ [n]} pointing
to the cell (i, j) and ⊥ is the null pointer. Hence,each entry x(i, j) of the matrix M is a
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4-tuple from Σ. The elements of the 4-tuple we refer as value, left pointer, right pointer and
back pointer respectively and denote by Value(x(i, j)), LPointer(x(i, j)), RPointer(x(i, j)) and
BPointer(x(i, j)) respectively where Value ∈ {0,1}, LPointer,RPointer,BPointer ∈ P̃. We call
this type of matrix as pointer matrix and denote by Σn×n.

A special case of the pointer-matrix, which we call Type1 pointer matrix over Σ, is when
for each cell of M, BPointer ∈ {[n]∪ ⊥} that is backpointers are pointing to the columns of
the matrix.

Also, in general when, BPointer ∈ {(i, j)|i ∈ [m], j ∈ [n]} ∪ {⊥}, we call it a Type2

pointer matrix over Σ.

Now we will define some additional properties of the domain that we need to define
[ABB+17] function.

Definition 4.20 (Pointer matrix with marked column). Let M be an m× n pointer-matrix
over Σ. A column j ∈ [n] of M is defined to be a marked column if there exists exactly one
cell (i, j), i ∈ [m], in that column with entry x(i, j) such that x(i, j) ̸= (1,⊥,⊥,⊥) and every
other cl in that column is of the form (1,⊥,⊥,⊥). The cl (i, j) is defined to be the special
element of the marked column j.

Let n be a power of 2. Let T be a rooted, directed and balanced binary tree with n-leaves
and (n−1) internal vertices. We will use the following notations that will be used in defining
some functions formally.

Notation 4.21. Let n be a power of 2. Let T be a rooted, directed and balanced binary tree
with n-leaves and (n−1) internal vertices. Labels the edges of T as follows: the outgoing
edges from each node are labeled by either le f t or right. The leaves of the tree are labeled
by the elements of [n] from left to right, with each label used exactly once. For each leaf
j ∈ [n] of the tree, the path from the root to the leaf j defines a sequence of le f t and right of
length O(logn), which we denote by T ( j).

When n is not a power of 2, choose the largest k ∈ N such that 2k ≤ n, consider a
complete balanced tree with 2k leaves and add a pair of child node to to each n−2k leaves
starting from left. Define T ( j) as before.

More details about partial assignment and certificates can be found in Definition 2.7.
Now we are ready to describe the Variant 1 of [ABB+17] function.

Definition 4.22 (Variant 1 [ABB+17]). Let Σm×n be a Type1 pointer matrix where BPointer
is a pointer of the form { j| j ∈ [n]} that points to other column and LPointer, RPointer are
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as usual points to other cell. Define A1(m,n) : Σm×n →{0,1} on a Type1 pointer matrix such
that for all x = (xi, j) ∈ Σm×n, the function A1(m,n)(xi, j) evaluates to 1 if and only if it has a
1- cell certificate of the following form:

1. there exists exactly one marked column j⋆ in M,

2. There is a special cell, say (i⋆, j⋆) which we call the special element in the the marked
column j⋆ and there is a balanced binary tree T rooted at the special cell,

3. for each non-marked column j ∈ [n]\{ j⋆} there exist a cell l j such that Value(l j) = 0
and BPointer(l j) = j⋆ where l j is the end of the path that starts at the special element
and follows the pointers LPointer and RPointer as specified by the sequence T ( j). l j

exists for all j ∈ [n]\{ j⋆} i.e. no pointer on the path is ⊥. We refer l j as the leaves of
the tree.

The above function achieves the separation between D vs. R0 and D vs. Q for m = 2n.
Here we will restate some of the results from [ABB+17] which we will use to prove the
results for our function:

Theorem 4.23 ([ABB+17]). The function A1(m.n) in Definition 2.40 satisfies

D= Ω(n2) for m = 2n where m,n ∈ N,

R0 = Õ(m+n) for any m,n ∈ N,

Q= Õ(
√

m+
√

n) for any m,n ∈ N.

Though [ABB+17] gives the deterministic lower bound for the function A1 precisely for
2m×m matrices following the same line of argument it can be proved that D(Ω(n2)) holds
for n×n matrices also. For sake of completeness we give a proof for n×n matrices.

Theorem 4.24. D(A1(n,n)) = Ω(n2).

Adversary Strategy for A1(n,n): We describe an adversary strategy that ensures that the
value of the function is undetermined after Ω(n2) queries. Assume that deterministic query
algorithm queries a cell (i, j). Let k be the number of queried cell in the column j. If k ≤ n

2
adversary will return (1,⊥,⊥,⊥). Otherwise adversary will return (0,⊥,⊥,n− k).

Claim 4.25. The value of the function A1(n,n) will be undetermined if there is a column with
at most n/2 queried cells in the first n

2 columns {1,2, . . . , n
2} and at least 3n unqueried cells

in total.



4.3 Pointer functions and their properties 49

Proof. Adversary can always set the value of function to 0 if the conditions of the claim are
satisfied.

Adversary can also set the value of the function to 1: If s ∈ [n
2 ] be the column with

at most n
2 queried cell, then all the queried cells of the column are of the form (1,⊥,⊥,⊥).

Assign (1,⊥,⊥,⊥) to the other cell and leave one cell for the special element ap,s(say).

For each non-marked column j ∈ [n] s define l j as follows: If column j has one unqueried
cell then assign (0,⊥,⊥,s) to that cell. If all the cells of the column j were already queried
then the column contains a cell with (0,⊥,⊥,s) by the adversary strategy. So, in either case
we are able to form a leave l j in each of the non-marked column.

Now using the cell of special element ap,s construct a rooted tree of pointers isomorphic
to tree T as defined in Definition 2.40 such that the internal nodes we will use the other
unqueried cells and assign pointers such that l( j)’s are the leaves of the tree and the special
element ap,s is the root of the tree. Finally assign anything to the other cell. Now the function
will evaluates to 1.

To carry out this construction we need at most 3n number of unqueried cells. Outside of
the marked column total n−2 cells for the internal nodes of the tree, atmost n−1 unqueried
cell for the leaves and the all − 1 unique marked column contains total n cell, so total 3n
unqueried cell will be sufficient for our purpose.

Now there are total n number of columns and to ensure that each of the column in
{1,2, . . . , n

2} contains at least n
2 queried cell we need at least n2

4 number of queries. Since
n2 −3n ≥ n2

4 for all n ≥ 6. Hence D(A1(n,n)) = Ω(n2).

Hence Theorem 4.24 follows.

Also [GPW18]’s function realises quadratic separation between D and deg and the proof
goes via UCmin upper bound. But A1(n,n) exhibits the same properties corresponding to
UCmin. So, from the following observation it follows that A1(n,n) also achieves quadratic
separation between D and deg.

Observation 4.26. It is easy to observe that for each positive input x to the function A1(n,n),
the marked column together with the rooted tree of pointers with leaves in every other
column gives a unique minimal 1-certificate of x. Thus, UC1(A1(n,n)) = Õ(n). Now, from the
definition of UCmin it follows that UCmin(A1(n,n))≤ UC1(A1(n,n)). Hence, UCmin(A1(n,n)) =

Õ(n). UCmin(A1(n,n)) = Õ(n). From the fact UCmin ≥ deg it follows that deg(A1(n,n)) =O(n).
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Observation 4.27 ([ABB+17]). For any input Σn×n to the function A1(n,n) (in Definition 2.40)
if we permute the rows of the matrix using a permutation σr and permute the columns of the
matrix using a permutation σc and we update the pointers in each of the cells of the matrix
accordingly then the function value does not change.

4.3.1 Variants of Pointer function

Now we describe Variant 2 of [ABB+17] function where the domain is slightly different
from that of Variant 1.

Definition 4.28 (Variant 2 [ABB+17]). Let Σm×n be a Type2 pointer matrix such that
BPointer ∈ {(i, j)|i ∈ [m], j ∈ [n]}. Here the BPointer points to a cell of M, not a column.
Let n be even. Define A2(m,n) : Σm×n → {0,1} on Type2 pointer matrix such that for all
x = (xi, j) ∈ Σm×n, the function A2(m,n)(xi, j) evaluates to 1 if and only if it has a 1-cell
certificate of the following form:

1. there exists exactly one Marked column j⋆ in M. Let (i⋆, j⋆) be the special element.

2. for each non-marked column j ∈ [n]\{b} there exist an element l j such that Value(l j)=

0 where l j be the end of the path that starts at the special element and follows the
pointers LPointer and RPointer as specified by the sequence T ( j). l j exists in all
j ∈ [n]\{b}. We call that l j the Leaves of the tree.

3. The size of the set { j ∈ [n]\{b}|BPointer(l j) = (i⋆, j⋆)} is exactly n
2 .

Variant 2 achieves the separation between R0 vs. R and R0 vs QE. The following results
are some of the properties of Variant 2 function:

Theorem 4.29. [ABB+17] For any m,n ∈N, the function A2(m,n) in Definition 4.28 satisfies

R0 = Ω(mn),

R= Õ(m+n) and

QE = Õ(m+n).

Finally we will describe Variant 3 of [ABB+17] function, where there is one extra
parameter, the number of marked column. So, we will address the function as A3(k,m,n)

where m,n are number of rows and columns respectively and k is the number of marked
column.
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Definition 4.30 (Variant 3 [ABB+17]). Define A3(k,m,n) : Σm×n →{0,1} on Type2 pointer-
matrix Σ such that for all x = (xi, j) ∈ Σm×n, the function A3(k,m,n)(xi, j) evaluates to 1 if and
only if it has a 1-cell certificate of the following form:

1. there exists k Marked column in M. Let b1,b2, . . . ,bk ∈ [n] denotes the Marked column
in M and (ak,bk) be the special element in each Marked column. Let us denote the
cell of special element by a

2. BPointer(xa j,b j) = (a j+1,b j+1) for all j ∈ [k−1] and BPointer(xak,bk) = (a1,b1). Also,
LPointer(xas,bs) = LPointer(xat ,bt ) and RPointer(xas,bs) = RPointer(xat ,bt ) for all s, t ∈
[k].

3. for each non-marked column j ∈ [n]\{b1,b2, . . . ,bk} there exist an element ℓ j such
that Value(l j) = 0 and BPointer(l j) = b where l j be the end of the path that starts at
the special element and follows the pointers LPointer and RPointer as specified by the
sequence T ( j). We need that l j exists in each j ∈ [n]\{b1,b2, . . . ,bk} i.e. no pointer
on the path is ⊥. We call that l j the Leaves of the tree.

Variant 3 realises the separation between R0 vs. Q, R vs. QE, R vs. deg and d̃eg for
different m,n and k. The followings are some important result for variant 3 from [ABB+17]:

Theorem 4.31 ( [ABB+17]). For sufficiently large m,nN and a natural number k < n, the
function A3(k,m,n) in Definition 4.30 satisfies

R0 = Ω(mn) for k <
n
2
,

R0 = Ω(
mn

logn
) for k = 1,

Q= Õ(
√

mn/k+
√

km+ k+
√

n),

QE = Õ(m
√

n/k+ km+n) and

d̃eg = Õ(
√

m+
√

n) for k = 1.

Observation 4.32. It is easy to observe that for each positive input x to the function A3(1,n,n),
the marked column together with the rooted tree of pointers with leaves in every other
column gives a unique minimal 1-certificate of x. Thus, UC1(A3(1,n,n)) = Õ(n). Now, from
the definition of UCmin it follows that UCmin(A3(n,n)) = Õ(n). Also it follows from the fact
UCmin ≥ deg that deg(A3(n,n)) = O(n).
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4.4 Separation results via Transitive pointer functions

4.4.1 High level description of our techniques

Pointer functions are defined over a special domain called pointer matrix, which is a m×n
grid matrix. Each cell of the matrix contains some labels and some pointers that point either
to some other cell or to a row or column 5. For more details, refer to Section 4.3 of Chapter 2.
As described in [GPW18], the high level idea of pointer functions is the usage of pointers to
make certificates unambiguous without increasing the input size significantly. This technique
turns out to be very useful to give separations between various complexity measures as we
see in [MS15], [GJPW18b] and [ABB+17].

Now we want to produce a new function that possesses all the properties of pointer
functions, along with the additional property of being transitive. To do so, first, we will
encode the labels so that we can permute the bits (by a suitable transitive group) while
keeping the structure of unambiguous certificates intact so that the function value remains
invariant. One such natural technique would be to encode the contents of each cell in such a
way that allows us to permute the bits of the contents of each cell using a transitive group
and permute the cells among each other using another transitive group, and doing all of these
while ensuring the unambiguous certificates remains intact 6. This approach has a significant
challenge: namely how to encode the pointers.

The information stored in each cell (other than the pointers) can be encoded using
fixed logarithmic length strings of different Hamming weights - so that even if the strings
are permuted and/or the bits in each string are permuted, the content can be “decoded".
Unfortunately, this can only be done when the cell’s contents have a constant amount of
information - which is the case for pointer functions (except for the pointers). Since the
pointers in the cell are strings of size O(logn) (as they are pointers to other columns or rows),
if we want to use the similar Hamming weight trick, the size of the encoding string would
need to be polynomial in O(n). That would increase the size of the input compared to the
unambiguous certificate. This would not give us tight separation results.

Also, there are three more issues concerning the encodings of pointers:

5We naturally think of a pointer pointing to a cell as two pointers - one pointing to the row and the other to
the column.

6Here, we use the word “encode" since we can view the function defined only over codewords, and when the
input is not a codeword, then it evaluates to 0. In our setting, since we are trying to preserve the one-certificates,
the codewords are those strings where the unambiguous certificate is encoded correctly. At the same time, we
must point out that the encoding of an unambiguous certificate is not necessarily unique.



4.4 Separation results via Transitive pointer functions 53

• As we permute the cells of the matrix according to some transitive group, the pointers
within each cell need to be appropriately changed. In other words, when we move
some cell’s content to some other cell, the pointers pointing to the previous cell should
point to the current cell now.

• If a pointer is encoded using a certain t-bit string, different permutations of bits of the
encoded pointer can only generate a subset of all t-bit strings.

For example: if we encode a pointer using a string of Hamming weight 10 then however
we permute the bits of the string, the pointer can at most be modified to point to cells
(or rows or columns) the encoding of whose pointers also have Hamming weight 10.
(The main issue is that permuting the bits of a string cannot change the Hamming
weight of a string).

The encoding of all the pointers should have the same Hamming weight.

• The encoding of the pointers has to be transitive. That is, we should be able to permute
the bits of the encodings of the pointer using a transitive group in such a way that either
the pointer value does not change or as soon as the pointer values changes, the cells
gets permuted accordingly - kind of like an “entanglement".

The above three problems are somewhat connected. Our first innovative idea is to use
binary balance representation (Definition 4.7) to represent the pointers. This way, we take
care of the second issue. For the first and third issues, we define the transitive group - both the
group acting on the contents of the cells (and hence on the encoding of the pointers) and the
group acting on the cells itself - in a “entangled" manner. For this we induce a group action
acting on the nodes of a balanced binary tree and generate a transitive subgroup in Sn and
S2logn with the same action which will serve our purpose (Definition 4.14, Claim 4.16). This
helps us to permute the rows (or columns) using a permutation while updating the encoding
of the pointers accordingly.

By Claim 4.16, for every allowed permutation σ acting on the rows (or columns), there is
a unique σ̂ acting on the encodings of the pointers in each of the cells such that the pointers
are updated according to σ . This still has a delicate problem. Namely, each pointer is either
pointing to a row or column. But the permutation σ̂ has no way to understand whether the
encoding on which it is being applied points to a row or column. To tackle this problem, we
think of the set of rows and columns as a single set. All of them are encoded by a string of
size (say) 2t, where for the rows, the second half of the encoding is all 0 while the columns
have the first t bits all 0. This is the encoding described in Definition 4.17 using binary
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balanced representation. However, this adds another delicate issue about permuting between
the first t bits of the encoding and the second t bits.

To tackle this problem, we modify the original function appropriately. We define a
slightly modified version of existing pointer functions called ModA1. This finally helps
us obtain our “transitive pointer function," which has almost the same complexities as the
original pointer function.

We have so far only described the high-level technique to make the 1st variation of pointer
functions (Definition 2.40) transitive where there is the same number of rows and columns.
The further variations need more delicate handling of the encoding and the transitive groups -
though the central idea is similar.

4.5 Separations between deterministic query complexity
and other complexity measures

4.5.1 Transitive Pointer Function F1.4 for Theorem 1.4

Our function F1.4 : Γn×n → {0,1} is a composition of two functions - an outer function
ModA1(n,n) : Σ̄n×n →{0,1} and an inner function D : Γ→ Σ̄. We will set Γ to be {0,1}96logn.

The outer function is a modified version of the A1(n,n) - pointer function described
in [ABB+17] (see Definition 2.40 for a description). The function A1(n,n) takes as input a
(n×n)-matrix whose entries are from a set Σ and the function evaluates to 1 if a certain kind of
1-cell-certificate exists. Let us define a slightly modified function ModA1(n,n) : Σ̄n×n →{0,1}
where Σ̄ = Σ×{⊢,⊣}. We can think of an input A ∈ Σ̄n×n as a pair of matrices B ∈ Σn×n and
C ∈ {⊢,⊣}n×n. The function ModA1(n,n) is defined as

ModA1(n,n)(A)= 1 iff


Either, (i) A1(n,n)(B) = 1, and, all the cells in the

1-cell-certificate have ⊢ in the corresponding cells in C
Or, (ii) A1(n,n)(BT ) = 1, and, all the cells in the

1-cell-certificate have ⊣ in the corresponding cells in CT

Note that both the two conditions (i) and (ii) cannot be satisfied simultaneously. From this
it is easy to verify that the function ModA1(n,n) has all the properties as A1(n,n) as described
in Theorem 4.23.
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The inner function D (we call it a decoding function) is function from Γ to Σ̄, where
Γ = 96logn. Thus our final function is

F1.4 :=
(
ModA1(n,n) ◦D

)
: Γ

n×n →{0,1}.

Inner Function D

The input to A1(n,n) is a Type1 pointer matrix Σn×n. Each cell of a Type1 pointer matrix
contains a 4-tuple of the form (Value,LPointer,RPointer,BPointer) where Value is either 0 or
1 and LPointer,RPointer are pointers to the other cells of the matrix and BPointer is a pointer
to a column of the matrix (or can be a null pointer also). Hence, Σ = {0,1}× [n]2× [n]2× [n].
For the function A1(n,n) it was assumed (in [ABB+17]) that the elements of Σ is encoded as
a k-length7 binary string in a canonical way.

The main insight for our function F1.4 :=
(
ModA1(n,n) ◦D

)
is that we want to maintain

the basic structure of the function A1(n,n) (or rather of ModA1(n,n)) but at the same time
we want to encode the Σ̄ = Σ×{⊢,⊣} in such a way that the resulting function becomes
transitive. To achieve this, instead of having a unique way of encoding an element in Σ̄ we
produce a number of possible encodings8 for any element in Σ̄. The inner function D is
therefore a decoding algorithm that given any proper encoding of an element in Σ̄ will be
able to decode it back.

For the ease of understanding we start by describing the possible “encodings” of Σ̄, that
is by describing the pre-images of any element of Σ̄ in the function D .

“Encodings” of the content of a cell in Σ̄n×n :

We will encode any element of Σ̄ using a string of size 96logn bits. Recall that, an
element in Σ̄ is of the form (V,(rL,cL),(rR,cR),(cB),T ), where V is the Boolean value,
(rL,cL), (rR,cR) and cB are the left pointer, right pointers and bottom pointer respectively
and T take the value ⊢ or ⊣. The overall summary of the encoding is as follows:

• Parts: We will think of the tuple as 7 objects, namely V , rL, cL, rR, cR, cB and T .
We will use 16logn bits to encode each of the first 6 objects. The value of T will be
encoded in a clever way. So the encoding of any element of Σ̄ contains 6 parts - each a
binary string of length 16logn.

7For the canonical encoding k = (1+5logn) was sufficient
8We use the term “encoding” a bit loosely in this context as technically an encoding means a unique

encoding. What we actually mean is the pre-images of the function D .
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• Blocks: Each of 6 parts will be further broken into 4 blocks of equal length of 4 logn.
One of the blocks will be a special block called the “encoding block”.

Now we explain, the contents of a tuple (V,(rL,cL),(rR,cR),(cB),T ) precisely we will
describe what are the 4 blocks in each part. We will start by describing a “standard-form”
encoding of a tuple (V,(rL,cL),(rR,cR),(cB),T ) where T =⊢. Then we will extend it to
describe the standard for encoding of (V,(rL,cL),(rR,cR),(cB),T ) where T =⊣. And finally
we will explain all other valid encoding of a tuple (V,(rL,cL),(rR,cR),(cB),T ) by describing
all the allowed permutations on the bits of the encoding.

Standard-form encoding of (V,(rL,cL),(rR,cR),(cB),T ) where T =⊢: For the standard-
form encoding we will assume that the information of V,rL,cL,rR,cR,cB are stored in parts
P1,P2,P3,P4,P5 and P6 respectively. For all i ∈ [6], the part Pi with have blocks B1,B2,B3

and B4, of which the block B1 will be the encoding-block. The encoding will ensure that
every parts within a cell will have distinct Hamming weight. The description is also compiled
in the Table 4.1.

• For part P1 (that is the encoding of V ) the encoding block B1 will store ℓ1 · ℓ2 where ℓ1

be the 2logn bit binary string with Hamming weight 2 logn and ℓ2 is any 2logn bit
binary string with Hamming weight 2 logn− 1−V . The blocks B2, B3 and B4 will
store a 4logn bit string that has Hamming weight 4 logn,2logn+ 1 and 2logn+ 2
respectively. Any fixed string with the correct Hamming weight will do. We are not
fixing any particular string for the blocks B2, B3 and B4 to emphasise the fact that we
will be only interested in the Hamming weights of these strings.

• The encoding block B1 for parts P2,P3,P4,P5 and P6 will store the string E (rL,0),
E (0,cL), E (rR,0), E (0,cr) and E (0,CB) respectively, where E is the Balanced-pointer-
encoding function (Definition 4.17). For part Pi (with 2 ≤ i ≤ 6) block B2,B3 and B4

will store any 4logn bit string with Hamming weight 2 logn+ 1+ i, 2 logn+ 1 and
2logn+2 respectively.

Standard form encoding of (V,(rL,cL),(rR,cR),(cB),T ) where T =⊣:
For obtaining a standard-form encoding of (V,(rL,cL),(rR,cR),(cB),T ) where T =⊣, first
we encode (V,(rL,cL),(rR,cR),(cB),T ) where T =⊢ using the standard-form encoding. Let
(P1,P2, . . . ,P6) be the standard-form encoding of (V,(rL,cL),(rR,cR),(cB),T ) where T =⊢.
Now for each of the block apply the Swap 1

2
operator.



4.5 Separations between deterministic query complexity and other complexity measures 57

Table 4.1 Standard form of encoding of a cell of a pointer matrix: Variant 1 (Type I element)

. . . B1 “encoding”-block B2 B3 B4 Hamming weight
P1 ℓ1ℓ2, where |ℓ1|= 2logn, and 4logn 2logn+1 2logn+2 12logn+2−V

|ℓ2|= 2logn−1−V
P2 E (rL,0) 2logn+3 2logn+1 2logn+2 7logn+6
P3 E (0,cL) 2logn+4 2logn+1 2logn+2 7logn+7
P4 E (rR,0) 2logn+5 2logn+1 2logn+2 7logn+8
P5 E (0,cR) 2logn+6 2logn+1 2logn+2 7logn+9
P6 E (0,cB) 2logn+7 2logn+1 2logn+2 7logn+10

Standard form of encoding of element (V,(rL,cL),(rR,cR),cB,⊢) by a 96logn bit string that is
broken into 6 parts P1, . . . ,P6 of equal size and each Part is further broken into 4 Blocks B1,B2,B3
and B4. So all total there are 24 blocks each containing a 4logn-bit string. For the standard
form of encoding of element (V,(rL,cL),(rR,cR),cB,⊣) we encode (V,(rL,cL),(rR,cR),cB,⊢) in
the standard form as described in the table and then apply the Swap 1

2
on each block. The last

column of the table indicates the Hamming weight of each Part.

Valid permutation of the standard form: Now we will give a set of valid permutations to
the bits of the encoding of any element of Σ̄. The set of valid permutations are classified into
into 3 categories:

1. Part-permutation: The 6 parts can be permuted using any permutation from S6

2. Block-permutation: In each of the part, the 4 blocks (say B1,B2,B3,B4) can be per-
muted is two ways. (B1,B2,B3,B4) can be send to one of the following

(a) Simple Block Swap: (B3,B4,B1,B2) (b) Block Flip: (B2,B1,flip(B3),flip(B4))

The “decoding" function D : {0,1}96logn → Σ̄:

• Identify the parts containing the encoding of V , rL, cL, rR, cR and cB. This is possible
because every part has a unique Hamming weight.

• For each part identify the blocks. This is also possible as in any part all the blocks
have distinct Hamming weight. Recall, the valid Block-permutations, namely Simple
Block Swap and Block Flip. By seeing the positions of the blocks one can understand
if flip was applied and to what and using that one can revert the blocks back to the
standard-form (recall Definition 4.7).

• In the part containing the encoding of V consider the encoding-block. If the block is of
the form {(ℓ1ℓ2)such that |ℓ1|= 2logn, |ℓ2| ≤ 2logn−1} then T = {⊢}. If the block
is of the form {(ℓ2ℓ1)such that |ℓ1|= 2logn, |ℓ2| ≤ 2logn−1} then T = {⊣}.
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• By seeing the encoding block we can decipher the original values and the pointers.

• If the 96logn bit string doesn’t have the form of a valid encoding, then decode it as
(0,⊥,⊥,⊥).

4.5.2 Proof of Transitivity of the function

We start with describing the transitive group for which F1.4 is transitive.

The Transitive Group: We start with describing a transitive group T acting on the cells
of the matrix A. The matrix has rows r1, . . . ,rn and columns c1, . . . ,cn. And we use the
encoding function E to encode the rows and columns. So the index of the rows and columns
are encoded using a 4logn bit string. A permutation from Bt4logn (see Definition 4.14) on
the indices of a 4logn bit string will therefore induce a permutation on the set of rows and
columns which will give us a permutation on the cells of the matrix. We will now describe
the group T acting on the cells of the matrix by describing the permutation group T̂ acting
on the indices of a 4 logn bit string. The group T̂ will be the group Bt4logn acting on the set
[4logn]. We will assume that logn is a power of 2. The group T with be the resulting group
of permutations on the cells of the matrix induced by the group T̂ acting on the indices on
the balanced-pointer-encoding. Note that T is acting on the domain of E and T̂ is acting on
the image of E . Also T̂ is a transitive subgroup of S4logn from Claim 4.15.

Observation 4.33. For any 1 ≤ i ≤ 2logn consider the permutation “ith-bit-flip” in T̂ that
applies the transposition (2i−1,2i) to the indices of the balanced-pointer-encoding. Since
the E -encoding of the row (rk,0) uses the balanced binary representation of k in the first half
and all zero sting in the second half, the jth bit in the binary representation of k is stored in
the 2 j−1 and 2 j-th bit in the E -encoding of ri. So the j-th-bit-flip acts on the sets of rows
by swapping all the rows with 1 in the j-th bit of their index with the corresponding rows
with 0 in the j-th bit of their index. Also, if i > logn then there is no effect of the i-th-bit-flip
operation on the set of rows. Similarly for the columns.

Using Observation 4.33 we have the following claim.

Claim 4.34. The group T acting on the cells of of the matrix is a transitive group. That is,
for all 1 ≤ i1, j1, i2, j2 ≤ n there is a permutation σ̂ ∈ T̂ such that σ̂ [E (i1,0)] = E (i2,0) and
σ̂ [E (0, j1)] = (0, j2). Or in other words, there is a σ ∈ T acting on the cell of the matrix
that would take the cell corresponding to row ri1 and column c j1 to the cell corresponding to
row ri2 and column c j2 .
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From the Claim 4.34 we see the group T acting on the cells of of the matrix is a transitive.
But it does not touch the contents within the cells of the matrix. But the input to the function
F1.4 contains element of Γ = {0,1}96logn in each cell. So we now need to extend the group
T to a group G that acts on all the indices of all the bits of the input to the function F1.4.

Recall that the input to the function F1.4 is a (n× n)-matrix with each cell of matrix
containing a binary string of length 96logn which has 6 parts of size 16logn each and each
part has 4 blocks of size 4logn each. We classify the generating elements of the group G

into 4 categories:

1. Part-permutation: In each of the cells the 6 parts can be permuted using any permutation
from S6.

2. Block-permutation: In each of the Parts the 4 blocks can be permuted in the following
ways. (B1,B2,B3,B4) can be send to one of the following

(a) Simple Block Swap: (B3,B4,B1,B2),

(b) Block Flip (#1): (B2,B1,flip(B3),flip(B4)),

(c) Block Flip (#2)9: (flip(B1),flip(B2),B4,B3).

3. Cell-permutation: for any σ ∈ T the following two action has to be done simultane-
ously:

(a) (Matrix-update) Permute the cells in the matrix according to the permutation σ .
This keeps the contents within each cells untouched - it just changes the location
of the cells.

(b) (Pointer-update) For each of blocks in each of the parts in each of the cells
permute the indices of the 4logn-bit strings according to σ , that is apply σ̂ ∈ T̂

corresponding to σ .

We now have the following theorems that would prove that the function F1.4 is transitive.

Theorem 4.35. G is a transitive group and the function F1.4 is invariant under the action of
the G.

Proof of Theorem 4.35. To prove that the group G is transitive we show that for any indices
p,q ∈ [96n2 logn] there is a permutation σ ∈ G that would take p to q. Recall that the string
{0,1}96n2 logn is a matrix Γ(n×n) with Γ = {0,1}96logn and every element in Γ is broken into
6 parts and each part being broken into 4 block of size 4logn each. So we can think of

9Actually this Block flip can be generated by a combination of Simple Block Swap and Block Flip (#1)
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the index p as sitting in kpth position (1 ≤ kp ≤ 4logn) in the block Bp of the part Pp in
the (rp,cp)-th cell of the matrix. Similarly, we can think of q as sitting in kqth position
(1 ≤ kq ≤ 4logn) in the block Bq of the part Pq in the (rq,cq)-th cell of the matrix.

We will give a step by step technique in which permutations from G can be applied to
move p to q.

Step 1 Get the positions in the block correct: If kp ̸= kq then take a permutation σ̂ from T̂

that takes kp to kq. Since T̂ is a transitive so such a permutation exists. Apply the
cell-permutation σ ∈ T corresponding to σ̂ . As a result the index p can be moved to a
different cell in the matrix but, by the choice of σ̂ its position in the block in which it is
will be kq. Without loss of generality, we assume the the cell location does not change.

Step 2 Get the cell correct: Using a cell-permutation that corresponds to a series of “bit-flip”
operations change rp to rq and cp to cq. Since one bit-flip operations basically changes
one bit in the binary representation of the index of the row or column such a series of
operations can be made.

Since each bit-flip operation is executed by applying the bit-flips in each of the blocks
so this might have once again changed the position of the index p in the block. But,
even if the position in the block changes it must be a flip operation away. Or in other
word, since in the beginning of this step kp = kq, so if kq is even (or odd) then after
the series bit-flip operations the position of p in the block is either kq or (kq −1) (or
(kq +1)).

Step 3 Align the Part: Apply a suitable permutation to ensure that the part Pp moves to part
Pq. Note this does not change the cell or the block within the part or the position in the
block.

Step 4 Align the Block: Using a suitable combination of Simple Block Swap and Block Flip
ensures the Block number gets matched, that is Bp goes to Bq. In this case the cell
or the Part does not change. But depending on whether the Block Flip operation is
applied the position in the block can again change. But, the current position in the
block kp is at most one flip away from kq.

Step 5 Apply the final flip: It might so happen that already we a done after the last step. If
not we know that the current position in the block kp is at most one flip away from kq.
So we apply the suitable Block-flip operation. Thus will not change the cell position,
Part number, Block number and the position in the block will match.
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Hence we have proved that the group G is transitive. Now we show that the the function F1.4

is invariant under the action of G, i.e., for any elementary operations π from the group G and
for any input Γ(n×n) the function value does not change even if after the input is acted upon
by the permutation π .

Case 1: π is a Part-permutation: It is easy to see that the decoding algorithm D is
invariant under Part-permutation. This was observed in description of the decoding algorithm
D in Section 4.5.1. So clearly that the function F1.4 is invariant under any Part-permutation.

Case 2: π is a Block-permutation: Here also it is easy to see that the decoding algorithm
D is invariant under Block-permutation. This was observed in description of the decoding
algorithm D in Section 4.5.1. Thus F1.4 is also invariant under any Block-permutation.

Case 3: π is a Cell-permutation From Observation 4.27 it is enough to prove that when
we permute the cells of the matrix we update the points in the cells accordingly.

Let π ∈ T be a permutation that permutes only the rows of the matrix. By Claim 4.18,
we see that the contents of the cells will be updated accordingly. Similarly if π only permute
the columns of the matrix we will be fine.

Finally, if π swaps the row set and the column set (that is if π makes a transpose
of the matrix) then for all i row i is swapped with column i and it is easy to see that
π̂[E (i,0)] = E (0, i). In that case the encoding block of the value part in a cell also gets
swapped. This will thus be encoding the T value as ⊣. And so the function value will not be
affected as the T =⊣ will ensure that one should apply the π that swaps the row set and the
column set to the input before evaluating the function.

Properties of the Function

Claim 4.36. Deterministic query complexity of F1.4 is Ω(n2).

Proof. The function ModA1(n,n) is a “harder” function than A1(n,n). So D(ModA1(n,n)) is at
least that of D(A1(n,n)). Now since, F1.4 is

(
ModA1(n,n) ◦D

)
so clearly the D(F1.4) is at least

D(A1(n,n)). Theorem 4.24 proves that D(A1(n,n)) is Ω(n2). Hence D(F1.4) = Ω(n2).

The following Claim 4.37 follows from the definition of the function ModA1(n,n).

Claim 4.37. The following are some properties of the function ModA1(n,n)

1. R0(ModA1(n,n))≤ 2R0(A1(n,n))+O(n logn)

2. Q(ModA1(n,n))≤ 2Q(A1(n,n))+O(n logn)
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3. deg(ModA1(n,n))≤ 2deg(A1(n,n))+O(n logn)

Finally, from Theorem 2.20 we see that the R0(F1.4), Q(F1.4) and deg(F1.4) are at
most O(R0(ModA1(n,n) · logn), O(Q(ModA1(n,n) · logn) and O(deg(ModA1(n,n) · logn), re-
spectively. So combining this fact with Claim 4.36, Claim 4.37 and Theorem 4.23 (from
[ABB+17]) we have Theorem 1.4.

4.6 Separation between zero-error randomized query com-
plexity and some of other complexity measures

[ABK16] used the a variant of the pointer function to give separation between zero-error
randomized query complexity(R0) and other measures like one-sided randomized query
complexity, exact quantum query complexity and degree. In this section we construct a
transitive version of the functions that was used in [ABK16] to show such separations and
we prove the Theorem 4.2 where we show that there exists transitive function achieving the
following separations:

R0(F4.2) = Ω̃(R(F4.2)
2), R0(F4.2) = Ω̃(QE(F4.2)

2), R0(F4.2) = Ω̃(deg(F4.2)
2).

4.6.1 Transitive Pointer function F4.2 for Theorem 4.2

Recall from Definition 2.37, the input to the function A2 is a Type2 pointer matrix Σn×n.
Each cell of such matrix is of the form (Value,LPointer,RPointer,BPointer) where Value
is either 0 or 1 and LPointer,RPointer and BPointer are pointers to the other cells of the
matrix (or can be a null pointer also). Here the BPointer are the pointers to the cells, which is
different from A1(n,n). That’s why we need an encoding which is slightly different from the
encoding scheme of A1(n,n). Our function F4.2 : Γn×n →{0,1} is again a composition of two
functions - an outer function ModA2(n,n) : Σ̄n×n →{0,1} and an inner function D1 : Γ → Σ̄

where Γ is {0,1}112logn. Here the function D1 has different domain from the previous one
described in Section 4.5.1.

First we define the outer function ModA2(n,n) : Σ̄n×n →{0,1} where Σ̄ = Σ×{⊢,⊣} to
be the modified version of the A2(n,n) as we have defined ModA1(n,n).

Think of an input A ∈ Σ̄n×n as a pair of matrices B ∈ Σn×n and C ∈ {⊢,⊣}n×n. The
function ModA2(n,n) is defined as
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ModA2(n,n)(A)= 1 iff


Either, (i) A2(n,n)(B) = 1, and, all the cells in the

1-cell-certificate have ⊢ in the corresponding cell in C
Or, (ii) A2(n,n)(BT ) = 1, and, all the cells in the

1-cell-certificate has ⊣ in the corresponding cell in CT

Consequently the function ModA2(n,n) has all the properties as A2(n,n) as described in
Theorem 4.29.

The inner function D1 (we call it a decoding function) is function from Γ to Σ̄, where
Γ = 112logn. Thus our final function is

F4.2 :=
(
ModA2(n,n) ◦D1

)
: Γ

n×n →{0,1}.

Inner Decoding Function

In the similar fashion of Section 4.5.1 we start by describing the standard “encodings” of
a single element of Σ̄, then we will describe a multiple possible ways of encoding a single
element of the Σ̄ and it’s decoding scheme.

“Encodings” of the content of a cell in Σ̄n×n where Σn×n is a Type2 Pointer matrix

We will encode any element of Σ̄ using a string of size 112logn bits. Recall from
Definition 2.37 that in case of Type2 pointer matrix, an element from Σ̄ is of the following
form (V,(rL,cL),(rR,cR),(rB,cB),T ), where V is a binary value and T ∈ {⊢,⊣}. The overall
summary of the encoding is compiled in the Table 4.2:

• Parts: We will think of the tuple as 8 objects, namely V , rL, cL, rR, cR, rB, cB and T .
We will use 16logn bits to encode each of the first 7 objects. So the encoding of any
element of Σ̄ contains 7 parts-each a binary string of length 16logn. The value of T
will be encoded in a kind-of hidden way.

• Blocks: Each of 7 parts will be further broken into 4 blocks of equal length of 4 logn.
One of the block will be a special block called the “encoding block”.

Now we will start by describing a “standard-form” encoding of a tuple of the following
form (V,(rL,cL),(rR,cR),(rB,cB),T ) where T =⊢. Then we will extend it to describe the
standard for the encoding of (V,(rL,cL),(rR,cR),(rB,cB),T ) where T =⊣. And finally, we
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will explain all other valid encoding of a tuple (V,(rL,cL),(rR,cR),(rB,cB),T ) by describing
all the allowed operations on the bits of the encoding.

Table 4.2 Standard form of encoding of a cell of a pointer matrix: Variant 1 (Type II
elements)

. . . B1 “encoding”-block B2 B3 B4 Hamming weight
P1 ℓ1ℓ2, where 4 logn 2logn+1 2logn+2 12logn+2−V

|ℓ1|= 2logn, and
|ℓ2|= 2logn−1−V

P2 E (rL,0) 2logn+3 2logn+1 2logn+2 7logn+6
P3 E (0,cL) 2logn+4 2logn+1 2logn+2 7logn+7
P4 E (rR,0) 2logn+5 2logn+1 2logn+2 7logn+8
P5 E (0,cR) 2logn+6 2logn+1 2logn+2 7logn+9
P6 E (rB,0) 2logn+7 2logn+1 2logn+2 7logn+10
P7 E (0,cB) 2logn+8 2logn+1 2logn+2 7logn+11

Standard form of encoding of element (V,(rL,cL),(rR,cR),(rB,cB),⊢) by a 112logn bit
string that is broken into 7 parts P1, . . . ,P7 of equal size and each Part is further broken
into 4 Blocks B1,B2,B3 and B4. So all total there are 24 blocks each containing a 4logn-bit
string. For the standard form of encoding of element (V,(rL,cL),(rR,cR),(rB,cB),⊣) we
encode (V,(rL,cL),(rR,cR),(rB,cB),⊢) in the standard form as described in the table and
then apply the Swap 1

2
on each block. The last column of the table indicates the Hamming

weight of each Part.

Standard form encoding of (V,(rL,cL),(rR,cR),(rB,cB),T ) where T =⊢

For the standard-form encoding we will assume that the information of V,rL,cL,rR,cR,rB,cB

are stored in parts P1,P2,P3,P4,P5, P6 and P7 respectively. For all i ∈ [7], the part Pi with
have blocks B1,B2,B3 and B4, of which the block B1 will be the encoding-block. The
description of the standard-form encoding is also compiled in the Table 4.2.

Standard form encoding of (V,(rL,cL),(rR,cR),(cB),T ) where T =⊣

For obtaining a standard-form encoding of (V,(rL,cL),(rR,cR),(rB,cB),T ) where T =⊣,
first we encode (V,(rL,cL),(rR,cR),(rB,cB),T ) where T =⊢ using the standard-form encod-
ing in Table 4.2. Let (P1,P2, . . . ,P7) be the standard-form encoding of (V,(rL,cL),(rR,cR),(rB,cB),T )
where T =⊢. Now for each of the block apply the following Swap 1

2
operator.

Valid permutation of the standard form
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Now we will give a set of valid permutations to the bits of the encoding of any element
of Σ̄. The set of valid permutations are classified into into 3 categories:

1. Part-permutation: The 7 parts can be permuted using any permutation from S7

2. Block-permutation: In each of the part, the 4 blocks (say B1,B2,B3,B4) can be per-
muted is two ways. (B1,B2,B3,B4) can be send to one of the following

(a) Simple Block Swap: (B3,B4,B1,B2)

(b) Block Flip: (B2,B1,flip(B3),flip(B4))

We are now ready to describe the decoding function D1 from Γ = {0,1}112logn to Σ̄.

• Identify the parts containing the encoding of V , rL, cL, rR, cR, rB and cB. This is
possible because every part has a unique Hamming weight.

• For each part identify the blocks. This is also possible as in any part all the blocks have
distinct Hamming weight. By seeing the positions of the blocks one can understand
if flip was applied and to what and using that one case revert the blocks back to the
standard-form.

• In the part containing the encoding of V consider the encoding-block. If the block is of
the form {(ℓ1ℓ2)such that |ℓ1|= 2logn, |ℓ2| ≤ 2logn−1} then T = {⊢}. If the block
is of the form {(ℓ2ℓ1)such that |ℓ1|= 2logn, |ℓ2| ≤ 2logn−1} then T = {⊣}.

• By seeing the encoding block we can decipher the original values and the pointers.

• If the 112logn bit string doesn’t have the form of a valid encoding, then decode it as
(0,⊥,⊥,⊥).

4.6.2 Proof of transitivity of the function

Theorem 4.38. F 4.2 is transitive under the action of the transitive group G1.

The group G1 is formed with same permutation sets as G except S6 that was acting on the
Part. Instead of S6 we will take S7 as Part-permutation. Proof of Theorem 4.38 follows from
similar argument of Theorem 4.35. Here everything else is similar as function F1.4 except
Part.

Properties of the function

Claim 4.39. Zero error randomized query complexity of F4.2 is Ω(n2).
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Proof. The function ModA2(n,n) is a “harder” function than A2(n,n). So R0(ModA2(n,n)) is
at least that of R0(A2(n,n)). Now since, F4.2 is

(
ModA2(n,n) ◦D1

)
so clearly the R0(F4.2) is

at least (R0(A2(n,n))/ logn) by Theorem 2.20. From Theorem 4.29 we have R0(F4.2) at least
Ω(n2).

The following Claim 4.40 that follows from the definition of the function ModA2(n×n).

Claim 4.40. The following are some properties of the function ModA2(n,n)

1. R(ModA2(n,n))≤ 2R(A2(n,n))+O(n logn)

2. QE(ModA2(n,n))≤ 2QE(A2(n,n))+O(n logn)

3. deg(ModA2(n,n))≤ 2deg(A2(n,n))+O(n logn)

Finally, from Theorem 2.20 we see that R0(F4.2), QE(F4.2) and deg(F4.2) are at most
O(R0(ModA2(n×n) · logn), O(QE(ModA2(n×n) · logn) and O(deg(ModA2(n×n) · logn), re-
spectively. So combining this fact with Claim 4.39, Claim 4.40 and Theorem 4.29 (from
[ABB+17]) we have Theorem 4.2.

4.7 Separation between other complexity measures

Another variant of the pointer function was constructed in [ABK16] which demonstrates the
gap between randomized query complexity(R) and complexity measures like approximate
degree and degree. In this section we show how to obtain a transitive version of this function,
thus proving the following separations: There exists a transitive function F4.3 such that

R(F4.3) = Ω̃(d̃eg(F4.3)
4), R(F4.3) = Ω̃(deg(F4.3)

2).

4.7.1 Transitive pointer function F4.3 for Theorem 4.3

In [ABB+17] the function A3(1,n,n) achieves the separation between R and d̃eg. Before that
[GJPW18b] introduced a function that achieves quadratic separation between R and deg.
The function A3 is motivated from [GJPW18b] function and generates the same separation
between R and deg. We will give a transitive function that is motivated from [ABB+17] and
achieves the separation between R vs. deg and R vs. d̃eg which is same as general function.

First let us define the outer function ModA3(1,n,n) : Σ̄n×n →{0,1} where Σ̄ = Σ×{⊢,⊣}
to be the modified version of the A3(1,n,n) as we have defined ModA1(1,n,n).
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Think of an input A ∈ Σ̄n×n as a pair of matrices B ∈ Σn×n and C ∈ {⊢,⊣}n×n. The
function ModA3(1,n,n) is defined as

ModA3(1,n,n)(A)= 1 iff


Either, (i) A3(1,n,n)(B) = 1, and, all the cells in the

1-cell-certificate have ⊢ in the corresponding cell in C
Or, (ii) A3(1,n,n)(BT ) = 1, and, all the cells in the

1-cell-certificate has ⊣ in the corresponding cell in CT

Consequently the function ModA3(1,n,n) has all the properties of A3(1,n,n) as described
in Theorem 4.31. Here the input matrix to the function A3(1,n,n) is a Type2 pointer matrix
which is same as A2(n,n). Hence we can encode the elements in Σ̄ in a similar fashion that
we have done in Section 4.6.1. That’s why we can choose the same decoding function D1

function as of F 4.2. Thus our final function is

F4.3 :=
(
ModA3(1,n,n) ◦D1

)
: Γ

n×n →{0,1}

where D1 : Γ → Σ̄ and Γ = 112logn.

From the proof of Theorem 4.38 we have the following Theorem:

Theorem 4.41. F4.3 is transitive under the action of the transitive group G1.

Claim 4.42. Randomized query complexity of F4.3 is Ω(n2).

Proof. From the construction of ModA3(1,n,n) one can note that ModA3(1,n,n) is a “harder”
function than A3(1,n,n). So R(ModA3(1,n,n)) is at least that of R(A3(1,n,n)).

Now since, F4.3 is
(
ModA3(1,n,n) ◦D1

)
from Theorem 2.20 it follows that R(F4.3) is at

least R(A3(1,n,n)). In [ABB+17] they proved that R(A3(1,n,n)) is Ω(n2). So R(F4.3) is at least

Ω( n2

logn).

Claim 4.43. The following are some properties of the function ModA3(1,n,n)

1. d̃eg(ModA3(1,n,n))≤ 2d̃eg(A3(1,n,n))+O(n logn)

2. deg(ModA3(1,n,n))≤ 2deg(A3(1,n,n))+O(n logn)

Finally from Theorem 2.20, Theorem 4.31 and Claim 4.43 it follows that d̃eg(F4.3) =

O(
√

n). Also from Theorem 2.20, Observation 4.32 and Claim 4.43 it follows that deg(F4.3)=

(n). From Theorem 4.41 and Claim 4.42 we have Theorem 4.3.
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4.7.2 Transitive pointer function F4.4 for Theorem 4.4

In [ABB+17] they proved that A3(n,n,n2) achieves the separation between R0 and Q where
the input is a n×n2 Type2 pointer matrix. Till now all of our encoding was precisely for n×n
matrix. Those encoding schemes directly cannot be generalized for any non-square matrix.
But using some modifications to our encoding scheme in the previous sections, we give an
encoding for n×n2 matrix also. Before going into the encoding scheme we will define some
useful terms and representation of a matrix that we are going to use in the encoding scheme.

Definition 4.44 (Brick). For any n×n2 matrix M we divide the matrix into total n number
of square matrices each of size n× n, which we refer to as Brick. Thus there is total n
number of Bricks, which we denote as {b1,b2, . . . ,bn} and each bi is a sub-matrix of M. Now
let us denote the n rows and n columns of an n×n matrix as {r1, . . . ,rn} and {c1, . . . ,cn}
respectively. So, each entries of M can be uniquely defines as {(r,c,b)|r,c,b ∈ [n]} where r,c
and b is the row number, column number and brick number respectively. In this set-up we
will write an n×n2 matrix A as A(n×n×n).

In a general setup when we swap between row and column we get the transpose of that
matrix. In our row, column and brick setup we define two new concept similar to transpose
matrix.

Definition 4.45 (A⊤,A⊣). Denote each entry of a n×n2 matrix A(n×n×n) by (row,column,brick)
then, define A⊤

(n×n×n) to be the matrix where (r,c,b)-th element of A(n×n×n) is the (b,r,c)-th
element of A⊤

(n×n×n). Similarly define A⊣
(n×n×n) to be the matrix where (r,c,b)-th element of

A(n×n×n) is the (c,b,r)-th element of A⊣
(n×n×n).

Now we are ready to define our outer function.

The outer function

The outer function is a modified version of the A3(n,n,n2). Recall, from Definition 4.30, the
function A3(n,n,n2) takes as input a (n×n2) Type2 pointer matrix over Σ.

Let us define ModA3∗(n,n,n2) : Σ̄n×n2 →{0,1} where the alphabet set is Σ̄=Σ×{⊢,⊤,⊣}.

We can think of an input M ∈ Σ̄n×n2
as a pair of matrices B ∈ Σn×n2

and C ∈ {⊢,⊤,⊣}n×n2
.

The function ModA3∗(n,n,n2) is defined as
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ModA3∗(n,n,n2)(M)= 1 iff



Either, (i) A3(n,n,n2)(B) = 1, and, all the cells in the
1-cell-certificate have ⊢ in the corresponding cell in C,

Or, (ii) A3(n,n,n2)(B
⊤) = 1, and, all the cells in the

1-cell-certificate has ⊤ in the corresponding cell in C⊤,

Or, (iii) A3(n,n,n2)(B
⊣) = 1, and, all the cells in the,

1-cell-certificate has ⊣ in the corresponding cell in C⊣.

At most one of conditions (i), (ii) and (iii) can be true for an input. From this it is easy
to verify that the function ModA3∗(n,n,n2) has all the properties as A3(n,n,n2) as described in
Theorem 4.31.

Thus our final function is

F4.4 :=
(
ModA3∗(n,n,n2) ◦D2

)
: Γ

n3
→{0,1},

where the inner function D2 (we call it a decoding function) is a function from Γ to Σ̄ where
Γ = 240logn.

Inner Decoding Function

Any element of Type2 pointer matrix is of the form (V,LPointer,RPointer,BPointer) where
V ∈ {0,1} and LPointer,RPointer and BPointer are the pointers to the other cell of the matrix.
Here pointers are of the form (i, j) where i is the row number and j is the column number.
Now in our setup (Definition 4.44) we have represented the cells of an n× n2 matrix as
(r,c,b) (where r,c,b ∈ [n]), where r, c and b specify the row, column and brick of that cell,
respectively.

“Encodings” of the content of a cell in Σ̄n×n2 where Σn×n2 is a Type2 Pointer matrix

We will encode any tuple of the form (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),T ) which
is an element of Σ̄ using a string of size 240logn bits. The overall summary of the encoding
is as follows:

• Parts: We will think of the tuple as 11 objects, namely V , rL, cL, bL rR, cR, bR, rB, cB,
bB and T . We will use a 24logn bit string to encode each of the first 10 objects and
the enoding of T will be implicit. So the encoding of any element of Σ̄ contains 10
parts-each a binary string of length 24logn.
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• Blocks: Each of the 10 parts will be further broken into 4 blocks of equal length of
6 logn. One of the block will be a special block called the “encoding block”.

Let us start by describing a “standard-form” encoding of a tuple of the following form
(V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),T ) where T =⊢. Then extend it for T =⊤ and T =⊣.
Finally, we will explain all other valid encodings of a tuple (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),T )
by describing all the allowed operations on the bits of the encoding.

Using the Balanced-Binary Encoding we can define an hybrid encoding for the set of
rows and columns.

Definition 4.46. Given a set R of n rows r1, . . . ,rn, a set C of n columns c1, . . . ,cn and a set
B of n bricks b1, . . . ,bn we define the balanced-pointer-encoding function

E ′ : (R×{0}×{0})∪ ({0}×C×{0})∪ ({0}×{0}×B)→{0,1}6logn

as follows:
E ′(ri,0,0) = bb(i) ·02logn ·02logn,

E ′(0,ci,0) = 02logn ·bb(i) ·02logn and
E ′(0,0,bi) = 02logn ·02logn ·bb(i).

Definition 4.47. Given a binary string x1, . . . ,x3k ∈ {0,1}3k, the operation Rotation1 and
Rotation2 act on the string by

Rotation1(x1, . . . ,x3k) = x2k+1, . . . ,x3k,x1 . . . ,xk,xk+1, . . . ,x2k

and
Rotation2(x1, . . . ,x3k) = xk+1, . . . ,x2k,x2k+1 . . . ,x3k,x1, . . . ,xk

Now we are set to describe the standard form of encoding of the tuple of the following
form (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),T ) where T =⊢.

Standard form encoding of (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),T ) where T =⊢

For the standard-form encoding we will assume that the information of V,rL,cL,bL,rR,cR,bR,

rB,cB,bB are stored in parts P1,P2,P3,P4,P5, P6, P7, P8, P9 and P10 respectively. For
all i ∈ [10], the part Pi with have blocks B1,B2,B3 and B4, of which the block B1 will be
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. . . B1 B2 B3 B4 Hamming weight
P1 ℓ1ℓ3ℓ2 6logn 2logn+1 2logn+2 16logn−V

where |ℓ1|= 2logn
|ℓ2|= 2logn−1, and
|ℓ3|= 2logn−2−V

P2 E ′(i) 2logn+3 2logn+1 2logn+2 7logn+6
P3 E ′( j) 2logn+4 2logn+1 2logn+2 7logn+7
P4 E ′(k) 2logn+5 2logn+1 2logn+2 7logn+8
P5 E ′(t) 2logn+6 2logn+1 2logn+2 7logn+9
P6 E ′(m) 2logn+7 2logn+1 2logn+2 7logn+10
P7 E ′(n) 2logn+8 2logn+1 2logn+2 7logn+11
P8 E ′(p) 2logn+9 2logn+1 2logn+2 7logn+12
P9 E ′(q) 2logn+10 2logn+1 2logn+2 7logn+13

P10 E ′(r) 2logn+11 2logn+1 2logn+2 7logn+14

Table 4.3 Standard form of a cell of a pointer matrix: Variant 3

Standard form of encoding of (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),⊢) by a 240logn bit
string that is broken into 10 parts P1, . . . ,P10 of equal size and each Part is further broken
into 4 Blocks B1,B2,B3 and B4. So all total there are 40 blocks each containing a 6logn-bit
string. [2.] For the standard form of encoding of (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),⊤)
we encode (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),⊢) in the standard form as described
in the table and then apply the Rotation1 on each block. [3.] For the
standard form of encoding of (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),⊣) we encode
(V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),⊢) in the standard form as described in the table and
then apply the Rotation2 on each block. The last column of the table indicates the unique
Hamming weight of each Part.
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the encoding-block. The description of the standard-form encoding is also compiled in the
Table 4.3.

• For part P1 (that is the encoding of V ) the encoding block B1 will store ℓ1 · ℓ2 · ℓ3

where ℓ1 is any 2logn bit binary string with Hamming weight 2 logn, ℓ2 is any 2logn
bit binary string with Hamming weight 2 logn−1 and ℓ3 is any 2logn bit binary string
with Hamming weight 2 logn−2−V . Block B2,B3 and B4 will store any 6logn bit
string with Hamming weight 6 logn, 2 logn+1 and 2logn+2 respectively.

• For part P2 (this is the encoding of rL) the encoding block B1 will store the string
E ′(rL,0,0). Block B2,B3 and B4 will store any 6logn bit string with Hamming weight
2 logn+3, 2 logn+1 and 2logn+2 respectively.

• For part P3 (this is the encoding of cL) the encoding block B1 will store the string
E ′(0,cL,0). Block B2,B3 and B4 will store any 6logn bit string with Hamming weight
2 logn+4, 2 logn+1 and 2logn+2 respectively.

• For part P4 (this is the encoding of bL) the encoding block B1 will store the string
E ′(0,0,bL). Block B2,B3 and B4 will store any 6logn bit string with Hamming weight
2 logn+5, 2 logn+1 and 2logn+2 respectively.

• For part P5 (this is the encoding of rR) the encoding block B1 will store the string
E ′(rR,0,0). Block B2,B3 and B4 will store any 6logn bit string with Hamming weight
2 logn+6, 2 logn+1 and 2logn+2 respectively.

• For part P6 (this is the encoding of cR) the encoding block B1 will store the string
E ′(0,cR,0). Block B2,B3 and B4 will store any 6logn bit string with Hamming weight
2 logn+7, 2 logn+1 and 2logn+2 respectively.

• For part P7 (this is the encoding of bR) the encoding block B1 will store the string
E ′(0,0,bR). Block B2,B3 and B4 will store any 6logn bit string with Hamming weight
2 logn+8, 2 logn+1 and 2logn+2 respectively.

• For part P8 (this is the encoding of rB) the encoding block B1 will store the string
E ′(rB,0,0). Block B2,B3 and B4 will store any 6logn bit string with Hamming weight
2 logn+9, 2 logn+1 and 2logn+2 respectively.

• For part P9 (this is the encoding of cB) the encoding block B1 will store the string
E ′(0,cB,0). Block B2,B3 and B4 will store any 6logn bit string with Hamming weight
2 logn+10, 2 logn+1 and 2logn+2 respectively.
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• For part P10 (this is the encoding of bB) the encoding block B1 will store the string
E ′(0,0,bB). Block B2,B3 and B4 will store any 6logn bit string with Hamming weight
2 logn+11, 2 logn+1 and 2logn+2 respectively.

Standard form encoding of (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),T ) where T =⊤ and
T =⊣

For obtaining a standard-form encoding of (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),T )
where T =⊤, first we encode (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),T ) where T =⊢ using
the standard-form encoding. Let (P1,P2, . . . ,P10) be the standard-form encoding of the
following tuple (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),T ) where T =⊢. Now for each of the
block apply the following Rotation1 operator. To get the encoding for T =⊣ apply Rotation2

on each block of standard encoding of the tuple (V,(rL,cL,bL),(rR,cR,bR),(rB,cB,bB),⊢).

Valid permutation of the standard form

Now we will give a set of valid permutations to the bits of the encoding of any element
of Σ̄. The set of valid permutations are classified into into 3 categories:

1. Part-permutation: The 10 parts can be permuted using any permutation from S10

2. Block-permutation: In each of the part, the 4 blocks (say B1,B2,B3,B4) can be per-
muted is two ways. (B1,B2,B3,B4) can be send to one of the following

(a) Simple Block Swap: (B3,B4,B1,B2)

(b) Block Flip: (B2,B1,flip(B3),flip(B4))

The decoding function D2 : {0,1}240logn → Σ̄

We are now ready to describe the decoding function from Γ = {0,1}240logn to Σ̄.

• Identify the parts containing the encoding of V , rL, cL,bL, rR, cR, bR,rB, cB and bB.
This is possible because every part has a unique Hamming weight.

• For each part identify the blocks. This is also possible as in any part all the blocks have
distinct Hamming weight. By seeing the positions of the blocks one can understand
if flip was applied and to what and using that one case revert the blocks back to the
standard-form.
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• In the part containing the encoding of V consider the encoding-block. If the block is of
the form {(ℓ1ℓ2ℓ3)such that |ℓ1|= 2logn, |ℓ2|= 2logn−1 and |ℓ3| ≤ 2logn−2} then
T = {⊢}. If the block is of the form {(ℓ3ℓ1ℓ2)such that |ℓ1|= 2logn, |ℓ2|= 2logn−1
and |ℓ3| ≤ 2logn−2} then T = {⊤}. If the block is of the form {(ℓ2ℓ3ℓ1)such that |ℓ1|=
2logn, |ℓ2|= 2logn−1 and |ℓ3| ≤ 2logn−2} then T = {⊣}.

• By seeing the encoding block we can decipher the original values and the pointers.

• If the 240logn bit string doesn’t have the form of a valid encoding, then decode it as
(0,⊥,⊥,⊥).

Proof of Transitivity of the function

To prove the function F4.4 is transitive we start with describing the transitive group for
which the F4.4 is transitive.

The Transitive Group

We will now describe the group T acting on the cells of the matrix and a group T̂ acting
on the indices of a 6 logn bit string. First consider the group Bt2logn acting on the set [2logn].
We will assume that logn is a power of 2. The matrix has rows r1, . . . ,rn, columns c1, . . . ,cn

and bricks b1, . . . ,bn. We have used the encoding function E ′ to encode the rows, columns
and bricks. So the index of the rows, columns and bricks are encoded using a 6logn bit string.
From the Definition of E ′ and the group Bt2logn the following claim from Definition 4.46
and Claim 4.16.

Claim 4.48. For any elementary permutation σ̂ in Bt2logn ×Bt2logn ×Bt2logn that takes
E ′(x) to E ′(y) there exists a permutation σ ∈ Sn ×Sn ×Sn that takes x to y where x,y ∈
(R×{0}×{0})∪ ({0}×C×{0})∪ ({0}×{0}×B). That is

σ̂ [E ′(x)] = E ′(σ(x)).

Note that Bt2logn ×Bt2logn ×Bt2logn is not transitive on 6logn bit string. Let us define
the group T̂ ⊂ S6logn containing the following permutations:

1. all permutations in Bt2logn ×Bt2logn ×Bt2logn,

2. Rotation1 to be applied on Block (6 logn-bit),

3. Rotation2 to be applied on Block (6 logn-bit).
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T̂ is the group generated by the above set of permutations and clearly T̂ is transitive.

The group T will be the resulting group of permutations on the cells of the matrix
induced by the group T̂ acting on the 6logn bit. The group T is generated by the following
permutations:

1. all permutations induced by Bt2logn ×Bt2logn ×Bt2logn that acts on the cell,

2. for all i ∈ [n] row i is goes to column i, column i goes to brick i and brick i goes to row
i. That is Rotation1[E

′(ri,ci,bi)] = E ′(σ(bi,ri,ci)) for all i ∈ [n] where σ acts on the
cell.

3. for all i ∈ [n] row i is goes to brick i, column i goes to row i and brick i goes to column
i. That is Rotation2[E

′(ri,ci,bi)] = E ′(σ(ci,bi,ri)) for all i ∈ [n] where σ acts on the
cell.

From the construction of T̂ and T we have the following claim:

Claim 4.49. For any permutation σ̂ in T̂ ⊂ S6logn acting on the 6logn bit string there exists
a permutation σ in T ⊂ S3n acting on the cell such that σ̂ [(E ′(x)] = E ′(σ(x)) for all x in
the domain of E ′.

Observation 4.50. One special set of permutation in T̂ is called the “ith-bit-flips” or simply
“bit-flips”. For all 1 ≤ i ≤ 3logn the ith-bit-flip applies the transposition (2i−1,2i) to the
indices of the balanced-pointer-encoding.

Since the E ′-encoding of the row (rk,0,0) uses the balanced binary representation of
k in the first half and all zero sting in the second and third half, the j-th bit in the binary
representation of k is stored in the 2 j − 1 and 2 j-th bit in the E ′-encoding of ri. So the
j-th-bit-flip acts on the sets of rows by swapping all the rows with 1 in the j-th bit of their
index with the corresponding rows with 0 in the j-th bit of their index. Also, if i > logn then
there is no effect of the i-th-bit-flip operation on the set of rows.

One can make a similar observation for the columns and Bricks also.

From Definition 4.46, Claim 4.49 and Observation 4.50 we claim the following:

Claim 4.51. The group T acting on the cells of of the matrix is a transitive group. That is,
for all 1 ≤ i1, j1, i2, j2,k1,k2 ≤ n there is a permutation σ̂ ∈ T̂ such that σ̂ [E ′(i1,0,0)] =
E ′(i2,0,0), σ̂ [E ′(0, j1,0)] = E ′(0, j2,0) and σ̂ [E ′(0,0,k1)] = E ′(0,0,k2) . Or in other
words, there is a σ ∈T acting on the cell of the matrix that would take the cell corresponding
to row ri1 , column c j1 and brick bk1 to the cell corresponding to row ri2 , column c j2 and brick
bk2 .
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From the Claim 4.51 we see the group T acting on the cells of of the matrix is a transitive.
But it does not touch the contains within the cells of the matrix. But the input to the function
F4.4 contains element of Γ = {0,1}240logn in each cell. So we now need to extend the group
T to a group G2 that acts on all the indices of all the bits of the input to the function F4.4.

Recall that the input to the function F4.4 is a (n× n2)-matrix with each cell of matrix
containing a binary string of length 240logn and for each of the cells the binary string
contained in it has 10 parts of size 24logn each and each part has 4 blocks of size 6logn
each. We classify the generating elements of the group G2 into 4 categories:

1. Part-permutation: In each of the cells the 10 parts can be permuted using any permuta-
tion from S10

2. Block-permutation: In block the 4 blocks (say B1,B2,B3,B4) can be permuted is two
ways. (B1,B2,B3,B4) can be send to one of the following

(a) Simple Block Swap: (B3,B4,B1,B2)

(b) Block Flip (#1): (B2,B1,flip(B3),flip(B4))

(c) Block Flip (#2): (flip(B1),flip(B2),B4,B3)

3. Cell-permutation: for any σ ∈ T one has the do the following two steps simultane-
ously:

(a) (Matrix-update) Permute the cells in the matrix according to the permutation σ .
This does keeps each of the contains in the cells untouched - it just changes the
location of the cells.

(b) (Pointer-update) For each of blocks in each of the parts in each of the cells
permute the indices of the 6logn-bit strings according to σ , that is apply σ̂ ∈ T̂

corresponding to σ (existence of such permutation follows from Claim 4.49).

We now have the following theorem that would prove that the function F4.4 is transitive.

Theorem 4.52. The group G2 is a transitive group.

Theorem 4.53. The function F4.4 is a transitive function under the action of the transitive
group G2.

Proof of Theorem 4.52. To prove that the group G2 is transitive we have to show that for any
indices p,q ∈ [240n2 logn] there is a permutation σ ∈ G2 that would take p to q. So we can
think of the index p as sitting in kpth position (1 ≤ kp ≤ 6logn) in the block Bp of the part Pp
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in the (rp,cp,bp)-th cell of the matrix. Similarly, we can think of q as sitting in kqth position
(1 ≤ kq ≤ 6logn) in the block Bq of the part Pq in the (rq,cq,bq)-th cell of the matrix.

We will give a step by step technique in which permutations from G2 can be applied to
move p to q.

Step 1 Get the positions in the block correct: If kp ̸= kq then take a permutation σ̂ from
T̂ that takes kp to kq. Since T̂ is transitive, such a permutation exists. Apply the
cell-permutation from T corresponding to σ̂ on the cells. As a result the index p can
be moved to a different cell in the matrix but, by the choice of σ̂ its position in the
block in which it is will be kq.

Without loss of generality, we assume the the cell location does not change.

Step 2 Get the cell correct: Using a series of “bit-flip” operations change rp to rq,cp to cq

and bp to bq. Since one bit-flip operations basically changes one bit in the binary
representation of the index of the row or column or brick such a series of operations can
be made. This is another Cell-permutation. In this case we always do Matrix-update
and Pointer-update simultaneously.

Since each bit-flip operation is executed by applying the bit-flips in each of the blocks
so this might have once again changed the position of the index p in the block. But,
even if the position in the block changes it must be a flip operation away. Or in other
word, since in the beginning of this step kp = kq, so if kq is even (or odd) then after
the series bit-flip operations the position of p in the block is either kq or (kq −1) (or
(kq +1)).

Step 3 Align the Part: Apply a suitable Part-permutation from S10 to ensure that the part Pp

moves to part Pq.

Step 4 Align the Block: Using a suitable combination of Simple Block Swap and Block Flip
ensure the Block number gets matched, that is Bp goes to Bq. In this case the cell or the
Part does not change. But depending on whether the Block Flip operation is applied
the position in the block can again change. But once again, the current position in the
block kp is at most one flip away from kq.

Step 5 Apply the final flip: It might so happen that already we a done after the last step. If
not we know that the current position in the block kp is at most one flip away from kq.
So we apply the suitable Block-flip operation. Thus will not change the cell position,
Part number, Block number and the position in the block will match. Hence we are
done.
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Proof of Theorem 4.53. To prove that the function F4.4 is transitive we prove that for any
elementary operations σ from the group G2 and for any input Γn3

the function value does not
change even if after the input is acted upon by the permutation σ .

Case 1: σ is a Part-permutation and Case 2: σ is a Block-permutation directly
follows from our construction of the encoding so that D2 is invariant under Part permutation
and Block-permutation.

Case 3: σ is a Cell-permutation From Observation 4.27 it is enough to prove that when
we permute the cells of the matrix we update the points in the cells accordingly.

Let σ ∈ T be a permutation that permutes only the rows of the matrix. By Claim 4.49,
there exist a permutation σ̂ ∈ T̂ to be applied on every block and so that the contents of the
cells will be updated accordingly. Similarly if σ only permute the columns or Bricks of the
matrix we will be fine.

Finally, if Rotation1 was applied then for all i row i is swapped with column i, column
i is swapped with brick i and brick i is swapped with row i then it is easy to see that
σ̂ [E ′(i,0,0)] = E ′(0, i,0), σ̂ [E ′(0, i,0)] = E ′(0,0, i) and σ̂ [E ′(0,0, i)] = E ′(i,0,0) . In that
case the encoding block of the value part in a cell also gets swapped. This will thus be
encoding the T value as ⊤. And so the function value will not be affected as the T =⊤ will
ensure that one should apply the Rotation1 on the cells of the input before evaluating the
function. For Rotation2 we can argue similarly. Hence, F4.4 is transitive.

Properties of the Function

Claim 4.54. Zero error randomized query complexity of F4.4 is Ω(n3).

Proof. The function ModA3∗(n,n,n2) is a “harder” function than A3(n,n,n2). So R0(ModA3∗(n,n,n2))

is at least that of R0(A3(n,n,n2)).

Now since, F4.4 is
(
ModA3∗(n,n,n2) ◦D2

)
so clearly the R0(F4.4) is at least R0(A3(n,n,n2)).

From [ABB+17] we have D(A3(n,n,n2)) is Ω(n3). Hence R0(F4.4) at least Ω(n3).

The following Claim4.55 that follows from the definition of the function ModA3∗(n,n,n2).

Claim 4.55. The following are some properties of the function ModA3∗(n,n,n2):

Q(ModA3∗(n,n,n2)≤ 3Q(A3(n,n,n2))+O(n2 logn)
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Finally, from Theorem 2.20 we see that Q(F4.4) is at most O(Q(ModA3∗(n,n,n2) · logn).
So combining this fact with Claim 4.54, Claim 4.55 and Theorem 4.31 (from [ABB+17]) we
have Theorem 4.4.

4.7.3 Transitive pointer function F4.5for Theorem 4.5

In [ABB+17] they have proved that A3(1,n,n2) is such that R(A3(1,n,n2))=Ω(QE(A3(1,n,n2))
1.5.

In this function A3(1,n,n2) number of marked column is 1, which is different from A3(n,n,n2).
But for both of these function the domain is same. So, proof follows directly.

For transitive function first we will define ModA3∗(1,n,n2) on Σ̄n×n2
similar as ModA3∗(1,n,n2)

in Section 4.7.2. Then define a composition function with outer function ModA3∗(1,n,n2) and

inner function D2 as defined in Section 4.7.2. Our final function is F4.5 : Γn3 →{0,1} such
that F4.5 =ModA3∗(1,n,n2) ◦D2 and D2 is a function from Γ to Σ̄ where Γ = 240logn.

From the proof of Theorem 4.53 it directly follows that F4.5 is transitive under the action
of the group G2.

Since F4.5 is transitive, considering the fact that ModA3∗(1,n,n2) is harder than A3(1,n,n2)

and combining [ABB+17] result with Theorem 2.20 we have Theorem 4.5.





Chapter 5

Separation results for Transitive
functions using other functions

One would naturally ask what stops us from constructing transitive functions analogous
to the other functions, like cheat sheet-based functions. In fact, one could ask why to use
ad-hoc techniques to construct transitive functions (as we have done in most of our proofs)
and instead why not design a unifying technique for converting any function into a transitive
function that would display similar properties in terms of combinatorial measures 1. If one
could do so, all the ’separation’ results for general functions (in terms of separation between
pairs of measures) would translate to separation for transitive functions. In Section 5.2 we
have discussed why such a task is challenging. We argue the challenges of making transitive
versions of the cheat-sheet functions.

Our results:

Function constructed in [ABK16] demonstrates a quadratic separation between quantum
query complexity and certificate complexity. Their function was not transitive. We modify
their function to obtain a transitive function that gives a similar separation.

Theorem 5.1 (Restatement of Theorem 1.5). There exists a transitive function F1.5 : {0,1}N →
{0,1} such that

Q(F1.5) = Ω̃(C(F1.5)
2).

1In [BCG+20] they have demonstrated a technique that can be used for constructing a transitive partial
function that demonstrates gaps (between certain combinatorial measures) similar to a given partial function
that need not be transitive. But their construction need not construct a total function even when the given
function is total.
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It was proved in [BHT17] that the functions witness a gap between deterministic query
complexity (or randomized query complexity) and UCmin can be transformed to give func-
tions that witness separation between deterministic query complexity (or randomized query
complexity) and sensitivity. We observe that transformation the [BHT17] described pre-
serves transitivity. Our transitive functions from Theorem 4.3 along with the transformation
from [BHT17] gives the following theorem.

Theorem 5.2. There exists transitive functions F5.2 such that R(F5.2) = Ω̃(s(F5.2)
3).

We also discuss the difficulties related to the important classes of functions called cheat
sheets introduced in [ABK16]. All our results are compiled (and marked in green) in Table 5.2
which also serves as a survey of the study of Transitive Boolean functions.

5.1 Other transitive functions and related separation

5.1.1 Separation between quantum query complexity and certificate
complexity

We start this section by recalling the definition of k-sum. For Σ = [nk] the function k-sum :
Σn → {0,1} is defined as follows: on input x1,x2, . . . ,xn ∈ Σ, if there exists k element
xi1 , . . . ,xik , i1, . . . , ik ∈ [n], that sums to 0 (mod |Σ|) then output 1, otherwise output 0.

First, we will describe an encoding scheme for the inputs to k-sum function such
that the resulting function ENC-k-Sum is transitive. We then, similar to [ABK16], de-
fine ENCBlock-k-Sum function. Composing ENC-k-Sum with ENCBlock-k-Sum as outer
function gives us F1.5.

Function definition

Recall that, from Definition 2.34, for Σ= [nk], the function k-sum : Σn →{0,1} is defined
as follows: on input x1,x2, . . . ,xn ∈ Σ, if there exists k element xi1, . . . ,xik , i1, . . . , ik ∈ [n], that
sums to 0 (mod |Σ|) then output 1, otherwise output 0. We first define an encoding scheme
for Σ.

Encoding scheme

Similar to Section 4.5.1 we first define the standard form of the encoding of x ∈ Σ and then
extend it by action of suitable group action to define all encodings that represent x ∈ Σ where
Σ is of size nk for some k ∈ N.
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Fix some x ∈ Σ and let x = x1x2 . . .xk logn be the binary representation of x. The standard
form of encoding of x is defined as follows: For all i ∈ [k logn] we encode xi with with
4(k logn+2) bit Boolean string satisfying the following three conditions:

1. xi = xi1xi2xi3xi4 where each xi j, for j ∈ [4], is a (k logn+2) bit string,

2. if xi = 1 then |xi1|= 1, |xi2|= 0, |xi3|= 2, |xi4|= i+2, and

3. if xi = 0 then |xi1|= 0, |xi2|= 1, |xi3|= 2, |xi4|= i+2.

Having defined the standard form, other valid encodings of xi = (xi1xi2xi3xi4) are obtained by
the action of permutations (12)(34),(13)(24) ∈ S4 on the indices {i1, i2, i3, i4}. Finally if
x = {(xi j|i ∈ [k logn], j ∈ [4]}, then {(xσ(i)γ( j))|σ ∈ Sk logn,γ ∈ T ⊂ S4} is the set of all valid
encoding for x ∈ Σ. The decoding scheme follows directly from the encoding scheme.

Given y ∈ {0,1}k logn(4k logn+8), first break y into k logn blocks each of size 4k logn+8
bits. If each block is a valid encoding then output the decoded string else output that y is not
a valid encoding for any element from Σ.

Definition of the encoded function

ENC-k-Sum is a Boolean function that defined on n-bit as follows: Split the n-bit input
into block of size 4k logn(k logn+2). We say such block is a valid block iff it follows the
encoding scheme in Section 5.1.1 i.e. represents a number from the alphabet Σ. The output
value of the function is 1 iff there exists k valid block such that the number represented by
the block in Σ sums to 0 (mod |Σ|).

ENCBlock-k-Sum is a special case of the ENC-k-Sum function. We define it next.
ENCBlock-k-Sum is a Boolean function that defined on n-bit as follows: The input string
is splits into block of size 4k logn(k logn+2) and we say such block is a valid block iff it
follows the encoding scheme of Section 5.1.1 i.e. represents a number from the alphabet
Σ. The output value of the function is 1 iff there exists k valid block such that the number
represented by the block in Σ sums to 0(mod |Σ|) and the number of 1 in the other block
is at least 6× (k logn). Finally, similar to [ABK16] define F1.5 : {0,1}n2 → {0,1} to be
ENCBlock-k-Sum◦ENC-k-Sum, with k = logn.

The proof of Theorem 1.5 is same as that of [ABK16]. We give the proof here for
completeness.

Proof of Theorem 1.5. We first show that the certificate complexity of F1.5 is O(4nk2 logn(k logn+
2). For this we show that every input to ENCBlock-k-Sum, the outer function of F1.5, has a cer-
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tificate with Õ(k× (4k logn(k logn+2))) many 0’s and O(n) many 1’s. Also the inner func-
tion of F1.5, i.e. ENC-k-Sum, has 1-certificate of size O(4k2 logn(k logn+2) and 0-certificate
of size O(n). Hence, the F1.5 function has certificate of size O(4nk2 logn(k logn+2)).

Every 1-input of ENCBlock-k-Sum has k valid encoded blocks such that the number
represented by them sums to (0 mod |Σ|). This can be certified using at most Õ(k ×
(4k logn(k logn+2))) number of 0’s and all the 1’s from every other block.

There are two types of 0-inputs of ENCBlock-k-Sum. First type of 0-input has at least
one block in which number of 1 is less than 6× (k logn) and the zeros of that block is a
0-certificate of size Õ(4k logn(k logn+ 2)). The other type of 0-input is such that every
block contains at least 6× (k logn) number of 1’s. This type of 0-input can be certified by
providing all the 1’s in every block, which is at most O(n). This is because using all the 1’s
we can certify that even if the blocks were valid, no k-blocks of them is such that the number
represented by them sums to 0 (mod |Σ|).

Next, we prove Ω(n2) lower bound on quantum query complexity of F1.5. From
Theorem 2.21, Q(F1.5) = Ω(Q(ENCBlock-k-Sum)Q(ENC-k-Sum)). Since ENC-k-Sum re-
duces to ENC−Block-k-Sum, from Theorem 2.35 the quantum query complexity of the

ENC−Block-k-Sum function is Ω

(
n

k
k+1

k
3
2 logn(k logn+2)

)
. Thus

Q(F1.5) = Ω

(
n

2k
k+1

k3 logn(k logn+2)

)
.

Hence, Q(F1.5) = Ω̃(n2), taking k = logn.

5.1.2 Separation between sensitivity and randomized query complexity

We start by defining desensitisation transform of Boolean functions as defined in [BHT17].

Definition 5.3 (Desensitized Transformation). Let f : {0,1}n →{0,1}. Let U be a collection
of unambiguous 1-certificates for f , each of size at most UC1( f ). For each x ∈ f−1(1), let
px ∈U be the unique certificate in U consistent with x. The desensitized version of f is the
function fDT : {0,1}3n →{0,1} defined by fDT(x1x2x3) = 1 if and only if f (x1) = f (x2) =

f (x3) = 1 and px1 = px2 = px3 .

Observation 5.4. If f : {0,1}n → {0,1} is transitive, then fDT : {0,1}3n → {0,1} is also
transitive.
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Proof. Let Tf ⊆ Sn be the transitive group corresponding to f and let x1x2x3 ∈ {0,1}3n be
the input to fDT. Consider the following permutations acting on the input x1x2x3 to fDT:

1. S3 acting on the indices {1,2,3} and

2. {(σ ,σ ,σ) ∈ S3n|σ ∈ Tf } acting on (x1,x2,x3).

Observe that the above permutations act transitively on the inputs to fDT. Also from the
definition of fDT the value of the function fDT is invariant under these permutations.

Next, we need the following theorem from [BHT17]. The theorem is true for more
general complexity measures. We refer the reader to [BHT17] for a more general statement.

Theorem 5.5 ([BHT17]). For any k ∈ R+, if there is a family of function with D( f ) =
Ω̃(UCmin( f )1+k), then for the family of functions defined by f̃ = OR3UCmin( f ) ◦ fDT satisfies
D( f̃ ) = Ω̃(s( f̃ )2+k). Also, if we replace D( f ) by R( f ), Q( f ) or C( f ), we will get the same
result.

Proof of Theorem 5.2. Let us begin with the transitive functions F4.3 from Section 4.7.1
which will desensitize to get the desired claim. From Claim 4.42 and Observation 4.32 we
have R(F4.3)≥ Ω̃(UCmin(F4.3)

2).

Let F5.2 be the desensitize F4.3. From Theorem 5.5, Observation 5.4 we have the
theorem.

5.2 Challenges in transitive versions of “cheat sheet” based
functions

In this section we show that it is not possible to give a quadratic separation between degree
and quantum query complexity for transitive functions by modifying the cheat sheet function
using the techniques in [ABK16] which go via unambiguous certificate complexity.

Let us start by recalling the cheat sheet framework from [ABK16]. Let f : {0,1}n →
{0,1} be a total Boolean function. Let C( f ) be its certificate complexity and Q( f ) be its
bounded-error quantum query complexity. We consider the following cheat sheet function,
which we denote by fCS,t : {0,1}n×log t+t×log t×C( f )×logn →{0,1}:

• There are log t copies of f on disjoint sets on inputs denoted by f1, . . . , flog t .

• There are t cheat sheets: each cheat sheet is a block of (log t ×C( f )× logn) many bits
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• Let x1, . . . ,xlog t ∈ {0,1}n denote the input to the log t copies of f and let Y1, . . . ,Yt

denote the t cheat sheets.

• Let ℓ= ( f (x1), . . . , f (xlog t)). fCS,t evaluates to 1 if and only if Yℓ is a valid cheat sheet.

Separations between various complexity measures was shown in [ABK16] using the
cheat sheet framework. In [ABK16], the separations that lower bound bounded-error quantum
query complexity in terms of other complexity measures, for example degree, are obtained
as follows:

1. Start with a total function f : {0,1}n →{0,1} that has quadratic separation between
quantum query complexity and certificate complexity: Q( f ) = Ω̃(n) and C( f ) =
Õ(

√
n). Consider the cheat sheet version of this function fCS,t , with t = n10.

2. Lower bound Q( fCS,t), for t = n10, by Q( f ). This uses the hybrid method ([BBBV97])
and strong direct product theorem ([LR13]).

3. Upper bound degree of fCS,t by using the upper bound on the unambiguous certificate
complexity of fCS,t .

Instead of degree, one might use approximate degree in the third step above for a suitable
choice of f (see [ABK16] for details).

A natural approach to obtain a transitive function with gap between a pair of complexity
measures is to modify the cheat sheet framework to make it transitive. One possible modifica-
tion is to allow a poly-logarithmic blowup in the input size of the resulting transitive function
while preserving complexity measures of the cheat sheet function that are of interest (upto
poly-logarithmic factors). We show, however, that it is not possible to obtain a quadratic
separation between degree and quantum query complexity for transitive functions by modi-
fying the cheat sheet function using the techniques in [ABK16] which go via unambiguous
certificate complexity. The reason for this is that the unambiguous certificate complexity of a
transitive cheat sheet function on N-bits is Ω(

√
N) (see Observation 5.6) whereas we show

(see Lemma 5.7) that the quantum query complexity of such a function is o(N).

Note that this does not mean that cheat sheet framework can not be made transitive to
show such a quadratic gap. If the cheat sheet version of a function that is being made transitive
has a better degree upper bound than that given by unambiguous certificate complexity then
a better gap might be possible.

To formalize the above discussion we first need the following observation that lower
bounds the certificate complexity of any transitive function.
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Observation 5.6 ([SYZ04]). Let f : {0,1}N →{0,1} be a transitive function, then C( f )≥√
N.

Next, we upper bound on quantum query complexity of cheat sheet function using
quantum amplitude amplification ([BHMT02]). The details of proof of the following lemma
can be found in the full version of this paper [CKP21].

Lemma 5.7. The quantum query complexity of fCS,t is O(
√

t × log t ×
√

n× logn).

The cheat sheet version of f , fCS,t , is a function on Θ̃(n+C( f )t) many variables, where
t is polynomial in n. From the cheat sheet property the unambiguous certificate complexity
of fCS,t , denoted by UC( fCS,t), is Θ̃(C( f )).

Let f̃CS,t be a modified transitive version of fCS,t that preserves the quantum query
complexity and certificate complexity of fCS,t upto poly-logarithmic factors, respectively.
From Observation 5.6 it follows that UC( f̃CS,t) = Ω̃(

√
n+C( f )t). On the other hand, since

f̃CS,t preserves the certificate complexity upto poly-logarithmic factors, UC( f̃CS,t) = Õ(C( f )).
This implies that t = Õ(C( f )). Lemma 5.7 that Q( fCS,t) is at most Õ(C( f )

√
t). Thus in

order to achieve quadratic separation between UC and Q, t has to be Ω̃(C( f )2).

We end this section by giving a concrete approach towards showing separation between
degree and quantum query complexity for a transitive functions using the cheat sheet method.
We believe the it is possible to start with fCS,t , for transitive function f and t =

√
n and

convert it to a transitive function that preserves the unambiguous certificate complexity and
quantum query complexity upto poly-logarithmic factors, while incurring a poly-logarithmic
blowup in the input size. However, we do not know how to prove quantum query complexity
lower bound matching our upper bound from Lemma 5.7 for t =

√
n. We make the following

conjecture towards this end.

Conjecture 5.8. There exists a transitive function f : {0,1}n →{0,1} with C( f ) = Õ(
√

n)
and Q( f ) = Ω̃(n). Let fCS,

√
n be the cheat sheet version of f with

√
n cheat sheets. Then

Q( fCS,
√

n) = Ω(n3/4).

If true, the above conjecture should implies that for a transitive function f , Q( f ) =
Ω̃(deg( f )4/3).

It was showed in [ABK16] that the quantum query complexity of the cheat function
fCS,t , i.e. Q( fCS,t), is lower bounded by Q( f ), when t = n10. Their proof goes via he hybrid
method ([BBBV97]) and strong direct product theorem ([LR13]). Is is interesting to find the
the constant smallest c such that Q( fCS,nc) = Ω(Q( f )). We know that such a c must be at
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least than 1 (from Lemma 5.7) and is at most 10 (from [ABK16]). We state this formally
below:

Question 5.9. Let f : {0,1}n →{0,1} be a non-constant Boolean function and let fCS,nc be
its cheat sheet version with nc cheat sheets. What is the smallest c such that the following is
true Q( fCS,nc) = Ω(Q( f )).

5.3 State of art of the study of Transitive Boolean functions

Transitive functions have been studied for many years and there are results for some sub-
classes of transitive functions which are strictly larger than the classes of Symmetric functions.
Here we mention some of the important results related to transitive function as well as the
state of the art of this area.

5.3.1 Known lower bounds for complexity measures for the class of
transitive function

Corollary 5.10 ([KT16]). fbs( f ) = Ω(
√

n) for any transitive function f .

From [BHT17] it is also known that,

Lemma 5.11. For any Boolean function f , fbs( f ) = 2UCmin( f )−1.

Which implies the following corollary,

Corollary 5.12. UCmin( f ) = Ω(
√

n) and R( f ) = Ω(
√

n) for any transitive function f :
{0,1}n →{0,1}.

From above it follows that D( f )≤ R( f )2.

The following table represents the individual known separations and the known example
for different complexity measures for the class of transitive function:

5.3.2 Remaining cells of Table 5.2

In this section we prove that all function in white and yellow cell of Table 5.2 are transitive.
Since PARITY (⊕) and AND (∧) are symmetric they are also transitive by definition. The
other functions that appear in the table are those in Definition 2.30 (NWd for finite d ∈ N),
Definition 2.28 (RUB), Definition 2.32 (GSSd

1) and Definition 2.33 (GSS2).

We have the following corollary to the above observation:
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Measure known lower bounds Known example
D Ω(

√
N) O(

√
N)

[SYZ04] [SYZ04]
R0 Ω(

√
N) O(

√
N)

[SYZ04] [SYZ04]
R Ω(N

1
3 ) O(

√
N)

bs(f) = O(R( f )) [SYZ04]
C Ω(

√
N) O(

√
N)

Tribe(
√

N,
√

N)

RC Ω(
√

N) O(
√

N)

fbs(f) = Θ(RC( f )) Tribe(
√

N,
√

N)

bs Ω(N
1
3 ) Õ(N

3
7 )

[Sun07] [Sun07], [Dru11]
s Ω(N

1
8 ) Θ(N

1
3 )

deg( f ) = O(s(f))2 [Cha11]
λ Ω(N

1
12 ) Θ(N

1
3 )

C(f) = O(λ (f))6 [Cha11]
QE Ω(N

1
4 ) O(

√
N)

Q( f ) = O(QE( f )) [SYZ04]
deg Ω(N

1
4 ) O(

√
N)

deg( f ) = Ω(d̃eg( f )) [SYZ04]
Q Ω(N

1
4 ) Õ(N

1
4 )

[SYZ04] [SYZ04]
d̃eg Ω(N

1
4 ) Õ(N

1
4 )

[KT16] [SYZ04]
Table 5.1 Upper and Lower bounds on Complexity mea-
sures for Transitive Boolean functions

In each row, for the measure A, the two entries a,b repre-
sents:
(1) (Known lower bound) for all transitive Boolean func-
tion f , A( f ) = Ω(a), and
(2) (Known example) there exists a transitive function g
such that A(g)=O(b), where a and b are some polynomial
in N.

Observation 5.13. The following functions are transitive:

1. ORn ◦ANDn

2. ∧̃-tree for depth d for finite d ∈ N,
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Table 5.2 Best known separations between combinatorial measures for transitive functions.

D R0 R C RC bs s λ QE deg Q d̃eg

D 2 ; 2 2 ; 2 2 ; 2 2 ; 2 2 ; 3 3 ; 6 4 ; 6 2 ; 3 2 ; 3 4 ; 4 4 ; 4
T:1.4 T:1.4 ∧◦∨ ∧◦∨ ∧◦∨ T:5.2 T:4.3 T:4.2 T:1.4 T:1.4 T:4.3

R0 1,1 2 ; 2 2 ; 2 2 ; 2 2 ; 3 3 ; 6 4 ; 6 2 ; 3 2 ; 3 3 ; 4 4 ; 4
⊕ T:4.2 ∧◦∨ ∧◦∨ ∧◦∨ T:5.2 T:4.3 T:4.2 T:4.2 T:4.4 T:4.3

R
1 ; 1 1 ; 1 2 ; 2 2 ; 2 2 ; 3 3 ; 6 4 ; 6 1.5 ; 3 2 ; 3 2 ; 4 4 ; 4
⊕ ⊕ ∧◦∨ ∧◦∨ ∧◦∨ T:5.2 T:4.3 T:4.5 T:4.3 ∧ T:4.3

C
1 ; 1 1 ; 1 1 ; 2 2 ; 2 2 ; 2 2 ; 5 2 ; 6 1.15 ; 3 1.63 ; 3 2 ; 4 2 ; 4
⊕ ⊕ ⊕ [GSS16] [GSS16] [Rub95] ∧ [Amb16] [NW95] ∧ ∧

RC
1 ; 1 1 ; 1 1 ; 1 1 ; 1 1.5 ; 2 2 ; 4 2 ; 4 1.15 ; 2 1.63 ; 2 2 ; 2 2 ; 2
⊕ ⊕ ⊕ ⊕ [GSS16] [Rub95] ∧ [Amb16] [NW95] ∧ ∧

bs
1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 2 ; 4 2 ; 4 1.15 ; 2 1.63 ; 2 2, 2 2 ; 2
⊕ ⊕ ⊕ ⊕ ⊕ [Rub95, AS11] ∧ [Amb16] [NW95] ∧ ∧

s
1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 2 ; 2 1.15 ; 2 1.63 ; 2 2, 2 2 ; 2
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ∧ [Amb16] [NW95] ∧ ∧

λ
1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1 1 ; 1
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

QE
1 ; 1 1.33 ; 2 1.33 ; 3 2 ; 2 2 ; 2 2 ; 3 2 ; 6 2 ; 6 1 ; 3 2 ; 4 1 ; 4
⊕ ∧̃-tree ∧̃-tree ∧◦∨ ∧◦∨ ∧◦∨ T:1.5 T:1.5 ⊕ ∧ ⊕

deg
1 ; 1 1.33 ; 2 1.33 ; 2 2 ; 2 2 ; 2 2 ; 2 2 ; 2 2 ; 2 1 ; 1 2 ; 2 2 ; 2
⊕ ∧̃-tree ∧̃-tree ∧◦∨ ∧◦∨ ∧◦∨ ∧◦∨ ∧ ⊕ ∧ ∧

Q
1 ; 1 1 ; 1 1 ; 1 2 ; 2 2 ; 2 2 ; 3 2 ; 6 2 ; 6 1, 1 1 ; 3 1 ; 4
⊕ ⊕ ⊕ T:1.5 T:1.5 T:1.5 T:1.5 T:1.5 ⊕ ⊕ ⊕

d̃eg
1 ; 1 1 ; 1 1 ; 1 1 ; 2 1 ; 2 1 ; 2 1 ; 2 1 ; 2 1 ; 1 1 ; 1 1 ; 1
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

(1) Entry a;b in row A and column B represents: (1) (’Relationships’) for any Boolean function f , A( f ) = O(B( f ))b+o(1), and (2)
(’Separations’) there exists a transitive function g such that A(g) = Ω(B(g))a.

(2) Cells with a green background are those for which we constructed new transitive functions to demonstrate ’separations’ that match the
known ’separations’ for general functions. The previously known functions that gave the strongest ’separations’ were not transitive. The
second row gives the reference to the Theorems where the ’separation’ is proved. Although for these green cells the bounds match that of
the general functions, for some cells (with light green color) there is a gap between the known ’relationships’ and ’separations’.

(3) In the cells a with white background the best-known examples for the corresponding separation was already transitive functions. For
these cells, the second row either contains the function that demonstrates the separation or a reference to the paper where the separation was
proved. So for these cells, the ’separations’ for transitive functions matched the current best known ’separations’ for general functions. Note
that for some of these cell the don’t match.

(4) Cells with a yellow background are those where the ’separations’ do not match the best known ’separations’ for general functions.

(5) The various functions mentioned/referred in this table are defined in Section 2.2.
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3. NWd ,

4. RUB,

5. GSSd
1 , and

6. GSS2.

Proof. The transitivity of the functions either follows directly from their definitions or from
the fact that they are composition of two transitive functions and hence the function is
transitive using Observation 4.10.

5.4 Conclusion

This chapter presents a thorough investigation of the separations between various pairs of
complexity measures for transitive function. The main technical contribution of this paper is
to define transitive versions of pointer functions of [ABK16] that have similar complexity
measures as that of the original pointer functions while incurring only a poly-logarithmic
blowup in the input size. The current best known ’relationships’ and ’separations’ between
various pairs of measures for transitive functions are summarized in the Table 5.2.

Unfortunately, a number of cells in the table are not tight. In this context, we would like
to point out two important directions:

• For some of these cells, the ’separation’ results for transitive functions are weaker than
that of the general functions. A natural question is the following: why can’t we design
a transitive version of the general functions that achieve the same separation? For some
cases, like the cheat sheet-based functions, we discuss the difficulties and possible
directions in Chapter 5 Section 5.2. For these cases, the natural question would be
to obtain some different collection of functions (maybe not transitive) that achieves
similar separations.

• In some of the cells in the Table 5.2 tight bounds are not known, even for the case of
general functions. Can the ‘relationships’ results in these cases possibly be improved
for the case of transitive functions?

In the Table 5.1 we summarize the results on how low can individual complexity measures
go for transitive function. Even with the recent results of Huang [Hua19] and Aaronson et
al. [ABK+21b], there are significant gaps between the ‘relationships’ and ’separations’ in
this case.
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Finally, we would like to ask the question of how the amount of symmetry affects the
relationship between various measures. This is in the lines of the recent work [BCG+20].
The study about the different types of symmetries like graph properties, cyclically invariant
functions, min-term transitive functions, etc. is not new in this area, but a more elaborate
analysis is required to quantify the relationship between the measures and the amount of
symmetry.



Chapter 6

Non-deterministic degree of Symmetric
Boolean functions

6.1 Introduction

The non-deterministic degree ndeg( f ) is the minimal degree of a non-deterministic polyno-
mial for f , which is required to be nonzero iff f (x) = 1. In the area of quantum algorithms,
non-deterministic degree is a useful tool to characterize the non-deterministic version of a
quantum algorithm. Note that classical degree is equivalent to Quantum exact query algorithm
while non-deterministic degree is nothing but a way to characterize the nondeterministic
version of a quantum algorithm. For further details, we refer to [Mid04, dW00].

Now we will define another classical problem from discrete geometry known as covering
points from hypercube. Given a natural number n ∈ N, [n] denotes the set {1, . . . ,n}. For
any non-zero vector a ∈ Rn and b in R, the set of solutions to the affine equation H(x) :=
⟨a,x⟩−b = 01 defines a hyperplane in Rn. We say a point u in Rn is covered by a hyperplane
H if u lies on the hyperplane H, that is if H(u) = 0. A family of hyperplanes in Rn is said
to cover a set S ⊂ Rn if for every u ∈ S there exists a hyperplane in the family that covers
u. Similarly, we say u is covered by a polynomial P ∈ R[x1, . . . ,xn] if P(u) = 0. Essentially
the polynomial we will get from the covering problem is the non-deterministic polynomial
for a Boolean function. Here in this chapter, we will investigate the polynomial covering for
symmetric subsets of the Boolean cube which will lead us to the non-deterministic degree of
a polynomial that represents a symmetric Boolean function in the non-deterministic set-up.

1For all a, b in Rn, ⟨a,b⟩ will denote the standard inner product between a and b.
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Using Combinatorial Nullstellensatz [AT92, Alo99], Alon and Füredi [AF93] proved
the following lower bound on the natural except the origin (0, . . . ,0).

Theorem 6.1 (Alon and Füredi [AF93]). Let P be a polynomial in R[x1, . . . ,xn] such that P
covers every point of Qn expect the origin (0, . . . ,0). Then deg(P)≥ n.

Now suppose that we are given an n-cube Qn = {0,1}n, and we want to cover all its
vertices using minimum number of hyperplanes. Observe that, using only two hyperplanes
(namely xk = 0 and xk −1 = 0 for any k ∈ [n]), one can cover all the vertices of the n-cube.
Also, note that at least two hyperplanes are required to cover all the vertices of Qn.

Bárány asked about the minimum number m such that there exists a family of m hy-
perplanes in Rn covering every point of the hypercube Qn except the origin (0, . . . ,0).
Bárány extracted this problem from a paper on an infinite extension of Rado’s Theorem
by Komjáth [Kom94]. Komjáth [Kom94] proved that m ≥ log2 n− log2 log2 n for all n ≥ 2.
Also, note that m ≤ n, because the hyperplanes H1, . . . ,Hn, where Hi(x) := xi −1 = 0 for all
i ∈ [n], cover every point of Qn except (0, . . . ,0). Alon and Füredi proved Theorem 6.1 in
the context of solving this covering problem. As a direct consequence of Theorem 6.1, we
get the following celebrated result in combinatorial geometry.

Theorem 6.2 (Alon and Füredi [AF93]). Let m be the least positive integer such that there
exists a family of m hyperplanes covering the n-cube Qn = {0,1}n leaving out only the
origin. Then m = n.

Combinatorial Nullstellensatz [AT92], and Alon and Furedi’s covering result [AF93]
have found multiple extensions and applications in areas like finite geometry, coding theory,
combinatorial geometry, and extremal combinatorics, see [Alo99, BS09, KMR11, KR12,
DKSS13, BCPS18, BB20, CH20, SW20, BBDM21].

We say that a polynomial P ∈ R[x1, . . . ,xn] has a zero of multiplicity at least t at a point
v ∈ Rn if all derivatives of P up to order t − 1 vanish at v and P(v) = 0. In this paper, we
prove the following generalization of Theorem 6.1.

Theorem 6.3 (Restatement of Theorem 6.5). Given t ∈ N and k ∈ [n], let P ∈ R[x1, . . . ,xn]

be a polynomial such that at each point u ∈ Qn \Qn
k , P has a zero of multiplicity at least t

and at each point v ∈ Qn
k , P has a zero of multiplicity exactly (t −1). Then

deg(P)≥ max{k,n− k}+2t −2.



6.2 Related Work 95

We say a family of hyperplanes H1, . . . ,Hm in Rn is said to cover t times a point u in
Rn if t hyperplanes from the family cover u. Note that the following corollary is a direct
consequence of the above theorem.

Corollary 6.4. Given t ∈N and k ∈ [n], suppose H1, . . . ,Hm in Rn is a family of hyperplanes
such that every point of Qn

k of the hypercube is covered exactly (t −1) times and every point
of Qn \Qn

k is covered at least t times. Then

m ≥ max{k,n− k}+2t −2.

Additionally, we give an explicit construction of a family of hyperplanes matching the
lower bound of Corollary 6.4.

Theorem 6.5. Given t ∈N and k ∈ [n], there exists a family of hyperplanes H1, . . . ,Hm in Rn,
where m = max{k,n− k}+2t −2, such that every point of Qn

k of the hypercube is covered
exactly (t −1) times and every point of Qn \Qn

k is covered at least t times.

Observe that Theorem 6.5 directly implies that the lower bounds obtained in Theorem 1.6
and Corollary 6.4 are tight.

Corollary 6.6. • Given t ∈N and k ∈ [n], if P∈R[x1, . . . ,xn] is a polynomial of minimum
degree such that at each point u ∈ Qn \Qn

k , P has a zero of multiplicity at least t
and at each point v ∈ Qn

k , P has a zero of multiplicity exactly (t −1), then deg(P) =
max{k,n− k}+2t −2.

• Let m be the least positive integer such that there exists a family of m hyperplanes
covering each point Qn \Qn

k at least t times and each point of Qn
k exactly t −1 times.

Then m = max{k,n− k}+2t −2.

Using ideas from the proofs of Theorems 6.5 and 1.6, we also study a new variant of
restricted sumset problem and properties of polynomials vanishing on a grid.

6.2 Related Work

Given a subset S of Qn, we will denote by ec({0,1}n \S) the minimum number of hyper-
planes required to cover all the points in {0,1}n \S while leaving out all the points in S. A
natural question to ask, after Alon-Furedi’s covering result, is the following:

Problem 6.7 (Exact cover problem with respect to a subset). For a given subset S ⊂ Qn with
|S|> 1, what is the value of ec({0,1}n \S)?
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Aaronson et al. [AGG+21] investigated the above problem first. They gave the exact
value of ec({0,1}n \S) when the forbidden set S has cardinality at most 4, and for higher
cardinalities of the forbidden set S, they gave a range of values for ec({0,1}n \S).

Theorem 6.8 (Aaronson et al. [AGG+21]). Suppose S ⊆ {0,1}n and k ∈ [2n].

(a) If |S| ∈ {2,3}, then ec({0,1}n \S) = n−1.

(b) If |S|= 4, then ec({0,1}n \S) = n−1, if there is a hyperplane Q with |Q∩S|= 3, and
ec({0,1}n \S) = n−2, otherwise.

(c) Let ec(n,k) := max{ec({0,1}n \S) | S ⊆ {0,1}n and |S|= k}. Then,

n− log2(k)≤ ec(n,k)≤ n−2k + ec(2k,k).

In more recent work, Diamond and Yehudayoff [DY22] showed the existence of a subset
S of the hypercube for which ec(S) is exponential in n.

Theorem 6.9 (Diamond and Yehudayoff [DY22]). There exists a subset Dn of {0,1}n such
that ec(Dn)≥ 2Ω(n).

In this paper, we shall give an improved lower bound by introducing a new combinatorial
measure of the forbidden set S and show that our bound is tight also.

A subset S of {0,1}n is called symmetric if it is closed under permutations of coordinates.
Given a subset S of hypercube Qn, define

W (S) :=

∣∣∣∣∣
{

n

∑
i=1

ui
∣∣ u = (u1, . . . ,un) ∈ S

}∣∣∣∣∣ .
For any i ∈ {0, . . . ,n}, Tn,i denotes the set

Tn,i := {0, . . . , i−1}∪{n− i+1, . . . ,n} .

Venkitesh [Ven22] proved the following variant of the covering problem:

Theorem 6.10 (Venkitesh [Ven22]). Let S be a symmetric subset of the hypercube Qn, and
P ∈ R[x1, . . . ,xn] be a polynomial of minimum degree that covers all the points in S and no
points in Qn \S. Then deg(P) =W (S)−max{i ∈ {0, . . . ,n} | Tn,i ⊆W (S)}.
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If S is a symmetric subset of Qn, then as a direct consequence of the above theorem we
get

ec(S)≥W (S)−max{i ∈ {0, . . . ,n} | Tn,i ⊆W (S)} .

Also, if we substitute S = Qn \Qn
k in the above theorem then we get

deg(P) = max{n− k,k} ,

which is a special case of our Corollary 6.6. Venkitesh [Ven22] made the following conjecture
about covering symmetric subsets of hypercube using hyperplanes.

Conjecture 6.11 (Venkitesh [Ven22]). Suppose S is a symmetric subset {0,1}n, n ≥ 4 such
that W (S)⊆ Tn,2. Then ec(S) =W (S)−2.

Clifton and Huang introduced the notion of multiple covering by hyperplanes.

Theorem 6.12 (Clifton and Huang [CH20]). Let f (n, t) denote the minimum number of
hyperplanes required to cover every vertex of the hypercube Qn at least t times, while the
origin (0, . . . ,0) remains uncovered. Then

1. ∀n ≥ 2, f (n,2) = n+1

2. ∀n ≥ 2, f (n,3) = n+3

3. ∀t ≥ 4 and ∀n ≥ 3, n+ t +1 ≤ f (n, t)≤ n+
(t

2

)
Sauermann and Wigderson first studied the following higher multiplicities version of the

polynomial covering problem.

Theorem 6.13 (Sauermann and Wigderson [SW20]). Let t ≥ 2, n≥ 2t−3 and P∈R[x1, . . . ,xn]

be a minimum degree polynomial having zeros of multiplicity at least t at all points in
{0,1}n \{(0, . . . ,0)} and P(0, . . . ,0) ̸= 0. Then deg(P) = n+2t −3.

Sauermann and Wigderson also studied the following interesting variant of the polyno-
mial covering problem with higher multiplicities.

Theorem 6.14 (Sauermann and Wigderson [SW20]). Let t ≥ 2, n≥ 2t−3 and P∈R[x1, . . . ,xn]

be a minimum degree polynomial having zeros of multiplicity at least t at all points in
{0,1}n \ {(0, . . . ,0)} and a zero of multiplicity exactly t − 1 at (0, . . . ,0). Then deg(P) =
n+2t −2.
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6.3 Covering Hypercube with Multiplicities

In this section, we will prove Theorems 1.6 and 6.5. For a natural number t and a subset S of
Qn, we will say a family of hyperplanes (or a polynomial) is a (t, t −1)-cover of Qn \S if
the family of hyperplanes (or a polynomial) cover every point of Qn \S at least t-times and
every point of S exactly (t −1)-times. If t = 1, we will say the family is an exact cover of
Qn \S.

Here we shall first define a new combinatorial measure, namely index complexity of a
subset S of the n-cube Qn and then give an optimal lower bound depending upon the index
complexity of the restricted set S for the following question: what is the minimum size of a
(t, t −1)-cover of Qn \S?

Definition 6.15 (Index complexity). We denote the index complexity of a subset S of the n
cube Qn by r(S) and for |S|> 1, we define the index complexity r(S) of S to be the smallest
positive integer such that the following holds: ∃I ⊂ [n] with |I|= r(S) and ∃v ∈ S such that
for each s ∈ S\{v}, si ̸= vi, for some i ∈ I. For singleton subset S, we define r(S) = 0.

Observe that

• if S = {u ∈ {0,1}n : u1 = 1} then r(S) = n−1, and

• if S′ = {u ∈ {0,1}n : u1 = 1 and ∑
n
i=2 xi < n−1}∪{(0, . . . ,0)} then r(S′) = 1.

The following result gives a lower bound of the size of (t, t −1)-cover of Qn \S in terms
of index complexity of the set S.

Theorem 6.16. Let Qn = {0,1}n and S ⊂ Qn with size at least 2 and P ∈ R[x1, . . . ,xn] be a
polynomial, which is a (t, t −1)-cover of Qn \S. Then

deg(P)≥ n− r(S)+2t −2.

Recall that r(S) is the index complexity of S.

Proof. By the definition of index complexity, ∃v = (v1, . . . ,vn) ∈ S and ∃I ⊂ [n] with |I|=
r(S) such that ∀u=(u1, . . . ,un)∈ S\{v}, ∃i∈ I for which ui ̸= vi. We define g∈R[x1, . . . ,xn]

to be the polynomial
g(x) := ∏

i∈I
(xi − v̄i),

where v̄i = 1− vi,∀i ∈ I. Then ∀u ∈ S\{v}, g(u) = 0, g(v) ̸= 0 and deg(g) = r(S).
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Again, Pg is a polynomial having a zero of multiplicity at least t on every point of
Qn \ {v} and a zero of multiplicity exactly (t − 1) on v. So by Theorem 6.14 we have
deg(Pg)≥ n+2t −2. Hence

deg(P)≥ n− r(S)+2t −2.

Corollary 6.17. Let Qn = {0,1}n and S ⊂Qn with size at least 2 and H1, . . . ,Hm be a family
of hyperplanes, which is a (t, t −1)-cover of Qn \S. Then

m ≥ n− r(S)+2t −2.

Proof. Observe that the polynomial P∈R[x1, . . . ,xn] defined as P(x) =∏
m
i=1 Hi(x) is a (t, t−

1)-cover of Qn \S and deg(P) = m. The result now directly follows from Theorem 6.16.

Using Theorem 6.16 we will now derive a lower bound on the degree of the polynomial
in terms of the size of the forbidden set.

Theorem 6.18. Suppose Qn = {0,1}n and S ⊂ Qn with size at least 2 and P ∈ R[x1, . . . ,xn]

is a polynomial, which is a (t, t −1)-cover of Qn \S. Then

deg(P)≥ n−⌊log2 |S|⌋+2t −2.

Proof. As |S| ≥ 2, we get at least one i1 ∈ [n] such that there exists u1,v1 ∈ S, ⟨u1,ei1⟩ ≠
⟨v1,ei1⟩. Suppose S(i1,1) and S(i1,0) are subsets of S such that

S(i1,1) =
{

s ∈ S | ⟨s,ei1⟩= 1} and S(i1,0) = {s ∈ S | ⟨s,ei1⟩= 0
}

.

Without loss of generality we may assume that |S(i1,1)| ≥ |S(i1,0)| and we denote S1 =

S(i1,0). Then clearly S1 ⊂ S and |S1| ≤ |S|/2.

If |S1|= 1 then we are done. Otherwise, there exist i2 in [n]\{i1}, and u2 and v2 in S1

such that ⟨u2,ei2⟩ ̸= ⟨v2,ei2⟩. Again, let S(i2,1) and S(i2,0) be subsets of S1 such that

S(i2,1) = {s ∈ S1 | ⟨s,ei2⟩= 1} and S(i2,0) = {s ∈ S1 | ⟨s,ei2⟩= 0} .

Without loss of generality let us assume that |S(i2,1)| ≥ |S(i2,0)| and we denote S2 = S(i2,0).
Observe that S2 ⊂ S1 ⊂ S and

|S2| ≤
|S1|
2

≤ |S|
22 .
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Again, if |S2|= 1, we are done. Otherwise, we will divide S2 and continue the above process
until we get

Sk ⊂ Sk−1 ⊂ ·· · ⊂ S2 ⊂ S1 ⊂ S

such that ∀ℓ ∈ [k], we have |Sℓ| ≤ |Sℓ−1|/2 and |Sk|= 1. As |Sk| ≤ |S|/2k and |Sk|= 1, we
get that k ≤ ⌊log2 |S|⌋.

If Sk = {v} and I = {i1, . . . , ik} ⊂ [n], then by the above construction we get that ∀s ∈
S\{v}, ∃i ∈ I such that ⟨s,ei⟩ ̸= ⟨v,ei⟩. Now using Theorem 6.16, we get that

m ≥ n− k+2t −2 ≥ n−⌊log |S|⌋+2t −2.

Corollary 6.19. Let Qn = {0,1}n and S ⊂ Qn with size at least 2, and H1, . . . ,Hm be a
family of hyperplanes, which is a (t, t −1)-cover of Qn \S. Then,

m ≥ n−⌊log2 |S|⌋+2t −2.

Remark 6.20. Note that Aaronson et. al [AGG+21, Theorem 6.8] proved a special case
(t = 1) of the above corollary.

Even though Theorem 6.18, unlike Theorem 6.16, gives an explicit bound, we will now
show that Theorem 6.16 is strictly stronger than Theorem 6.18. Consider the following subset
of Qn:

S =

{
x ∈ Qn

∣∣ x1 = 1 and
n
∑

i=2
xi < n−1

}⋃{
(0, . . . ,0)

}
Observe that as |S|= 2n−1, Theorem 6.18 implies that size of a (t, t −1)-cover of Qn \S

is at least 1+2t −2. We can show that at least n−1+2t −2 hyperplanes will be required,
as index complexity r(S) = 1. Moreover, this lower bound is tight. Consider the following
set of n−1 hyperplanes:

H j(x) := nx1 +
n

∑
i=2

xi − j = 0, ∀ j ∈ [n−2]

Hn−1(x) :=
n

∑
i=2

xi −n−1 = 0
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These (n−1) hyperplanes form an exact cover of Qn \S. So these n−1 hyperplanes
along with t −1 copies of the hyperplane x1 = 0 and (t −1) copies of the hyperplane x1 = 1
form a (t, t −1)-cover of Qn \S.

Now a natural subset of the hypercube Qn is the k-th layer Qn
k , that is, the set of all

points in Qn whose co-ordinates contain exactly k many ones. Consider the following family
of hyperplanes

G j(x) :=
n

∑
i=1

xi − j = 0, (6.1)

where j ∈ {0,1,2, . . . ,n}. Observe that the n hyperplanes G j(x), where j ∈ {0,1,2, . . . ,n}\
{k}, along with (t −1) copies of the hyperplane x1 = 0 and (t −1) copies of the hyperplane
x1 = 1 form a (t, t −1)-cover of Qn \Qn

k . We will show that the size of a (t, t −1)-cover of
Qn \Qn

k can be much smaller. But before we do that we will first prove a lower bound, using
Theorem 6.16, on the size of a (t, t −1)-cover of Qn \Qn

k .

Theorem 6.21 (Restatement of Theorem 1.6). Let P ∈ R[x1, . . . ,xn] be a polynomial, which
is a (t, t −1)-cover of Qn \Qn

k . Then

deg(P)≥ max{k,n− k}+2t −2.

Proof. We will first consider the case where k ≤ n/2. Let v be the point in Qn
k whose first

k coordinates are ones and rest of them are zeros. Now observe that for each u ∈ Qn
k \{v}

there exists i ∈ [k] such that 1 = ⟨v,ei⟩ ≠ ⟨u,ei⟩ = 0. Therefore by definition of index
complexity 6.15, we get r(Qn

k ) ≤ k and so from Theorem 6.16, we get that deg(P) ≥
n− k+2t −2. The case where k > n/2 can be handled in a similar way.

Corollary 6.22. Let H1, . . . ,Hm be a family of hyperplanes, which is a (t, t − 1)-cover of
Qn \Qn

k . Then
m ≥ max{k,n− k}+2t −2.

6.4 Conclusion

Note that we give a lower bound on the minimum degree of a polynomial that is zero at every
point of the Boolean cube leaving a layer of the cube uncovered. But this is only a special
kind of symmetric set. So it is natural to ask what happens to the bound in the case of general
symmetric sets as well as partial symmetric sets?
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Another interesting problem is trying to match the upper bound part. That is coming up
with polynomials that have the mentioned properties and match the lower bound part.



Part II

Composition Theorem for the functions
with symmetry





Chapter 7

Approximate degree composition in terms
of Block sensitivity and some applications

7.1 Introduction

For studying the complexity of Boolean functions, a number of simple complexity measures
(like decision tree complexity, randomized query complexity, degree, certificate complexity
and so on) have been studied over the years. (Refer to the survey [Bd02] for an introduction
to complexity measures of Boolean functions.) Understanding how these measures are
related to each other [ABK16, ABK+21b, ABB+17, Hua19], and how they behave for
various classes of Boolean functions has been a central area of research in complexity theory
[Pat92, Dru11, Sun07].

A crucial step towards understanding a complexity measure is: how does the complexity
measure behave when two Boolean functions are combined to obtain a new function (i.e.,
what is the relationship between the measure of the resulting function and the measures of the
two individual functions) [BKT19, BDGKW20, GSS16, Tal13]? One particularly natural
combination of functions is called composition (defined in the Introduction) which takes a
central role in complexity theory. Let us briefly revisit the definition of composition. For any
two Boolean functions f : {0,1}n →{0,1} and g : {0,1}m →{0,1}, the composed function
f ◦g : {0,1}nm →{0,1} is defined as the function

f ◦g(x1, . . . ,xn) = f (g(x1), . . . ,g(xn)),
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where xi ∈ {0,1}m for i ∈ [n]. For the function f ◦ g, the function f is called the outer
function and g is called the inner function. See Definition 7.8 for a natural extension to
partial functions.

Let M(·) be a complexity measure of Boolean functions. A central question in complexity
theory is the following.

Question 7.1 (Composition question for M). Is the following true for all Boolean functions
f and g:

M( f ◦g) = Θ̃(M( f ) ·M(g))?

The notation Θ̃(·) hides poly-logarithmic factors of the arity of the outer function f .

Composition of Boolean functions with respect to different complexity measures is a
very important and useful tool in areas like communication complexity, circuit complexity
and many more. To take an example, a popular application of composition is to create new
functions demonstrating better separations (refer to [NS94, Tal13, Amb05, GSS16] for some
other results of similar flavour).

It is known that the answer to the composition question is in the affirmative for complexity
measures like deterministic decision tree complexity [Sav02, Tal13, Mon14], degree [Tal13]
and quantum query complexity [Rei11a, LMR+11, Kim13a]. While it is well understood how
several complexity measures behave under composition, there are two important measures
(even though well studied) for which this problems remains wide open: randomized query
complexity (denoted by R) and approximate degree (denoted by d̃eg) [She12, NS94, Amb05,
She13a, BT13, She13b]. (See Definition 2.16 for their respective formal definitions.)

For both R and d̃eg the upper bound inequality is known, i.e., R( f ◦g) = Õ(R( f ) ·R(g))
(folklore) and d̃eg( f ◦ g) = O(d̃eg( f ) · d̃eg(g)) [She13d]. Thus it is enough to prove the
lower bound on the complexity of composed function in terms of the individual functions.
Most of the attempts to prove this direction of the question have focused on special cases
when the outer function has certain special properties1.

For the composition of d̃eg, Sherstov [She12] already showed that d̃eg( f ◦g) composes
when the approximate degree of the outer function f is Θ(n), where n is the arity of the
outer function. Thus approximate degree composes for several symmetric functions (having
approximate degree Θ(n), like Majority and Parity). Though, until recently it was not

1We note that some works have also studied the composition of R and d̃eg when the inner functions have
special properties, for example, [ABK16, BK18, AGJ+17, GLSS19, Li21, BDBGM22].
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even clear if d̃eg(OR◦AND) = Ω(d̃eg(OR) d̃eg(AND)) (arguably the simplest of composed
functions). OR has approximate degree O(

√
n), and thus the result of [She12] does not prove

d̃eg composition when the outer function is OR (similarly for AND). In a long series of work
by [NS94, Amb05, She13a, BT13, She13b], the question was finally resolved; it was later
generalized to the case when the outer function is symmetric [BBGK18a].

In contrast to R composition, no lower bound on the approximate degree of composed
function is known with a weaker measure on the outer function. It is well known that for
any Boolean function f ,

√
s( f )≤

√
bs( f ) = O(d̃eg( f )) [NS94]. So a natural step towards

proving d̃eg composition is: prove a lower bound on d̃eg( f ◦ g) by
√

bs( f ) · d̃eg(g). We
show this result by generalizing the approach of [BBGK18a].

While the techniques used for the composition of R and d̃eg are quite different, one can
still observe the similarities between the classes of outer functions for which the composition
of R and d̃eg is known to hold respectively. We further expand these similarities, by extending
the classes of outer functions for which the composition theorem holds.

7.2 Our Results and Techniques

It is well-known, by amplification, that R( f ◦g) = O(R( f ) ·R(g) · logR( f )). In the case of
approximate degree, Shrestov [She13d] showed that d̃eg( f ◦ g) = O(d̃eg( f ) · d̃eg(g)). So,
to answer the composition question for R (or d̃eg), we are only concerned about proving a
lower bound on R( f ◦g) (or d̃eg( f ◦g)) in terms of R( f ) and R(g) (or d̃eg( f ) and d̃eg(g))
respectively.

We split our results into three parts. In the first part we prove the tight lower bound on
R( f ◦ g) when the outer function has full randomized complexity. In the second part we
provide a tight lower bound on d̃eg( f ◦ g) in terms of bs( f ) and d̃eg(g). Finally, we also
prove composition theorems for R and d̃eg when the outer functions have a slightly relaxed
notion of symmetry.

7.2.1 Lower bound on d̃eg( f ◦g) in terms of block sensitivity of f and
d̃eg(g)

As discussed in the introduction, the composition question for d̃eg is only known to hold
when the outer function f is symmetric [BBGK18a] or has high approximate degree [She12].
There are also no known lower bounds on d̃eg( f ◦g) in terms of weaker measures of f and
d̃eg(g). Compare this with the situation with respect to composition of R. It was shown
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in [GJPW18a] that R( f ◦g) = Ω(s( f )R(g)), where s( f ) denotes the sensitivity of f . This
was later strengthened to Ω(fbs( f )R(g)) [BDG+20, BDB20a], where fbs( f ) is the fractional
block sensitivity of f .

In this second part we show analogous lower bounds on approximate degree of composed
function f ◦g. Our main result here is the following.

Theorem 7.2. For all non-constant (possibly partial)2 Boolean functions f : {0,1}n →{0,1}
and g : {0,1}m →{0,1}, we have

d̃eg( f ◦g) = Ω̃(
√

bs( f ) · d̃eg(g)).

We first note that the above theorem is tight in terms of block sensitivity, i.e., we cannot
have d̃eg( f ◦g) = Ω̃(bs( f )c · d̃eg(g)) for any c > 1/2. This is because the OR function over n
bits witnesses the tight quadratic separation between d̃eg and bs, i.e., d̃eg(ORn) = Θ(

√
n) =

Θ(
√

bs(ORn)) [NS94].

We also get the following composition theorem as a corollary. It says that the composition
for d̃eg holds when the outer function has minimal approximate degree with respect to its
block sensitivity. Recall, d̃eg( f ) = Ω(

√
bs( f )) [NS94].

Corollary 7.3. For all Boolean function f : {0,1}n →{0,1} with d̃eg( f ) = Θ(
√

bs( f )) and
for all g : {0,1}m →{0,1}, we have d̃eg( f ◦g) = Θ̃(d̃eg( f ) · d̃eg(g)).

This complements a result of Sherstov [She12, Theorem 6.6], which shows that compo-
sition of d̃eg holds when the outer function has maximal d̃eg with respect to its arity.

We further note that Corollary 7.3 covers new set of composed functions f ◦g for which
the composition theorem for d̃eg doesn’t follow from the known results [BBGK18a, She12].
For example, consider the Rubinstein function RUB with arity n (Definition 7.16) as the
outer function f . It is clearly not a symmetric function. It also doesn’t have high approxi-
mate degree, i.e., d̃eg(RUB) = O(

√
n logn) (Lemma 7.21). Therefore, the composition of

d̃eg(RUB◦g) doesn’t follow from the existing results. However, it follows from Corollary 7.3,
since bs(RUB) = Ω(n) and so d̃eg(RUB) = Θ̃(

√
bs(RUB)).

Another example is the sink function SINK over
(n

2

)
variables (Definition 7.15), which

is also not a symmetric function. Furthermore, its approximate degree is O(
√

n logn)
(Lemma 7.21). Therefore, the composition of d̃eg(SINK ◦ g) also doesn’t follow from

2For definitions of block sensitivity and approximate degree in the context of partial functions, please see
Definitions 7.10 and 7.11.
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the existing results. Again, it follows from Corollary 7.3, since bs(SINK) = Θ(n) (Observa-
tion 7.17) and d̃eg(SINK) = Θ̃(

√
n).

Ideas behind proof of Theorem 7.2 We will first sketch the proof ideas in the case when f
and g are total Boolean functions, and then explain how to extend it to partial functions too.

Our starting point is the well known Nisan-Szegedy’s embedding of PrOR over bs( f )
many bits in a Boolean function f [NS94]. Carrying out this transformation in f ◦g embeds
PrORbs( f ) ◦ (g1, . . . ,gbs( f )) into f ◦g, where g1, . . . ,gbs( f ) are different partial functions such
that bdeg(gi)≥ d̃eg(g) for all i ∈ [bs( f )]3. Since the transformation is just substitutions of
variables by constants, we further have

d̃eg( f ◦g)≥ bdeg(PrORbs( f ) ◦ (g1, . . . ,gbs( f ))). (7.1)

It now looks like that we can appeal to the composition theorem for PrOR (Theorem 7.13)
[BBGK18a] to obtain our theorem. However, there is a technical difficulty – Theorem 7.13
doesn’t hold for different inner partial functions. It only deals with a single total inner
function. We therefore generalize the proof of Theorem 7.13 to obtain the following general
version of the composition theorem for PrOR.

Theorem 7.4. For any partial Boolean functions g1,g2, . . . ,gn, we have

bdeg (PrORn ◦ (g1,g2, . . . ,gn)) = Ω

(√
n ·minn

i=1 bdeg(gi)

logn

)
.

We can now obtain our main theorem from Eq. (7.1) and Theorem 7.4. The proof of
Theorem 7.4 is a generalization of Theorem 7.13.

We end this part with a comment on how to extend our main theorem to partial functions.
Note that with the appropriate definition of block sensitivity (Definition 7.10), the embedding
of Nisan-Szegedy’s carries through and then the rest of the proof is identical.

7.2.2 Composition results when the outer functions has some symmetry

The class of symmetric functions capture many important function like OR, AND, Parity and
Majority. Recall that a function is symmetric when the function value only depends on the
Hamming weight of the input; in other words, a function is symmetric iff its value on an

3bdeg is the notion of approximate degree in the context of partial functions. For a formal definition, see
Definition 7.11.
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input remains unchanged even after permuting the bits of the input. As noted earlier, both for
R and d̃eg, composition was known to hold when the outer function was symmetric.

A natural question is, whether one can prove composition theorems when the outer
function is weakly symmetric (it is symmetric with respect to a weaker notion of symmetry).
In this paper we consider one such notion of symmetry – junta-symmetric functions.

Definition 7.5 (k-junta symmetric function). A function f : {0,1}n → {0,1} is called a
k-junta symmetric function if there exists a set J of size k of variables such that the function
value depends on assignments to the variables in J as well as on the Hamming weight of
the whole input.

k-junta symmetric functions can be seen as a mixture of symmetric functions and k-
juntas. This class of functions has been considered previously in literature, particularly in
[CFGM12, BWY15] where these functions plays a crucial role. [CFGM12] even presents
multiple characterisations of k-junta symmetric functions for constant k. Note that by
definition an arbitrary k-junta (i.e., a function that depend on k variables) is also a k-junta
symmetric function, since we can consider the dependence on Hamming weight to be trivial.
Thus, this notion loses out on the symmetry of the function considered. We, therefore,
consider the class of strongly k-junta symmetric functions.

Definition 7.6 (Strongly k-junta symmetric function). A k-junta symmetric function is called
strongly k-junta symmetric if every variable is influential. In other words, there exists a
setting to the junta variables such that the function value depends on the Hamming weight of
the whole input in a non-trivial way.

We prove that if the outer function is strongly
√

n-junta symmetric (“strongly” indicating
that the dependence on the Hamming weight is non-trivial) then d̃eg composes.

Theorem 7.7 (Restatement of Theorem 1.12). Let k = O(
√

n). For any strongly k-junta
symmetric function f : {0,1}n →{0,1} and any Boolean function g : {0,1}m →{0,1}, we
have

• d̃eg( f ◦g) = Θ̃(d̃eg( f ) · d̃eg(g)).

Note that if one is able to prove the above theorem for k-junta-symmetric functions
(without the requirement of “strongly”) for any non-constant k then we would have the full
composition theorem.
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7.3 Prelimaniries

Notations: We will use [n] to represent the set {1, . . . ,n}. For any (possibly partial) Boolean
function f : {0,1}n → {0,1,∗} we will denote by Dom( f ) the set f−1({0,1}). The arity
of f is the number of variables - in this case n. A Boolean function f : {0,1}n → {0,1,∗}
is said to be total if Dom( f ) = {0,1}n. Any function (not otherwise stated) will be a total
Boolean function.

For any x ∈ {0,1}n, we will use |x| to denote the number of 1s in x, that is, the Hamming
weight of the string x. The string xi denotes the modified string x with the i-th bit flipped.
Similarly, xB is defined to be the string such that all the bits whose index is contained in the
set B ⊆ [n] are flipped in x.

Following is a formal definition of (partial) function composition.

Definition 7.8 (Generalized composition of functions). For any (possibly partial) Boolean
function f : {0,1}n → {0,1,∗} and n (possibly partial) Boolean functions g1,g2, . . . ,gn,
define the (possibly partial) composed function

f ◦ (g1,g2, . . . ,gn)(x1,x2, . . . ,xn) = f (g1(x1),g2(x2), . . . ,gn(xn)),

where gi’s can have different arities and, moreover, if xi /∈ Dom(gi) for any i ∈ [n] or the
string (g1(x1),g2(x2), . . . ,gn(xn)) /∈ Dom( f ), then the function f ◦g outputs ∗.

In this chapter, we use the standard definitions of various complexity measures like
sensitivity, block-sensitivity, fractional block sensitivity, approximate degree and bounded
approximate degree, and the partial function Promise-OR. We present the formal definitions
in the following subsections.

7.3.1 Standard definitions and functions

Standard definition of complexity measures

We will start by recalling the formal definition of d̃eg.

Definition 7.9 (Approximate degree (d̃eg)). A polynomial p : Rn →R is said to approximate
a Boolean function f : {0,1}n →{0,1} if |p(x)− f (x)| ≤ 1/3, ∀x ∈ {0,1}n. The approxi-
mate degree of f , d̃eg( f ), is the minimum possible degree of a polynomial that approximates
f .
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Note that the constant 1/3 in the above definitions can be replaced by any constant
strictly smaller than 1/2 which changes d̃eg( f ) by only a constant factor.

Other than R and d̃eg, two important related measures are sensitivity (s( f )) and block
sensitivity (bs( f )). While the sensitivity and block sensitivity of a total function is well
defined, we note that for the case of partial functions there are at least two valid ways of
extending the definition from total functions to partial functions. All our results in this
paper will hold for partial functions with the following definitions of sensitivity and block
sensitivity.

Definition 7.10. The sensitivity s( f ,x) of a function f : {0,1}→{0,1,∗} on x is the maximum
number s such that there are indices i1, i2, . . . , is ∈ [n] with f (xi j) = 1− f (x), for all 1 ≤ j ≤ s.
Here xi is obtained from x by flipping the ith bit. The sensitivity of f is defined to be
s( f ) = maxx∈Dom( f ) s( f ,x).

Similarly, the block sensitivity bs( f ,x) of a function f : {0,1} → {0,1,∗} on x is the
maximum number b such that there are disjoint sets B1,B2, . . . ,Bb ⊆ [n] with f (xB j) =

1− f (x) for all 1 ≤ j ≤ b. Recall xB j is obtained from x by flipping all bits inside B j. The
block sensitivity of f is defined to be bs( f ) = maxx∈Dom( f ) bs( f ,x).

In the definition of block sensitivity, the constraint that the blocks has to be disjoint
can be relaxed by extending the definition to “fractional blocks”. This gives the measure of
fractional block sensitivity. Please check Definition 2.12 in Chapter 2 for a formal definition
of fractional block sensitivity.

For the composition of d̃eg The definition of d̃eg can naturally be extended to partial
functions f by restricting the definition to hold only for inputs in Dom( f ), i.e., it doesn’t
specify the value of the approximating polynomial on inputs not in Dom( f ). So the approxi-
mating polynomial can take arbitrarily large values on points outside the domain. However,
for the purpose of understanding the composition of approximate degree of Boolean func-
tions (or even total Boolean functions) one need a measure of approximate degree of partial
Boolean functions which is bounded on all the points of the Boolean cube.

Definition 7.11 (Bounded approximate degree (bdeg)). For a partial Boolean function
f : {0,1}n → {0,1,∗}, the bounded approximate degree of f (bdeg( f )) is the minimum
possible degree of a polynomial p such that

• |p(x)− f (x)| ≤ 1/3, ∀x ∈ Dom( f ), and

• 0 ≤ p(x)≤ 1 ∀x ∈ {0,1}n.
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In other words, we take the minimum possible degree of a polynomial which is bounded
for all possible inputs (p(x) ∈ [0,1] for all x ∈ {0,1}n), and it approximates f in the usual
sense over Dom( f ).

Over the years people have tried to study the composition of d̃eg with different outer
functions. In this context the following restriction of OR is an important partial function:

Definition 7.12 (Promise-OR). Promise-OR (denoted by PrORn) is the function PrORn :
{0,1}n →{0,1,∗} such that:

PrORn(x) =


0 if |x|= 0,

1 if |x|= 1,

∗ otherwise.

We will also be using the following theorem of [BBGK18a] regarding the composition
question of bdeg when the outer function is PrORn. Informally, we will call it the Promise-OR
composition theorem.

Theorem 7.13 ([BBGK18a]). For any Boolean function g : {0,1}m →{0,1} we have,

bdeg (PrORn ◦g) = Ω

(√
n · d̃eg(g)/ logn

)
.

7.3.2 Some important Boolean functions

In this section, we define some important Boolean functions that have been used in the paper.
We start with Multiplexer Function or Addressing Function.

Definition 7.14 (Multiplexer Function or Addressing Function). The function MUX : {0,1}k+2k →
{0,1} with input (x0, . . . ,xk−1,y0, . . . ,y2k−1) outputs the bit yt , where t = ∑

k−1
i=0 xi2i.

The following function was defined in [CMS20].

Definition 7.15 (SINK). Consider a tournament defined on k vertices with
(k

2

)
variables

such that, for i < j, if xi j = 1 then there is an outgoing edge from i to j. A vertex i ∈ [n] is a
sink-vertex if all edges incident to it are incoming edges. For x ∈

(k
2

)
, SINK(x) = 1 if there a

vertex i ∈ [n] such that i is a sink-vertex, and 0 otherwise.

Definition 7.16 (Rubinstein function [Rub95]). Let g : {0,1}k →{0,1} be such that g(x) = 1
iff x contains two consecutive ones and the rest of the bits are 0. The Rubinstein function,
denoted by RUB : {0,1}k2 →{0,1}, is defined to be RUB= ORk ◦g.
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7.3.3 Some properties of SINK and Rubinstein function

Following is an easy observation.

Observation 7.17. The sensitivity of SINK : {0,1}(
k
2) →{0,1} is at least (k−1). Consider

a tournament on vertices v1, . . . ,vk such that v1 is a sink-vertex and (v2, . . . ,vk,v2) is a cycle.
Observe that flipping any edge incident to v1 changes the value of the function from 1 to 0.
In particular, bs(SINK)≥ s(SINK) = Ω(k).

We now want to give an upper bound on the approximate degree of these two functions.
For this, we first need the following generalization of approximate degree.

Definition 7.18 (ε-Error Approximate Degree (d̃egε)). A polynomial p : Rn → R is said to
ε-approximate a Boolean function f : {0,1}n →{0,1} if

|p(x)− f (x)| ≤ ε, ∀x ∈ {0,1}n.

The ε-approximate degree of f (d̃egε( f )) is the minimum possible degree of a polynomial
which ε-approximates f .

It is known (see [BNRdW07a] also [Tal14, Appendix A]) that:

Lemma 7.19 ([BNRdW07a, Tal14]). Given a polynomial p that approximates a Boolean
function f to error 1/3, one can come up with a polynomial p′ that ε-approximates f such
that deg(p′) = O(deg(p) log(1/ε)).

Also, the following theorem will be used in this section.

Theorem 7.20 ([She13d]). For all Boolean functions f and g, d̃eg( f ◦g) =O(d̃eg( f )d̃eg(g)).

We now upper bound the approximate degree of SINK and RUB.

Lemma 7.21. For the sink function SINK : {0,1}(
k
2) →{0,1} and the Rubinstein function

RUB : {0,1}k2 →{0,1} we have

1. d̃eg(SINK) = O(
√

k logk), and

2. d̃eg(RUB) = O(k logk).

Proof. We first upper bound the approximate degree of SINK. For every vertex i ∈ [n], there
is a sink at that vertex if and only if all edges incident to that vertex are incoming. This is
equivalent to saying that the variables xi j, when j > i, are 0 and x ji, when j < i, are 1. This
can be computed by an ANDk function and we call this function AND

(i)
k .
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Also, since any tournament has at most one sink vertex, SINK can be expressed as the
sum of AND(i)

k ’s, for i ∈ [k]. Recall that the approximate degree of ANDk is O(
√

k), which,
from Theorem 7.19, implies that 1/(3k)-error approximate degree of ANDk is O(

√
k logk)4.

Replacing each AND
(i)
k with 1/(3k)-error approximating polynomial gives a 1/3-error ap-

proximating polynomial for SINK with degree O(
√

k logk).

Now we upper bound the approximate degree of Rubinstein function. Recall that
RUB : {0,1}k2 →{0,1} is defined as RUB=ORk ◦g, where g : {0,1}k →{0,1} is a function
such that g(x) = 1 if and only if x contains two consecutive 1’s and the rest of the bits are
0. Observe that there are only (k− 1) inputs on which g takes value 1, call these inputs
z1, . . . ,zk−1. Let AND(i)

k be the Boolean function which evaluates to 1 if and only if its input
is zi. Thus g can be expressed as the sum of AND(i)

k ’s, for i ∈ [k]. By a similar argument as in
the last paragraph, the 1/3-error approximate degree of g can be bounded by O(

√
k logk).

From Theorem 7.20, this implies an O(k logk) upper bound on the approximate degree of
RUB.

7.4 Composition of approximate degree in terms of block
sensitivity

In this section, we study the composition question for approximate degree. Recall that the
composition question asks: whether for all Boolean functions f and g

d̃eg( f ◦g) = Ω̃(d̃eg( f ) d̃eg(g))?

Following our discussion from the introduction, we know that the above composition is
known to hold for only two sub-classes of outer functions, namely symmetric functions
[BBGK18a] and functions with high approximate degree [She12]. It is thus natural to seek
weaker lower bounds to make progress towards the composition question. One way to
weaken the expression on the right-hand side would be to replace the measure d̃eg( f ) by a
weaker measure (like

√
s( f ),

√
bs( f ) or

√
fbs( f )). Here we will establish one such lower

bound of
√

bs( f ) d̃eg(g).

We restate our result below:
4Note that 1/(3k)-error approximate degree of ANDk can be even lower O(

√
k logk) (see [dW08] for more

details). We are dealing with the upper bound and for our purpose, it is sufficient to use
√

k logk bound.
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For all non-constant (possibly partial)5 Boolean functions f : {0,1}n → {0,1} and
g : {0,1}m →{0,1}, we have

d̃eg( f ◦g) = Ω̃(
√

bs( f ) · d̃eg(g)).

We note that many analogous results are known in the setting of the composition of R;
see, for example, [GJPW18a, BDG+20, BDB20a, BK18, AGJ+17, GLSS19, BDBGM22].
To the best of our knowledge, this is the first such result in the setting of d̃eg. We present
only a proof sketch here; most of the technical parts of the proof appear in Section 7.5.

Further, we present the sketch of the proof in two parts. For simplicity, in the first part we
sketch a proof of the lower bound

√
s( f ) d̃eg(g) for total function f , and then in the second

part we modify the arguments to obtain Theorem 7.2.

We begin with a proof sketch for a lower bound of
√

s( f ) d̃eg(g). Let x ∈ {0,1}n be an
input having the maximum sensitivity with respect to f , and S ⊆ [n] be the set of sensitive bits
at x (|S|= s( f )). Consider the subfunction f ′ obtained from f by fixing the set of variables
not in S according to x. By construction, f ′ is defined over s( f ) many variables and is fully
sensitive at the input x|S given by x restricted to the indices in S. Since f ′ is a subfunction of
f and g is non-constant, we have d̃eg( f ◦g)≥ d̃eg( f ′ ◦g).

Notice that f ′ at the neighborhood of x, in the Boolean cube, is the partial function

PrOR (Definition 7.12) or its negation. Therefore, we have d̃eg( f ◦g)≥ d̃eg( f ′ ◦g)≥
bdeg(PrOR|S| ◦g) (see Definition 7.11 for a definition of the bounded approximate degree).
We can now invoke the composition theorem for PrOR (Theorem 7.13) [BBGK18a] to obtain
our lower bound:

d̃eg( f ◦g)≥ d̃eg( f ′ ◦g)≥ bdeg(PrOR|S| ◦g) = Ω̃(
√
s( f ) d̃eg(g)).

However, there is a technical issue with our argument above. When we claimed that
f ′ looks like a PrOR function we were not quite correct. Technically, it is a Shifted-PrOR
function PrOR

x|S
|S| , where PrORa

n(y1,y2, . . . ,yn) := PrORn(y1 ⊕ a1,y2 ⊕ a2, . . . ,yn ⊕ an) for
a ∈ {0,1}n. Formally, we have

d̃eg( f ◦g)≥ d̃eg( f ′ ◦g)≥ bdeg(PrOR
x|S
|S| ◦g) = bdeg(PrOR|S| ◦ (g1, . . . ,g|S|)), (7.2)

5For definitions of block sensitivity and approximate degree in the context of partial functions, please see
Definitions 7.10 and 7.11.
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where gi = g or ¬g depending on the corresponding i-th bit in x|S.

We, therefore, need a composition theorem for PrOR with different inner functions,
while Theorem 7.13 requires that all the inner functions be same. In fact, we would need a
more general composition theorem with different inner partial functions, which we restate
below. This generalization is crucially used when dealing with block sensitivity.

The proof of Theorem 7.4 is a generalization of proof of Theorem 7.13. For the sake of
completeness and reader’s convenience, we present the proof in Section 7.5 (Theorem 7.29)6.

Now returning to Eq. (7.2) and using Theorem 7.4, we obtain the desired lower bound:

d̃eg( f ◦g)≥ d̃eg( f ′ ◦g)≥ bdeg(PrOR
x|S
|S| ◦g) = Ω̃(

√
s( f ) d̃eg(g)).

We are now ready to present the modifications required to prove the lower bound Ω̃(
√

bs( f ) d̃eg(g)).

Proof of Theorem 7.2. Let b = bs( f ) and a = (a1,a2, . . . ,an) be an input where f achieves
the maximum block sensitivity. Further, let B1,B2, . . . ,Bb be disjoint minimal sets of variables
that achieves the block sensitivity at a, i.e., f (a) ̸= f (aBi) for all i ∈ [b]. Recall, aBi denotes
the Boolean string obtained from a by flipping the bits at all the indices given by Bi. Define a
partial function f ′ : {0,1}n →{0,1,∗} such that,

f ′(x) =


0 if x = a,

1 if x = aBi, for some i ∈ [b],

∗ otherwise.

Note that f contains f ′ or its negation as a sub function. Thus, d̃eg( f ◦g)≥ bdeg( f ′ ◦g).

Since g is non-constant, we can fix the indices not in
⋃b

i=1 Bi according to a to obtain
f ′′ ◦ g. We would now like to embed PrORb over the remaining variables in f ′′. For this
purpose we define the following partial functions: for every i ∈ [b], let Ii : {0,1}Bi →{0,1,∗}
be such that

Ii(x) =


0 if x = a|Bi,

1 if x = aBi|Bi,

∗ otherwise.

6For a nearly optimal generalization see Theorem 7.30 in Section 7.5.
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Now observe that f ′′ ◦g can be rewritten as PrORb ◦ (I1 ◦g, . . . , Ib ◦g). We therefore have

d̃eg( f ◦g)≥ bdeg( f ′ ◦g)≥ bdeg( f ′′ ◦g) = bdeg(PrORb ◦ (I1 ◦g, . . . , Ib ◦g))

= Ω

(√
b ·mini bdeg(Ii ◦g)

logb

)
= Ω̃

(√
b · d̃eg(g)

)
,

where the second last equality follows from Theorem 7.4 and the last equality uses the fact
bdeg(Ii ◦g)≥ d̃eg(g) for all i, which in turn follows from each Ii being non-constant.

We end this section with few final remarks. As a corollary to Theorem 7.2 we have the
following composition for d̃eg when the outer function has minimal approximate degree with
respect to its block sensitivity.

Corollary 7.22 (Restatement of Corollary 7.3). For all Boolean function f : {0,1}n →{0,1}
with d̃eg( f ) = Θ(

√
bs( f )) and for all g : {0,1}m →{0,1}, we have d̃eg( f ◦g) = Θ̃(d̃eg( f ) ·

d̃eg(g)).

We also note that the set of Boolean functions with d̃eg( f ) = Θ(
√

bs( f )) includes
examples of non-symmetric functions f with low approximate degree. In other words,
when such functions are outer function in a composed function then the composition of
d̃eg doesn’t follow from the known results [BBGK18a, She12]. For example, consider the
Rubinstein function RUB with arity n (Definition 7.16). It is a non-symmetric function
with d̃eg(RUB) = O(

√
n logn) (Lemma 7.21). Thus, the composition of d̃eg(RUB◦g) does

not follow from [BBGK18a] or [She12]. However, d̃eg(RUB) = Θ̃(
√

bs(RUB)), and hence
from Corollary 7.3, d̃eg(RUB◦g) = Θ̃(d̃eg(RUB) d̃eg(g)).

Another example is given by the SINK function on Θ(n2) variables (Definition 7.15).
Its approximate degree is O(

√
n logn) (Lemma 7.21), while bs(SINK) = Θ(n). Thus,

d̃eg(SINK◦g) = Θ̃(d̃eg(SINK) d̃eg(g)) follows from Corollary 7.3.

As stated in the introduction, we recall that Theorem 7.2 is tight in terms of block-
sensitivity, i.e., the lower bound can not be improved to Ω̃(bs( f )c · d̃eg(g)) for some c > 1/2.

7.5 Approximate degree of Promise-OR composed with
different inner functions

In this section we show that the approximate degree composes when the outer function is
PrOR and the inner functions are (possibly) different partial functions. The proof is essentially
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a straightforward generalization of the proof of Theorem 7.13 [BBGK18a, Theorem 16
(arXiv version)]. However, for the sake of completeness and reader’s convenience, we give
an overview of the proof here. We will need some definitions and theorems from [BBGK18a]
which we state now. We start with the definition of a problem called “singleton combinatorial
group testing”. It generalizes the combinatorial group testing problem.

Definition 7.23 (Singleton CGT). Let D be the set of all w ∈ {0,1}2n
for which there exists

an x ∈ {0,1}n such that for all S ⊆ [n] satisfying ∑i∈S xi ∈ {0,1}, we have ∑i∈S xi = wS. Note
that for all w ∈ D, the string x is uniquely defined by xi = w{i}. Let us denote this string by
x(w). we then define the partial function SCGT2n : D →{0,1}n by SCGT2n(w) = x(w).

The following theorem is from Theorem 19 from [BBGK18a] (arXiv version), previously
proved by [Bel15]:

Theorem 7.24 ([Bel15]). The bounded-error quantum query complexity of SCGT2n is
Θ(

√
n).

For a formal Definition of bounded error quantum query complexity we refer the survey
by [Bd02]. Before we state the next result that we need from [BBGK18a] we are defining
robustness of a polynomial to input noise.

Definition 7.25 (Robustness to input noise). For any function f : {0,1}n →{0,1,∗} we say
a polynomial p : {0,1}n → R approximately computes f with δ -robustness where δ ∈ [0, 1

2)

if for any x ∈ Dom( f ) and ∆ ∈ [−δ ,δ ]n, we have | f (x)− p(∆+ x)| ≤ 1
3 .

Now we are ready to state the next result.

Theorem 7.26 ([BBGK18a, Theorem 17 (arXiv version)]). For a partial Boolean function f ,
there exists a bounded multilinear polynomial p of degree O(Q( f )) that approximates f with
robustness Ω(1/Q( f )2) where Q( f ) is the bounded error quantum query complexity of the
function f .

We refer [BBGK18a] for more details about robustness of a polynomial induces by
quantum algorithm. We also need the existence of a multilinear robust polynomial for
XORn ◦SCGT2n , which follows from Theorems 7.24 and 7.26 above, where XORn ◦SCGT2n

is the parity of n output bits of SCGT2n .

Theorem 7.27 ([BBGK18a, Theorem 20 (arXiv version)]). There is a real polynomial p of
degree O(

√
n) over 2n variables {wS}S⊆[n] and a constant c ≥ 10−5 such that for any input

w ∈ {0,1}2n
with XORn ◦SCGT2n(w) ̸= ∗ and any ∆ ∈ [−c/n,c/n]2

n
,

|p(w+∆)−XORn ◦SCGT2n(w)| ≤ 1/3.
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Furthermore, p is multilinear and for all w ∈ {0,1}2n
, p(w) ∈ [0,1].

We also need the following result of Sherstov that shows composition holds for the
approximate degree of the parity of n different functions.

Theorem 7.28 ([She12, Theorem 5.9]). For any partial Boolean functions f1, . . . , fn, we
have

bdeg(XOR◦ ( f1, . . . , fn)) = Ω

(
n

∑
i=1

bdeg( fi)

)
.

We are now ready to prove Theorem 7.4 which we restate below.

Theorem 7.29. For any partial Boolean functions f1, f2, . . . , fn, we have

bdeg (PrORn ◦ ( f1, f2, . . . , fn)) = Ω

(√
n ·minn

i=1 bdeg( fi)

logn

)
.

Furthermore the following upper bound also holds,

bdeg (PrORn ◦ ( f1, f2, . . . , fn)) = O
(√

n · n
max
i=1

bdeg( fi) · logn
)
.

Proof. The upper bound follows by first amplifying the approximation of inner function to
within error Θ(1/n) and then composing with the polynomial given by Theorem 7.26 for
PrOR.

For amplification one can use the univariate amplification polynomial of degree O(log(1/ε))

that maps [0,1/3] to [0,ε], [2/3,1] to [1−ε,1], and [1/3,2/3] to [0,1] given by [BNRdW07a,
Lemma 1].

We now give an overview of the lower bound proof following [BBGK18a].

Let q be an approximating polynomial for PrOR◦( f1, . . . , fn) of degree T := bdeg(PrOR◦
( f1, . . . , fn)), which is also bounded on all Boolean inputs outside the promise. Let q′ be
the polynomial obtained from q by amplifying the approximation to within error c/n on all
inputs in the promise, where c is the constant from Theorem 7.27. Note that the degree of q′

is O(T · logn), and it remains bounded on all possible Boolean inputs.

We can assume without loss of generality that f1, f2, . . . , fn are non-constant partial
Boolean functions. Therefore for each fi there exists an input y such that fi(y) = 0. For all
S ⊆ [n], we now define a polynomial q′S using q that approximates PrOR◦ ( fi)i∈S by setting
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the variables of each fi, i ̸∈ S, to an input where it evaluates to 0. Note that the degree of q′S
is bounded by the degree of q′.

Now consider the polynomial p over 2n variables {wS}S⊆[n] given by Theorem 7.27. Let
r be the polynomial obtained from p by replacing the variables wS by polynomials q′S, i.e.,
r = p◦ (q′S)S⊆[n]. Clearly the degree of r is O(T

√
n logn).

It can now be argued that r approximates XOR ◦ ( f1, . . . , fn) to error within 1/3. A
slight care is needed in this argument for p expects inputs which are ∆-close to Boolean
values {0,1}. However, it may happen that some q′S, though bounded in [0,1], is not close to
Boolean values {0,1}. This is where we will use the fact that p is also multilinear, and hence
the value of p on a convex combination of Boolean inputs is equal to the convex combination
of values of p on the Boolean inputs. Hence, if p works correctly when all inputs are in
{0,1}, then it must also be correct on inputs in [0,1]. A final thing to note is that any invalid
input (to p) in [0,1]2

n
can be written as a convex combination of valid inputs.

Thus, we have

bdeg(XOR◦ ( f1, . . . , fn)) = O(T
√

n logn) = O(
√

n logn ·bdeg(PrOR◦ ( f1, . . . , fn))).

Whereas from Theorem 7.28 we have

bdeg(XOR◦ ( f1, . . . , fn)) = Ω

(
n

∑
i=1

bdeg( fi)

)
= Ω

(
n ·min

i
bdeg( fi)

)
.

Combining the two, we obtain the lower bound

bdeg(PrOR◦ ( f1, . . . , fn)) = Ω

(√
n ·minn

i=1 bdeg( fi)

logn

)
.

We will now use this weak bound to establish nearly optimal bound for the approximate
degree of PrOR composed with n different partial functions. This will again be a simple
generalization of OR composed with different functions [BBGK18a, Theorem 37]. For the
sake of completeness, we work out some of the details.
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Theorem 7.30. For any partial Boolean functions f1, f2, . . . , fn, we have

bdeg (PrORn ◦ ( f1, f2, . . . , fn)) = Θ̃

(√
n

∑
i=1

bdeg( fi)2

)
,

when the lcm of bdeg( fi)
2 for i ∈ [n] is Θ(maxi bdeg( fi)

2).

Proof. As mentioned before, the proof is merely working out the details of [BBGK18a,
Theorem 37] while keeping in mind that we are working with partial functions.

Let F = PrORn ◦ ( f1, f2, . . . , fn), di = bdeg( fi)
2 for i ∈ [n], and ℓ be the lcm of di’s. Now

consider the function G = PrORℓ ◦F . From Theorem 7.29, we have the following bounds on
bdeg(G) up to constants

√
ℓ ·bdeg(F)

logℓ
≤ bdeg(G)≤

√
ℓ ·bdeg(F) · logℓ. (7.3)

Now using the associativity of PrOR we can rewrite G as

G = PrORnℓ ◦ ( f1, . . . , f1︸ ︷︷ ︸
ℓ times

, . . . , fn, . . . , fn︸ ︷︷ ︸
ℓ times

). (7.4)

Further regrouping fi’s, we can rewrite G as follows

G = PrORd ◦ (PrORℓ/d1 ◦ f1, . . . ,PrORℓ/d1 ◦ f1︸ ︷︷ ︸
d1 times

, . . . ,PrORℓ/dn ◦ fn, . . . ,PrORℓ/dn ◦ fn︸ ︷︷ ︸
dn times

),

(7.5)

where d = ∑
n
i=1 di. Now using Theorem 7.29 and

√
di = bdeg( fi), we obtain following

bounds for PrORℓ/di ◦ fi (up to constants)

√
ℓ

log(ℓ/di)
≤ bdeg(PrORℓ/di ◦ fi)≤

√
ℓ · log(ℓ/di). (7.6)

Now consider (7.5) and using Theorem 7.29 along with (7.6), we obtain

√
dℓ

logd · logℓ
≤ bdeg(G)≤

√
dℓ · logℓ · logd (7.7)
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Now from (7.7) and (7.3) it follows

√
d

logd · log2 ℓ
≤ bdeg(F)≤

√
d · log2 ℓ · logd.

7.6 Composition results when the outer functions have
some symmetry

7.6.1 Composition theorem for junta-symmetric functions

The class of symmetric functions capture many important function like OR, AND, Parity and
Majority. Recall that a function is symmetric when the function value only depends on the
Hamming weight of the input; in other words, a function is symmetric iff its value on an
input remains unchanged even after permuting the bits of the input. As noted earlier, both for
R and d̃eg, composition was known to hold when the outer function was symmetric.

A natural question is, whether one can prove composition theorems when the outer
function is weakly symmetric (it is symmetric with respect to a weaker notion of symmetry).
In this paper we consider one such notion of symmetry – junta-symmetric functions. Check
Definition 7.5.

k-junta symmetric functions can be seen as a mixture of symmetric functions and k-
juntas. This class of functions has been considered previously in literature, particularly in
[CFGM12, BWY15] where these functions plays a crucial role. [CFGM12] even presents
multiple characterisations of k-junta symmetric functions for constant k. Note that by
definition an arbitrary k-junta (i.e., a function that depend on k variables) is also a k-junta
symmetric function, since we can consider the dependence on Hamming weight to be trivial.
Thus, this notion loses out on the symmetry of the function considered. We, therefore,
consider the class of strongly k-junta symmetric functions. A k-junta symmetric function is
called strongly k-junta symmetric if every variable is influential. In other words, there exists
a setting to the junta variables such that the function value depends on the Hamming weight
of the whole input in a non-trivial way.

We prove that if the outer function is strongly
√

n-junta symmetric (“strongly” indicating
that the dependence on the Hamming weight is non-trivial) then d̃eg composes.



124 Approximate degree composition in terms of Block sensitivity and some applications

Theorem 7.31 (Restatement of Theorem 1.12). For any strongly k-junta symmetric function
f : {0,1}n →{0,1} and any Boolean function g : {0,1}m →{0,1}, we have

• d̃eg( f ◦g) = Θ̃(d̃eg( f ) · d̃eg(g)) where k = O(
√

n).

Note that if one can prove the above theorem for k-junta-symmetric functions (without the
requirement of “strongly”) for any non-constant k then we would have the full composition
theorem.

7.6.2 Composition of approximate degree for
√

n-junta symmetric func-
tions

In this subsection, we will prove the composition result of d̃eg when the outer function has
some amount of symmetry. Of course, there are various notions of symmetry. Traditionally
a function is said to have the maximum amount of symmetry when the function value is
invariant under any permutation of the variables. Such functions are called symmetric.
Symmetric functions are very well studied in the literature of Boolean function analysis. In
terms of composition theorems of d̃eg and R it was proved in [BBGK18a] and [GJPW18a]
that d̃eg and R respectively composes when the outer function is symmetric.

In terms of weaker notions of symmetry, there are various possible definitions. Here we
consider the case of strongly-k-junta symmetric functions. The composition theorem for d̃eg
when the outer function is strongly-k-junta symmetric.

A crucial result that we use in the proof of composition theorem of d̃eg is the following
result from [Pat92].

Theorem 7.32 ([Pat92]). For any non-constant symmetric function f : {0,1}n →{0,1}, let k
be the closest integer to n/2 such that f takes different values on inputs of Hamming weight
k and k+1. Define,

γ( f ) =

k if k ≤ n/2,

n− k otherwise.

Then
d̃eg( f ) = Θ

(√
n(γ( f )+1)

)
.

Using the result of [Pat92] we prove the following proposition about the approximate
degree of a k-junta symmetric function. Recall the multiplexer function from Definition 7.14.
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Proposition 7.33: For any k-junta symmetric function f : {0,1}n →{0,1}, we have d̃eg( f ) =
Ω

(√
(n− k)γmax

)
and d̃eg( f )=O

(
max{k,

√
(n− k)γmax}

)
, where γmax =maxi∈{0,1}k{γ( fi)}

such that fi is the symmetric function obtained by restricting the junta variables according to
i.

Proof. Fixing the junta variables in f we obtain a symmetric function on n−k variables with
approximate degree Ω(

√
(n− k)γmax) (Theorem 7.32), which in turn implies the same lower

bound on d̃eg( f ).

For the upper bound, we obtain an approximating polynomial for f by composing
the (exact) polynomial for the multiplexer function MUX : {0,1}k+2k → {0,1} with the
approximating polynomials for different symmetric functions obtained by restricting the k
junta variables. Therefore, d̃eg( f ) = k+O(

√
(n− k)γmax) = O

(
max{k,

√
(n− k)γmax}

)
.

As mentioned earlier, the composition of d̃eg when the outer function is symmetric was
proved in [BBGK18a]. The following is their result that we crucially use in the proof of
Theorem 1.12.

Theorem 7.34 ([BBGK18a]). For any symmetric Boolean function f : {0,1}n →{0,1} and
any Boolean function g : {0,1}m →{0,1} we have,

d̃eg( f ◦g) = Ω̃(d̃eg( f ) · d̃eg(g))

We now present the proof of Part (i) of Theorem 1.12, that the proof of composition of
d̃eg when the outer function is strongly-k-junta symmetric.

Proof of Theorem 1.12(Part (i)). Since f is a strongly-k-junta symmetric function so there
exists a setting of the k junta variables such that the resulting function is a non-constant
symmetric function. Let f ′ be the symmetric function obtained by restricting the junta
variables of f so that f ′ is non-constant. Then by Theorem 7.32 the approximate degree of
f ′ is Ω(

√
(n− k)γmax). Then clearly we have

d̃eg( f ◦g)≥ d̃eg( f ′ ◦g) = Ω̃(d̃eg( f ′) · d̃eg(g)) = Ω̃(
√
(n− k)γmax · d̃eg(g)), (7.8)

where the first equality follows from Theorem 7.34. Now from Proposition 7.33 we know that
d̃eg( f ) = O(

√
(n− k)γmax) if k = O(

√
(n− k)γmax), which is satisfied when k = O(

√
n).
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Thus from (7.8) we obtain

d̃eg( f ◦g) = Ω̃(d̃eg( f ) · d̃eg(g)).

7.7 Conclusion

While our work makes progress on the composition problem for d̃eg, the main problem of
whether d̃eg composes for any pair of Boolean functions remains open. In this light, we
would like to highlight some questions that can be useful stepping stones towards the main
questions.

In case of approximate degree composition, a natural question is whether
√

bs( f ) can
be replaced by some other complexity measures. In this regards we state the following open
problems:

Question 7.35. For all Boolean functions f and g, can we prove either of the following:
• d̃eg( f ◦g) = Ω(

√
deg( f ) · d̃eg(g))? • d̃eg( f ◦g) = Ω(

√
fbs( f ) · d̃eg(g))?

Recently, in [SYZ04, Sun07, Dru11, Cha11, CKP22], the classes of transitive functions
got a lot of attention as a natural generalization of the classes of symmetric functions.

Question 7.36. Can we prove that d̃eg and R compose when the outer function is transitive?



Chapter 8

Approximate degree composition for
recursive functions

8.1 Introduction

Representing Boolean functions in terms of polynomials has played a pivotal role in theoreti-
cal computer science. Various representation concepts, such as degree, approximate degree
and sign degree, contribute to understanding the complexity of these functions. The minimum
possible degree of a real polynomial representing a Boolean function, f : {0,1}n →{0,1}, is
called the degree, denoted deg( f ), of the function. For any 0 < ε < 1

2 , the minimum degree
of a real polynomial that ε approximates a Boolean function, f : {0,1}n →{0,1}, in ℓ∞, is
called the approximate degree of f and is denoted by d̃egε( f ). Usually, d̃eg( f ) is shorthand
for d̃eg1/3( f ).

Different values of ε introduce different representation concepts, each with distinct
applications. For instance, as ε approaches 1

2 we have the sign representation or threshold
degree, denoted deg±( f ), of a Boolean function f . Threshold degree has strong connections
to designing efficient learning algorithms (PAC learning [KS04, KOS04]). At the same
time, the threshold degree lower bounds provide insights into circuit depths, formula sizes,
communication complexity and many more areas [BVdW07, Che16]. For 0< ε < 1/2, called
the approximate degree of f , d̃egε( f ), is a crucial quantity with close connections to quantum
query complexity, communication complexity and other areas in theoretical computer science.
More specifically, lower bounds on approximate degrees lead to lower bounds in quantum
query complexity [BBC+01b, AS04, Aar12], communication complexity [She09, She11a],
and circuit complexity [All89]. On the other hand, upper bounds on approximate degree
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impact learning theory (Agnostic Learning [KKMS08], Attribute-Efficient Learning [KS06,
STT12], etc.), approximate inclusion-exclusion [KLS96, She09], differentially private data
release [TUV12, CTUW14], etc.

For large error, that is ε of the form 1−δ−n

2 where δ is a constant less than 1, approximate
degrees have an important role in understanding lower bounds of AC0 circuits and also plays
a vital role in attribute-efficient learning. Notably, large error representation and threshold
representation are distinct from each other. For some functions, they may be the same
(like OR) but there exist functions for which both representations are signifiantly different.
For example, the ‘ODD-MAX-BIT’ function [Bei94] has constant threshold degree but
approximate degree is nΩ(1) for ε = 1−exp(−nΩ(1))

2 . In this work, the large error representation
of a function serves a crucial role in proving lower bounds, specifically for functions termed
‘hardness amplifier functions’ [BT22]. Before going into further details, first we will describe
the problem.

A fundamental aspect in understanding complexity measures is investigating how they be-
have when two Boolean functions are combined to form a new function [BKT19, BDGKW20,
GSS16, Tal13]. One particularly natural form of combination is composition: for any two
Boolean functions f : {0,1}n → {0,1} and g : {0,1}m → {0,1}, the composed function
f ◦g : {0,1}nm →{0,1} is defined by

f ◦g(x1, . . . ,xn) := f (g(x1), . . . ,g(xn)),

where xi ∈ {0,1}m for i∈ [n]. For the function f ◦g, the function f is called the outer function,
and g is called the inner function. The composition has been employed commonly to create
new functions showcasing improved separations (refer to [NS94, Tal13, Amb05, GSS16] for
related results).

A big open question in this area is to understand how approximate degree (d̃eg) behaves
when we compose two functions. More specifically, it asks the following: for all Boolean
functions f : {0,1}n →{0,1} and g : {0,1}m →{0,1}, is

d̃eg( f ◦g) = Θ̃(d̃eg( f ) · d̃eg(g))?

The tilde in the Θ̃ notation in the above question hides a polynomial factor of log(n+m).
This problem is often referred to as the approximate degree composition problem.

The upper bound, d̃eg( f ◦g) = O(d̃eg( f ) · d̃eg(g)) for any Boolean functions f ,g, was
proved in [She13e]. Thus, proving lower bounds on the approximate degree of the composed
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function in terms of the approximate degree of the individual functions remains the main
problem; in other words, for all f and g, is d̃eg( f ◦g) = Ω̃(d̃eg( f ) · d̃eg(g))? In this article
approximate degree composition problem will refer to only this part of the actual approximate
degree composition problem.

Numerous works, including those by [NS94, Amb05, She12, She13b, She13a, BT13,
BBGK18b, CKM+23b], actively pursued these lower bounds, leading to newer connec-
tions with several important problems in the field. However, establishing the lower bound
d̃eg( f ◦ g) = Ω̃

(
d̃eg( f ) d̃eg(g)

)
even for specific functions or restricted classes of func-

tions is often very challenging. For example, consider the composed function OR◦AND, it
took a long series of work [NS94, Shi02, Amb05, She13b, She13a, BT13] over nearly two
decades to prove that d̃eg(OR◦AND) = Ω

(
d̃eg(OR) d̃eg(AND)

)
. Till date we know that

the approximate degree composes in the following cases:

• when the outer function f has full approximate degree, i.e., Θ(n) [She12],

• when the outer function f is a symmetric function [BBGK18b],

• when the outer function f has minimal approximate degree with respect to its block
sensitivity, i.e., d̃eg( f ) = O(

√
bs( f )) [CKM+23b] (Chapter 7, Theorem 1.7), and

• when the sign degree of the inner function is same as its approximate degree [She12,
Lee09].

This work focuses on the behavior of approximate degree when recursive functions
are composed with other general functions (as outer or inner function). Here, by recursive
functions we mean the functions of the kind hd (h composed with itself d times) where the
arity of h is small. The function h is often called the base function and the function f is
called the a recursive h function.

Recursive functions are an important class of Boolean functions that are studied in vari-
ous different contexts in the analysis of Boolean function, mainly in proving various lower
bounds [Amb05, Sni85, SW86a, NS94, NW95, BHT17]. For example, the Kushilevitz’s
function [NW95] which is the only known non-trivial example of functions with low degree
and high sensitivity is a recursive function of a carefully chosen base function. Recursive
majority, Majd3 , is another recursive function that has been studied extensively in the literature
for its different properties [SW86b, JKS03, Leo13, MNS+16]. Boppana (see, e.g., [SW86b])
used it to provide the first evidence that the randomized query is more powerful than deter-
ministic query [SW86b]. In the same article, they show a similar separation using recursive
AND2 ◦OR2 function too. In a different application of recursive AND2 ◦OR2, [JRSW99]
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show separation between deterministic tree-size complexity and number of monomials in the
minimal DNF or CNF.

The approximate degree composition was not known when the outer or inner function
is a recursive function, in general. For some special recursive functions, however, it was
known that the approximate degree composes. For example, the OR function on n = 3d bits
is same as ORd

3 . After a series of works ([NS94, Amb05, She13a, BT13, She13b]), it was
proven that the approximate degree composition holds when the outer function is OR, and
in general symmetric [BBGK18b]. Similarly, from the result of [She12, Lee09] it can be
observed that the lower bound holds when either the inner or outer function is recursive
PARITY. Unfortunately, these results can’t be applied in general even when the base function
is symmetric or it has full approximate degree.

This scenario leads to the natural question:

Can we prove that d̃eg( f ◦g) = Ω(d̃eg( f ) · d̃eg(g)) when the outer function f
or the inner function g is recursive?

8.1.1 Our Results

Let h : {0,1}k → {0,1} be a function on k-bits. Let hd denotes the complete k-ary tree of
depth d such that each internal node of the tree is labelled by h and the leaves of tree are
labelled by distinct variables. Our main result shows that the composition theorem holds for
any hd (except a few specific h’s), either as the outer function with any inner function or as
the inner function with any outer function.

Theorem 8.1 (Restatement of Theorem 1.10). Let f : {0,1}n → {0,1} and g : {0,1}m →
{0,1} be two Boolean functions and d = Ω(log logn). Then,

d̃eg( f ◦g) = Ω

(
d̃eg( f )d̃eg(g)

polylog(n)

)
,

if either of the following conditions hold:

1. f = hd , for any Boolean function h.

2. g = hd , for any Boolean function h with constant arity and not equal to AND or OR.

In light of the above theorem, understanding the composition of approximate degree
when the inner function is OR is the central case for making progress towards the general
composition question.



8.1 Introduction 131

We would like to emphasize that there are not many results which prove composition
theorem for a general class of inner functions. Theorem 1.10 shows that the composition
property holds if the inner function is recursive irrespective of the outer function.

We further note that Theorem 1.10 doesn’t follow from the known results even when
the composition theorem is known to hold for the base function. Firstly, it is known that the
composition lower bound holds when the outer function is symmetric [BBGK18b]; though,
a repeated composition of a symmetric function will incur the factor of (logn)d (because
of the logn factor hiding in the Ω̃ notation). Secondly, while the majority function, Majn,
has full approximate degree (Θ(n)), Majd3 doesn’t have full approximate degree. We use
spectral sensitivity (check Definition 8.23) and it’s perfect composition theorem to analyze
the approximate degree of recursive majority. Thus, Sherstov’s result [She12] that proves
composition theorem holds for functions with full approximate degree cannot be applied in
the case of recursive majority. The situation is similar for the inner function as well.

Moving ahead, the proof of Theorem 1.10 uses two ideas.

• We first prove that a similar theorem works for the specific case of h = Maj3 and
h = AND2 ◦OR2 functions.

• Then, we use a general h to simulate AND2 ◦OR2; hence, proving composition for the
general case.

The case of recursive h = Maj3 and h =AND2◦OR2 functions is in itself very interesting.
There have been several works towards exploring the approximate degree and other properties
of these two functions [GJ16, KV14, SW86b, JRSW99]. Given their importance, and the
fact that it is a central step in our main result (Theorem 1.10), we state the composition
theorem for these two functions separately.

Theorem 8.2 (Restatement of Theorem 1.9). Let f and g be two Boolean functions. Then,

d̃eg( f ◦hd) = Ω̃(d̃eg( f ) d̃eg(hd)) and d̃eg(hd ◦g) = Ω̃(d̃eg(hd) d̃eg(g)),

where h is either Maj3 : {0,1}3 →{0,1} or AND2 ◦OR2 : {0,1}4 →{0,1}, n is the arity of
the outer function, d ≥C log logn for a large enough constant C, and Ω̃(·) hides polylog(n)
factors.

To prove Theorem 1.9 we will need the following lemma. Even though the lemma
can be obtained from a combination of known results (e.g., [She12] and [BCH+17]) with
appropriate parameters, we give a self-contained simpler proof of the lemma, inspired by the
primal-dual perspective of [She13a].
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Lemma 8.3. For any Boolean function f : {0,1}n →{0,1} and g : {0,1}m →{0,1},

d̃eg( f ◦MAJt ◦g) = Ω(d̃eg( f )d̃eg(g)) (8.1)

for t = Ω(logn).

Note that, Lemma 8.3 gives a way to settle the composition question affirmatively. In
particular, if d̃eg( f ◦Majt ◦g) = Õ(d̃eg( f ◦g)), where t is Θ(logn) and n is the arity of f ,
then it follows that the composition holds for f and g.

We also highlight that a tighter lower bound can be obtained when the middle function
Maj is replaced by an “amplifier function" in Lemma 8.3. Define H to be a strong hardness
amplifier function for g if

d̃eg 1−2−Ω(t)
2

(H ◦g) = Ω(d̃eg(H)◦ d̃eg(g)).

In Lemma 8.29 we observe d̃eg( f ◦H ◦g) = Ω(d̃eg( f )d̃eg(H)d̃eg(g)), when H is a strong
hardness amplifier function for g. We discuss this improvement in Section 8.6.

8.1.2 Proof Ideas

To address the lower bound for the composition of two Boolean functions f and g, f ◦g, we
will call f to be the ‘outer function’ and g to be the ‘inner function’. In the case of three-layer
composed function ( f ◦H ◦g), we will call H to be the ‘hardness amplifier’ and f and g to
be the outer and inner functions respectively.

Primal dual approach to composition:
Our proof technique is based on the primal-dual view used by [She13a] for proving the
composition of ANDn ◦ORn. Here, instead of using ‘dual-composition method’ (see [BT13,
BT22]) we will be using only the dual witness of the inner function. The primal-dual
approach is to construct an approximating polynomial for f with smaller degree than d̃eg( f )
by applying a linear operator L on the assumed approximating polynomial for f ◦g (say p,
with smaller degree than claimed), leading to a contradiction. The linear operator L is defined
by taking the input to f , extending it to a probability distribution (which depends upon the
dual of g) over the inputs of f ◦g and outputting the expectation.

Let ψ be the dual witness of g, we get µ0 and µ1 by restricting ψ on support which takes
positive and negative values respectively; by the properties of dual witness, µ1 (and µ0) will
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mostly be supported on inputs x such that g(x) = 1 (and g(x) = 0 respectively). The input to
f is expanded bit by bit using µ0 and µ1, creating a distribution on inputs of f ◦g.

Formally, L takes a general function h : {0,1}mn →{0,1} and gives Lh : {0,1}n → R.

Lh(z1, . . . ,zn) = E
x1∼µz1

E
x2∼µz2

· · · E
xn∼µzn

[h(x1,x2, . . . ,xn)], (8.2)

where xi ∈ {0,1}m for all i ∈ {1,2, . . . ,n}.

To complete the proof, the following two properties of L are required:

1. Showing that the polynomial Lp indeed approximates f in l∞ norm. Intuitively this
happens because the restricted distributions (µ0 and µ1) are a pretty good indicator of
the value of g.

2. The degree of Lp is small, intuitively because L reduces the degree of every monomial
by a factor of d̃eg(g).

Problem with the primal dual approach
Unfortunately, the recipe described above doesn’t work well in general due to the error
introduced by the expectation over µ0 and µ1 in the string (z1, . . . ,zn). To handle a noisy
string in place of a Boolean string, the approximating polynomial p needs to be robust. A
polynomial is robust to noise 1

3 , if for all inputs x and for all ∆∈ [−1
3 ,

1
3 ]

m, |p(x)− p(x+∆)|<
ε .

While any polynomial p can be made robust up to error ε with degree at most d̃eg(p)+
log(1

ε
)) (see Theorem 8.10 by [She13e]), such polynomials are not known to be multilinear,

making the analysis of expectation difficult. [BNRdW07b] gives a robust multilinear poly-
nomial for any Boolean function f : {0,1}n →{0,1}; though, the polynomial is defined on
a perturbation matrix of input x instead of x itself. We now discuss how to overcome this
problem.

We give the proof ideas of Theorem 1.10, Theorem 1.9 and Lemma 8.3 in the reverse
order, the way they are obtained from each other.

Proof idea of Lemma 8.3
We will use Majt to get past this difficulty; it helps to reduce the noise in the input of f to
error 1

n . Using the fact that any multilinear polynomial on n variables is robust up to error 1
n ,
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we have our lower bound for the function d̃eg( f ◦Majt ◦g) where t = Ω(logn).

Proof idea of Theorem 1.9
Using previously known constructions ([Val84, Gol20]), Majlogn can be projected to Majd3
and (AND2 ◦OR2)

d , where d ≥ C log logn. We now replace Majlogn in Lemma 8.3 with
these recursive functions; by using the associativity of the composition of functions and the
approximate degree upper bound [She13e], we finish the proof of the theorem. Note that
we only lose a factor of polylog(n) in the lower bound since we only need to simulate Majlogn.

Now we give the idea about how to replace AND2 ◦OR2 with almost any recursive
function to get our main result.

Proof idea of Theorem 1.10
Given Theorem 1.9, it is natural to ask, what other recursive functions satisfy the composition
property. We show that almost any h can be used to replace the AND2 ◦OR2 function. This
is done by simulating AND2 and OR2 using restrictions of h and its powers. The proof of
this simulation is divided into two cases: monotone h and non-monotone h.

For the monotone case (except when h is AND or OR): We show that both AND2 and
OR2 will be present as sub-cubes of the original Boolean hypercube of h.

For the non-monotone case (except when h is PARITY or ¬PARITY): The proof requires
more work here because of these two issues. First, there need not be both functions AND2 and
OR2 as sub-cubes (though, we show that at least one will be present). Second, the sub-cube
could be rotated. The resolution to both these issues is same. We use the non-monotonicity
to construct the negation function. This allows us to rotate the sub-cube as well as construct
AND2/OR2 from the other one.

A slight technical point to note is that when h is a non-constant arity function and hd is
the inner function, then the loss in the lower bound will be larger than polylog(n). However,
even for the case when the base function h has arity that is a “slowly" growing function of n
we still obtain a non-trivial lower bound composition result.

The remaining cases of Theorem 1.10, i.e., (i) when f or g equals hd for h∈{PARITY,¬PARITY}
follows from [She12], and (ii) when f = hd and h ∈ {AND,OR} follows from [BBGK18b].
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8.2 Notations and Preliminaries

In this paper, we will assume a Boolean function has domain {0,1}n and range {0,1}. We
start with some of the important definitions.

Definition 8.4 (Recursive functions). For any Boolean function f : {0,1}t →{0,1} we define
recursive function f d : {0,1}td →{0,1} by f d = f ◦ f ◦ . . .◦ f︸ ︷︷ ︸

d times

.

Definition 8.5 (Approximate degree (d̃eg)). For some constant 0 < ε < 1, a polynomial
p :Rn →R is said to ε-approximate a Boolean function f : {0,1}n →{0,1} if |p(x)− f (x)| ≤
ε, ∀x ∈ {0,1}n. The approximate degree of f , d̃egε( f ), is the minimum possible degree
of a polynomial that ε-approximates f . Conventionally we use d̃eg(·) as the shorthand for
d̃eg1/3.(·)

Note that the constant ε in the above definitions can be replaced by any constant strictly
smaller than 1/2 which changes d̃egε( f ) by only a constant factor.

We also need the following facts about error reduction in approximating polynomials.

Lemma 8.6 (Error reduction [She11b]). For any ε > 0, d̃egε( f ) = Θε(d̃eg( f )), where Θε(·)
denotes that the constant depends on ε .

Lemma 8.7 ([She11a, She12]). Let f : {0,1}n →R be a function and ε > 0. Then, d̃egε( f )≥
d iff there exists a function ψ : {0,1}n → R such that

∑
x∈{0,1}n

|ψ(x)|= 1, (8.3)

∑
x∈{0,1}n

ψ(x) · f (x)> ε, (8.4)

∑
x∈{0,1}n

ψ(x) · p(x) = 0 (8.5)

for every polynomial p of degree < d.

In a seminal work, Sherstov [She13e] showed that approximate degree can increase at
most multiplicatively under composition.

Theorem 8.8 ([She13e]). For all Boolean function f : {0,1}n → {0,1} and g : {0,1}m →
{0,1}, d̃eg( f ◦g) = O(d̃eg( f ) · d̃eg(g)).

We will be working with inputs that are not Boolean but are close to Boolean. We need
the notion of robust approximating polynomials.
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Definition 8.9 ((δ ,ε)-robust approximating polynomial). Let p : {0,1}m →{0,1} be a poly-
nomial. Then, for δ ,ε > 0, a (δ ,ε)-robust approximating polynomial for p is a polynomial
probust : Rm → R such that for all x ∈ {0,1}m and for all ∆ ∈ [−δ ,δ ]m,

|p(x)− probust(x+∆)|< ε.

Note that robust polynomial need not to be multilinear. [She13e] proved that for any
Boolean function f : {0,1}n →{0,1} there exists a robust polynomial with degree at most
(deg(p)+ log(1/ε)).

Theorem 8.10 (Sherstov [She13e]). A (δ ,ε)-robust approximating polynomial for p of
degree Oδ (deg(p)+ log(1/ε)) exists. Here Oδ (·) denotes that the constant in O(·) depends
on δ .

For our purposes, we need a multilinear robust approximating polynomial.

Theorem 8.11 (Folklore). Any multilinear polynomial p : {0,1}n →{0,1} is (δ

n ,δ )-robust.

We also need the following theorems about computing Majn using recursive functions.

Theorem 8.12 ([Gol20]). There exists a constant C > 0, such that Majn : {0,1}n →{0,1}
is a projection of Majd3 where d =C logn.

Theorem 8.13 ([Val84]). There exists a constant C > 0, such that Majn : {0,1}n →{0,1} is
a projection of (AND2 ◦OR2)

d where d =C logn.

8.3 Composition theorem for recursive Majority and alter-
nating AND-OR trees

In this section we give a proof of Theorem 1.9. We being with a proof highlight of Lemma 8.3.

8.3.1 Proof of Lemma 8.3

Lemma 8.14. For any Boolean function f : {0,1}n →{0,1} and g : {0,1}m →{0,1},

d̃eg( f ◦MAJt ◦g) = Ω(d̃eg( f )d̃eg(g)) (8.1)

for t = Ω(logn).
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Proof. We will present a proof inspired by the primal-dual view of [She13a]. Fix any constant
0 < ε < 1/2. Let h := f ◦Majt ◦g be the composed function, and ph : {0,1}ntm → R be an
ε-approximating polynomial for h.

Further, define d := d̃eg 1−ε

2
(g). Then, by Lemma 8.7, there exists a function ψ :

{0,1}m → R such that

∑
x∈{0,1}m

|ψ(x)|= 1, (8.6)

∑
x∈{0,1}m

ψ(x) ·g(x)> 1− ε

2
, (8.7)

and

∑
x∈{0,1}m

ψ(x) · p(x) = 0 (8.8)

for every polynomial p of degree < d.

Let µ be the probability distribution on {0,1}m given by µ(x) = |ψ(x)| for x ∈ {0,1}m.
From (8.8), we have ∑x∈{0,1}m ψ(x) = 0. Therefore, the sets {x | ψ(x)< 0} and {x | ψ(x)>
0} are weighted equally by µ . Let µ0 and µ1 be the probability distributions obtained by
conditioning µ on the sets {x | ψ(x)< 0} and {x | ψ(x)> 0} respectively. Hence,

µ =
1
2

µ0 +
1
2

µ1, and ψ =
1
2

µ1 −
1
2

µ0.

We note an important property of the distributions µ0 and µ1 which shows that the error
between sign(ψ(x)) and g(x) is low.

Lemma 8.15. Ex∼µ1[g(x)]> 1− ε .

Lemma 8.16. Ex∼µ0[g(x)]< ε .

Consider the following linear operator L that maps functions h : {0,1}ntm → R to func-
tions Lh : {0,1}n → R,

Lh(z) = E
x11∼µz1
x12∼µz1

...
x1t∼µz1

E
x21∼µz2
x22∼µz2

...
x2t∼µz2

· · · E
xn1∼µzn
xn2∼µzn

...
xnt∼µzn

[h(x11, . . . ,x1t ,x21, . . . ,x2t , . . . ,xn1, . . . ,xnt)]. (8.9)
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Recall h = f ◦Majt ◦g and ph be ε-approximating polynomial for h. Thus by linearity of
L we have ∥L(h− ph)∥∞ ≤ ε . We will now observe some useful properties of the linear
operator L.

Lemma 8.17. deg(Lph)≤ deg(ph)/d, where d = d̃eg 1−ε

2
(g).

We now show that Lph is in fact an approximating polynomial for f .

Lemma 8.18. Fix 0 < δ < 1/2. Recall ph is an ε-approximating polynomial for h =

f ◦Majt ◦ g. Let t = Θ(logn+ log(1/δ )) where the constant in Θ(·) depends on ε . Then,
Lph is a (δ + ε)-approximating polynomial for f . That is,

∥ f −Lph∥∞ ≤ ∥ f −Lh∥∞ +∥Lh−Lph∥∞ ≤ δ + ε.

Proof. It suffices to show ∥ f −Lh∥∞ ≤ δ . To this end, consider Lh(z).

Lh(z) = E
x11∼µz1
x12∼µz1

...
x1t∼µz1

E
x21∼µz2
x22∼µz2

...
x2t∼µz2

· · · E
xn1∼µzn
xn2∼µzn

...
xnt∼µzn

[ f ◦Majt ◦g(x11, . . . ,x1t ,x21, . . . ,x2t , . . . ,xn1, . . . ,xnt)]

= f
(

Majt

(
E
µz1

[g], . . . , E
µz1

[g]
)
,Majt

(
E
µz2

[g], . . . , E
µz2

[g]
)
, . . . ,Majt

(
E
µzn

[g], . . . , E
µzn

[g]
))

= f (z′1,z
′
2, . . . ,z

′
n),

where ∥z− z′∥∞ ≤ δ/n because t = Θ(logn+ log(1/δ )) and Lemmas 8.16 and 8.15.

Therefore, for any z ∈ {0,1}n, | f (z)−Lh(z)|= | f (z)− f (z′)| ≤ δ , since ∥z−z′∥∞ ≤ δ/n
and Lemma 8.11.

Since Lph is a (δ + ε)-approximating polynomial for f , we also have deg(Lph) ≥
d̃egδ+ε( f ). We therefore have the following inequalities

d̃egδ+ε( f )≤ deg(Lph)≤
deg(ph)

d̃eg 1−ε

2
(g)

.

Rewriting we have

d̃egε( f ◦Majt ◦g) = deg(ph)≥ d̃egδ+ε( f ) · d̃eg 1−ε

2
(g). (8.10)

This completes the proof of Lemma 8.3.
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8.3.2 Proof of Theorem 1.9

Let f : {0,1}n →R and g : {0,1}m →R be two functions. We say that f is a projection of g,
denoted f ≤proj g, iff

f (x1, . . . ,xn) = g(a1, . . . ,am)

for some ai ∈ {0,1} ∪ {x1,x2, . . . ,xn}. That is, f is obtained from g by substitutions of
variables by variables of f or constants in {0,1}. We note an easy to observe fact about
approximate-degree of projections of functions.

Fact 8.19. Let f : {0,1}n →{0,1} and g : {0,1}m →{0,1} be such that f ≤proj g, i.e., f is
a projection of g. Then, d̃eg( f )≤ d̃eg(g).

Consider the recursive-majority function Majd3 given by the complete 3-ary tree of height
d with internal nodes labeled by Maj3 and the leaves are labeled by distinct variables. Fix
d ≥C log logn for a large enough constant C.

Firstly observe that Majd3 is not a symmetric function. Secondly, it also doesn’t have full
approximate degree ([RS12]). Thirdly, and finally, its approximate degree is also not equal

to Θ

(√
bs(Majd3)

)
(see Lemma 8.26, it follows from the fact that bs(Majd3) is linear with

d̃eg(Majd3)). Thus, none of the previous works [She12, BBGK18b, CKM+23b] imply that
approximate degree composes when one of the (inner or outer) functions is recursive-majority
Majd3 .

Proof of Theorem 1.9. Let Majd3 be the recursive-majority function obtained by the complete
3-ary tree of height d with internal nodes labeled by Maj3 and the leaves are labeled by distinct
variables. Let f : {0,1}n → {0,1} be an arbitrary function and consider the approximate
degree of the composed function f ◦Majt ◦Majd3 where t = Θ(logn).

d̃eg( f ◦Majt ◦Majd3)≤ d̃eg( f ◦MajC log t
3 ◦Majd3) = d̃eg( f ◦Majd3 ◦MajC log t

3 ) (8.11)

= O(d̃eg( f ◦Majd3) · d̃eg(MajC log t
3 )) (8.12)

= O(d̃eg( f ◦Majd3) ·poly(t)). (8.13)

The first inequality in (8.11) follows from the fact that Majt is a projection of MajC log t
3

(Theorem 8.12) and Fact 8.19. Then (8.12) follows from Theorem 8.8.

On the other hand, from Lemma 8.3, for t = Ω(logn) we have

d̃eg( f ◦Majt ◦Majd3) = Ω(d̃eg( f ) · d̃eg(Majd3)).
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Combining with (8.13), we obtain the lower bound

d̃eg( f ◦Majd3) = Ω

(
d̃eg( f ) · d̃eg(Majd3)

polylog(n)

)
.

A similar argument shows the following inequalities, where in the last two inequalities we
use Theorem 8.13 instead of Theorem 8.12, for d = Ω(logn),

• d̃eg(Majd3 ◦ f ) = Ω̃(d̃eg( f ) · d̃eg(Majd3)),

• d̃eg( f ◦ (AND2 ◦OR2)
d) = Ω̃(d̃eg( f ) · d̃eg((AND2 ◦OR2)

d)), and

• d̃eg((AND2 ◦OR2)
d ◦ f ) = Ω̃(d̃eg( f ) · d̃eg((AND2 ◦OR2)

d)).

8.4 Composition theorem for recursive functions

In this section we prove our main theorem (Theorem 1.10). It shows that the approximate
degree composes when either the inner function or the outer function is a recursive function.
More formally,

The following cases of Theorem 1.10 follows from prior works:

1. f or g equals hd for h ∈ {PARITY,¬PARITY} [She12].

2. f = hd and h ∈ {AND,OR} [BBGK18b].

Therefore, it remains to prove Theorem 1.10 when h /∈ {PARITY,¬PARITY,AND,OR}. A
crucial technical insight that makes the proof work is that when h /∈{PARITY,¬PARITY,AND,OR}
then AND2 and OR2 are projections of h3. We can thus simulate Maj using a small power of
h. Thereafter, Lemma 8.3 is used to conclude Theorem 1.10. We now work out the details.
We first state the main technical lemma we need for Theorem 1.10 and then complete the
proof of the theorem. Finally, we prove the technical lemma in Section 8.4.1.

Lemma 8.20. Let h : {0,1}t →{0,1} (where t ≥ 2) be a Boolean function which depends
on all t variables and is not equal to PARITY/OR/AND. The function AND2 (and similarly
OR2) can be obtained by setting all but two variables to constants in hk for k ≤ 3.

We now present the proof of Theorem 1.10 using Lemma 8.20.

Proof of Theorem 1.10. Let h : {0,1}t →{0,1} be such that h /∈{PARITY,¬PARITY,AND,OR}.
We know from Lemma 8.3 that d̃eg( f ◦Majk ◦hd) = Ω(d̃eg( f )d̃eg(hd)) where k = Θ(logn).
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Like in the proof of Theorem 1.9, we will simulate Majk using hℓ for sufficiently large ℓ.
From Lemma 8.20, it follows that (AND2 ◦OR2)

ℓ is a projection of h6ℓ. Therefore, we obtain
from Theorem 8.13 that Majk is a projection of hC logk for some constant C > 0. We thus
have the following sequence of inequalities,

d̃eg( f ◦hd)≥ d̃eg( f ◦Majk ◦h(d−C logk)) = Ω(d̃eg( f )d̃eg(h(d−C logk)))

= Ω

(
d̃eg( f )d̃eg(hd)

tC logk

)
= Ω

(
d̃eg( f )d̃eg(hd)

polylog(n)

)
.

Note that the last equality above uses the fact that t is a constant. When hd is the outer
function then we don’t need t to be a constant, while the rest of the argument remains the
same to give

d̃eg(hd ◦g) = Ω

(
d̃eg(hd)d̃eg(g)

polylog(n)

)
.

This completes the proof of the main theorem. We now present a proof of Lemma 8.20.

8.4.1 Proof of the main technical lemma (Lemma 8.20)

We proceed by proving an intermediate result (Lemma 8.21) before going to the proof of
Lemma 8.20.

Suppose we are allowed to modify a Boolean function by two operations: negating some
of its variables, and restricting some of the variables to constant values. Lemma 8.21 proves
that almost every Boolean function can be modified to either an AND2 or an OR2 function.
A restriction of the variables amounts to looking at a smaller hypercube translated to a new
point, and negating a variable amounts to rotating the smaller hypercube. In other words,
we want to show that there is a shifted AND2 or OR2 in the Boolean hypercube of h (see
Figure 8.1 for an example).

This shifted AND2/OR2 in the Boolean hypercube of a Boolean function can be con-
cretely defined by the concept of a sensitive block. For a block of variables S ⊆ [n] and an
input x ∈ {0,1}n, define x⊕S ∈ {0,1}n to be the input which flips exactly the variables in S
at the input x. Given a Boolean function f : {0,1}n → {0,1}, a block S is called sensitive
on x iff f (x) ̸= f (x⊕S). A block S is called minimal sensitive for x at f , if no subset of S is
sensitive for x at f .



142 Approximate degree composition for recursive functions

Fig. 8.1 A function on 3 bits with a shifted OR marked with red edges.

Notice that a shifted AND2/OR2 is a square with three vertices labelled 0 and one vertex
labelled 1 or vice versa. This gives us a minimal sensitive block on the vertex opposite to the
unique value. It can be easily verified that the converse is also true. So, we define a function
to have a shifted AND2/OR2 iff it has a minimal sensitive block of size 2.

We show below that almost all functions have a minimal sensitive block of size 2.

Lemma 8.21. Let h : {0,1}t →{0,1} (where t ≥ 2) be a Boolean function which depends
on all t variables and is not equal to PARITY. Then, there exists an x ∈ {0,1}t such that h
has a minimal sensitive block of size 2 on x.

Proof. We will prove the result using induction on the variables. The statement can be easily
verified for t = 2.

Define g0 (and g1) to be the restrictions of h by setting xt = 0 (and xt = 1) respectively.
Let ey be the edge ((y,0),(y,1)) in the Boolean hypercube, and St := {ey : y ∈ {0,1}t−1}.
Color an edge ey red if g0(y) = g1(y), and blue otherwise.

Notice that not all the edges in St can be red, otherwise h does not depend on xt . Suppose
all the edges in St are blue, i.e, g1 = ¬g0 (in other words, h = g0 ⊕ xt). Since h depends on
all variables, then g0 depends on all variables x1,x2, · · · ,xt−1. If g0 is PARITY, then h is also
PARITY. Implying that g0 is dependent on all its variables and is not PARITY. By induction,
there exists a minimal sensitive block of size 2 for g0 (and hence h).

For the rest of the proof, we can assume that there exists both a red and a blue edge in St .
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Let ex be red and ey be blue, this means that g0(x) = g1(x) but g0(y) ̸= g1(y). If x and
y were at Hamming distance 1, then vertices (x,0),(x,1),(y,0) and (y,1) will give us the
required minimal sensitive block of size 2.

If x,y are not at Hamming distance 1, look at any path from x to y in the t−1 dimensional
hypercube, say z0 = x,z1,z2, · · · ,zl = y. The edge ez0 is red and ezl is blue. Since the color
needs to switch at some point, there exist zi,zi+1 at Hamming distance 1 such that ezi is
red and ezi+1 is blue. Again, the vertices (zi,0),(zi,1),(z1+1,0) and (zi+1,1) will give us the
required minimal sensitive block of size 2.

We are prepared to prove Lemma 8.20 which shows: given a Boolean function h, AND2

(and OR2) can be obtained by restricting some of the variables to constants in a very small
power of h. Compared to Lemma 8.21, we need to remove negation and simulate both AND2

and OR2 and not just one of them.

We just show how to obtain AND2, the case for OR2 is similar. We handle the case of h
being monotone and non-monotone separately.

Monotone h: This case is simpler, and AND2 can be obtained as a restriction of h itself. Let
a minimal 1-input be a x ∈ {0,1}t such that setting any 1 bit of x to 0 changes the value of h.
If there is a minimal 1-input x of Hamming weight more than 2, we get a AND2 by choosing
any two indices which are 1 in x. The following claim finishes the proof for monotone
functions.

Claim 8.22. Let h : {0,1}t →{0,1} be a monotone Boolean function which depends on all
variables. If there is no minimal 1-input with Hamming weight more than 2, then h is the OR
function.

Proof. By abusing the notation, let 0 denote the all 0 input. Since the function is monotone
but not constant, we know that h(0) = 0. Let S ⊆ [t] capture the indices such that the
corresponding Hamming weight 1-input has function value 0,

S = {i : h(0⊕i) = 0}.

For a y ∈ {0,1}t , if the set of 1-indices are not a subset of S, then h(y) = 1 by mono-
tonicity. If the set of 1-indices are a subset of S, then h(y) = 0 because there is no minimal
1-input with Hamming weight more than 2.
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Fig. 8.2 An example for constructing AND2 using a non-monotone function. Let
h : {0,1}3 →{0,1} be 0 at x = 001 and 1 otherwise. We use the shifted OR2/minimal
sensitive block at 001 with indices {2,3}.

In other words, h is the OR function on the remaining [t]−S variables. Since h depends
on all the t variables, h is the OR function.

Non-monotone h: Since h is a non monotone function, there exists an input a ∈ {0,1}t and
an index i ∈ [t] such that h(a) = 1, ai = 0 and h(a⊕i) = 0. Restricting the variables according
to a (except the i-th bit) gives h1(xi) = ¬xi.

From Lemma 8.21, there exists a b ∈ {0,1}t such that h has a minimal sensitive block
of size 2 on b (shifted AND2/OR2). The main idea of this proof is to use negation and this
shifted AND2/OR2 (Figure 8.2 gives an example).

For the formal proof, without loss of generality assume that the block have indices
1,2 (that means h(b) = h(b⊕{1}) = h(b⊕{2}) ̸= h(b⊕{1,2})). We will finish the proof by
considering the two cases h(b) = 0 and h(b) = 1.
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• h(b) = 0 (shifted AND2): Suppose b1 = 0 and b2 = 1 (other cases can be handled
similarly). Notice that AND2(x,y) = h(x,¬y,b3, · · · ,bt), giving us AND2(x,y) =
h(x,h1(y),b3, · · · ,bt).

• h(b) = 1 (shifted OR2): Suppose b1 = 1 and b2 = 0 (other cases can be handled
similarly). Notice that OR2(x,y) = h(x,¬y,b3, · · · ,bt); using De Morgan’s law,

AND2(x,y) = ¬OR2(¬x,¬y) = ¬h(¬x,y,b3, · · · ,bt) = h1(h(h1(x),y,b3, · · · ,bt))

Since h1 is also a restriction of h, the proof is complete.

8.5 Approximate Degree upper and lower bound on Recur-
sive Majority and AND-OR tree

Spectral sensitivity is a nice complexity measure that gives lower bound on d̃eg. It was
used to prove the celebrated conjecture ‘sensitivity conjecture’ by [Hua19]. First we will
define spectral sensitivity and use it to prove approximate degree lower bound for Majd3 and
(AND2 ◦OR2)

d .

We follow the definition from [ABK+21a] and also state a result from [ABK+21a] where
it was proved that spectral sensitivity lower bounds approximate degree of a function.

Definition 8.23 (Spectral Sensitivity). Let f : {0,1}n →{0,1} be a Boolean function. The
sensitivity graph of f , G f = (V,E) is a subgraph of the Boolean hypercube, where V = 0,1n

, and E = {(x⊕ei) ∈V ×V : i ∈ [n], f (x) ̸= f (x⊕ei)}. That is, E is the set of edges between
neighbors on the hypercube that have different f -value. Let A f be the adjacency matrix of
the graph G f . We define the spectral sensitivity of f as λ ( f ) = ∥A f ∥.

It is well-known that spectral sensitivity is a nice quantity that composes exactly.

Theorem 8.24 ([ABK+21a]). For all Boolean function f , λ ( f ) = O(d̃eg( f )).

Lemma 8.25. λ (Majd3) = Θ(2d) where d is the depth of the recursion.
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Proof. First, we will prove spectral sensitivity of Maj3. Here is the adjacency matrix of the
sensitivity graph of Maj3.

S =



(000) (100) (010) (001) (110) (101) (011) (111)
(000) 0 0 0 0 0 0 0 0
(100) 0 0 0 0 1 1 0 0
(010) 0 0 0 0 1 0 1 0
(001) 0 0 0 0 0 1 1 0
(110) 0 0 0 0 0 0 0 0
(101) 0 0 0 0 0 0 0 0
(011) 0 0 0 0 0 0 0 0
(111) 0 0 0 0 0 0 0 0


(8.14)

Since the adjacency matrix is symmetric, the largest eigenvalue of the matrix is also the norm
of the matrix. Note that calculating the eigenvalue of the following 3×3 matrix is sufficient
for our purpose:

A =

1 1 0
1 0 1
0 1 1

 (8.15)

Eigen value of A is 2, consequently ∥A ∥ = 2. Since spectral sensitivity (λ ) composes
exactly (without any constant overhead) we have λ (Majd3) = 2d .

Corollary 8.26. d̃eg(Majd3) = Θ(2d) where d is the depth of the recursion.

Proof. From Lemma 8.25 it follows that d̃eg(Majd3) = Ω(2d) since d̃eg ≤ λ for any Boolean
function. Also it is known that bounded error quantum query complexity gives upper bound
on d̃eg. [RS12] showed that bounded error quantum query complexity of Majd3 is O(2d).
Hence, d̃eg(Majd3) = Θ(2d).

Lemma 8.27. λ (AND2 ◦OR2)
d = 2d .
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Proof. Similar to the Majd3 proof for calculating the largest eigenvalue of the adjacency
matrix of AND2 the following 3×3 matrix is sufficient for our purpose:

A =

0 0 1
0 0 1
1 1 0

 (8.16)

Eigen value of A is
√

2, consequently ∥A ∥=
√

2. Since spectral sensitivity (λ ) composes ex-
actly (without any constant overhead) we have λ (AND2 ◦OR2) = 2 and λ (AND2 ◦OR2)

d =

2d .

Approximate degree lower bound of AND2 ◦OR2
d follows from [ABK+21b], for com-

pleteness we are stating here.

Corollary 8.28. d̃eg(AND2 ◦OR2
d) = Θ(2d) where d is the depth of the recursion.

Proof. From Lemma 8.27 it follows that d̃eg(AND2 ◦OR2
d) = Ω(2d) since d̃eg ≤ λ for any

Boolean function. It follows from [Rei11b] and from [KV14] that the upper bound on
approximate degree of (AND◦ORd) tree is O(2d). Hence, d̃eg((AND◦ORd)) = Θ(2d).

8.6 Composition theorem for recursive functions with full
sign degree

The aim of this section is to show that any Boolean function with full sign degree can be
used as a hardness amplifier, similar to Majt in Lemma 8.3.

Lemma 8.29. For any Boolean function f : {0,1}n → {0,1} and g : {0,1}m → {0,1} we
have,

d̃eg( f ◦Ampt ◦g) = Ω(d̃eg( f ) · d̃eg(Ampt) · d̃eg(g))

where Ampt is any Boolean function on t bits with full sign degree.

In this section, we will prove the composition theorem for a few more recursive functions.
To prove our theorem we will be using Lemma 8.29 which is a generalization of Lemma 8.3.
For the sake of completeness, we also present the proof of Lemma 8.29. [Sak93] and [Ant95]
shows that,
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Theorem 8.30. ([Sak93] and [Ant95]) Almost all the function f : {0,1}n → {0,1} sign
degree is high, d̃eg±( f ) = Ω(n).

We will be proving the following results:

Theorem 8.31. For any Boolean function f : {0,1}n →{0,1} and g : {0,1}n →{0,1} the
following holds:

d̃eg( f ◦g) = Ω(d̃eg( f )d̃eg(g)) when,

• f = Ampd
t and g is any Boolean function,

• g = Ampd
t and f is any Boolean function.

where Ampt is any Boolean function with full sign degree and t = Ω(logn).

So, Theorem 8.31 gives a composition theorem for the recursive version of all such
functions being inner or outer functions. Note that when the outer function has a full sign
degree applying [She12] we get d̃eg(Ampt) in the lower bound part in Lemma 8.29, using
which we can prove composition theorem for some classes of functions where we are not
loosing the polylog(n) in the lower bound part compared to Theorem 1.10.

The proof is completely similar to the proof of Theorem 1.9, we are giving the proof for
the sake of completeness. Note that here we are not losing the logn compared to Theorem 1.9.

Proof of Theorem 8.31. From lemma 8.29, we have d̃eg( f ◦Ampt ◦g)=Ω(d̃eg( f )· d̃eg(Ampt)·
d̃eg(g)).

If f = Ampk
t ,

d̃eg(Ampk
t ◦Ampt ◦g)≥ d̃eg(Ampk

t ) · d̃eg(Ampt) · d̃eg(g) (8.17)

.

On the other hand using associativity if composition we have,

d̃eg(Ampt ◦Ampk
t ◦g)≥ d̃eg(Ampk

t ◦Ampt ◦g) (8.18)

Applying Theorem 8.8 we also have the following,

d̃eg(Ampt ◦Ampk
t ◦g)≤ d̃eg(Ampt) · d̃eg(Ampk

t ◦g)≤ d̃eg(Ampt) · d̃eg(Ampk
t ◦g). (8.19)
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From equation (8.17), (8.18) it follows that,

d̃eg(Ampk
t ◦g)≥ d̃eg(Ampk

t ) · d̃eg(g).

For g = Majkt , we can derive the proof in a similar fashion.

8.6.1 Proof of lemma 8.29

For the proof of lemma 8.29 we will be using the following composition theorem by [She11b]
for the classes of outer function with full approximate degree.

Theorem 8.32 ([She11b]). For any Boolean function h : {0,1}n →{0,1} and g : {0,1}n →
{0,1},

d̃eg 1−ε−t
2

(h◦g) = Ω(d̃eg(h) · d̃eg(g))

where h is a function with full sign-degree.

Let us start by recalling the lower bound we are going to prove here:

For any Boolean function f : {0,1}n →{0,1} and g : {0,1}m →{0,1} we have,

d̃eg( f ◦Ampt ◦g) = Ω(d̃eg( f ) · d̃eg(Ampt) · d̃eg(g)),

where Ampt is any Boolean function on t bits with full sign degree.

The proof will be along with the same line of Lemma 8.3. Instead of using the dual
of the inner function g, we will be using the dual of Ampt ◦g. Fix any constant 0 < ε < 1
and consider 1−ε−t

2 -approximating polynomial of Ampt ◦g. Let d̃eg 1−ε−t
2

(Ampt ◦g) =: d. By

Lemma 8.7, there exists a function ψ : {0,1}mt → R such that

∑
x∈{0,1}mt

|ψ(x)|= 1, (8.20)

(8.21)

∑
x∈{0,1}mt

ψ(x) ·g(x)> 1− ε−t

2
, (8.22)

and

∑
x∈{0,1}mt

ψ(x) · p(x) = 0 (8.23)
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for every polynomial p of degree < d.

Similar to Lemma 8.3 let µ be the probability distribution on {0,1}mt given by µ(x) =
|ψ(x)| for x ∈ {0,1}mt . Define µ0 and µ1 similarly. We have the following properties of µ0

and µ1.

Lemma 8.33.

E
x∼µ1

[Ampt ◦g(x)]> 1− ε
−t , (8.24)

and

E
x∼µ0

[Ampt ◦g(x)]< ε
−t . (8.25)

Consider the following linear operator L that maps functions h : {0,1}ntm → R to func-
tions Lh : {0,1}n → R,

Lh(z) = E
x1∼µz1

E
x2∼µz2

· · · E
xn∼µzn

[h(x1,x2, . . . ,xn)]. (8.26)

Let H := f ◦Ampt ◦ g, where f : {0,1}n → {0,1} and g : {0,1}m → {0,1}. Further,
let pH : {0,1}ntm → R be an ε-approximating polynomial for the composed function H :
{0,1}ntm →{0,1}. That is, ∥H − pH∥∞ ≤ ε . Then, it follows from the linearity that

∥L(H − pH)∥∞ ≤ ε.

We now explore the behavior of L on H and pH .

Lemma 8.34.

deg(LpH)≤
deg(pH)

d̃eg 1−ε−t
2

(g)
.

Proof. Follows exactly as Lemma 8.17.

Now it is left to prove that LpH is an approximating polynomial for f .

Lemma 8.35. Fix 0 < δ < 1. Recall pH is an ε-approximating polynomial for H = f ◦
Ampt ◦g. Let t = Ω(logn+ log(1/δ )) where the constant in Θ(·) depends on ε . Then, LpH
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is a (δ + ε)-approximating polynomial for f . That is,

∥ f −LpH∥∞ ≤ ∥ f −LH∥∞ +∥LH −LpH∥∞ ≤ δ + ε.

Proof. It suffices to bound ∥ f −Lh∥∞. To this end, consider Lh(z).

(Lh)(z) = E
x1∼µz1

E
x2∼µz2

· · · E
xn∼µzn

[h(x1,x2, . . . ,xn)] (8.27)

= E
x1∼µz1

E
x2∼µz2

· · · E
xn∼µzn

[ f ◦Ampt ◦g(x1,x2, . . . ,xn)] (8.28)

= f
(
E
µz1

[Ampt ◦g], E
µz2

[Ampt ◦g], . . . , E
µzn

[Ampt ◦g]
)

(8.29)

= f
(
z′1, . . . ,z

′
n
)

(8.30)

where ∥z− z′∥∞ = O(δ/n) because t = Ω(logn+ log( 1
δ
)) and Lemmas 8.33.

Therefore, for arbitrary z ∈ {0,1}n, | f (z)− Lh(z)| = | f (z)− f (z′)| ≤ ε1, where ∥z−
z′∥∞ = O(1/n).

Since Lph is an (ε1 + ε)-approximating polynomial for f , we also have

deg(Lph)≥ d̃egε1+ε( f ).

We therefore have the following inequalities

d̃egε1+ε( f )≤ deg(Lp)≤ deg(p)

d̃eg 1−ε−t
2

(Ampt ◦g)
.

This implies

deg(p)≥ d̃egε1+ε( f ) · d̃eg 1−ε−t
2

(Ampt ◦g)≥ d̃egε1+ε( f ) · d̃eg(Ampt) · d̃eg(g),

where the last inequality follows from Theorem 8.32 by [She11b].

d̃egε( f ◦Ampt ◦g) = deg(p)≥ d̃egε1+ε( f ) · d̃eg(Ampt) · d̃eg1/3(g) (8.31)
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From the proof technique, it is clear that if we start with an (
1− δ

n
2 )-approximating

polynomial for the inner function g then we are fine with the error accumulated. So, the
following known results can be derived as a corollary of the above Lemma.

Corollary 8.36 ([She13c]). For any Boolean function f : {0,1}n →{0,1} and g : {0,1}m →
{0,1} we have d̃egε( f ◦g) = Ω(d̃egε1+ε( f )d̃eg 1− δ

n
2

(g)), where ε,ε is some constant in (0, 1
2).

From above it also follows

Corollary 8.37 ([She13c]). For any Boolean function f : {0,1}n →{0,1} and g : {0,1}m →
{0,1} we have d̃egε( f ◦g) = Ω(d̃eg( f )d̃eg±(g)), where d̃eg±(g) denotes the sign-degree of
g.

8.7 One-sided approximate degree

Here is some analogous result to Lemma 8.3 in the case of one-sided approximate degree.
Let us define the concept of one-sided approximate degree first.

Definition 8.38. A polynomial p is a one-sided ε-approximation to f if

1. for all x ∈ f−1(1), |p(x)−1| ≤ ε , and

2. for all x ∈ f−1(0), p(x)≤ ε .

Definition 8.39. The one-sided ε-approximate degree of f , denoted odegε( f ), is the least
degree of a real polynomial p that is a one-sided ε-approximation to f .

Lemma 8.40 ([BT22]). Let f : {0,1}n →{0,1} be a Boolean function. Then odegε( f )> d
if and only if there exists a function ψ : {0,1}n → R such that

∑
x∈{0,1}n

|ψ(x)|= 1,

∑
x∈{0,1}n

ψ(x) f (x)> ε,

∑
x∈{0,1}n

ψ(x)p(x) = 0 for every polynomial p of degree ≤ d, and

ψ(x)≤ 0 for all x ∈ f−1(0).

The dual formulation for one-sided approximate degree is the following:



8.8 Conclusion 153

Corollary 8.41. For any Boolean function f : {0,1}n →{0,1} we have the following:

d̃eg( f ◦ANDt ◦OR) = Ω(d̃eg( f ) · d̃eg(OR))

for t = Ω(logn).

Proof. When g = OR, then we can use one-sidedness of dual of OR, i.e., Eµ1 [OR] = 1 and
Eµ0[OR] < ε , to amplify using AND instead of Maj. Which gives d̃eg( f ◦ANDt ◦OR) =
Ω(d̃eg( f ) · d̃eg(OR)).

Precisely for one sided dual, Eµ1[g] = 1 and Eµ0[g] < ε which gives the following
observation.

Observation 8.42. For any Boolean function f : {0,1}n →{0,1} and g : {0,1}m →{0,1}
we have the following: d̃eg( f ◦ANDt ◦g) = Ω(d̃eg( f ) ·odeg(g)) for t = Ω(logn).

8.8 Conclusion

Towards the main open problem if d̃eg composes or not we have the following conjecture.
Can we give an upper bound on d̃eg( f ◦Majt ◦g) in terms of d̃eg( f ◦g)? Precisely,

Conjecture 8.43. Is d̃eg( f ◦Majt ◦g) = Õ(d̃eg( f ◦g)), where t = Θ(logn) and n is the arity
of the outer function?

Observe that an affirmative solution to the above question solves the composition question
for the approximate degree. Another interesting question is to find other classes of functions
for which the analogue of Lemma 8.29 holds.

Question 8.44. Find non-trivial classes of functions H such that d̃eg( f ◦H ◦g) = Ω̃(d̃eg( f ) ·
d̃eg(H) · d̃eg(g))?

It has the following two useful implications. First, this gives composition for functions
h ∈ H. In particular, when one of the functions h (inner or outer) belongs to the class H then
d̃eg( f ◦h◦g) = Ω̃(d̃eg( f ) · d̃eg(h) · d̃eg(g)) along with Theorem 8.8 implies

d̃eg(h◦g) = Ω̃(d̃eg(h) · d̃eg(g)) and d̃eg( f ◦h) = Ω̃(d̃eg( f ) · d̃eg(h)).

Secondly, A function h ∈ H can be used as ‘hardness amplifier’ functions.





Chapter 9

Randomized query complexity
composition for some classes of functions

9.1 Introduction

For any Boolean functions f and g, the question is whether R( f ◦g) = Θ̃(R( f ) ·R(g)), is
known as the composition question for the randomized query complexity. This is one of the
most important and well-studied problems in the field of analysis of Boolean functions, and
yet we are far from answering them satisfactorily. For R the upper bound inequality is known,
i.e., R( f ◦g) = Õ(R( f ) ·R(g)) (folklore). Thus it is enough to prove the lower bound on the
complexity of composed function in terms of the individual functions. Most of the attempts
to prove this direction of the question have focused on special cases when the outer function
has certain special properties1.

The initial steps taken towards answering the composition question for R were to show
a lower bound by using a weaker measure of outer function than the randomized query
complexity. In particular, it was shown that R( f ◦g) = Ω(s( f ) ·R(g)) [GJPW18a, AKK16],
where s( f ) is the sensitivity of f (Definition 7.10). Since s( f ) = Θ(R( f )) for any symmetric
function2 f , these results show that R composes when the outer function is a symmetric
function (like OR, AND, Majority, Parity, etc.). The lower bound was later improved to
obtain R( f ◦g) = Ω(fbs( f ) ·R(g)) [BDG+20, BDB20a], where fbs( f ) is the fractional block
sensitivity of f (Definition 2.12).

1We note that some works have also studied the composition of R when the inner functions have special
properties, for example, [ABK16, BK18, AGJ+17, GLSS19, Li21, BDBGM22].

2Functions that depend only on the Hamming weight of their input.
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Unfortunately, at this stage, there could even be a cubic gap between R and fbs; the best
known bound is R( f )=O(fbs( f )3) [ABK+21b]. Given that there are already known Boolean
functions with quadratic gaps between fbs( f ) and R( f ) (e.g., BKK function [ABK16]), it is
natural to consider composition question for randomized query complexity when R is big but
fbs is small. We take a step towards this problem by showing that composition for R holds
when the outer function has full randomized query complexity, i.e., R( f ) = Θ(n), where n is
the arity of the outer function f .

It is known that the measures compose if one assumes various properties of the outer
function f (or inner function g).

A recent landmark result (Ben-David and Blais, 2020) showed that R( f ◦g)=Ω(noisyR( f )·
R(g)). This implies that composition holds whenever noisyR( f ) = Θ̃(R( f )). We show two
results:

1. When R( f ) = Θ(n), then noisyR( f ) = Θ(R( f )). In other words, composition holds
whenever the randomized query complexity of the outer function is full.

2. If R composes with respect to an outer function, then noisyR also composes with
respect to the same outer function.

It is already known that both R compose when the outer function is symmetric. We also
extend these results to weaker notions of symmetry with respect to the outer function.

9.2 Preliminaries

We will start by describing some of the notions that we will be needing for this chapter.

The function Gap-Majority has played an important role in the study of the composition
of R.

Definition 9.1 (Gap-Majority). The function GapMajt : {0,1}t →{0,1,∗} is a partial func-
tion with arity t such that

GapMajt(x) =


1 if |x|= t/2+2

√
t,

0 if |x|= t/2−2
√

t,

∗ otherwise.

It can be shown that R(GapMajt) = Θ(t) [BDB20b].
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In regards to the composition question of R, one of the most significant complexity
measures (defined by Ben-David and Blais [BDB20b]) is that of noisyR. We first define the
noisy oracle model.

Definition 9.2 (Noisy Oracle Model and Noisy Oracle Access to a String ([BDB20b])). For
b ∈ {0,1}, a noisy oracle to b takes a parameter −1 ≤ γ ≤ 1 as input and returns a bit b′

such that Pr[b′ = b] = (1+ γ)/2. The cost of one such query is γ2. Each query to noisy
oracle returns independent bits.

For x = (x1, . . . ,xn) ∈ {0,1}n, noisy oracle access to x is access to n independent noisy
oracles, one for each bit xi, i ∈ [n].

Next, we define the noisy oracle model of computation.

Definition 9.3 (Noisy Oracle Model of Computation ([BDB20b])). Let f : {0,1}n →{0,1,∗}
be a partial Boolean function. A noisyR query algorithm A computes f if for all x ∈ Dom( f ),
Pr[A(x) ̸= f (x)] ≤ 1/3, where A is a randomized algorithm given noisy oracle access to
x, and the probability is over both noisy oracle calls and the internal randomness of the
algorithm A. The cost of the algorithm A for an input x is the sum of the cost of all noisy oracle
calls made by A on x, and the cost of A, cost(A), is the maximum cost over all x ∈ Dom( f ).
The noisyR randomized query complexity of f , denoted by noisyR( f ), is defined as

noisyR( f ) = min
A computes f

cost(A).

Again, 1/3 in the above definition can be replaced by any constant < 1/2. If only queries
with γ = 1 are allowed in the noisy query model, then we obtain the usual randomized
algorithm for f , thus noisyR( f ) = O(R( f )).

Some useful previous results: We will also be crucially using a few results from prior works
in our proofs. The following are a couple of useful results on noisyR.

Lemma 9.4 ([BDB20b]). Let f be a non-constant partial Boolean function then noisyR( f ) =
Ω(1).

Theorem 9.5 ([BDB20b]). For all partial functions f and g, R( f ◦g) = Ω(noisyR( f ) ·R(g)).

We will also be using the following theorem of [BBGK18a] regarding the composition
question of bdeg when the outer function is PrORn. Informally, we will call it the Promise-
OR composition theorem by [BBGK18a]: For any Boolean function g : {0,1}m →{0,1} we
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have,

bdeg (PrORn ◦g) = Ω

(√
n · d̃eg(g)/ logn

)
.

9.3 Our results and techniques

9.3.1 Lower bounds on R( f ◦g) when the outer function has full ran-
domized query complexity

Sherstov [She12] proved that d̃eg( f ◦g) = Ω(d̃eg( f ) · d̃eg(g)) when the approximate degree
of the outer function f is Θ(n), where n is the arity of f . Though, a corresponding result for
the case of randomized query complexity was not known. Our main result is to prove the
corresponding theorem for randomized query complexity.

Theorem 9.6. Let f be a partial Boolean function on n-bits such that R( f ) = Θ(n). Then
for all partial functions g, we have

R( f ◦g) = Ω(R( f ) ·R(g)).

The proof of this theorem is given in Section 9.4. Notice, since R( f ◦ g) = O(R( f ) ·
R(g) logR( f )) (by error reduction), Theorem 9.6 says that composition of R holds when the
randomized query complexity of the outer function, f , is Θ(n). Next, we give main ideas
behind the proof of the above theorem.

Ideas behind proof of Theorem 9.6 A crucial complexity measure that we use for the
proof of Theorem 9.6 is called the noisy randomized query complexity, first introduced
by Ben-David and Blais [BDB20b] in order to study randomized query complexity. Noisy
randomized query complexity can be seen as a generalization of randomized query complexity
where the algorithm can query a bit with any bias and only pays proportionally to the square
of the bias in terms of cost (see Definition 9.3). They give the following characterization of
noisyR( f ) (the noisy randomized query complexity of f ).

Theorem 9.7 (Ben-David and Blais [BDB20b]). For all partial functions f on n-bits, we
have

noisyR( f ) = Θ

(
R( f ◦GapMajn)

n

)
, (9.1)
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where GapMajn is the Gap-Majority function on n bits whose input is promised to have
Hamming weight either (n/2+2

√
n) (in which case the output is −1) or (n/2−2

√
n) (in

which case the output is 1).

We want to point out that the arity of f and Gap-Majority is the same in Theorem 9.7.
Towards a proof of Theorem 9.6, we first make the following crucial observation.

Observation 9.8. Let f be a partial Boolean function on n bits. If t(n)≥ 1 is a non-decreasing
function of n and

noisyR( f ) = Ω

(
R( f ◦GapMajt(n))

t(n)

)
,

then R( f ◦g) = Ω((R( f ) ·R(g))/t(n)) for all partial functions g.

In particular choosing t(n) to be (logn), if the outer function f satisfies

noisyR( f ) = Ω

(
R( f ◦GapMajlogn)

logn

)
. (9.2)

then the above observation gives R( f ◦g) = Ω((R( f ) ·R(g))/(logn)) for all partial functions
g.

The Observation 9.8 allows us to approach the composition question for randomized
query complexity in a conceptually fresh manner. The goal of proving that randomized query
complexity composes for a function or a class of functions, say upto (logn)-factor, reduces
to showing that Equation 9.2 holds for that function or class of functions for t(n) = logn.

We are able to show that Equation 9.2 holds for all non-decreasing functions t(n).

Theorem 9.9. Let f be a partial function on n bits and let t ≥ 1, then R( f ◦GapMajt) =
O(t ·noisyR( f )+n).

Notice that this is a generalization of Ben-David and Blais’ characterization of noisyR
given by Theorem 9.7 in one direction. To give an idea of the proof, their characterization
(Theorem 9.7) shows that any noisy oracle algorithm for f can be simulated using only two
biases, 1 and 1/

√
n (where n is the arity of f ), with only constant overhead. We generalize

this by showing that the same simulation works with a slight overhead even when the bias
1/
√

n is replaced by a bias 1/
√

t, for some t ≥ 1. A proof the above theorem is provided in
Section 9.4.1.
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This seemingly inconsequential generalization allows us to complete the proof of Theo-
rem 9.6, i.e. if for an n-bit partial function f , R( f ) = Θ(n), then R( f ◦g) = Θ̃(R( f ) ·R(g))
for all partial functions g (see Section 9.4 for details).

Furthermore, Theorem 9.9 even sheds light on the composition question for noisyR. A
corollary of this theorem is that if R composes with respect to an outer function, then noisyR
also composes with respect to the same outer function (see Section 9.4 for a proof).

Corollary 9.10. Let f be a partial Boolean function. If R( f ◦g) = Θ̃(R( f ) ·R(g)) for all
partial functions g then noisyR( f ◦g) = Θ̃(noisyR( f ) ·noisyR(g)).

9.3.2 Composition theorem when the outer function has some Symme-
try

Applying Theorem 9.6 we can prove the composition theorem for some classes of functions
that were not known beforehand. Precisely we will prove composition theorem when the
function is strongly junta symmetric and the number of junta variable is linear in n which is
really high. For the Definition of strongly junta symmetric function please refer Chapter 6.

Theorem 9.11 (Restatement of Theorem ??). For any strongly k−junta symmetric function
f : {0,1}n → {0,1} and any Boolean function g : {0,1}m → {0,1}, we have R( f ◦ g) =
Ω̃(R( f ) ·R(g)) where n− k = Θ(n).

Proof. There exists an assignment of the k-bits such that the resulting function is a non-
constant symmetric function on (n− k) bits. Since the sensitivity of the restricted function is
Ω(n), the randomized query complexity is also Ω(n) (see [Nis89]). Hence, from Theorem 9.6
the result follows.

9.4 Results about composition of R

This section is devoted to the results related to the composition of randomized query com-
plexity. Our main result states that composition of R holds if the outer function has full
randomized query complexity (Theorem 9.6). As mentioned in the proof idea, the proof
critically depends on the notion of noisy randomized query complexity and its properties
(introduced by Ben-David and Blais [BDB20b]).

Recall the definition of noisy randomized query complexity of a function f from Defini-
tion 9.3. As mentioned in the introduction (Theorem 9.7), Ben-David and Blais [BDB20b]
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proved that

noisyR( f ) = Θ

(
R( f ◦GapMajn)

n

)
, (9.3)

where GapMajn is the Gap-Majority function on n bits. Note that Ben-David and Blais
proved Equation 9.3 when the arity of functions f and Gap-Majority is the same. We show
that if Equation 9.3 can be generalized for Gap-Majority functions of arbitrary arity for some
outer function f , then randomized query complexity composes for the function f . We restate
the following observation from the introduction.

Let f be a partial Boolean function on n bits. If t(n)≥ 1 is a non-decreasing function of
n and

noisyR( f ) = Ω

(
R( f ◦GapMajt(n))

t(n)

)
,

then R( f ◦g) = Ω((R( f ) ·R(g))/t(n)) for all partial functions g.

Proof. Suppose noisyR( f ) = Ω

(
R( f◦GapMajt(n))

t(n)

)
, since R( f ◦GapMajt) ≥ R( f ), we have,

noisyR( f ) = Ω(R( f )/(t(n)). Theorem 9.7 implies that a lower bound on noisyR translates
to a lower bound on R( f ◦g). We have,

R( f ◦g) = Ω(noisyR( f ) ·R(g)) (Theorem 9.5)

= Ω

(
R( f ) ·R(g)

t(n)

)
.

Observation 9.8 follows from the above observation by choosing t(n) to be a small
function of n.

We restate from Section 7.1 our generalized characterization of noisyR (i.e., generaliza-
tion of Equation 9.3) and proof it in the following subsection.

9.4.1 Proof of Theorem 9.9

Let us start by recalling the theorem we want to prove in this subsection. We will prove the
following:

Theorem 9.12. Let f be a partial function on n bits and let t ≥ 1, then R( f ◦GapMajt) =
O(t ·noisyR( f )+n).
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We mention two lemmas from Ben-David and Blais [BDB20a] that we need for the
proof of this theorem. The first lemma shows that given a noisy oracle with γ bias, it can

simulate an oracle of γ ′ ≥ γ bias by making approximately
(

γ ′

γ

)2
queries.

Lemma 9.13 ([BDB20a]). Let γ ∈ [−1/3,1/3] be nonzero and k ≤ 1/γ2 be an odd positive
integer. If we take k independent samples from Bernoulli((1+ γ)/2) and take their majority,
the resultant distribution is Bernoulli((1+ γ ′)/2) where sign(γ ′) = sign(γ) and

√
k|γ|
3

· ≤ |γ ′| ≤ 3
√

k|γ|.

The following lemma shows that it is enough to query the noisy oracle with just two
biases.

Lemma 9.14 ([BDB20a]). Let f be a partial function and let A be an optimal noisy random-
ized algorithm for A of cost noisyR( f ). Then there is another noisy randomized algorithm Â
of cost O(noisyR( f )), which only queries its noisy oracles with parameter either γ = 1 or
γ = γ̂ , where γ̂ > 0 is the smallest bias that A uses on any input.

Another important lemma needed for the proof concerns the property of a random walk
on a line where the coin is biased with some probability.

Lemma 9.15. Define a random walk on a line where the coin gives head with probability
1+γ̂

2 . The random walk start at 0 and stops if it reaches T or −T . Conditioned on the fact
that we reach T before −T , let the expected number of steps of the walk be µT , then

µT =
T
γ̂

− 2T
γ̂
(1− γ̂)T

(
(1+ γ̂)T − (1− γ̂)T

(1+ γ̂)2T − (1− γ̂)2T

)
. ([Fel91, Chapter XIV])

Moreover, for T = Θ(1/(
√

t · γ̂)), we have

• µ2T = Ω(1/(t · γ̂2)), and

• µ2T ≤ 12µT .

For completeness, we present the proof after the proof of Theorem 9.9

Proof of of Theorem 9.9. From Lemma 9.14, we can assume that f can be computed by a
noisy randomized algorithm Â of cost O(noisyR( f )) that makes queries with only two biases:
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1 and γ̂ . We will now simulate Â, that uses bias 1 and γ̂ , with a noisyR algorithm B that uses
bias 1 and 1/

√
t, where t ≥ 1.

Case 1: The first case is when γ̂ ≥ 1/
√

t. In this case we can use multiple oracle calls of
bias 1/

√
t to simulate one oracle call of bias γ̂ . To do this, algorithm B makes O(t γ̂2) calls of

bias γ̂ and takes their majority. By Lemma 9.13, the algorithm B obtains a bit of bias slightly
greater than γ̂ . Then B adds some bias to this bit to obtain a bit of bias exactly γ̂ . The cost
paid by B is O(t γ̂2 ·1/t) = O(γ̂2).

Case 2: We now consider the case when γ̂ < 1/
√

t. In this case we wish to generate
many bits of low bias (γ̂) using a single bit of high bias (1/

√
t). Consider the following

random walk based sampling procedure.

• Setup. Let

T =

⌊
1

5
√

t γ̂

⌋
. (9.4)

The random walk will take place on a line that is marked with integral multiples of T ,
with T being right to 0, −T being left to 0 and so on. Also, (T −1) points are marked
between every two adjacent integral multiples of T . The random walk starts at 0. Also,
let

R =

(
1+ γ̂

1− γ̂

)T

.

1. Toss a coin of bias
δ
′ =

R−1
R+1

.

2. If the result of the toss is 1, then sample a sequence of bits using a γ̂-bias coin consisting
of w 1’s and z 0’s, conditioned on w−z = T . This sampling procedure can be simulated
by picking a random walk from the set of γ̂-biased random walks on the line which
reach T before −T (starting at 0).

3. If the result of the toss is 0, then sample a sequence of bits using a γ̂-bias coin
consisting of w 1’s and z 0’s, conditioned on w− z =−T . This sampling procedure
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can be simulated by picking a random walk from the set of γ̂-biased random walks on
the line which reach −T before T (starting at 0).

We now prove the correctness of the above protocol. A crucial observation in [BDB20a]
is that conditioned on a set of sequences, all of which reach T before −T , the probability of
choosing each sequence is the same whether we choose bias γ̂ or −γ̂ for Step 2. and Step 3.
above. The reason is that the probability for any sequence of walks with w 1’s and z 0’s such
that w− z = T , is R times more likely when we choose a γ̂ biased coin than when we choose
a −γ̂ biased coin. Furthermore, the probability of a γ̂-biased walk starting at 0 and reaching
T is R/(R+ 1). This is because if the probability of reaching T is p, then probability of
reaching −T is p/R. Since p+ p/R = 1, p = R/(R+ 1). Similarly, the probability that a
−γ̂-biased coin reaches T is 1/(R+1) and reaches −T is R/(R+1). Thus δ ′ is chosen such
that the probability of being correct is exactly R/(1+R). Also, assuming that γ̂ is smaller
than 1/10, the bias δ ′ can be shown to be smaller than but within a constant factor of 1/

√
t

(we refer to [BDB20a, Theorem 4] for details). Thus, by adding noise, the bias 1/
√

t can be
converted to bias δ ′.

Let µT denote the expected number of bits that one run of the above sampling procedure
generates. Lemma 9.15 implies that µT is lower bounded by Ω(1/(t · γ̂2)).

In summary, for one iteration of the Step 1. to 3. of the sampling procedure, the following
are true: a) The choice of δ ′ in Step 1. implies correct distribution (from bias γ̂) of generating
the coin tosses, and b) an expected number of Ω(1/(t γ̂2)) γ̂-biased samples are generated. c)
Cost paid is δ 2.

Before moving further let us mention explicitly how algorithm B works: B runs algorithm
Â on the given input. For each i ∈ [n]:

• If Â makes a query of bias 1 then B also queries that bit with bias 1. The value of such
bits are known with certainty and no other queries to these bits are made.

• When Â makes a query of bias γ̂ then

– If B has γ̂ biased bits available, then B uses these bits to run Â. Otherwise B
generates the above sampling procedure to generate γ̂ biased bits.

Clearly, the correctness of B follows from the correctness of Â. In order to upper bound
the expected cost of B, we upper bound the expected number of times B runs the above
sampling procedure for each index i ∈ [n]. Recall that our goal is to show that the total
expected cost is bounded by:

O(noisyR( f )+n/t) .
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Fix a k ∈ [n] and consider the noisy query algorithm B that uses bias 1/
√

t and 1 to
simulate the algorithm Â (that uses bias γ̂ and 1). For a run, say r, of algorithm Â

• Let Tr,k be the number of times algorithm Â queries the kth bit in the r-th run and let

Tk = Er[Tr,k].

Observe that

∑
k

Tk = O(noisyR( f )/γ̂
2). (9.5)

• Let X1,X2, . . . ,Xℓr be the number of bits sampled by B, while simulating the r-th run
of Â, where B makes ℓr independent calls to the above sampling procedure in order to
meet the demand of Tr,k.

Let

Lk,r = (X1 + · · ·+Xℓr)−Tr,k, (9.6)

denote the number of surplus bits (i.e. not used in simulation) generated by the algorithm B.
Thus,

E[X1 + · · ·+Xℓr ] = E[Tr,k]+E[Lk,r]

= Tk +E[Lk,r], (9.7)

where the expectation in the first equation is over both the run r and the randomness of the
sampling procedure.

We now upper bound E[Lk,r]. Note that Lk,r denotes the number of bits generated by
the following walk on line: a γ̂-biased random walk on line starts at some point xr, where
−T < xr < T depends on X1, . . . ,Xℓr and Tr,k, and stops after reaching either −T or T . The
expected value of Lk,r is upper bounded by the expected value of a γ̂-biased random walk on
line starts at xr and stops after reaching either −(T + |xr|) or (T + |xr|). Since −T < xr < T ,
E[Lk,r] is upper bounded by the expected value of a γ̂-biased random walk on line starts at 0
and stops after reaching either −2T or 2T .

From Lemma 9.15 we have the following bound on µ2T in terms of µT ,

µ2T ≤ 12µT .
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The above expression, combined with Equation 9.7, implies that for every k ∈ [n]

E[X1 + · · ·+Xℓr ]≤ Tk +12µT , (9.8)

where the expectation is over both r (i.e. randomness used by Â) and the randomness of the
sampling procedure.

Next, we upper bound the expected number of times B calls the sampling procedure, i.e.
we upper bound E[ℓr]. Let It denote the random variable such that It = 0 if t > ℓr and It = 1
otherwise. Thus,

E

[
ℓr

∑
i=1

Xi

]
= E

[
∞

∑
i=1

XiIi

]

=
∞

∑
i=1

E[XiIi]

=
∞

∑
i=1

Pr[Ii = 1]E[Xi | Ii = 1]

=
∞

∑
i=1

Pr[ℓr ≥ i]E[Xi | ℓr ≥ i]

= E[Xi]
∞

∑
i=1

Pr[ℓr ≥ i]

= E[Xi]E[ℓr].

In the second last equation, we have used E[Xi | ℓr ≥ i] =E[Xi]. This is because the event ℓr ≥ i
depends on X1, . . . ,Xi−1 but not on Xi. Since E[Xi] = µT for all i, along with Equation 9.8 we
have

E[ℓr]≤ Tk/µT +12.

Summing over all k and using Equation 9.5, the expected number of queries made by
algorithm B is upper bounded by

O
(

noisyR( f )
γ̂2µT

+12n
)
.

Thus the expected cost of B is upper bounded by

O
(

noisyR( f )
t γ̂2µT

+
12n

t

)
.
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Since µT = Ω(1/(t γ̂2)), the above quantity is upper bounded by

O
(

noisyR( f )+
n
t

)
.

In order to complete the proof of the theorem, we show how to simulate B to obtain a
randomized query algorithm B′ for f ◦GapMajt of cost O(t ·noisyR( f )+n). The algorithm
B′ simulates B in the following manner:

1. if b queries i-th bit of f with bias 1, for some i ∈ [n], then B′ queries all the bits of i-th
Gap-Majority inner function.

2. if B queries i-th bit of f with bias 1/
√

t, for some i ∈ [n], then B′ queries a random bit
of i-th Gap-Majority inner function.

The correctness of B′ follows directly from the simulation and the correctness of B. Also, in
both the cases (1. and 2.), cost paid by B′ is t times the cost paid by B. Thus

R( f ◦GapMajt) = O(t ·noisyR( f )+n) . (9.9)

Proof of Lemma 9.15. As mentioned in the statement of the lemma, the equality

µT =
T
γ̂

− 2T
γ̂
(1− γ̂)T

(
(1+ γ̂)T − (1− γ̂)T

(1+ γ̂)2T − (1− γ̂)2T

)
, (9.10)

follows from [Fel91, Chapter XIV].

Next, we prove the second part of the lemma. The following inequalities are easy to
observe.

(1+ γ̂)T − (1− γ̂)T ≤ 2γ̂T
1− γ̂2T 2 ,

(1+ γ̂)T − (1− γ̂)T ≥ 2γ̂T,

(1− γ̂)T ≥ 1−T γ̂.

Using the above inequalities and Equation 9.10 we get the following bounds on µT

T 2

(1+ γ̂T )
≤ µT ≤ T

γ̂

(
γ̂T +4γ̂

2T 2 −4γ̂
3T 3) . (9.11)
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For T = Θ(1/
√

t · γ̂), the above expression implies that µT is lower bounded by Ω(1/(t ·
γ̂2)).

Now we use Equation 9.11 to upper bound µ2T in terms of µT :

µ2T ≤ 2T
γ̂

(
2γ̂T +16γ̂

2T 2 −32γ̂
3T 3)

=
T 2

(1+ γ̂T )
· (1+ γ̂T )

T 2 · 2T
γ̂

(
2γ̂T +16γ̂

2T 2 −32γ̂
3T 3)

≤ (1+ γ̂T )
T 2 · 2T

γ̂

(
2γ̂T +16γ̂

2T 2 −32γ̂
3T 3) ·µT

= 2(1+ γ̂T ) ·
(
2+16γ̂T −32γ̂

2T 2) ·µT .

Since T = Θ(1/(
√

t · γ̂)), for a suitable choice of constant, we have,

µ2T ≤ 12µT .

This allows us to show that if for an n-bit partial function f , R( f )=Θ(n), then R( f ◦g)=
Θ̃(R( f ) ·R(g)) for all partial functions g (Theorem 9.6).

The proof of Theorem 9.6 is discussed in Section 9.4.2. A corollary of this theorem is
that if R composes with respect to an outer function, then noisyR also composes with respect
to the same outer function (Corollary 9.10).

We give proof of Theorem 9.6 in the next section and prove Corollary 9.10 in Sec-
tion 9.4.4. We need the following theorem for these proofs, which lower bounds R( f ◦g) in
terms of R( f ) and R(g).

Theorem 9.16 ([GLSS19]). Let f and g be partial functions then R( f ◦ g) = Ω(R( f ) ·√
R(g)).

9.4.2 Composition for functions with R( f ) = Θ(n)

We restate the theorem below.

Theorem 9.17. Let f be a partial Boolean function on n-bits such that R( f ) = Θ(n). Then
for all partial functions g, we have

R( f ◦g) = Ω(R( f ) ·R(g)).
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Proof. From Theorem 9.16 we have a lower bound on the randomized query complexity of
( f ◦GapMajt):

R( f ◦GapMajt) = Ω(R( f ) ·
√

t). (9.12)

On the other hand, Theorem 9.9 gives an upper bound of O(t ·noisyR( f )+n) on R( f ◦
GapMajt). Thus, choosing t =

(
C·n

noisyR( f )

)
for a large enough constant C, we have

R( f ) ·
√

n
noisyR( f )

= O
(

n
noisyR( f )

·noisyR( f )+n
)
.

This implies that

R( f ) = O
(√

n ·noisyR( f )
)
. (9.13)

Thus, if R( f ) = Θ(n), then noisyR( f ) = Ω(R( f )), which implies composition from Theo-
rem 9.5.

Notice that Equation 9.13 is equivalent to the following observation.

Observation 9.18. Let f be a partial Boolean function on n-bits. Then, noisyR( f ) =
Ω

(
R( f )2

n

)
.

When R( f ) = Θ(n), we have already seen that Observation 9.18 implies composition of
randomized query complexity when the outer function is f .

Though, Observation 9.18 implies a more general result. When R( f ) is close to n (arity
of f ), Observation 9.18 places a limit on the gap between R( f ) and noisyR( f ) (consequently
on the violation of composition with outer function being f ). These implications are formally
discussed in the next Section 9.4.3.

9.4.3 Additional implications of Observation 9.18

Without loss of generality we can assume R( f ◦g) = Ω(R(g)) (note that this is true when f
is non-constant).

Ben-David and Blais [BDB20b] gave a counterexample for composition, but the arity
of the used function was very high compared to the randomized query complexity. They
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observed that the composition can still be true in the weaker sense:

R( f ◦g) = Ω

(
R( f ) ·R(g)

logn

)
.

Observation 9.18 shows that a much weaker composition result is true.

Corollary 9.19. Let f and g be partial functions on n and m bits respectively. If R( f ◦g) =
Ω(R(g)), then

R( f ◦g) = Ω

(
R( f ) ·R(g)√

n

)
.

Proof.

R( f ◦g) = Ω(noisyR( f ) ·R(g)) (Theorem 9.5)

= Ω

(
R( f )2 ·R(g)

n

)
. (9.14)

Where the last equality follows from Observation 9.18 3 Now there are two cases:

• Case 1. R( f ) = O(
√

n). In this case R( f )/
√

n = O(1) and since we assumed R( f ◦
g) = Ω(R(g)), the claim follows from Equation 9.14.

• Case 2. R( f ) = Θ(n1/2 · t(n)) where t(n) is a strictly increasing function of n. Thus,

R( f )2 ·R(g)
n

= Ω
(
t(n)2 ·R(g)

)
= Ω

(
R( f ) ·R(g)√

n

)
.

Again, the claim follows from Equation 9.14.

The weaker composition, Corollary 9.19, implies that if R( f ) and R(g) are comparable
to the arity of these functions, the randomized query complexity of f ◦g is “not far” from
the conjectured randomized query complexity R( f ) ·R(g). In other words, if there is a large
polynomial separation between R( f ◦g) and (R( f ) ·R(g)), then R( f ) and R(g) can not be
too large.

3Sherstov [She12] proved that for Boolean functions f and g, d̃eg( f ◦g) = Ω((d̃eg( f )2d̃eg(g))/n). Thus in
Equation 9.14 we prove the same result but in the randomized world.
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Corollary 9.20. Let f and g be partial functions such that f is a function on n-bits and
g is a function on t(n)-bits where t(n) is a strictly increasing function of n. If R( f ) =
Θ(nβ ), R(g) = Θ(nγ) and R( f ◦ g) = O((R( f ) ·R(g))α), where α < 1 is a constant, then
(1−α)(α +β )< 1/2.

Proof. For some constants A and B we have

A · R( f ) ·R(g)√
n

≤ R( f ◦g)≤ B · (R( f ) ·R(g))α ,

where the first inequality follows from Corollary 9.19 and second from assumption. Assigning
the values of R( f ) and R(g) in terms on n we have,

A ·nβ+γ−1/2 ≤ B ·nα(β+γ)

n(1−α)(β+γ)−1/2 ≤ B
A
.

which implies, for large enough n, (1−α)(β + γ)≤ 1/2.

A special case of the above corollary is when arity and randomized query complexity of
g are superpolynomial in n. In this case a polynomial gap between R( f ◦g) and (R( f ) ·R(g))
is not possible.

Another implication of Theorem 9.6 is that composition of R for an outer function f
implies the composition of noisyR for outer function being f (Corollary 9.10).

9.4.4 Proof of Corollary 9.10

First, we need the following lemma which follows from Theorem 9.9, Theorem 9.5 and
Lemma 9.4.

Lemma 9.21. Let f be a partial function on n bits and let t = Ω(n). Then

noisyR( f ) = Θ

(
R( f ◦GapMajt)

t

)
.

Proof. From Theorem 9.9 we have for all t ≥ 1, R( f ◦GapMajt) = O(t · noisyR( f )+ n).
Since we have assumed t = Ω(n) and noisyR( f ) = Ω(1) (Lemma 9.4), we get R( f ◦
GapMajt) = O(t ·noisyR( f )). Thus, noisyR( f ) = Ω

(
R( f◦GapMajt)

t

)
.
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The upper bound noisyR( f ) = O
(

R( f◦GapMajt)
t

)
follows from Theorem 9.5 and the fact

that R(GapMajt) = Θ(t).

Now we prove that if R composes for f then noisyR composes for that f . For conve-
nience, we recall the statement of the corollary from the introduction.

Corollary 9.22. Let f be a partial Boolean function. If R( f ◦g) = Θ̃(R( f ) ·R(g)) for all
partial functions g then noisyR( f ◦g) = Θ̃(noisyR( f ) ·noisyR(g)).

Proof. From Theorem 9.7, we have

noisyR( f ◦g) = Θ

(
R(( f ◦g)◦GapMajmn)

mn

)
.

Since ( f ◦g)◦h = f ◦ (g◦h), the right hand side of the above expression is equal to

Θ

(
R( f ◦ (g◦GapMajmn))

mn

)
.

The proof follows from the assumption that R composes and Lemma 9.21.

noisyR( f ◦g) = Θ

(
R( f ) ·R(g◦GapMajmn)

mn

)
(assuming R composes)

= Θ(R( f ) ·noisyR(g)) (from Lemma 9.21)

= Θ(noisyR( f ) ·noisyR(g)) . (assuming R composes)

9.5 Conclusion

We showed that the composition question for R is equivalent to the following open question
(which is a generalization of Ben-David and Blais [BDB20b] result):

Question 9.23. Let f : {0,1}n → {0,1,∗} be a Boolean function. Then, is it true that for
arbitrary t, noisyR( f ) = Θ(R( f ◦GapMajt)/t)?

While the main problem remains open here is one interesting open problem that may be
small steps towards the main problem as well as better understanding.
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Recently, in [SYZ04, Sun07, Dru11, Cha11, CKP22], the classes of transitive functions
got a lot of attention as a natural generalization of the classes of symmetric functions. Can
the result for symmetric functions be extended to transitive functions?

Question 9.24. Can we prove that R composes when the outer function is transitive?
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