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List of Notations

� C denotes the set of all complex numbers.

� R denotes the set of real numbers.

� Z denotes the set of all integers.

� Zk denotes the direct sum of k-copies of Z.

� Q denotes the set of all rational numbers.

� Dn denotes the n-th standered disk.

� ιn denotes the homotopy class of the identity map Sn → Sn.

� ΩX denotes the loop space of X.

� ΣX denotes the reduced suspension of a space X.

� Σ∞X denotes the infinite suspension spectrum of a pointed space X.

� X∨k denotes the wedge of k-copies of X.

� CPn denotes the n-dimensional complex projective space .

� HPn denotes the n-dimensional quaternionic projective space .

� OP 2 denotes the 2-dimensional octonionic projective space.

� T op denotes the category of topological spaces.

� T op 1
2
denotes the localised category of topological spaces, where 2 is inverted.

� T op 1
2
, 1
3
denotes the localised category of topological spaces, where 2 and 3 are inverted.

� πsm denotes the m-th stable stem .

1
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Chapter 1

Introduction

This thesis explores the construction of certain sphere fibrations over highly connected mani-

folds. One may study consequences for the loop space decomposition of the highly connected

manifolds.

1.1 Highly connected Poincaré duality complexes

From the point of view of classification problems in differential topology, apart from surfaces

and 3-manifolds, the results for spheres appeared in the celebrated works of Milnor [31] and

Kervaire and Milnor [30]. In dimension 4, classification problems have received a lot of attention

from both topologists and geometers. The determination of simply connected 4-manifolds up

to homotopy goes back to the early works of Whitehead [47] and Milnor [32]. In this case,

the simply connected hypothesis on the 4-manifold M determines the homology groups up to

an integer k, given by H2(M) ∼= Zk, and the homotopy type up to the classification of inner

product spaces of rank k, given by the intersection form. Conversely, given a non-singular inner

product space, the associated cell complex ( which can be built by attaching the top cell using

the given form to the wedge of 2-spheres) does satisfy Poincaré duality. However, not all of

them are homotopy equivalent to smooth manifolds due to the restrictions proved by Rohlin

[37] and Donaldson [18]. On the other hand, the topological classification problem for simply

connected 4-manifolds solved by Freedman [21], does not carry the same restrictions.

A natural generalization of the simply connected 4-manifolds are the (n − 1)-connected 2n-

manifolds. For these manifolds, the homology is again determined up to an integer k by

Hn(M) ∼= Zk. Their classification have been studied by Wall [44] via the approach of expressing

these as a union of handlebodies. The intersection form is no longer sufficient to determine

the homotopy type of M . Such an M with Hn(M) ∼= Zk possesses a minimal CW complex

3



4 Chapter 1. Introduction

structure

M ≃ (Sn)∨k ∪L(M) D2n, with L(M) ∈ π2n−1

(
(Sn)∨k

)
.

The homotopy group π2n−1

(
(Sn)∨k

)
is computed via the Hilton-Milnor theorem [25] as

π2n−1

(
(Sn)∨k

) ∼= (π2n−1(S
n))⊕k ⊕ (π2n−1S

2n−1)⊕(
k
2).

The groups π2n−1(S
2n−1) ∼= Z occuring in the above description are mapped to (Sn)∨k via

Whitehead products of the different summands. Moreover, if n is even, the group π2n−1S
n

contains a Z-summand whose generator may be chosen either as the Whitehead product or the

Hopf invariant one classes (which occur only when n = 2, 4, or 8 [1]). The projection of L(M)

onto these torsion-free summands are determined directly by the intersection form.

It is also an interesting question whether given L(M) ∈ π2n−1

(
(Sn)∨k

)
, there is a (n − 1)-

connected 2n-manifold homotopy equivalent to the cell complex M . In this paper, we work

around these issues by considering all such cell complexes M . These satisfy Poincaré duality

in the sense that there is a degree 2n homology class [M ] which gives the Poincaré duality

isomorphism via the cap product, and are called Poincaré duality complexes [45]. We write

PDmk for the collection of Poincaré duality complexes that are k-connected and m-dimensional.

In this notation, the above examples lie in PD2n
n−1.

The expression for L(M) ∈ π2n−1

(
(Sn)∨k

)
shows that a general homotopical classification will

rely on the knowledge of π2n−1S
n, and thus, is not possible with our current knowledge of

the homotopy groups of spheres. As a weaker classification, we consider the homotopy type of

the loop space ΩM . If k = Rank(Hn(M)) ≥ 2, one realizes that the homotopy type of ΩM

depends only on k [13, 9]. One proves that the loop space is expressable as a weak product of

the loop space of spheres which map to π∗M via Whitehead products. If k = 1, this is not true

as is observed in [9, §4.3].

The splitting results for the loop space of manifolds fall under the general framework of loop

space decompositions. Such a decomposition for highly connected manifolds was first proved in

[14] for the (n−1)-connected (2n+1)-manifolds. There have been a growing interest in results

of this type [13, 9, 10, 6, 42, 26]. A general idea for producing loop space decompositions is

given in [42]. Given a cofibration sequence ΣA→ E
h→ J for which Ωh has a right homotopy

inverse, there are equivalences

ΩE ≃ ΩJ × ΩFib(h), Fib(h) ≃ ΣA⋊ ΩJ,
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where Fib(h) is the homotopy fibre of h. While this technique may be applied in many examples,

it is not very useful when the rank of the homology of E is small.

A different view of the loop space decompositions is given by fibre bundles. For example, in the

case of CP 2, the usual quotient is part of the principal bundle S1 → S5 → CP 2 which yields

the loop space decomposition ΩCP 2 ≃ S1 × ΩS5. Simply connected 4-manifolds also support

principal S1-bundles of the form S1 → #k−1(S2 × S3) → M where Rank(H2(M)) = k ≥ 2

[19, 8]. The construction of such bundles have many geometric consequences. In the context

of loop space decompositions, this implies ΩM ≃ S1 × Ω(#k−1(S2 × S3)). The construction

involves a choice of a primitive class in H2(M) ∼= [M,CP∞] using the fact that CP∞ is the

classifying space for S1-bundles, and the classification of spin 5-manifolds by Smale [39]. In

this paper, we search for generalizations of this construction for highly connected manifolds.

1.2 Existence result for sphere fibrations

Let Mk ∈ PD2n
n−1 be a Poincaré duality complex of dimension 2n which is (n − 1)-connected

and Rank(Hn(Mk)) = k. Let Ek = #k−1(Sn × S2n−1). We first observe that the existence of

a fibration

Sn−1 → Ek →Mk

puts some restrictions on n. As Ek is (n− 1)-connected, we must have that the map Sn−1 →

Ek is null-homotopic. Now continuing the homotopy fibration sequence further, we find that

ΩEk → ΩMk → Sn−1 is a principal fibration with a section and so, there is a splitting

ΩMk ≃ ΩEk × Sn−1. Therefore , Sn−1 is a retract of an H-space, and hence is itself an

H-space, which doesn’t usually happen . We assume that n is even, and either n = 2, 4, or 8,

or that we are working in the category T op1/2, which is the localized category of spaces after

inverting 2. This hypothesis implies that Sn−1 is an H-space.

We first notice that the classification results of Smale [39] and Barden [5] for 5-manifolds are

not available in general. Additionally, the spheres are not loop spaces (other than n = 2, or 4),

so it is not possible to obtain principal fibrations in general. We approach this problem from

a homotopy theoretic point of view. The homology of the loop space is an associative algebra

via the Pontrjagin product, and for both Mk and Ek, H∗ΩMk and H∗ΩEk may be computed

as tensor algebras modulo a single relation [15]. It is then possible to produce a map between

the associative algebras H∗(ΩEk) → H∗(ΩMk). Now the results of [9] imply that both ΩEk

and ΩMk are a weak product of loop spaces on spheres, which enable us to construct a map

ΩEk → ΩMk that realizes the above map on homology.
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The next step is to try to construct a delooping of the map ΩEk → ΩMk. This is done via

obstruction theory using the cell structure of Ek as

Ek ≃
(
(Sn)∨k−1 ∨ (S2n−1)∨k−1

)
∪ϕ D3n−1,

where ϕ is a sum of Whitehead products. The map ΩEk → ΩMk already specifies choices for

the map

(Sn)∨k−1 ∨ (S2n−1)∨k−1 →Mk.

Once the map f : Ek → Mk is appropriately constructed, a spectral sequence computation is

used to show that Fib(f) ≃ Sn−1. The first result that we prove is the following theorem (see

Theorem 3.1.5)

Theorem 1.2.1. For k ≥ 2, let Mk ∈ PD2n
n−1 with n even and Hn(M ;Z) ∼= Zk. After

inverting the primes 2 and those which occur as torsion in π2n−1(S
n), there is a fibration

Sn−1 → Ek →Mk such that Ek is homotopy equivalent to #k−1(Sn × S2n−1).

Following this, we try for improved results which reduce the set of primes that are required to

be inverted. The best case is when n = 2, 4, or 8, which contains a Hopf invariant one class.

In the case n = 2, one already has a S1-bundle over Mk ∈ PD4
1 as stated above. We also

point this out from our homotopy theoretic techniques without using the classification results of

Smale. For n = 4, we have π7(S
4) ∼= Z⊕Z/(12), so the primes that are required to be inverted

in Theorem A are 2, and 3. We observe through direct computation (Example 4.2.3) that there

is no principal S3-bundle over HP 2#HP 2 with total space S4 × S7. Here, the group structure

on S3 is by quaternionic multiplication identifying S3 as the unit quaternions. However, we are

able to prove integral versions of the sphere fibrations as stated in the following theorem. (see

Theorems 4.1.2, 4.2.11)

Theorem 1.2.2. a) Let Mk be a simply connected 4-manifold with H2Mk
∼= Zk. Then, there

is a principal S1-fibration S1 → Ek →Mk where Ek ≃ #k−1(S2 × S3).

b) Let Mk ∈ PD8
3, that is, H4(Mk) = Zk for k ≥ 2. Such an Mk supports a S3-fibration

S3 → Ek →Mk with Ek ≃ #k−1(S4 × S7).

For n = 8, we have π15(S
8) ∼= Z⊕Z/(120) and so the primes that are required to be inverted in

Theorem A are 2, 3, and 5. Through direct computations, we observe that even for OP 2#OP 2,

it is not possible to construct the fibration S7 → S8×S15 → OP 2#OP 2. However, it appears

that one may put down a list of criteria on M ∈ PD16
7 for which such fibrations do exist. We

leave this question open for future research.
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For general n, one may increase the value of k to obtain better results for spherical fibrations.

The precise bound is given by the number of cyclic summands r in the stable stem πsn−1. The

fibrations are then obtained in the category T op1/2 if k > r. If we further pass to T op1/2,1/3
(that is, also invert the prime 3), we have a homotopy associative multiplication on Sn−1 which

allows us to construct spaces E2(S
n−1) ≃ Sn−1 ∗ Sn−1 and P2(S

n−1), and a fibration

Sn−1 → E2(S
n−1)→ P2(S

n−1).

In the category T op1/2,1/3, we prove that the sphere fibrations are obtained as a pullback of

the above fibration via a map M → P2(S
n−1). These results are summarized in the following

theorem. (see Theorems 3.2.7, 3.2.15)

Theorem 1.2.3. a) Let Mk ∈ PD2n
n−1 with HnM ∼= Zk, and n > 8 be an even integer. Let r

be the number of cyclic odd torsion summands of πsn−1. If k > r, after inverting 2 there is a

fibration Ek →Mk with fibre Sn−1 where Ek ≃ #(k−1)(Sn × S2n−1).

b) After inverting 2 and 3, the fibration Ek →Mk is a homotopy pullback ofMk → P2(S
n−1)←

E2(S
n−1) for a suitable map Mk → P2(S

n−1).

1.2.1 Applications for Loop space decomposition

As applications of the spherical fibrations constructed here we consider connected sums N#Mk

withMk as above, and N a general simply connected 2n-manifold (more precisely, N ∈ PD2n
1 ).

Using the techniques in [42], we may observe that a loop space decomposition may be obtained

using the fact that the attaching map of the top cell of Mk is inert. The condition inert means

that the map (Sn)∨k → Mk has a right homotopy inverse after taking the loop space (that is

Ω
(
(Sn)∨k

)
→ ΩMk has a right homotopy inverse).

We present a fresh view for these loop space decompositions (Theorems 3.2.29, 3.2.30, 3.2.31).

We input our fibrations into the arguments in [26] to realize fibrations over N#M with total

space Gτ (N)#Ek (Proposition 3.2.24). The manifold Gτ (N) is a union of N0 × Sn−1 and

S2n−1 × Dn (3.2.23) using an equivalence S2n−1 × Sn−1 → S2n−1 × Sn−1 associated to a

map τ from S2n−1 to the space of homotopy equivalences of Sn−1. Earlier observations about

connected sums of sphere products [9, Theorem B] imply that the attaching map of the top cell

is inert. Thus, the homotopy type of Ω(Gτ (N)#Ek) depends only on Gτ (N)−∗. We identify

this to be N0 ⋊ Sn−1 and is thus independent of τ (Proposition 3.2.25). Finally, we point out

that the loop space decompositions also yield results for the loop space of the configuration

spaces of N#Mk (Theorem 3.2.35).



8 Chapter 1. Introduction

1.3 SU(2)-bundles over 8-manifolds

The last chapter explores SU(2)-bundles over 8-manifolds, aiming for results akin to those

about circle bundles over 4-manifolds [19, 8]. In the case of simply connected 4-manifolds, the

results are established by leveraging the classification of simply connected 5-manifolds achieved

by Smale [39] and Barden [5].

A circle bundle S1 → X → M over a simply connected 4-manifold M is classified by α ∈

H2(M), the total space X(α) is simply connected if α is primitive, and there are only two

possibilities of X(α) via the classification of simply connected 5-manifolds. Explicitly, we have

[19, Theorem 2]

1. For every simply connected 4-manifold M , there is a circle bundle α, such that X(α) is

homotopy equivalent to a connected sum of S2 × S3. If M is spin, among primitive α,

this is the only possibility.

2. For a simply connected 4-manifoldM which is not spin and a circle bundle α over it, X(α)

is either homotopy equivalent to a connected sum of S2 × S3, or to a connected sum of

S2×S3 and another manifold B. The manifold B is (unique up to diffeomorphism ) a non-

spin simply connected 5-manifold whose homology is torsion-free, and Rank(H2(B)) = 1.

The results of Smale and Barden are geometric in nature, and do not generalize easily to higher

dimensions. Using homotopy theoretic methods, it was possible to construct sphere fibrations

[11] over highly connected Poincaré-duality complexes possibly by inverting a few primes or in

high enough rank. Among these sphere fibrations, the only case where they could be principal

bundles was in dimension 8, and the question whether they may be realized as such was left

unresolved.

In this chapter, we consider principal SU(2)-bundles, noting that SU(2) = S3 is the only case

apart from the circle where the sphere is a Lie group. The base space of the SU(2)-bundle which

is appropriate for making a similar analysis is a highly connected 8-manifold. More precisely,

we consider Poincaré duality complexes M (8-dimensional) that are 3-connected. These are

obtained by attaching a single 8-cell to a buoquet of 4-spheres. We denote

PD8
3 = the collection of 3-connected 8-dimensional Poincaré duality complexes.

The notation Mk ∈ PD8
3 assumes that Rank(H4(Mk)) = k. The attaching map of the 8-

cell is denoted by L(Mk), and is of the form (once we have chosen a basis {α1, . . . , αk} of
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π4(Mk) ∼= Zk)

L(Mk) =
∑

1≤i<j≤k
gi,j [αi, αj ] +

k∑
i=1

gi,iνi +

k∑
i=1

liν
′
i. (1.3.1)

The matrix
(
(gi,j)

)
is the matrix of the intersection form, and hence, is invertible. The notation

νi stands for αi ◦ν and ν ′i for αi ◦ν ′. Here ν is the Hopf map, and ν ′ ∈ π7(S4) is the generator

for the Z/(12) factor satisfying [ι4, ι4] = 2ν + ν ′. For such complexes, we consider

P(Mk) = the set of principal SU(2)-bundles E(ψ)
ψ→Mk such that E(ψ) is 3-connected.

The bundle ψ is classified by a primitive element ψ ∈ H4(Mk), which satisfies a criterion

(see Proposition 5.3.9). In this context, we first encounter the question whether P(Mk) is

non-empty. We prove (see Proposition 5.3.3 and Proposition 5.4.2)

Theorem 1.3.2. For k ≥ 3, the set P(Mk) is non-empty.

For k = 2, there are examples where P(Mk) is empty. This means that for every principal

SU(2)-bundle over such complexes, the total space has non-trivial π3. The idea here is that

the existence of ψ is given by a certain equation in k variables, and solutions exist once k is

large enough.

In the case of simply connected 4-manifolds, the first kind of classification of circle bundles is

the result of Giblin[22] which states

If M2 = S2 × S2, then E(ψ) ≃ S2 × S3 for any primitive ψ.

We also have an analogous result in the 8-dimensional case

If ψ ∈ P(S4 × S4), then E(ψ) ≃ S4 × S7.

In fact, this fits into a more general framework. We call a manifold Mk ∈ PD8
3 stably trivial if

L(Mk) is stably null-homotopic (that is the stable homotopy class of L(Mk) : S
7 →

(
S4

)∨k
is

0). In terms of (1.3.1), this means for every i, gi,i − 2li ≡ 0 (mod 24). We have the following

theorem (see Proposition 5.3.7)

Theorem 1.3.3. SupposeMk is stably trivial. Then, for every ψ ∈ P(Mk), E(ψ) ≃ #k−1S4×

S7, a connected sum of k − 1 copies of S4 × S7.

This directly generalizes the result for circle bundles over simply connected 4-manifolds that are

spin (identifying the spin manifolds as those whose attaching map is stably null).
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1.3.1 Classification of the homotopy type of 3-connected 11-manifolds

We proceed towards a more general classification of the homotopy type of the space E(ψ) for

ψ ∈ P(Mk). Let PD11
4,7 be the class of 3-connected 11-dimensional Poincaré duality complexes

E such that E \ {pt} ≃ a wedge of S4 and S7. We first observe that E(ψ) ∈ PD11
4,7 (see

Proposition 5.2.2), and we try to address the question of the classification of complexes in

PD11
4,7 up to homotopy equivalence. The homology of such complexes E is given by

Hm(E) ∼=


Z m = 0, 11

Zr m = 4, 7

0 otherwise.

We denote the number r by Rank(E). The classification works differently for r = 1, and for

r ≥ 2. Table 5.1 lists the various possibilities for r = 1. For r ≥ 2, E is a connected sum of

copies of S4 × S7, and the complexes Eλ,ϵ,δ defined below. Note that

π10(S
4 ∨ S7) ∼= π10(S

4)⊕ π10(S7)⊕ π10(S10)

∼= Z/(24){x} ⊕ Z/(3){y} ⊕ Z/(24){ν7} ⊕ Z{[ι4, ι7]}.

Here, x = ν ◦ ν7 and y = ν ′ ◦ ν7. Let

ϕλ,ϵ,δ = [ι4, ι7] + λ(ι7 ◦ ν7) + ϵ(ι4 ◦ x) + δ(ι4 ◦ y),

where ι4 : S
4 → S4 ∨ S7 and ι7 : S

7 → S4 ∨ S7 are the canonical inclusions, and define,

Eλ,ϵ,δ = (S4 ∨ S7) ∪ϕλ,ϵ,δ D
11.

The attaching map of the top cell of E takes the form

L(E) : S10 →
(
S4 ∨ S7

)∨r
.

The stable homotopy class of L(E) lies in

πs10

((
S4 ∨ S7

)∨r) ∼= (
Z/(24){ν} ⊕ Z/(2){ν2}

)⊕r
.

This takes the form λsβ◦ν+ϵsα◦ν2 for some β ∈ π7
((
S4∨S7

)∨r)
and α ∈ π4

((
S4∨S7

)∨r)
.

Up to a change of basis we may assume that λs | 24, and if λs is even, ϵs ∈ Z/(2). These
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numbers are invariant over the homotopy equivalence class of E, and are denoted by λs(E),

and ϵs(E) (defined only if λs(E) is even). We use these invariants to classify the homotopy

types of elements in PD11
4,7 (see Theorem 5.1.17)

Theorem 1.3.4. Let E ∈ PD11
4,7. Then the homotopy type of E is determined by the following.

1. If λs(E) is even and ϵs(E) = 0, then

E ≃ #r−1E0,0,0#Eλs,ϵ,δ where ϵ ≡ 0 (mod 2).

2. If λs(E) is even and ϵs(E) = 1, then

E ≃ #r−1E0,0,0#Eλs,ϵ,δ where ϵ ≡ 1 (mod 2)

or E ≃ #r−2E0,0,0#E0,1,0#Eλs,ϵ,δ where ϵ ≡ 0 (mod 2).

3. If λs(E) is odd, then

E ≃ #r−1E0,0,0#Eλs,ϵ,δ or E ≃ #r−2E0,0,0#E0,1,0#Eλs,ϵ,δ.

Further given λs, the choices of ϵ and δ are those which are mentioned in Table 5.1.

We see that in the list given in Table 5.1, for certain cases the homotopy type of E is determined

by λs(E) and ϵs(E). This happens if λs(E) = 0, or 12. We also observe that the homotopy

type of ΩE depends only on the rank r. Now, we look at Mk ∈ PD8
3, and try to determine

the set of homotopy equivalence classes of E(ψ) for ψ ∈ P(Mk). In this process, we determine

a formula for λ(ψ) := λs(E(ψ)) (Proposition 5.2.13), and using this we determine the set of

possible values of λs(ψ) for ψ ∈ P(Mk). The stable homotopy class of L(Mk) lies in

πs7

(
(S4)∨k

)
∼=

(
Z/(24){ν}

)⊕k
.

This takes the form σsα ◦ ν for some α ∈ π4
(
(S4)∨k

)
, and up to a change of basis for k ≥ 2,

σ(Mk) := gcd(σs, 24) is an invariant of the stable homotopy type of Mk. Other than k and

σ(Mk), the explicit stable homotopy class of α above yields a linear map τ : H4(Mk)→ Z/(24)

given by τ(ψ) = ψ(σsα).
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1.4 Constructing principal bundles of prescribed stable homotopy

types

We use the invariants k, σ(Mk), τ , and the intersection form to completely determine the

possibilities of λ(ψ) for ψ ∈ P(Mk). (see Theorem 5.2.14, Proposition 5.3.10, Theorem 5.3.11,

Theorem 5.3.14, and Theorem 5.4.5)

Theorem 1.4.1. For any ψ ∈ P(Mk), λ(ψ) is a multiple of σ(Mk) ( (mod 24)). Conversely,

the multiples of σ(Mk) that may be achieved are described as follows

1. If the intersection form of Mk is odd and k ≥ 7, then {λ(ψ) | ψ ∈ P(Mk)} equals the

set of multiples of σ(Mk) (mod 24).

2. If the intersection form of Mk is even, each ψ ∈ P(Mk) satisfies ϵs(ψ) ≡ 0 (mod 2).

3. If k ≥ 7, there are ψ ∈ P(Mk) such that λ(ψ) = σ(Mk), and also there are ψ ∈ P(Mk)

such that λ(ψ) = 3σ(Mk).

4. If σ(Mk) ≡ 2, or 4 (mod 8) for k ≥ 5, there is a ψ ∈ P(Mk) such that λ(ψ) ≡ 0

(mod 8) if and only if the complex satisfies hypothesis (H8).

5. If σ(Mk) ≡ 2 (mod 8) for k ≥ 5, there is a ψ ∈ P(Mk) such that λ(ψ) ≡ 4 (mod 8) if

and only if the complex satisfies hypothesis (H4).

For lower values of k, we do not get systematic results like the above. That is, the set {λ(ψ) |

ψ ∈ P(Mk)} is not completely determined by σ(Mk), k, τ , and the intersection form. Theorem

1.4.1 implies that there are certain Mk whose intersection form is even and there is no ψ ∈

P(Mk) such that E(ψ) ≃ #k−1S4×S7, however if the intersection form is odd, then for k ≥ 7,

there is a principal bundle SU(2)→ #k−1(S4 × S7)→Mk.



Chapter 2

Constructing maps between loop

space homology algebras

In this chapter, we construct a map from the homology of the loop space of a connected sum of

copies of Sn×S2n−1 to that of the loop space of a highly connected Poincaré duality complex .

We use the fact that the latter is a quadratic algebra with a single relation which in turn comes

from a non-singular intersection form. The results of this chapter appear in the paper [11].

2.1 Some algebraic results

Let V be a free module over a principal ideal domain R (in our applications Z[ 1p1 , · · · ,
1
pr
] for a

finite set of primes {p1, · · · , pr}) of finite rank k, and suppose α : V → R is a non-zero linear

function. Let L be a symmetric 2-tensor (that is an element of Sym2(V ) = (V ⊗V )Σ2) which

is invertible (that is, with respect to any basis the corresponding k× k matrix with coefficients

from R is invertible). We think of V as a graded vector space, also note that the associative

algebra T (V ) has a graded Lie bracket given by

[v, w] = v ⊗ w − (−1)|v||w|w ⊗ v for all v, w ∈ T (V ). (2.1.1)

Proposition 2.1.2. With V concentrated in a single grading m for m odd, α and L as above,

for any basis v1, · · · , vk−1 of Ker(α), there are w1, · · · , wk−1 ∈ V ⊗ V such that

1.
k−1∑
j=1

[vj , wj ] = 0 (mod L).

2. {w1, · · · , wk−1} projects to a basis of V ⊗ V/
(
R{L}+ V ⊗ Ker(α)

)
.

13
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Proof. Given a basis v1, · · · , vk−1 of Ker(α), pick vk such that v1, · · · , vk is a basis of V . This

is possible as the image of α is a principal ideal (b) of R , and we may pick vk such that

α(vk) = b. As the collection {vi ⊗ vj} is a basis of V ⊗ V , we have an expression

L =
k∑
i=1

k∑
j=1

gi,jvi ⊗ vj , (2.1.3)

for a symmetric invertible matrix
(
(gi,j)

)
over R. Define wi by

wi =

k−1∑
j=1

gi,j [vj , vk] + gi,kvk ⊗ vk. (2.1.4)

Note that a basis of the free R-module V ⊗ V/
(
V ⊗ Ker(α)

)
is given by the images of the

elements vj ⊗ vk for 1 ≤ j ≤ k. It is clear that the coefficients of the wi in terms of this basis

are those of the first (k−1) columns of the matrix
(
(gi,j)

)
, with the last column corresponding

to L. This proves 2. For the statement 1, we compute using the graded Jacobi identity

[x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]],

and the identity [36, §8.1]

[y, x⊗ x] = [[y, x], x],

for odd degree classes x. We have

k−1∑
i=1

[vi, wi] =

k−1∑
i=1

( k−1∑
j=1

gi,j [vi, [vj , vk]] + gi,k[vi, vk ⊗ vk]
)

=
∑

1≤i<j≤k−1

gi,j [[vi, vj ], vk] +

k−1∑
i=1

gi,i[vi ⊗ vi, vk] +
k−1∑
i=1

gi,k[[vi, vk], vk]

= [L, vk]− gk,k[vk ⊗ vk, vk]

= [L, vk].

The last step is true as [vk ⊗ vk, vk] = 0.

We carry forward the analogy in Proposition 2.1.2 further using graded Lie algebras. First recall

the definition of a graded Lie algebra [36]. A graded Lie algebra over a ring R in which 2 is

not invertible carries an extra squaring operation on odd degree classes to encode the relation

x2 = 1
2 [x, x] whenever |x| is odd.
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Definition 2.1.5. A graded Lie algebra L = ⊕Li is a graded R-module together with a Lie

bracket

[ , ] : Li ⊗R Lj → Li+j

and a quadratic operation called squaring defined on odd degree classes

( )2 : L2k+1 → L4k+2.

These operations are required to satisfy the identities

[x, y] = −(−1)deg(x) deg(y)[y, x] (x ∈ Li, y ∈ Lj),

[x, [y, z]] = [[x, y], z] + (−1)deg(x) deg(y)[y, [x, z]] (x ∈ Li, y ∈ Lj , z ∈ Lk),

(ax)2 = a2x2 (a ∈ R, x ∈ L2k+1),

(x+ y)2 = x2 + y2 + [x, y],

[x, x] = 0 (x ∈ L2i),

2x2 = [x, x], [x, x2] = 0 (x ∈ L2k+1),

[y, x2] = [[y, x], x] (x ∈ L2k+1, y ∈ Li).

Example 2.1.6. Note that T (V ) is a graded Lie algebra with the Lie bracket described in

(2.1.1). For |u| odd, (u)2 is defined to be u ⊗ u. The identities above are easily verified. A

symmetric 2-tensor L which is expressed in the form (2.1.3) may be written as

k∑
i=1

k∑
j=1

gi,jvi ⊗ vj =
∑

1≤i<j≤k
gi,j [vi, vj ] +

k∑
i=1

gi,ivi ⊗ vi.

Therefore, L belongs to the sub-Lie algebra of T (V ) generated by V if V is concentrated in a

single odd degree as in the hypothesis of Proposition 2.1.2. Note that from the definition, we

have that v2 belongs to a graded Lie algebra for an odd degree class v.

It is possible to derive a Poincaré-Birkhoff-Witt theorem for graded Lie algebras under the extra

assumption that the underlying module is free over R.

Theorem 2.1.7. [36, Theorem 8.2.2] If L is a graded Lie algebra over R which is a free R-

module in each degree, then U(L) is isomorphic to the symmetric algebra on L. In terms of

the multiplicative structure, the symmetric algebra on L is isomorphic to the associated graded

of U(L) with respect to the length filtration induced on U(L).
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We also note the following result which states that the graded Lie algebra injects into the

universal enveloping Lie algebra.

Proposition 2.1.8. [9, Theorem 2.21] Suppose that R is a Principal Ideal Domain. Let L be

a graded Lie algebra over R such that Ln is finitely generated for every n. Let U(L) be its

universal enveloping algebra. Then the natural map ι : L→ U(L) is injective.

The graded Lie algebra of interest is L(V,L) which is defined to be the graded Lie algebra

F (V )/(L). The notation F (V ) stands for the free Lie algebra generated by V and L being a

symmetric 2-tensor, lies in F (V ) (as V is concentrated in odd degree). We may express the

graded Lie algebra as

L(V,L) ∼= V ⊕
[
[V, V ] + (V )2

]
/(L)⊕ · · ·

Example 2.1.9. Note that U(F (V )) ∼= T (V ), and [9, Proposition 2.9] implies that U(L(V,L)) ∼=

T (V )/(L).

Let dim(V ) = k. For a (k − 1)-dimensional summand W of V , write

LW (V,L) ∼=W ⊕
[
[V, V ] + (V )2

]
/(L)⊕ · · ·

which becomes a Lie subalgebra of L(V,L). We note that Proposition 2.1.2 actually identifies

the Lie algebra LW (V,L).

Proposition 2.1.10. Given any basis v1, · · · , vk−1 of W , there are w1, · · · , wk−1 satisfying the

conditions of Proposition 2.1.2 such that the map F (v1, · · · , vk−1, w1, · · · , wk−1) → L(V,L)

induces an isomorphism of graded Lie algebras

F (v1, · · · , vk−1, w1, · · · , wk−1)

(
∑k−1

i=1 [vi, wi])
∼= LW (V,L).

Proof. Let F stand for the left hand side of the equation in the statement of the Proposition.

We wish to show that F ∼= LW (V,L). We note that the universal enveloping algebra of F is

T (v1, · · · , vk−1, w1, · · · , wk−1)/(
∑

[vi, wi]), and the universal enveloping algebra for L(V,L) is

T (V )/L. It follows from Proposition 2.1.8 that both F and LW (V,L) are free of finite rank in

each grading. Our first observation is that the Poincaré-Birkoff-Witt theorem (Theorem 2.1.7)

implies that the ranks in each degree are the same. We then show that the map is surjective

which will complete the proof.
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Let V be concentrated in grading n − 1 which is odd, and let ld denote the degree d part of

L(V,L). The symmetric algebra on L(V,L) then has Poincaré series

∏
d odd(1 + td)ld∏
d even(1− td)ld

.

By Theorem 2.1.7, this is the Poincaré series of the universal enveloping algebra T (V )/(L). As

V is concentrated in a single degree n − 1, and L is a quadratic element it follows from [9,

§4.4] that ∏
d odd(1 + td)ld∏
d even(1− td)ld

=
1

1− ktn−1 + t2n−2
.

Analogously, for F , we let fd denote the degree d part of F , and we apply the techniques from

[9, §5.2] to deduce

∏
d odd(1 + td)fd∏
d even(1− td)fd

=
1

1− (k − 1)tn−1 − (k − 1)t2n−2 + t3n−3
.

We now have the factorization

1− (k − 1)tn−1 − (k − 1)t2n−2 + t3n−3 = (1 + tn−1)(1− ktn−1 + t2n−2),

which implies

fd =


ld if d ̸= n− 1

ld − 1 if d = n− 1.

This implies that the degree-wise rank of F matches that of LW (V,L).

We now complete the proof by showing that the map

F (v1, · · · , vk−1, w1, · · · , wk−1)→ LW (V,L)

is surjective. We choose α such that Ker(α) = W in the notation of Proposition 2.1.2, and

choose vk so that v1, · · · , vk is a basis for V , and proceed by induction on the length of a

bracket r, to show that any element of LW (V,L) of the form [[· · · [l1, l2], · · · ], lr] belongs to

the image (modulo L), where each li is one of the basis elements vj . It is enough to show this

as, if λ lies in the image then so does λ2, and a bracket whose entries contain squares may be

rewritten in terms of those without the squares using the identity [y, x2] = [[y, x], x], and the

Jacobi identity. For r = 1, we are done by the choice that v1, · · · , vk−1 is a basis of W . For

r = 2, we are done by the fact that W ⊗ V , w1, · · · , wk−1 and L together form a basis of

V ⊗ V by 2) of Proposition 2.1.2.
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In the general case, the proof follows from the induction hypothesis if lr = vj for j < k. We

only need to consider lr = vk. Now the term of interest is [lr−1, vk] where lr−1 lies in the

image. Here, we have that the lr−1 is the sum of iterated brackets on the vj and wj , so it

suffices to show by the Jacobi identity that [wj , vk] is thus representable. From the formula of

wj , we have

[wj , vk] =
∑
l<k

gj,l
[
[vl, vk], vk] + gj,k[v

2
k, vk] =

∑
l<k

gj,l[vl, v
2
k].

As v2k lies in V ⊗ V , the r = 2 argument expresses this in the image, and thus this expression

belongs to the image. The proof is thus complete.

2.2 The homology of highly connected Poincaré duality com-

plexes

Recall that a Poincaré duality complex of dimension r is a cell complex, together with a homology

class in degree r, the cap product with which induces Poincaré duality as in a manifold of

dimension r. We write PDrk to be the collection of Poincaré duality complexes of dimension r

that are k-connected. LetM ∈ PD2n
n−1 with n even. The Poincaré duality condition guarantees

that Hn(M) ∼= Zk for some k, and the homology is of the form

Hi(M) =


Z if i = 0, 2n

Zk if i = n

0 otherwise.

(2.2.1)

We write Mk for an element of PD2n
n−1 having the homology described in (2.2.1). Now a

minimal cell structure [23] on the space Mk implies the pushout square

S2n−1 i //

L(Mk)
��

D2n

��
(Sn)∨k //Mk,

(2.2.2)

where L(Mk) ∈ π2n−1

(
(Sn)∨k

)
. Let αi denote the inclusion of the ith-copy of Sn inMk. Using

Hilton’s theorem [25], one has the decomposition

π2n−1

(
(Sn)∨k

)
=

(
π2n−1(S

n)
)⊕k ⊕ (

π2n−1(S
2n−1)

)⊕(k2).



2.3. Loop space homology of a connected sum of sphere products 19

The first factor in the above decomposition is induced by the inclusion of the spherical wedge

summands, and the second factor by the Whitehead products of a choice of two summands. We

note down the primes appearing in the torsion subgroup of π2n−1(S
n) in the following notation.

Notation 2.2.3. Define Tn = {2} ∪ {p | p prime and ∃ non-trivial p-torsion in π2n−1(S
n)}.

A key step in the computations of this paper is the loop space homology of Mk, that is,

H∗ΩMk. This is a (associative) ring, which is a quadratic algebra if k ≥ 2 [9]. More precisely,

let ai ∈ Hn−1(ΩMk) denote the Hurewicz image of the adjoints of the αi : S
n → Mk, and

l(Mk) denote the image of L(Mk) under the composite

ρ : π2n−1

(
(Sn)∨k

) ∼=−→ π2n−2Ω
(
(Sn)∨k

)
→ H2n−2

(
Ω
(
(Sn)∨k

))
.

The classes ai serve as algebra generators of H∗ΩMk and in their terms l(Mk) may be expressed

as

l(Mk) =
∑
i,j

−gi,jai ⊗ aj .

To figure out the sign, observe that

ρ([αi, αj ]) = (−1)|αi|−1[ai, aj ] = −[ai, aj ] as n is even [38].

The matrix
(
(gi,j)

)
is the matrix of the intersection form ofMk, so in the notation of Proposition

2.1.2, this is a symmetric, invertible 2-tensor. The homology of the loop space may be computed

as [9, 15]

H∗(ΩMk) ∼= T (a1, · · · , ak)/
(
l(Mk)

)
. (2.2.4)

2.3 Loop space homology of a connected sum of sphere products

A connected sum of sphere products has the form T = Sk1 × Sn−k1# · · ·#Skr × Sn−kr . This

is a pushout

Sn−1 //

∑r
i=1[ιki ,ιn−ki

]

��

Dn

��
∨1≤i≤rSki ∨ Sn−ki

∨k−1
i=1 (µi∨δi) // Sk1 × Sn−k1# · · ·#Skr × Sn−kr .
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In this expression µi : S
ki → T and δi : S

n−ki → T denotes the inclusion of the various factors.

In these terms the loop space homology of T is given by [9]

H∗ΩT ∼= T (µ̃1, δ̃1, · · · , µ̃r, δ̃r)/
( r∑
i=1

[µ̃i, δ̃i]
)
, (2.3.1)

where the superscript ∼ is used to denote the adjoint of the class in loop space homology. In

this paper, the connected sum T used is of the form #k−1(Sn×S2n−1). We retain the notation

µi, δi as above, and we have the pushout

S3n−2 //

Σk−1
i=1 [ιni ,ι

2n−1
i ]

��

D3n−1

��
(Sn ∨ S2n−1)∨k−1

∨k−1
i=1 (µi∨δi)// #(k−1)(Sn × S2n−1).

(2.3.2)

The homology of the loop space is given by (2.3.1). Now we look at Proposition 2.1.2 from the

perspective of the connected sum of sphere products above. We may map the generators µ̃i of

the loop space homology to the generators ai ofH∗ΩM for 1 ≤ i ≤ k−1. Proposition 2.1.2 now

tells us where to send the other generators δ̃i to obtain an algebra map from H∗ΩT → H∗ΩM .

We summarize this in the following algebraic result.

Proposition 2.3.3. Given a basis a1, · · · , ak ofHn−1ΩMk, there is a map of associative algebras

H∗Ω#
k−1(Sn × S2n−1)→ H∗ΩMk which sends µ̃i to the classes ai for 1 ≤ i ≤ k − 1.

Our efforts in [11] involve

1) Realize the above algebra map by a map of spaces #k−1(Sn × S2n−1)→Mk for k ≥ 2.

2) Identify the homotopy fibre of the corresponding map.

We show that it is possible to achieve 1) after inverting the primes in Tn or if the value of k is

large. Once this is achieved the homotopy fibre is shown to be homotopy equivalent to Sn−1

by a spectral sequence argument.



Chapter 3

Construction of Sphere fibrations

The objective of this chapter is to construct sphere fibrations over highly connected Poincaré

duality complexes, after inverting finitely many primes. In this case, we also have a specific

understanding of the primes that need to be inverted as the set Tn of Notation 2.2.3. We

write Rn = Z[{1p | p ∈ Tn}], and the homology computations throughout are taken with

Rn-coefficients.

Then we improve the results of §3.1 in the sense that we reduce the number of primes that are

needed in the localization. We show that for k greater than the number of cyclic summands

in πsn−1 ⊗ Z[12 ], the sphere fibrations exist once 2 is inverted. Further if 3 is inverted, Sn−1 is

an A3-space [4, 50], and in this case, these fibrations are obtained as a pullback of the Sn−1-

fibration over the associated projective plane [40]. Finaly, we use the spherical fibrations of §3.2

to deduce new results for loop space decompositions. The spherical fibrations are complemented

with the results of [26] which identify the pullback of a spherical fibration over a connected sum.

The fibration splits over the loop space to produce loop space decompositions. The results of

this chapter is a part of the paper [12].

3.1 Sphere fibrations in a localized category

For a space X, recall that ρ is the map

ρ : πn(X) ∼= πn−1(ΩX)→ Hn−1(ΩX).

Recall the equation ρ([γ1, γ2]) = (−1)|γ1|−1[ρ(γ1), ρ(γ2)] [38]. We prove the following main

theorem.

21
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Theorem 3.1.1. For k ≥ 2, let Mk ∈ PD2n
n−1 with n even, and Hn(Mk;Z) ∼= Zk. After

inverting the primes in Tn, and the prime 3, there is a fibration Sn−1 → Ek → Mk such that

Ek is homotopy equivalent to #k−1(Sn × S2n−1).

Proof. Our strategy is to construct a map f : Ek → Mk such that the homotopy fibre of f is

homotopy equivalent to Sn−1. We do this via the pushout description of Ek in (2.3.2).

For 1 ≤ i ≤ k − 1, we define f on the ith-factor µi as the map αi : S
n →Mk. It follows that

the class µ̃i in loop space homology maps to the class ai, as ρ(αi) = ai. Let
(
(gi,j)

)
be as in

Proposition 2.1.2. The ith-factor δi is mapped by f in accordance with (2.1.4) to

βi =
k−1∑
j=1

gi,j [αj , αk] +
1

2
gi,k[αk, αk] (3.1.2)

which belongs to the image of

π2n−1

(
(Sn)∨k

)
⊗Rn → π2n−1(Mk)⊗Rn

as 2 ∈ Tn. We write ρ(βi) = −bi, and it follows that in loop space homology δ̃i maps to the

class −bi. This defines

f : (Sn)∨k−1
∨

(S2n−1)∨k−1 →Mk,

and to extend f all the way to Ek, we require to show that the attaching map of the (3n−1)-cell

is mapped to 0 by the induced map f∗ in homotopy groups. From Proposition 2.1.2, we have

that

(Ωf)∗

( k−1∑
i=1

[µ̃i, δ̃i]
)
= −

k−1∑
i=1

[ai, bi] = 0.

This implies

f∗

( k−1∑
i=1

[µi, δi]
)
∈ Ker(ρ).

Recall the definition of L(Mk) in (2.2.2). From the definition of Tn, we see that the map

π2n−1

(
(Sn)∨k

)
⊗Rn

ρ→ H2n−2

(
Ω
(
(Sn)∨k)

)
;Rn

)
∼= TRn(a1, · · · , ak)

is injective. We now write

L(Mk) =
∑
i<j

gi,j [αi, αj ] +
∑
i

1

2
gi,i[αi, αi],
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and observe that ρ(L(Mk)) = ρ(L̄(Mk)) = −l(Mk). This follows from the equation ρ([γ1, γ2]) =

(−1)|γ1|−1[ρ(γ1), ρ(γ2)] [38]. Moreover, we have the equation

f∗

( k−1∑
i=1

[µi, δi]
)
=

k−1∑
i=1

[αi, βi]

= [L̄(Mk), αk] +
1

2
gk,k[[αk, αk], αk]

from a computation analogous to the proof of Proposition 2.1.2 via the Jacobi identity for

Whitehead products. As the prime 3 is inverted, we also have that [[αk, αk], αk] = 0. Now we

apply the injectivity of ρ after tensoring with Rn to replace L̄(Mk) with L(Mk) and obtain,

f∗

( k−1∑
i=1

[µi, δi]
)
= [L(Mk), αk] = 0

in π3n−2(Mk)⊗ Rn. This constructs the map f : Ek → Mk. The homotopy fibre Fib(f) of f

has the same homology as Sn−1 by the spectral sequence argument of Proposition 3.1.7, which

completes the proof of the theorem as all the spaces are simply connected.

We now show that inverting 3 is not necessary in Theorem 3.1.1. We first consider the case

k = 2 in the following example.

Example 3.1.3. Let M2 ∈ PD2n
n−1 with Hn(M) = Z2. We wish to construct a fibration

Sn−1 → Sn × S2n−1 → M2 after inverting the primes in Tn. Following the proof of Theorem

3.1.1, we are able to do this if under a choice of basis of H2(M), g2,2 is divisible by 3. We

know that the matrix

g1,1 g2,1

g1,2 g2,2

 is symmetric and non-singular, and by the classification of

such bilinear forms [33, Theorem 2.2], we may reduce the matrix to one of

1 0

0 1

 ,
1 0

0 −1

 , or
0 1

1 0

 .
In the latter two cases, we may arrange for a basis such that g2,2 is divisible by 3 (by changing

α2 to α1 + α2 in the second case). In the situation of the first matrix, we note that there is a

map Sn → M2 whose mapping cone has cohomology Z[x]/(x3) with |x| = n. Then, n must

be one of 2, 4, or 8. For the generator ι2 of π2S
2, we have

[
[ι2, ι2], ι2

]
= 0, and for n = 4 or

8, we have 3 ∈ Tn. Thus, we always have the required fibration when k = 2.

The case of Poincaré duality complexes Mk, when k ≥ 3, is implied by the following lemma.
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Lemma 3.1.4. a) Let ⟨−,−⟩ be a symmetric bilinear form over Z of rank ≥ 3. Then, there is

a primitive v ̸= 0 such that ⟨v, v⟩ is divisible by 3.

b) Let ⟨−,−⟩ be a symmetric bilinear form over Z of rank ≥ 5. Then, there is a primitive v ̸= 0

such that ⟨v, v⟩ is divisible by 8.

Proof. This argument basically follows from [33, Ch.II, (3.2)-(3.4)]. We only demonstrate how

the prime 3 argument translates to this case. Diagonalize the form over the field F3 to one

which possesses diagonal entries d1, · · · , dk with di = ±1 or 0. If all the di are ±1, clearly

k∑
i=1

dix
2
i = 0

has a non-zero solution x if k ≥ 3. There exists a non-zero primitive v such that v reduces to

x modulo 3.

Example 3.1.3 and Lemma 3.1.4 allow us to choose αk such that gk,k is divisible by 3. Thus,

we conclude the proof of the following Theorem.

Theorem 3.1.5. For k ≥ 2, letMk ∈ PD2n
n−1 with n even and Hn(M ;Z) ∼= Zk. After inverting

the primes in Tn, there is a fibration Sn−1 → E → M such that E is homotopy equivalent to

#k−1(Sn × S2n−1).

3.1.1 A spectral sequence argument

We recall a well known fact that all the classes in H∗E are transgressive in the (homology)

Serre spectral sequence for ΩE → PE → E if the space E is a suspension. Recall that the

space PE is defined to the space of all continuous paths in E with compact open topology.

Lemma 3.1.6. Suppose E ≃ ΣX. Then, in the Serre spectral sequence for the path-space

fibration ΩE → PE → E, all elements are transgressive.

Proof. This follows from the fact that the elements in the image of the homology suspension

H∗ΣΩE → H∗E are transgressive, and that ΣX is a retract of ΣΩΣX.

We now note down the set up in which the spectral sequence argument is carried out. We are

working with a localized category of spaces in which the primes in Tn are inverted, and the

homology is computed with Rn-coefficients. The space Mk ∈ PD2n
n−1 satisfies Hn(Mk) ∼= Zk.

We assume that Ek ≃ #k−1(Sn × S2n−1), and that f : Ek →Mk is a map which satisfies
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1. f∗ : Hn(Ek) → Hn(Mk) is injective, and HnMk
∼= f∗(HnEk) ⊕ Rn{λk} for some λk ∈

HnMk.

2. The map π2n−1Ek
f∗→ π2n−1Mk

ρ→ H2n−2(ΩMk) induces an isomorphism onto the quo-

tient

H2n−2(ΩMk)/
(
Im

(
πnEk

ρ◦f∗→ Hn−1(ΩMk)
)
·Hn−1(ΩMk)

)
,

where the product stands for the Pontrjagin product of H∗ΩMk.

Proposition 3.1.7. With notations as above, let Fib(f) be the homotopy fibre of the map f .

Then, H∗
(
Fib(f)

) ∼= H∗
(
Sn−1

)
.

Proof. We compute the homology Serre spectral sequence for the fibration ΩMk → Fib(f)→

Ek whose E2-page is given by

E2
p,q = Hp(Ek)⊗Hq(ΩMk)⇒ Hp+q(Fib(f)). (3.1.8)

We may also continue the fibration sequence further to obtain the fibration ΩEk → ΩMk →

Fib(f). The homology of ΩEk is described in (2.3.1) and the homology of ΩMk is described

in (2.2.4). These are given by

H∗(ΩMk) ∼= T (a1, · · · , ak)/
(
l(Mk)

)
, H∗ΩEk ∼= T (µ̃1, δ̃1, · · · , µ̃k−1, δ̃k−1)/

( k−1∑
i=1

[µ̃i, δ̃i]
)
.

Note that [9, Theorem 2.8] implies that both H∗(ΩMk) and H∗(ΩEk) are torsion-free. Let

L(a1, · · · , ak) be the free Lie algebra on a1, · · · , ak. We also note from [9, Proposition 2.11]

that the universal enveloping algebras are computed as

U
(
L(a1, · · · , ak)/(l(Mk))

) ∼= T (a1, · · · , ak)/
(
l(Mk)

)
,

U
(
L(µ̃1, δ̃1, · · · , µ̃k−1, δ̃k−1)/

( k−1∑
i=1

[µ̃i, δ̃i]
)) ∼= T (µ̃1, δ̃1, · · · , µ̃k−1, δ̃k−1)/

( k−1∑
i=1

[µ̃i, δ̃i]
)
.

Denote by ι the map from a Lie algebra L to it’s universal enveloping algebra U(L). We now

apply Proposition 2.1.10 writing W = (Ωf)∗(Hn−1(ΩEk)) ⊂ Hn−1(ΩMk) = V . Note the
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commutative diagram below of graded Lie algebras and their universal enveloping algebras.

L(µ̃1, δ̃1, · · · , µ̃k−1, δ̃k−1)/
(∑k−1

i=1 [µ̃i, δ̃i]
)

∼=f∗
��

ι // H∗(ΩEk)

(Ωf)∗

��

LW (V, l(Mk))
⊂ //

ι
��

L(V, l(Mk))

ι

��
U(LW (V, l(Mk)) // U(L(V, l(Mk)))

∼= // H∗(ΩMk)

The top left vertical arrow is an isomorphism by Proposition 2.1.10. This diagram allows us to

identify H∗(ΩEk)→ H∗(ΩMk) as U(f̂) where f̂ is the inclusion

LW (V, l(Mk))→ L(V, l(Mk)).

By the Poincaré-Birkhoff-Witt theorem for graded Lie algebras stated in Theorem 2.1.7, we

have that (Ωf)∗ : H∗ΩEk → H∗ΩMk is injective, and in each degree, it is a torsion-free

summand of a torsion-free Abelian group. Now the universal coefficient theorem implies that

(Ωf)∗ : H∗(ΩMk) → H∗(ΩEk) is surjective. The Leray-Hirsch theorem now implies that

the cohomology spectral sequence for the fibration ΩEk → ΩMk → Fib(f) degenerates at the

second page. The same result now holds for the homology spectral sequence. As a consequence,

we have that the map H∗ΩMk → H∗Fib(f) is surjective.

Now we turn our attention to the spectral sequence for the fibration ΩMk → Fib(f) → Ek

(3.1.8). As the map H∗(ΩMk) → H∗Fib(f) is surjective, the E
∞-page is concentrated in the

0th-column. We now calculate all the differentials that hit the 0th-column and compute the

relevant cokernels.

Consider the commutative diagram

PEk
P (f) //

��

PMk

��
Ek

f //Mk.
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which implies the map PEk → Fib(f), as Fib(f) is the homotopy pullback of Ek → Mk ←

PMk. The differentials are computed via the following commutative diagram of fibrations.

ΩEk //

��

ΩEk

��

Ωf // ΩMk

��
PEk //

��

PEk //

��

Fib(f)

��
Ek // Ek

id // Ek.

The space Ek is the (3n − 2)-skeleton of Ek which is homotopy equivalent to (Sn)∨k−1 ∨

(S2n−1)∨k−1. In the Serre spectral sequence

E2
p,q = Hp(Ek)⊗Hq(ΩEk)⇒ Hp+q(PEk),

the classes µi are transgressive by Lemma 3.1.6. It follows that in the spectral sequence

E2
p,q = Hp(Ek)⊗Hq(ΩEk)⇒ Hp+q(PEk),

the classes µi transgress to µ̃i and the classes δi transgress to δ̃i. Therefore, in the spectral

sequence (3.1.8), we have the formulas

dn(µi) = Ωf∗(µ̃i), d
2n−1(δi) = Ωf∗(δ̃i),

and the remaining differentials on the classes µi and δi equals 0. Furthermore, from the

commutative diagram

ΩMk
= //

��

ΩMk

��
Fib(f) //

��

P (Mk)

��
Ek

f //Mk,

we see that ΩMk → Fib(f)→ Ek is a principal fibration. It follows that the differential in the

spectral sequence (3.1.8) respects the graded (right) H∗(ΩMk)-module structure by a result of

Moore [35]. More precisely, we have

dk(α⊗ hg) = ±dk(α⊗ h)(1⊗ g),
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for α ∈ H∗(Ek) and g, h ∈ H∗(ΩMk). Therefore,

Im(dn) + Im(d2n−1) ⊂ E2
0,∗

equals Ωf∗
(
Hn−1(ΩEk)

)
·H∗ΩMk + Ωf∗

(
H2n−2(ΩEk)

)
·H∗(ΩMk). This equals

W +W · H̃∗(ΩMk) + Ωf∗

(
H2n−2(ΩEk)

)
·H∗(ΩMk).

The hypothesis 2) stated before the proposition implies that

W ·Hn−1(ΩMk) + Ωf∗

(
H2n−2(ΩEk)

)
= H2n−2(ΩMk).

Therefore, we have

E2
0,∗/

(
Im(dn) + Im(d2n−1)

)
∼= Rn{λk}.

Further, note that λk cannot be hit by any differential in the spectral sequence (3.1.8) other

than the transgression. It follows that E∞
0,∗
∼= Rn{λk}, and as we have earlier seen that this is

the only possible non-zero part of the E∞-page, the result is proved.

3.2 Sphere fibrations for manifolds with high Betti number

In this section, we improve the results of §3.1 in the sense that we reduce the number of primes

that are needed in the localization. We show that for k greater than the number of cyclic

summands in πsn−1⊗Z[12 ], the sphere fibrations exist once 2 is inverted. Further if 3 is inverted,

Sn−1 is an A3-space [4, 50], and in this case, these fibrations are obtained as a pullback of the

Sn−1-fibration over the associated projective plane [40]. Throughout this section we work in

the category of spaces with 2 inverted, and write R2 = Z[1/2] and R2,3 = Z[1/2, 1/3].

3.2.1. Whitehead products in π2n−1S
n. After inverting the prime 2, for n even, ΩSn splits

into a product ΩS2n−1 × Sn−1. The map S2n−1 → Sn which induces the inclusion of ΩS2n−1

may be chosen to be 1
2 [ιn, ιn]. In these terms we have

π2n−1(S
n)⊗R2

∼= R2{[ιn, ιn]} ⊕ E(π2n−2(S
n−1)⊗R2). (3.2.2)

We now note the following formula for the Whitehead products for the generators in (3.2.2)

using the Jacobi identity and [24, Theorem 6.1]

3
[
ιn, [ιn, ιn]

]
= 0, [ιn, Eα] = [ιn, ιn] ◦ Σnα ∀ α ∈ π2n−2S

n−1 ⊗R2. (3.2.3)
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The last equation is implied by the fact that the Hopf invariant of E(α) is 0. It is worthwhile

to note here that Σnα ∈ π3n−2(S
2n−1) belongs to the stable range, so that the right hand

side of the second equation of (3.2.3) is non-zero only when α represents a non-trivial stable

homotopy class.

3.2.1 Constructing spherical fibrations after inverting 2

As in §3.1, by obstruction theory we construct a map Ek ≃ #k−1(Sn × S2n−1) → Mk for

Mk ∈ PD2n
n−1, which means Hn(Mk) ∼= Zk. One should note that unless we invert 2, the

homomorphism

πs(S
n−1)→ πs(ΩMk) ∼= πs+1(Mk)

associated to a summand Sn → (Sn)∨k → Mk has non-trivial kernel. This follows from the

EHP-sequence for a sphere [29] and the fact that the inclusion of a sphere induces a summand

on the level of homotopy groups [9, 13]. After inverting 2, the kernel vanishes. In this situation,

we enumerate criteria under which it is possible to construct a map Ek → Mk. Recall, the

notations µi, δi of homology generators of Ek and αi of Mk, and the attaching map L(Mk)

from §2.1.2.

Proposition 3.2.4. Suppose that the attaching map L(Mk) ∈ π2n−1

(
(Sn)∨k

)
ofMk takes the

following form (for an invertible integer matrix
(
(gi,j)

)
)

L(Mk) =
∑

1≤i<j≤k
gi,j [αi, αj ] +

k∑
i=1

(
gi,i(

1

2
[αi, αi]) + αi ◦ ωi

)
, for ωi ∈ E(π2n−2(S

n−1)).

(3.2.5)

Assume that this satisfies

1. gk,k ≡ 0 (mod 3).

2. ωk lies in the kernel of Σ : π2n−1(S
n)→ πsn−1.

Then, there is a map Ek → Mk which sends µi to αi, and that βi satisfy the conditions of

Proposition 3.1.7.

Proof. We define the β-classes as in (4.1.5)

βi =

k−1∑
j=1

gi,j [αj , αk] +
1

2
gi,k[αk, αk]− αk ◦ ωi. (3.2.6)

Observe that the elements ωi are in the kernel of ρ : π2n−1(S
n)→ H2n−2(ΩS

n). Thus, the βi

of (3.2.6) have the same image in H∗ΩMk as those of (3.1.2), and so it satisfies the criteria
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of Proposition 3.1.7. We complete the proof by noting

k−1∑
i=1

[αi, βi] =
k−1∑
i=1

k−1∑
j=1

gi,j
[
αi, [αj , αk]

]
+

k−1∑
i=1

1

2
gi,k

[
αi, [αk, αk]

]
−

k−1∑
i=1

[αi, αk ◦ ωi]

=
∑

1≤i<j≤k
−gi,j

[
[αi, αj ], αk

]
−

k−1∑
i=1

1

2
gi,i

[
[αi, αi], αk

]
−

k−1∑
i=1

[αi ◦ ωi, αk]

= −[L(Mk), αk] +
1

2
gk,k

[
αk, [αk, αk]

]
+ [αk ◦ ωk, αk]

= 0.

The last equality follows from (3.2.3) and the hypothesis 1 and 2 of the proposition.

Proposition 3.2.4 lays down the conditions we need to arrange in order to construct a map

Ek →Mk whose homotopy fibre is Sn−1. For a finite Abelian group A, we define the number

of cyclic summands to be the number r in its decomposition as

A ∼= Z/(a1)⊕ Z/(a2) · · · ⊕ Z/(ar), with ai | ai+1.

In this notation, we have the following theorem.

Theorem 3.2.7. Let Mk ∈ PD2n
n−1 with HnMk

∼= Zk, and n > 8. Let r be the number of

cyclic summands of πsn−1. If k > r, after inverting 2 there is a fibration Ek → Mk with fibre

Sn−1 where Ek ≃ #(k−1)(Sn × S2n−1).

Proof. We apply Proposition 3.1.7 and Proposition 3.2.4. We only need to show that one may

choose a basis of πn(Mk) such that the hypotheses of Proposition 3.2.4 are satisfied. This is

done for r = 1 in Example 3.2.8 and for r > 1 in Proposition 3.2.9

In the following example we work out the details when πsn−1 is cyclic which is analogous to the

methods of §4.

Example 3.2.8. Suppose that πsn−1 is cyclic with generator χ and of order d, and assume as

in Proposition 3.2.4,

L(Mk) =
∑

1≤i<j≤k
gi,j [αi, αj ] +

k∑
i=1

(
gi,i(

1

2
[αi, αi]) + αi ◦ ωi

)
, for ωi ∈ E(π2n−2(S

n−1)).

We assume k ≥ 2, and show that it is possible to change the basis {αi} so that the hypothesis

1 and 2 of Proposition 3.2.4 are satisfied. We may now write (for Σ : π2n−1(S
n)→ πsn−1)

Σωi = xiχ for xi ∈ Z/d.
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We take x to be the greatest common divisor of the xi in Z/d and write xi = cix. The ci may be

arranged so that they have no common divisor over Z. Now change the basis to {α′
1, · · · , α′

k}

so that the first element is α′
1 =

∑
ciαi. In this new basis, we have (for some representative

u ∈ π2n−1(S
n) of χ ∈ πsn−1)

Σ(α′
1 ◦ xu)− Σ(

k∑
i=1

αi ◦ ωi) = 0.

This arranges the 2nd hypothesis whenever k ≥ 2. We now arrange for gk,k ≡ 0 (mod 3)

without changing the first element. If k ≥ 4, applying Lemma 3.1.4 to the summand spanned

by the last k−1 elements yields a change of basis with gk,k ≡ 0 (mod 3). It remains to consider

the cases k = 2 and k = 3. For k = 3, [33, Theorem 2.2] implies that there is a 1-dimensional

summand with self intersection ±1. This implies n ≤ 8, cases which are already dealt with in

§4.

In the case k = 2, as n ̸= 2, 4, or 8 we do not have a Hopf invariant one class, so that the

matrix
(
(gi,j)

)
with respect to some basis is

0 1

1 0

. Suppose that c1α1+c2α2 is the element

constructed above used to kill off the ωi. As c1 and c2 don’t have common divisors, one of

them is not divisible by 3, say c1. Then, we may choose a second element of the basis as one

which is α2 (mod 3) using the fact that GLnZ→ GLnF3 is surjective. This satisfies g2,2 is 0

(mod 3).

The general case with more than 1 cyclic summand is a repeated iteration of the argument in

Example 3.2.8.

Proposition 3.2.9. Suppose that Mk is as in Theorem 3.2.7. Then, there is a choice of basis

that satisfies the hypothesis of Proposition 3.2.4.

Proof. The case r = 1 is covered in Example 3.2.8. Note that the technique of Example 3.2.8

may be applied to a cyclic summand C of πsn−1 to yield a basis where the choice of ωi in (3.2.5)

satisfies prC(Σωi) = 0 if i > 1 with prC standing for the projection of πsn−1 onto the summand

C. We now apply this fact one summand at a time to obtain a basis with the property that

for i > r, Σωi = 0. We now arrange for gk,k ≡ 0 (mod 3) without changing the first r basis

elements.

Let {αi} be the basis obtained so far, and let ⟨−,−⟩ be the intersection form. Suppose

⟨αk, αk⟩ ̸≡ 0 (mod 3). If k ≥ r + 3, then take the summand of Zk spanned by αr+1, · · · , αk
and apply Lemma 3.1.4 to get a change a basis so that ⟨αk, αk⟩ ≡ 0 (mod 3). In the other

cases we change αk by adding a linear combination of α1, · · · , αk−1 so that ⟨αk, αk⟩ ≡ 0
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(mod 3). We work over F3 and then lift the change of basis to an integral one. It is possible

to choose a basis {v1, · · · , vk−1} of the summand B generated by α1, · · · , αk−1 such that

⟨vi, αk⟩ ≡ 0 (mod 3) for i ≤ k−2. If in addition ⟨vk−1, αk⟩ ≡ 0 (mod 3), then, the restriction

of the intersection form to B is non-singular over F3. So, we may diagonalize it to one with

non-zero entries. As r ≥ 2, k ≥ 3, so there are at least 2 of the vi, so there is a combination

u = αk +
∑
civi such that ⟨u, u⟩ ≡ 0 (mod 3). As the vi involve only α1, · · · , αk−1 so we

may replace αk with u and the proof is complete.

If c = ⟨vk−1, αk⟩ ̸≡ 0 (mod 3), we note that for t ̸≡ 0 (mod 3),

⟨αk + tvk−1, αk + tvk−1⟩ ≡ ⟨αk, αk⟩+ ⟨vk−1, vk−1⟩+ 2tc (mod 3)

which may be arranged to be 0 as long as

⟨αk, αk⟩+ ⟨vk−1, vk−1⟩ ̸≡ 0 (mod 3). (3.2.10)

In case (3.2.10) does not hold consider vj for j < k − 1. There is at least one such j as

k ≥ 3. If ⟨vj , vj⟩ ̸≡ 0 (mod 3), then change αk to αk + vj to ensure (3.2.10) holds. If further

⟨vj , vj⟩ ≡ 0 (mod 3) and ⟨vj , vk−1⟩ ̸≡ 0 (mod 3), then replace vk−1 with v
′
k−1 = vk−1+svj so

that ⟨v′k−1, v
′
k−1⟩ ≡ 0 (mod 3) and this implies that (3.2.10) holds. Finally, if all the vj satisfy

⟨vj , vk−1⟩ ≡ 0 (mod 3), then over F3, the form breaks up into orthogonal pieces spanned by

{v1, · · · , vk−2} and {vk−1, αk}. Thus, the restriction of the intersection form to the summand

spanned by v1, · · · , vk−2 is non-singular over F3. There is a linear combination v of these vj

which satisfies ⟨v, v⟩ ̸≡ 0 (mod 3). Again we may add this to αk to ensure (3.2.10) holds. This

completes the proof.

3.2.2 Sphere fibrations as pullbacks

Now that we have sphere fibrations Sn−1 → Ek → Mk for large enough k after inverting 2,

we may ask when these are realizable pullbacks. More precisely, we would like to build up an

analogous story to §4 where the fibrations were principal fibrations. However, we know that the

spheres do not usually possess a group structure except for S1, S3 or Sn−1 after p-completion

for n | 2p − 2 as the Sullivan spheres [41, 48]. On the other hand, the odd spheres possess

a homotopy associative multiplication once 2 and 3 are inverted [4, 50]. However, inverting 3

is necessary here otherwise we would only have a non-homotopy associative H-space structure

[28]. Recall that Q(Sn) = colimkΩ
kSn+k. We briefly recall the construction using the following

[49, Corollary 3.2]
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Proposition 3.2.11. After inverting 2 and 3, the inclusion Sn−1 → Q(Sn−1) is a (5n + 1)-

equivalence.

A direct corollary of Proposition 3.2.11 is that the E∞-space structure on Q(Sn−1) yields a

homotopy associative structure on Sn−1.

Corollary 3.2.12. After inverting the primes 2 and 3, Sn−1 has a homotopy associative multi-

plication.

Proof. Since QSn−1 has a homotopy associative multiplication : m : QSn−1 × QSn−1 →

QSn−1. We define the multiplication on Sn−1 by lifting

ϕ : Sn−1 × Sn−1 ι×ι→ QSn−1 ×QSn−1 m→ QSn−1

via the isomorphism [Sn−1 × Sn−1, Sn−1] ∼= [Sn−1 × Sn−1, QSn−1] implied by Proposition

3.2.11. From this definition of multiplication on Sn−1, it follows that the map Sn−1 → QSn−1

ia an H-map. Associativitiy is implied by the associativity of m and the isomorphism

[Sn−1 × Sn−1 × Sn−1, Sn−1] ∼= [Sn−1 × Sn−1 × Sn−1, QSn−1].

Following Stasheff [40], we consider the projective planes P2(X) for an A3-space X which

support a fibration E2(X) → P2(X) with an action X × E2(X) → E2(X) identifying X as

the fibre. In fact we have the diagram

E1(X)

H(mX)
��

// E2(X)

��
P1(X) // P2(X)

with H(mX) standing for the Hopf construction on the multiplication mX in the sequence of

identifications

E1(X) ≃ X ∗X H(mX)→ ΣX ≃ P1(X), P2(X) ≃ C(H(mX)), E2(X) ≃ X ∗X ∗X.

We now fix a model for QSn−1 as a A∞-space such that there exist a homotopy equivalence

Q(Sn−1) ≃ ΩQ(Sn) as H-spaces (see [7]). Therefore, Corollary 3.2.12 implies the following
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commutative diagram by the functoriality of the P2-construction.

E2(S
n−1) //

��

E2(Q(Sn−1)) //

��

EΩQSn ≃ ∗

��
P2(S

n−1) // P2(Q(Sn−1)) // BΩQSn ≃ QSn

(3.2.13)

We also note that the construction in Corollary 3.2.12 makes the multiplication m on Sn−1

homotopy commutative. This implies using [27, Lemma 2.4] that

2H(m) = −[ιn, ιn]. (3.2.14)

We now prove that the sphere fibration over Mk is obtained as a pullback of E2(S
n−1) →

P2(S
n−1).

Theorem 3.2.15. With notations as in Theorem 3.2.7, after inverting 2 and 3, the fibration

Ek → Mk is a homotopy pullback of Mk → P2(S
n−1) ← E2(S

n−1) for a suitable map

Mk → P2(S
n−1).

Proof. We define the map sk : (Sn)∨k → Sn which quotients out the first k − 1 factors, and

then compose it to P2(S
n−1). Now consider the diagram

S2n−1

L(Mk)
��

// D2n

��
(Sn)∨k //

sk ))TTT
TTT

TTT
TTT

TTT
T Mk

$$I
I

I
I

I

P2(S
n−1)

Assume that L(Mk) satisfies the form given in (3.2.5). In this form, applying Proposition

3.2.11, we see that Σωk = 0 implies that ωk = 0. We now observe via (3.2.14) that

sk ◦ L(Mk) = gk,kH(m).

As P2(S
n−1) is the mapping cone of H(m), the dashed arrow exists in the above diagram,

and hence we obtain a map ϕk : Mk → P2(S
n−1). Let E = ϕ∗k(E2(S

n−1)) be the homotopy

pullback Mk → P2(S
n−1) ← E2(S

n−1). We shall show that E ≃ Ek by lifting the map

Ek → Mk to E. Once we are able to do this, it follows that the map Ek → E is a homology

equivalence proving the required result.
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Consider the following diagram

S3n−2

χ

��

Sn−1 = //

��

Sn−1 //

��

QSn−1 //

��

QSn−1

��
X

��

E //

��

E2(S
n−1) //

��

W //

��

PQSn

��
Ek

;;w
w

w
w

w
Mk

// P2(S
n−1)

= // P2(S
n−1) // QSn.

(3.2.16)

In (3.2.16), W is defined so that the right-most square is a homotopy pullback. Note that

Proposition 3.2.11 implies that E2(S
n−1)→ W is a (5n+ 1)-equivalence. Now the (2n− 1)-

skeleton X of Ek is (Sn)∨k−1 ∨ (S2n−1)∨k−1, and from the formula of αi and βi we check that

the composite X → Mk → P2(S
n−1) is null-homotopic. Therefore, the map of X all the way

to QSn lifts to PQSn. Hence, it lifts to W being the pullback, and to E2(S
n−1) from the

connectivity of the map E2(S
n−1)→W . Again as E is the pullback, we get a lift of X → E.

Let χ stand for the attaching map of the (3n− 1)-cell of Ek. The composite

S3n−2 χ→ X → E →Mk

is trivial, so the composite to E lifts to Sn−1. This implies that the composite to E is trivial as

the inclusion Sn−1 → E is null-homotopic. The last statement comes from the fact that the

map ΩMk → Sn−1 is surjective on πn−1. Therefore, there is a lift Ek → E.

3.2.3 Applications for loop space decompositions

In this subsection, we use the spherical fibrations of §3.2 to deduce new results for loop space

decompositions. The spherical fibrations are complemented with the results of [26] which

identify the pullback of a spherical fibration over a connected sum. The fibration splits over the

loop space to produce loop space decompositions.

3.2.17. Connected sum with highly connected manifolds. Given 2n-dimensional Poincaré

duality complexes M and N in which the attaching maps of the 2n-cells are given by (respec-

tively for M and N)

f : S2n−1 →M0, g : S2n−1 → N0,

the connected sum is defined as the mapping cone of [45]

f + g : S2n−1 →M0 ∨N0.
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Theriault [42] has provided a method to transfer a loop space decomposition of M to one of

N#M for arbitrary N . The hypothesis on M used to make the argument work is that the cell

attachment is inert.

Definition 3.2.18. For a homotopy cofibration sequence

ΣA
f→ X0

i→ X,

f is said to be inert if Ωi has a homotopy right inverse.

Let Mk ∈ PD2n
n−1. For Mk, we have two different approaches for loop space decompositions

[13] and [9]. In this case M0 ≃ (Sn)∨k and the attaching map is L(Mk) : S
2n−1 →M0. As a

consequence of the loop space decompositions of Mk, we readily observe

Proposition 3.2.19. For k ≥ 2, the map L(Mk) is inert.

This follows because ΩMk is a product of loop spaces of spheres which are mapped via White-

head products of the sphere inclusions into M0 [9]. These clearly lift to ΩM0. Now [42,

Theorem 1.4] implies

Theorem 3.2.20. Let M ∈ PD2n
n−1 with Rank(Hn(M)) ≥ 2, and N ∈ PD2n

1 . Then,

Ω(M#N) ≃ ΩM × Ω(ΩM ⋉N0),

where N0 ≃ N − ∗.

Now by [13, Theorem 1.4], we have

ΩM ≃ Ω(Sn × Sn)× Ω(J ∨ (J ∧ Ω(Sn × Sn)))

where J = ∨k2Sn (where Hn(M) ∼= Zk). Hence we have a decomposition of the loop space

Ω(M#N) in terms of simply connected spheres if N0 is also a wedge of spheres.

3.2.21. Spherical fibrations over connected sums with highly connected manifolds. We

now construct spherical fibrations over connected sums using the spherical fibrations Sn−1 →

Ek → Mk proved in Theorems 3.1.5, 4.1.2, 4.2.11, and 3.2.7. Let Mk ∈ PD2n
n−1 with

Rank(Hn(Mk)) = k ≥ 2. For a 2n-dimensional Poincaré duality complex N , we consider
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the quotient Mk#N
q→Mk, and the pullback Ek,N of Ek to Mk#N .

Ek,N //

��

Ek

��
Mk#N

q //Mk,

(3.2.22)

We additionally observe that the loop space of Ek,N depends only on N0 and not on the

attaching map of the top cell of N .

The homotopy type of Ek,N is determined analogously as in [26, Lemma 3.1]. Let F (n) denote

the set of homotopy equivalences of Sn−1. For a τ : Sn−1 → F (2n) define Gτ (N) as the

pushout

S2n−1 × Sn−1 i //

(ϕ,π2)
��

S2n−1 ×Dn

��
N0 × Sn−1 // Gτ (N),

(3.2.23)

where ϕ is the composite

S2n−1 × Sn−1 t→ S2n−1 × Sn−1 π1→ S2n−1 → N0, with t(x, s) = (τ(s)x, s).

Using this notation, the pullback Ek,N in (3.2.22) may be simplified using [26, Lemma 3.1].

Proposition 3.2.24. Let n ∈ {2, 4, 8}. Then there is a τ : Sn−1 → F (2n) such that one has

the equivalence

Ek,N ≃ Gτ (N)#Ek,

with Gτ (N) defined as in (3.2.23).

Looking towards the loop space, we build up to an analogue of Theorem 3.2.20. For this,

we require the knowledge of the homotopy type of Gτ (N) − ∗ for ∗ ∈ Gτ (N). The following

identification implies that this is independent of τ and the attaching map of the top cell.

Proposition 3.2.25. Let τ : Sn−1 → F (2n) be a map. Then, we have a homotopy equivalence

Gτ (N)− ∗ ≃ (N0 ⋊ Sn−1).

Proof. Consider the (homotopy) pushout square (3.2.23). Express Sn−1 = Sn−1
U ∪Sn−1

L as the

union of the upper and lower hemispheres, and the unit n-disk as the union of the disk of radius

1/2 and the annulus as Dn = Dn≤1/2 ∪ D
n
≥1/2. We may then write

S2n−1 ×Dn = S2n−1 ×Dn≥1/2 ∪ S
2n−1
U ×Dn≤1/2 ∪ S

2n−1
L ×Dn≤1/2.
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Hence,

(S2n−1 ×Dn)− int(S2n−1
L ×Dn≤1/2)

∼= S2n−1 ×Dn≥1/2 ∪ S
2n−1
U ×Dn≤1/2.

Note that S2n−1
L × Dn≤1/2

∼= D3n−1. We set Gτ (N)0 = Gτ (N) − int(S2n−1
L × Dn≤1/2) which

is homotopy equivalent to Gτ (N) − ∗. The pushout diagram (3.2.23) induces the following

homotopy pushout

S2n−1 × Sn−1 i //

(ϕ,π2)

��

S2n−1 ×Dn≥1/2 ∪ S
2n−1
U ×Dn≤1/2

��
N0 × Sn−1 // Gτ (N)0,

which in turn induces the follwing diagram

S2n−1
U × Sn−1 i //

(i×I)
��

S2n−1
U ×Dn≥1/2

��
S2n−1 × Sn−1 i //

(ϕ,π2)

��

S2n−1 ×Dn≥1/2 ∪ S
2n−1
U ×Dn≤1/2

��
N0 × Sn−1 // Gτ (N)0.

Note that the top square is a homotopy pushout square, and hence the outer square

S2n−1
U × Sn−1 i //

(ϕ,π2)◦(i×I)
��

S2n−1
U ×Dn≤1/2

��
N0 × Sn−1 // Gτ (N)0

is also a homotopy pushout square. As S2n−1
U × Dn≤1/2 is contractible, Gτ (N)0 is homotopy

equivalent to the homotopy cofibre of the left vertical arrow, which is easily computed to be

N0 ⋊ Sn−1 .

As a consequence of Proposition 3.2.25, we obtain the following corollary using [42, Theorem

1.4].

Corollary 3.2.26. Suppose E ∈ PD3n−1
1 in which the attaching map of the top cell is inert

and N ∈ PD2n
1 . Then, for any τ : Sn−1 → F (2n),

Ω(Gτ (N)#E) ≃ ΩE × Ω(ΩE ⋉ J)
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where J = (N0 ⋊ Sn−1).

3.2.27. Loop space decompositions from spherical fibrations. We obtain loop space de-

compositions for Ek,N using Corollary 3.2.26 and Proposition 3.2.24. Note that the calculations

of [9] implies that the attaching map of the top cell of a connected sum of sphere products is

inert. Therefore, we deduce the following result by applying Corollary 3.2.26 for E = Ek.

Proposition 3.2.28. Let N ∈ PD2n
1 . Then, for any τ : S2n−1 → F (n),

Ω(Gτ (N)#Ek) ≃ ΩEk × Ω(ΩEk ⋉ (N0 ⋊ Sn−1)).

Further, one has the equivalence ΩEk ≃ Ω(Sn × S2n−1)× Ω(J ∨ J ∧ Ω(Sn × S2n−1)), where

J ≃ (Sn ∨ S2n−1)∨k−2.

Theorem 3.2.29. Let n ∈ {2, 4, 8} . Suppose Mk ∈ PD2n
n−1 with HnMk

∼= Zk and k ≥ 2,

and N ∈ PD2n
1 . Let Ek = #k−1(Sn × S2n−1). Then, we have the homotopy equivalence

Ω(N#Mk) ≃ Sn−1 × ΩEk × Ω(ΩEk ⋉ Y )

where Y ≃ (N0⋊Sn−1), after inverting the primes in Tn (that is, those occuring in the torsion

part of π2n−1(S
n) together with the prime 2).

Proof. The proof follows directly from Theorem 3.1.5 and Propositions 3.2.28 and 3.2.24.

Theorem 3.2.30. Let n ∈ {2, 4, 8}. Suppose Mk ∈ PD2n
n−1 with rank (HnMk) = k > r,

where r = #cyclic torsion summands in πsn−1, and N ∈ PD2n
1 . Then after inverting 2, we

have the homotopy equivalence

Ω(N#Mk) ≃ Sn−1 × ΩEk × Ω(ΩEk ⋉ Y )

where Y ≃ (N0 ⋊ Sn−1).

Proof. The proof follows directly from the Theorem 3.2.7 and Propositions 3.2.28 and 3.2.24.

For n = 2, 4, we do not have to invert 2, and we have

Theorem 3.2.31. Suppose Mk ∈ PD2n
n−1 with rank (HnMk) = k ≥ 2, and n ∈ {2, 4}, and

N ∈ PD2n
1 . Then, we have the homotopy equivalence

Ω(N#Mk) ≃ Sn−1 × ΩEk × Ω(ΩEk ⋉ Y )
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where Y ≃ (N0 ⋊ Sn−1).

3.2.32. Decomposition of looped configuration spaces. The loop space decomposition

of a space has many applications, one of them being in the case of configuration spaces. We

note this down in the examples treated above. Recall that the ordered configration space of X

is given by Fk(X) = {(x1, . . . , xk) | xi ̸= xj if i ̸= j}.

Definition 3.2.33. [17] Let π : Fk(M)→M be the projection onto the first factor. The space

M is said to be a σk-manifold if π admits a cross section.

If M is a σk-manifold, [17, Theorem 2.1] implies the homotopy equivalence

ΩFk(M) ≃ ΩM × Ω(M −Q1)× · · · × Ω(M −Qk), (3.2.34)

for any choice of k distinct points q1, · · · , qk of M with Qi = {q1, · · · , qi}. The hypothesis of

being a σk-manifold is satisfied if M has a nowhere vanishing vector field [20, Theorem 5]. By

the Poincaré-Hopf index theorem, this is satisfied if the Euler characteristic χ(M) = 0. Putting

all this together we obtain the following result for N#M where M is a (n − 1)-connected

2n-manifold.

Theorem 3.2.35. Let n ∈ {2, 4, 8}. SupposeM is an (n−1)-connected 2n-manifold for n even

such that Rank(Hn(M)) = r ≥ 2, and N is a simply connected 2n-manifold with χ(N) = −r.

Then, after inverting the primes in Tn, the homotopy type of ΩFk(N#M) depends only on the

homotopy type of N − ∗ and the integer r. More precisely we have the decomposition

ΩFk(N#M) ≃ Sn−1×ΩE×Ω(ΩE⋉Y )×Ω(N0∨ (Sn)∨r)×
k−1∏
i=1

Ω(N0∨ (Sn)∨r ∨ (S2n−1)∨i)

in which Y ≃ (N0 ⋊ Sn−1), E = #r−1(Sn × S2n−1).

Proof. The hypothesis χ(N) = −r implies χ(M#N) = 0. Thus, (3.2.34) applies to give

ΩFk(N#M) ≃ Ω(N#M)× Ω(N#M −Q1)× · · · × Ω(N#M −Qk)

We now have the equivalence

Ω(N#M) ≃ Sn−1 × ΩE × Ω(ΩE ⋉ Y )

by Theorem 3.2.29. The other factors in the product are observed via the equivalences

N#M −Qi ≃ (N#M − pt) ∨ (S2n−1)∨i−1 ≃ N0 ∨ (Sn)∨r ∨ (S2n−1)∨i−1
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for i ≥ 1.

Finally, one may observe that slightly more general versions of Theorem 3.2.35 are provable

using Theorems 3.2.30 and 3.2.31.





Chapter 4

Sphere fibrations in low dimensional

cases

In this chapter , a part of the paper [11], we inspect the conclusions of Theorem 3.1.5 in low

dimensions, specifically when n ≤ 8. The first case is when n = 2, where the complexes in

PD4
1 are simply connected 4-manifolds. Throughout this chapter we use the Jacobi identity for

Whitehead products [46, Cor 7.13]

(−1)pr
[
[f, g], h

]
+ (−1)pq

[
[g, h], f

]
+ (−1)rq

[
[h, f ], g

]
= 0,

for f ∈ πp(X), g ∈ πq(X), h ∈ πr(X).
(4.0.1)

Applying (4.0.1) together with the skew symmetry for Whitehead products ([f, g] = (−1)pq[g, f ]

for f ∈ πp(X), g ∈ πq(X) ), we obtain

[
[αi, αj ], αk

]
= −

[
αi, [αj , αk]

]
−
[
αj , [αi, αk]

]
. (4.0.2)

4.1 Simply connected four manifolds

The simply connected 4-manifolds Mk for k ≥ 2 (which are defined by H2(Mk) ∼= Zk), support

a principal S1-bundle whose total space is Ek ≃ #k−1(S2 × S3)[8, 19]. The proof of this

result relies on Smale’s classification of spin 5-manifolds. Theorem 3.1.5 provides a homotopy

theoretic method to approach the situation. We first point out the argument in a simple case.

Example 4.1.1. Let M = CP 2#CP 2, which implies that M is the mapping cone of S3 η1−η2−→

S2 ∨ S2. Note that π3S
2 ∼= Z implies that T2 = {2}. The argument in Example 3.1.3 now

implies that after inverting 2, we have a fibration S1 → S2 × S3 → M . This is two steps

43
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away from the geometric argument which implies that inverting 2 is not essential, and that the

fibration is a principal S1-fibration. Tracing out the formula in Example 3.1.3 and the fact that

the triple Whitehead product of the identity map of S2 is 0, we are supposed to consider the

map

S2 ∨ S3 →M, sending µ1 7→ α1, δ1 7→ [α1, α2].

We readily compute (here η(3) is the suspension of the Hopf map which satisfies 2η(3) = 0)

[µ1, δ1] 7→
[
α1, [α1, α2]

]
= [α1, α2] ◦ η(3) − [η1, α2] by [24, Theorem 6.1]

= [α1, α2] ◦ η(3) − [η1 − η2, α2]− [η2, α2]

= [α1, α2] ◦ η(3) as [η2, α2] = 0

̸= 0.

However, one may easily check that a slight tinkering of the formula :

µ1 7→ α1 + α2, δ1 7→ η2

does indeed yield (using the fact that [η1, α2] = [η1 − η2, α2] = 0 and analogous formulas)

[µ1, δ1] 7→[α1 + α2, η2]

= [α1, η2] as [α2, η2] = 0

= 0.

Once we obtain the map S2 × S3 → M , the spectral sequence argument of Proposition 3.1.7

implies that the homotopy fibre is S1. In order to prove that this is indeed a principal fibration,

note that a w ∈ H2(M) which satisfies ⟨w,α1 +α2⟩ = 0, is represented by a map M → CP∞

such that the composite S2 × S3 → M → CP∞ is null. It follows that S2 × S3 maps to

the homotopy fibre of w : M → CP∞ which is easily deduced to be an equivalence. Hence,

S1 → S2 × S3 →M becomes a principal fibration.

In the general case we achieve the result by an analogous computation to Example 4.1.1. We

are required to choose the basis α1, · · · , αk−1 judiciously so that the formulas in Theorem 3.1.5

yield an integral result. This kind of choice was also made in [8, 19].

Theorem 4.1.2. Let Mk be a simply connected 4-manifold with H2Mk
∼= Zk. Then, there is

a principal S1-fibration S1 → Ek →Mk where Ek ≃ #k−1(S2 × S3).
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Proof. We prove for the even intersection here and the odd case is given in the next remark.

Let w ∈ H2(Mk) be a class that reduces to w2(Mk) modulo 2, and choose α1, · · · , αk−1 to be

a linearly independent set spanning a summand of the kernel of the linear map H2(Mk) → Z

induced by w. In the notation of (2.2.2), the matrix
(
(gi,j)

)
is the inverse of the matrix of the

intersection form, and so by this choice gi,i is even for i ≤ k − 1. This implies gi,i[ηi, αj ] =

−gi,i
[
αi, [αi, αj ]

]
by [24, Theorem 6.1]. We define the β-classes as (where ηj = αj ◦ η)

βi =
k−1∑
j=1

gi,j [αj , αk] +
i−1∑
j=1

gi,j [αi, αj ] +
k∑

j=i+1

gi,jηj . (4.1.3)

Then, we have (noting that L(Mk) =
∑

1≤i<j≤k gi,j [αi, αj ]+
∑k

i=1 gi,iηi (??) and the formula

(4.0.2))

k−1∑
i=1

[αi, βi] =

k−1∑
i=1

k−1∑
j=1

gi,j
[
αi, [αj , αk]

]
+

∑
1≤j<i≤k−1

gi,j
[
αi, [αi, αj ]

]
+

∑
1≤i<j≤k

gi,j [αi, ηj ]

=
∑

1≤i<j≤k−1

−gi,j
[
[αi, αj ], αk

]
−

k−1∑
i=1

gi,i[ηi, αk] +
∑

1≤j<i≤k−1

gi,j
[
αi, [αi, αj ]

]
−

∑
1≤i<j≤k

gi,j
[
[αi, αj ], αj ] +

∑
1≤i<j≤k

gi,j [αi, αj ] ◦ η(3) by [24, Theorem 6.1]

= −[L(Mk), αk] + L(Mk) ◦ η(3)]− gk,kηk ◦ η(3), as
[
[αk, αk], αk

]
= 0

Let Ek = #k−1(S2 × S3). Proceeding as in the proof of Theorem 3.1.1, we obtain a map

f : Ek →Mk sending µi to αi and δi to βi. One directly observes that the image of the βi in

H2n−2(ΩMk)/
(
Z{a1, · · · , ak−1} ·Hn−1(ΩMk)

)
equals −bi (of Theorem 3.1.1). The spectral sequence argument of Proposition 3.1.7 now

applies to yield that the homotopy fibre of f is S1. The argument in the last paragraph of

Example 4.1.1 may now be repeated to deduce that this is a principal fibration.

Remark 4.1.4. Note that the formula for the βi in (4.1.3) may be simplified in the case where

w2(Mk) ̸= 0. Here, by choosing αk such that (mod 2), αk is the Poincaré dual of w2(Mk),

we have from [16, Lemma 2.4] that gi,i ≡ gi,k (mod 2) for i ≤ k − 1. Then, the formula

βi =

k−1∑
j=1

gi,j [αj , αk] + gi,kηk (4.1.5)
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gives
k−1∑
i=1

[αi, βi] = −[L(Mk), αk].

4.2 3-connected 8-manifolds

As in the case of simply connected 4-manifolds, we search for integral versions of the Theorem

3.1.5. For this we require some results about the Whitehead products in the homotopy groups

of S4 [43, 24]. Recall that ι4 is the homotopy class of the identity map S4 → S4.

π7S
4 ∼= Z{ν} ⊕ Z/(12){ν ′}, [ι4, ι4] = 2ν + ν ′, (4.2.1)

where ν = Hopf construction on the quaternionic multiplication. We also have using [24, §4]

and [28, (3.7)]

π10S
4 ∼= π10(S

7)⊕ π9(S3) = Z/(24){x} ⊕ Z/3{y},

x = ν ◦ ν(7), y = ν ′ ◦ ν(7) = ν ′ ◦ ν ′(7), ν
′
(7) = −2ν(7),

[ι4, ι4] ◦ ν(7) = 2x+ y, [ν ′, ι4] = −4x+ y,

[ν, ι4] = 2x,
[
[ι4, ι4], ι4

]
= y.

(4.2.2)

We start with an example.

Example 4.2.3. Let M = HP 2#HP 2, which is the mapping cone of S7 ν1−ν2→ S4∨S4. We let

α1 and α2 denote the two wedge summands of S4∨S4. Form a map E2 →M (E2 = S4×S7)

by

µ1 7→ α1 − α2, and δ1 7→ ν2.

Observe that

[µ1, δ1] 7→ [α1 − α2, ν2]

= [α1, ν2]− [α2, ν2]

= 2x1 − [L(M), α1]− 2x2

= −L(M) ◦ ν ′(7) − [L(M), α1],

so that we get a map E2 → M . Now it is easily checked that this satisfies the hypothesis of

Proposition 3.1.7, and therefore, we deduce that the homotopy fibre of the map is S3. We have

thus constructed a fibration S3 → S4×S7 → HP 2#HP 2. We also note that this is a principal

fibration as it is given by the pullback of the map HP 2#HP 2 → HP∞ via the map which on

π4 sends both α1 and α2 to the generator.
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The computations get more involved once we allow factors of ν ′ in the expression of L(M).

The following example deals with the rank 2 case for an even intersection form, which we may

assume to be the hyperbolic form by the classification [33, Ch II (2.2)].

Example 4.2.4. Consider M2 ∈ PD8
3 determined by

L(M2) = [α1, α2] + l1ν
′
1 + l2ν

′
2.

Note that if l1 and l2 are both 1, we cannot obtain a mapM2 → HP∞ which on π4 sends α1 7→

n1ι and α2 7→ n2ι with gcd(n1, n2) = 1. This is because L(M2) 7→ n1n2ν+(n1n2+n1+n2)ν
′,

and for coprime n1, n2, n1n2 + n1 + n2 must be odd. It follows that there is no principal S3-

fibration over M2 in which the total space is 3-connected. However, we can verify that for all

possible values of l1 and l2, there exist fibrations S3 → S4 × S7 →M2.

For constructing the fibrations, we note it suffices to find µ1, δ1 such that [µ1, δ1] = 0 ∈

π10(M2), and the image of δ1 in the homology of the loop space satisfies the hypothesis of

Proposition 3.1.7. We also note the symmetry between the factors α1 and α2, and also by

replacing both by it’s negative that li 7→ −li for i = 1, 2. Modulo these symmetries, the

following formulas for µ1 and δ1 satisfy the required criteria.

l1 ≡ 0 (mod6), l2 ≡ 0 (mod3) : µ1 = α2, δ1 = ν1.

l1 ≡ 3 (mod6), l2 ≡ 0 (mod3) : µ1 = 6α1 + α2, δ1 = ν1.

l1 ≡ 0 (mod6), l2 ≡ 2 (mod3) : µ1 = 4α1 + α2, δ1 = 63ν1 + 4ν2.

l1 ≡ 3 (mod6), l2 ≡ 2 (mod3) : µ1 = 10α1 + α2, δ1 = 399ν1 + 4ν2.

l1 ≡ 1 (mod6), l2 ≡ 1 (mod3) : µ1 = 2α1 + α2, δ1 = 175ν1 + 44ν2.

l1 ≡ 4 (mod6), l2 ≡ 4 (mod6) : µ1 = 8α1 + α2, δ1 = 257ν1 + 4ν2.

l1 ≡ 1 (mod6), l2 ≡ 2 (mod3) : µ1 = 10α1 + α2, δ1 = 401ν1 + 4ν2 − ν ′1.

l1 ≡ 4 (mod6), l2 ≡ 2 (mod3) : µ1 = 4α1 + α2, δ1 = 127ν1 + 8ν2 + ν ′1.

We first construct the fibration when the intersection form is not even, so that an appropriate

analogue of the formula in Remark 4.1.4 works. Let Mk ∈ PD8
3 with H4(Mk) = Zk. Assume

that w4(Mk) ̸= 0 which is equivalent to the intersection form not being even. Choose a basis
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α1, · · · , αk of H4(Mk) such that

⟨αi, αk⟩ = ⟨αi, αi⟩ (mod 2) for 1 ≤ i ≤ k − 1, (4.2.5)

where ⟨−,−⟩ is the intersection form. This is satisfied if αk is the Poincaré dual of w4(Mk)

(mod 2) by an analogous argument to [16, Lemma 2.4]. We write L(Mk) as

L(Mk) =
∑

1≤i<j≤k
gi,j [αi, αj ] +

k∑
i=1

gi,iνi +
k∑
i=1

liν
′
i. (4.2.6)

Proposition 4.2.7. Suppose that α1, · · · , αk satisfy (4.2.5), and either

(A) 6 | lk, or

(B) 4 ∤ gk,k and 3 | lk,

with gk,k and lk as in (4.2.6). Under this assumption we may choose βi ∈ π2n−1(Mk) 1 ≤ i ≤

k − 1 such that
∑k−1

i=1 [αi, βi] = 0, and the hypothesis of Proposition 3.1.7 is satisfied.

Proof. Consider the formula (4.1.5) and write

β′i =

k−1∑
j=1

gij [αj , αk] + gi,kνk. (4.2.8)

We then have using (4.2.2) and [24, Theorem 6.1]

k−1∑
i=1

[αi, β
′
i] =

k−1∑
i=1

k−1∑
j=1

gij
[
αi, [αj , αk]

]
+

k−1∑
i=1

gi,k[αi, νk]

= −
∑

1≤i<j≤k
gi,j

[
[αi, αj ], αk

]
−

k−1∑
i=1

gi,i[νi, αk] +
k−1∑
i=1

(gi,i + gi,k)[αi, αk] ◦ ν(7)

= −[L(Mk), αk] + gk,k[νk, αk] +

k∑
i=1

li[ν
′
i, αk]−

k−1∑
i=1

(gi,i + gi,k
2

)
[αi, αk] ◦ ν ′(7)

= −[L(Mk), αk] + 2gk,kxk − 4lkxk + lkyk +
k−1∑
i=1

li[αi, ν
′
k]−

k−1∑
i=1

(gi,i + gi,k
2

)
[αi, ν

′
k].
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Note that 3 | lk implies lkyk = 0. If 6 | lk, we also have 4lkxk = 0. Otherwise, the condition

4 ∤ gk,k implies that 4lk ≡ 2gk,kr (mod 24). We now rewrite using lkν
′
k ◦ ν ′(7) = lkyk = 0

(2gk,k − 4lk)xk = −(1− r)gk,kνk ◦ ν ′(7)

= −(1− r)
[
L(Mk) ◦ ν ′(7) −

∑
1≤i<j≤k

gi,j [αi, αj ] ◦ ν ′(7) −
k−1∑
i=1

gi,iνi ◦ ν ′(7) −
k−1∑
i=1

liν
′
i ◦ ν ′(7)

]

= −(1− r)
[
L(Mk) ◦ ν ′(7) −

∑
1≤i<j≤k

gi,j [αi, ν
′
j ] +

k−1∑
i=1

gi,i[αi, νi]−
k−1∑
i=1

li
[
αi, [αi, αi]

]]
.

Now we define βi by perturbing the β′i of (4.2.8)

βi = β′i −
(
li −

gi,i + gi,k
2

)
ν ′k − (1− r)

k∑
j=i+1

gi,jν
′
j + (1− r)gi,iνi − (1− r)li[αi, αi],

to get
k−1∑
i=1

[αi, βi] = −[L(Mk), αk]− (1− r)L(Mk) ◦ ν ′(7).

We also verify easily that βi satisfy the requirements of Proposition 3.1.7.

Proposition 4.2.7 becomes applicable once we show that the hypotheses (4.2.5) and 3 | lk are

always achievable. This is the subject of the following lemma.

Lemma 4.2.9. There is a choice of basis of Hn(Mk) for k ≥ 2 such that (4.2.5) holds, and

either (A) or (B) of Proposition 4.2.7 is satisfied.

Proof. We already have that if αk is the Poincaré dual of w4(Mk) (mod 2), (4.2.5) is satisfied.

We now assume that the basis αi is chosen such that the induced inner product is diagonal

modulo 3. We note that the change of li with a change of basis is not linear, however the

following change of basis formulas hold by applying (4.2.2).

(αk 7→ −αk)→ (lk 7→ −lk + gk,k).αk−1 7→ αk−1 − αk
αk 7→ αk

→ (lk 7→ lk + lk−1 + gk,k−1).

αk−1 7→ αk−1 − 2αk

αk 7→ αk

→ (lk 7→ lk + 2lk−1 + gk−1,k−1 + 2gk,k−1).

It is now clear that a combination of the above manoeuvres allow us to arrange for 3 | lk.
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Suppose that the basis that the numbers gk,k and lk obtained above satisfy 4 | gk,k and 2 ∤ lk.

As the intersection form is odd, we must have i such that gi,i is odd. The transformation

αi 7→ αi − 6αk

αk 7→ αk

→ (lk 7→ lk + 6li + 15gi,i + 6gk,i),

allows us to make 6 | lk.

Now consider the case when the intersection form is even. Assuming L(Mk) as in (4.2.6) we

note that this implies that the gi,i are even for all i. We now adapt the formula (4.1.3) in this

case to prove the following result.

Proposition 4.2.10. Suppose that k ≥ 2, 24 | gk,k, and lk = 0. Under this assumption we

may choose βi ∈ H2n−1(Mk) such that the hypothesis of Proposition 3.1.7 is satisfied.

Proof. We define the classes

β′i =

k−1∑
j=1

gij [αj , αk] +

i−1∑
j=1

gi,j [αi, αj ] +

k∑
j=i+1

gi,jνj − liν ′k.

With this choice we compute using (4.2.2) as in Proposition 4.2.7

k−1∑
i=1

[αi, β
′
i] =

k−1∑
i=1

k−1∑
j=1

gij
[
αi, [αj , αk]

]
+

∑
1≤j<i≤k−1

gi,j
[
αi, [αi, αj ]

]
+

∑
1≤i<j≤k

gi,j [αi, νj ]−
k−1∑
i=1

li[αi, ν
′
k]

=
∑

1≤i<j≤k−1

−gi,j
[
[αi, αj ], αk

]
−

k−1∑
i=1

gi,i[νi, αk] +

k−1∑
i=1

gi,i[αi, αk] ◦ ν(7) −
k−1∑
i=1

li[ν
′
i, αk]

+
∑

1≤j<i≤k−1

gi,j
[
αi, [αi, αj ]

]
−

∑
1≤i<j≤k

gi,j
[
[αi, αj ], αj ] +

∑
1≤i<j≤k

gi,j [αi, αj ] ◦ ν(7)

= −[L(Mk), αk] + gk,k[νk, αk] + L(Mk) ◦ ν(7) +
k−1∑
i=1

gi,i[αi, αk] ◦ ν(7)

−
k−1∑
i=1

gi,ixi −
k−1∑
i=1

liyi − gk,kxk

= −[L(Mk), αk] + L(Mk) ◦ ν(7) +
k−1∑
i=1

gi,i[αi, αk] ◦ ν(7) −
k−1∑
i=1

gi,ixi −
k−1∑
i=1

liyi + gk,kxk.
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As 24 | gk,k, gk,kxk = 0. We write

gi,i[αi, αk] ◦ ν(7) = −
gi,i
2
[αi, αk] ◦ ν ′(7)

= −gi,i
2
[αi, ν

′
k].

We now define βi by perturbing β′i as

βi = β′i −
gi,i
2
· νi +

gi,i
2
· ν ′k − li[αi, αi],

and from the formulas (4.2.2), it follows that

k−1∑
i=1

[αi, βi] = −[L(Mk), αk]− L(Mk) ◦ ν(7).

Clearly the βi satisfy the hypothesis of Proposition 3.1.7.

We now summarize the computations in the following theorem.

Theorem 4.2.11. Let Mk ∈ PD8
3, that is, H4(Mk) = Zk for k ≥ 2. Such an Mk supports a

S3-fibration S3 → Ek →Mk with Ek ≃ #k−1(S4 × S7).

Proof. We follow the proof of Theorem 3.1.5. The choice of αi and βi are made in Proposition

4.2.7 and Lemma 4.2.9 if the intersection form is not even, and in Proposition 4.2.10 if the

intersection form is even. In the latter case, we need to arrange that 24 | gk,k. For this, we use

the fact that gi,i is even to rewrite

L(Mk) =
∑

1≤i<j≤k
gi,j [αi, αj ] +

k∑
i=1

gi,i
2
[αi, αi] +

k∑
i=1

siν
′
i.

Note that the si change linearly with αi (mod 12). Now we write

s1ν
′
1 + · · ·+ skν

′
k = dτ

where d equals the greatest common divisor of the si. Extending τ to a basis we assume that

si = 0 if i ≥ 2. Consider the summand spanned by the last k − 1 basis elements. By Lemma

3.1.4, we obtain a primitive v ̸= 0 such that ⟨v, v⟩ is divisible by 24 if k ≥ 6. Extend τ, v to

a basis, to verify the required criteria. For k ≤ 5, we are done by the classification in [33, Ch

II (2.2)]. More precisely, if k ≤ 5, k can be 2 or 4, and in each case the intersection form

is a direct sum of copies of the hyperbolic form. If k = 2, we are done by Example 4.2.4. If
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k = 4, we consider the τ above and note that by adding multiples of 12 to the si, and the

fact that their gcd is 1, we may choose two si1 , si2 among s1, · · · s4 that are relatively prime.

Choosing v = sj , for j ̸∈ {i1, i2}, allows us to proceed as before. Therefore, we have a fibration

Ek →Mk for Ek ≃ #k−1(S4 × S7) with fibre S3.

4.3 Other examples

4.3.1. 7-connected 16-manifolds. One may approach results for PD16
7 in an analogous

manner to those for PD8
3, and expect that the existence of the Hopf invariant one class σ ∈

π15(S
8) will allow us to construct integral versions of Theorem 3.1.5. However, this is not the

case. First we note some formulas for Whitehead products and compositions in the homotopy

groups of S8. [43, (5.16)], [34, (7.4)]

π15S
8 ∼= Z{σ} ⊕ Z/(120){σ′}, [ι8, ι8] = 2σ − σ′,

π22S
8 ∼= π22(S

15)⊕ π21(S7) = Z/(240){z} ⊕ Z/(24){u} ⊕ Z/4{v},

z = σ ◦ σ(15), u = σ′ ◦ σ(15),

[σ, ι8] = 2z − u± 8u,
[
[ι8, ι8], ι8

]
= ±8u.

(4.3.2)

From the formula (4.3.2), one can easily deduce via a direct calculation that it is not possible to

construct a fibration S7 → S8×S15 → OP 2#OP 2. For example, the formulas in Example 4.2.3

does not generalize here, as the terms [ι8, σ] contain multiples of u which are not expressible

in the form σ ◦ −. It is possible to lay down conditions under which the formulas do yield the

desired fibrations. We leave the study of these integral fibrations for a future publication.

4.3.3. 5-connected 12-manifolds. For manifolds in PD12
5 we know that the fibration S5 →

Ek → Mk cannot exist over the integers as there is no Hopf invariant one class in π11(S
6).

Therefore we have to invert 2. However, π11S
6 = Z, so it is not necessary to invert anything

else.

Remark 4.3.4. Using the calculation of the homotopy groups of sphere in Toda’s range, we

can say about the primes exactly we need to invert. In the cases of 9-connected 20-manifolds

and 17-connected 36-manifolds, it only needs to invert 2. The other cases, upto 19-th stem,

require at least one more prime to be inverted.



Chapter 5

SU(2)-bundles over highly connected

8-manifolds

In this chapter, we analyze the possible homotopy types of the total space of a principal

SU(2)−bundle over a 3-connected 8-dimensional Poincareé duality complex. Along the way,

we also classify the 3-connected 11-dimensional complexes E formed from a wedge of S4 and

S7 by attaching a 11-cell. The results of this chapter appear in the paper [12].

5.1 Homotopy classification of certain 3-connected 11-complexes

We study 3-connected 11-dimensional Poincaré duality complexes E such that E \ {pt} is

homotopic to a wedge of copies of S4 and S7. We write PD11
4,7 for the collection of such

complexes. Our target in this section is to analyze them up to homotopy equivalence. We show

that these are classified by numbers λ, ϵ and δ which are explained in detail below.

5.1.1. The rank one case. Let E ∈ PD11
4,7 be such that E \ {pt} ≃ S4 ∨ S7, that is,

Rank(H4(E)) = 1. The homotopy type of E is determined by the attaching map of the top

cell, which is an element of

π10(S
4 ∨ S7) ∼= π10(S

4)⊕ π10(S7)⊕ π10(S10).

This must be of the form

ϕλ,ϵ,δ = [ι4, ι7] + λ(ι7 ◦ ν7) + ϵ(ι4 ◦ x) + δ(ι4 ◦ y), (5.1.2)

53
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where x = ν4 ◦ ν7 and y = ν ′ ◦ ν7. The total space associated with ϕλ,ϵ,δ is denoted by

Eλ,ϵ,δ = (S4 ∨ S7) ∪ϕλ,ϵ,δ D
11.

Note that as (−ι4) ◦ ν = ν + ν ′, we have (−ι4) ◦ x = x + y. For given any λ, ϵ and δ; we

observe the effect of the self homotopy equivalences on Eλ,ϵ,δ as follows

ι4 7→ −ι4, ι7 7→ −ι7 =⇒ Eλ,ϵ,δ
≃−→ E−λ,ϵ,ϵ−δ,

ι4 7→ ι4, ι7 7→ ι7 + aι4 ◦ ν =⇒ Eλ,ϵ,δ
≃−→ Eλ,ϵ+(λ+2)a,δ,

ι4 7→ ι4, ι7 7→ ι7 + bι4 ◦ ν ′ =⇒ Eλ,ϵ,δ
≃−→ Eλ,ϵ−4b,δ+(λ+1)b.

(5.1.3)

This leads us to homotopy equivalences between Eλ,ϵ,δ’s depending on the choice of λ ∈

π10(S
7) ∼= Z/24. Note that the above equivalences imply that it is enough to consider for

λ = 0, 1, . . . , 11. Table 5.1 lists the different homotopy types in PD11
4,7 of rank 1.

λ #Eλ,ϵ,δ’s Eλ,ϵ,δ’s

0 2 E0,0,0, E0,1,0

1 3 E1,0,0, E1,1,0, E1,2,0

2 12 E2,0,0, E2,1,0, E2,2,0, E2,3,0, E2,0,1, E2,1,1,
E2,2,1, E2,3,1, E2,0,2, E2,1,2, E2,2,2, E2,3,2

3 1 E3,0,0

4 6 E4,0,0, E4,1,0, E4,2,0, E4,3,0, E4,4,0, E4,5,0

5 3 E5,0,0, E5,0,1, E5,0,2

6 4 E6,0,0, E6,1,0, E6,2,0, E6,3,0

7 3 E7,0,0, E7,1,0, E7,2,0

8 6 E8,0,0, E8,1,0, E8,0,1, E8,1,1, E8,0,2, E8,1,2

9 1 E9,0,0

10 12 E10,0,0, E10,1,0, E10,2,0, E10,3,0, E10,4,0, E10,5,0,
E10,6,0, E10,7,0, E10,8,0, E10,9,0, E10,10,0, E10,11,0

11 3 E11,0,0, E11,0,1, E11,0,2

12 2 E12,0,0, E12,1,0

Table 5.1: Homotopy equivalence classes of Eλ,ϵ,δ.

5.1.4. A simplification of the attaching map. We simplify and reduce the attaching map

of the top cell of E.

Proposition 5.1.5. Let E ∈ PD11
4,7 with Rank(E) = k − 1. The attaching map ϕ of the top

cell of E as in (5.1.2) can be reduced, up to homotopy, to the following form

ϕ =

k−1∑
i=1

[ιi4, ι
i
7] +

k−1∑
i=1

λiι
i
7 ◦ ν(7) +

k−1∑
i=1

siνi ◦ ν(7) +
k−1∑
i=1

riν
′
i ◦ ν(7).
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Proof. By Hilton-Milnor decomposition, we have the following equivalence

π10((S
4 ∨ S7)∨k−1) ∼= π10(S

4)⊕(k−1) ⊕ π10(S7)⊕(k−1) ⊕ π10(S7)⊕(
k−1
2 )⊕

π10(S
10)⊕(k−1)×(k−1) ⊕ π10(S10)⊕(

k−1
3 ).

We choose η1, . . . , ηk−1 ∈ π4(E) and γ1, . . . , γk−1 ∈ π7(E) such that they correspond to the

homology generators, say η̃1, . . . , η̃k−1 ∈ H4(E) and γ̃1, . . . , γ̃k−1 ∈ H7(E) such that

η̃∗i ∪ γ̃∗j =


1 if i = j,

0 if i ̸= j.

(5.1.6)

Let f̃ : (S4∨S7)∨k−1 → E be the inclusion which sends ιi4 7→ ηi and ι
i
7 7→ γi for 1 ≤ i ≤ k−1.

Then f̃ ◦ϕ ∈ π10(E) whose image under the map ρ : π10(E)→ π9(ΩE)→ H9(ΩE) is 0 in the

tensor algebra T (η̃1, . . . , η̃k−1, γ̃1, . . . , γ̃k−1)/(
∑k−1

i=1 [η̃i, γ̃i]).

The attaching map ϕ may contain triple Whitehead products as [ι4i , [ι
4
j , ι

4
ℓ ]], the Whitehead

products of the form [ι4i , ι
7
j ] for i ̸= j, the terms involving [ι4i , ι

4
j ]◦ν7 and [ι4i , ι

4
j ]◦ν ′7. The triple

Whitehead product maps injectively to the loop homology of ΩE and hence they can not occur

in the attaching map. The cup product formula in (5.1.6) implies that there is no Whitehead

product of the form [ι4i , ι
7
j ] for i ̸= j. If [ι4i , ι

4
j ] ◦ ν7 and [ι4i , ι

4
j ] ◦ ν ′7 appear in the attaching

map, we update the map f̃ by appropriately sending ι7i 7→ γi − ηj ◦ ν ′, ι7i 7→ γi − ηj ◦ ν and

ι7j 7→ γj − [ηi, ηj ] to get the desired form of the attaching map.

We note that the composition is given by

S10 → (S4 ∨ S7)∨k−1 → (S7)∨k−1

which is an element of (π10S
7)⊕k−1 ∼= (Z/24{ν})⊕k−1. This can be calculated using the real

e-invariant, see [3]. We use this to reduce Proposition 5.1.5 to the case λi = 0 for i ≤ k − 2.

Proposition 5.1.7. Let E ∈ PD11
4,7 and Rank(E) = k − 1. Then the attaching map ϕ of the

top cell of E can be reduced to the following form

ϕ =

k−1∑
i=1

[ιi4, ι
i
7] + λιk−1

7 ◦ ν(7) +
k−1∑
i=1

ϵiνi ◦ ν(7) +
k−1∑
i=1

δiν
′
i ◦ ν(7). (5.1.8)

As a consequence E ≃ #k−2
i=1E0,ϵi,δi#Eλ,ϵk−1,δk−1

.
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Proof. Let τ : H7(E) ∼= Z{γ̃∗1 , γ̃∗2 , . . . , γ̃∗k−1} → Z/24 be the linear map defined by

τ(γ̃∗i ) = e(ri ◦ ϕ), for 1 ≤ i ≤ k − 1,

where e denotes for the real e-invariant and ri : (S
4 ∨S7)∨k−1 → S7 is the retraction onto the

i-th factor. Let τ̃ : H7(E)→ Z be the lift of τ and λ = gcd(τ̃(γ̃∗1), . . . , τ̃(γ̃
∗
k−1)). Then we can

change the generators γ̃1, . . . , γ̃k−1 such that τ̃(γ̃i) = 0 for 1 ≤ i < k − 1 and τ̃(γ̃k−1) = λ.

So, for a suitable choice of dual bases we can have ϕ as in (5.1.8).

5.1.9. A general classification up to homotopy. We now proceed to the classification of

elements in PD11
4,7. In the connected sum Eλ1,ϵ1,δ1#Eλ2,ϵ2,δ2 , we transform α1 = α′

1 + α′
2 and

α2 = α′
2 by A =

1 1

0 1

. If 2|λ2, then we transform

β1 = β′1 − ϵ1ν2 −
λ2ϵ1
2
ν ′2, β2 = −β′1 + β′2 − ϵ1[α′

1, α
′
2].

Hence by the following expression

[α1, β1] + [α2, β2] + λ1β1 ◦ ν(7) + λ2β2 ◦ ν7 + ϵ1x1 + ϵ2x2 + δ1y1 + δ2y2

=[α′
1, β

′
1] + [α′

2, β
′
2] + (λ1 − λ2)β′1 ◦ ν(7) + λ2β

′
2 ◦ ν7 + ϵ1x1 + (−ϵ1 + ϵ2 + 2λ2ϵ1 − λ1ϵ1)x2

δ1y1 + (δ1 + δ2 + λ2ϵ1(1 + λ1))y2,

we conclude

Eλ1,ϵ1,δ1#Eλ2,ϵ2,δ2 ≃ Eλ1−λ2,ϵ1,δ1#Eλ2,ϵ2+ϵ1(2λ2−λ1−1),δ1+δ2+(1+λ1)ϵ1λ2 when 2|λ2.

(5.1.10)

Proposition 5.1.11. For any unit a ∈ Z/24, we have homotopy equivalence

Eλ,ϵ,δ#E0,0,0 ≃


Eaλ,ϵ,δ#E0,0,0 if a ≡ 1 (mod 3)

E−aλ,ϵ,δ#E0,0,0 if a ≡ 2 (mod 3).

Proof. We transform

α1 = aα′
1 + bα′

2 β1 = aβ′1 − 24β′2 − bϵν2 − 24bϵν1

α2 = 24α′
1 + aα′

2 β2 = −bβ′1 + aβ′2 − ϵb[α′
1, α

′
2]
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with a2 − 24b = 1 and calculate [α1, β1] + [α2, β2] + λβ ◦ ν(7) + ϵx1 + δy2. This gives the

homotopy equivalence

Eλ,ϵ,δ#E0,0,0 ≃ Eaλ,a2ϵ,aδ+(a2)ϵ#E0,−b2ϵ−bλϵ,bδ+(b2)ϵ
. (5.1.12)

This proves the proposition except for when λ ≡ 0 (mod 2) and ϵ, b ≡ 1 (mod 2). In that

case, we have E0,1,0 instead of E0,0,0 in the second component of the connected sum. From

(5.1.10), we get

Eλ,ϵ,δ#E0,1,0 ≃ Eλ,ϵ,δ#E0,1+ϵ(−λ−1),δ (5.1.13)

which we apply following the equivalence in (5.1.12) for λ even and ϵ,b odd. This concludes

the proof.

The transformations above further simplify the possibilities of E ∈ PD11
4,7 listed in Proposition

5.1.7.

Proposition 5.1.14. Let E ∈ PD11
4,7 and Rank(E) = k − 1. Then

E ≃ #k−3E0,0,0#E0,ϵ̂,0#Eλ,ϵ,δ

for some λ, ϵ ∈ Z/24, δ ∈ Z/3, ϵ̂ ∈ Z/2.

Proof. From Proposition 5.1.7, we have the attaching map ϕ as in (5.1.8). Repeated use of

the homotopy equivalences in (5.1.3) and (5.1.13) gives the reduced form (5.1.8) as follows

ϕ =
k−1∑
i=1

[ιi4, ι
i
7] + λιk−1

7 ◦ ν(7) + ϵ̂xk−2 + ϵxk−1 + δyk−1,

where λ, ϵ ∈ Z/24, δ ∈ Z/3, ϵ̂ ∈ Z/2.

Corollary 5.1.15. Let E ∈ PD11
4,7 and Rank(E) = k − 1. Then stably we have

Σ∞E ≃ Σ∞(S4 ∨ S7)∨k−2 ∨ Σ∞Cone(λs(E)ν(11) + ϵs(E)x), (5.1.16)

where x is the generator of the stable homotopy group π14(S
8) ∼= Z/2 and λs(E) ∈ Z/24,

ϵs(E) ∈ Z/2.Moreover, for k−1 ≥ 2 if λs(E) ≡ 1 (mod 2) in (5.1.16), then ϵs(E) = 0 ∈ Z/2.

Proof. From (5.1.8) and Proposition 5.1.14,

Σ4ϕ = λιk−1
11 ◦ ν(11) + ϵ̂ιk−2

8 ◦ ν(11) + ϵιk−1
8 ◦ ν(11).
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Note that ν(11) ∈ πs3(S
0) ≃ Z/24 and Σ4(ν ◦ ν(7)) ∈ πs6(S

0) ≃ Z/2 are the generators. If

ϵ̂ = 0 ∈ Z/2, the result readily follows. Otherwise, if ϵ = 1, ϵ̂ = 1 ∈ Z/2, we apply the

transformation ιk−2
8 + ιk−1

8 7→ ιk−1
8 . If ϵ = 0, ϵ̂ = 1 ∈ Z/2, we interchange ιk−2

8 and ιk−1
8 to

deduce the result.

We see that the stable homotopy type of E ∈ PD11
4,7 is determined by λs(E) which is a divisor

of 24 and ϵs(E) ∈ Z/2. The following theorem classifies the different homotopy types of E

given the values of λs and ϵs.

Theorem 5.1.17. Let E ∈ PD11
4,7 and Rank(E) = k− 1. Then depending on λs = λs(E) and

ϵs = ϵs(E), the homotopy type of E is determined by the following.

1. If λs is even and ϵs = 0, then

E ≃ #k−2E0,0,0#Eλs,ϵ,δ where ϵ ≡ ϵs (mod 2).

2. If λs is even and ϵs = 1, then

E ≃ #k−2E0,0,0#Eλs,ϵ,δ where ϵ ≡ 1 (mod 2)

or E ≃ #k−3E0,0,0#E0,1,0#Eλs,ϵ,δ where ϵ ≡ 0 (mod 2).

3. If λs is odd, then

E ≃ #k−2E0,0,0#Eλs,ϵ,δ or E ≃ #k−3E0,0,0#E0,1,0#Eλs,ϵ,δ.

Further given λs, the choices of ϵ and δ are those which are mentioned in Table 5.1.

Proof. We write Y1 = #k−2E0,0,0#Eλ,ϵ,δ and Y2 = #k−2E0,0,0#Eλ,ϵ′,δ′ , and let Y1
f→ Y2 be

a homotopy equivalence with homotopy inverse g. We show that in this case the pair (ϵ, δ)

is related to (ϵ′, δ′) by the transformations (5.1.3). There exists a unique (up to homotopy)

factorization (S7)∨k−1 → (S7 ∨ S4)∨k−1 → Y2 through cellular approximation f̃ as in the

following diagram.

(S7)∨k−1 //

f̃ ((QQ
QQQ

QQQ
QQQ

Q
#k−2E0,0,0#Eλ,ϵ,δ

f // #k−2E0,0,0#Eλ,ϵ′,δ′

(S7 ∨ S4)∨k−1

;;

g
j

n
r

v
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Now we consider the composition f7 : = ρ ◦ f̃ where ρ is the projection map.

(S7)∨k−1
∨k−1
i=1 βi //

f̃

%%J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

J

f7

**VVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

V
#k−2E0,0,0#Eλ,ϵ,δ

f // #k−2E0,0,0#Eλ,ϵ′,δ′

(S7 ∨ S4)∨k−1 ρ // S7∨k−1

∨k−1
i=1 γi

OO

From the stable homotopy type, we get an isomorphism

f7 : π7((S
7)∨k−1)

∼ =

Z{β1, . . . , βk−1}

∼= // π7((S
7)∨k−1)

∼ =

Z{γ1, . . . , γk−1}

where f7(βk−1) ≡ γk−1 (mod 24). Hence, the corresponding matrix of f7 is

≡


0

A
...

0

∗ . . . ∗ 1

 (mod 24)

for some A ∈ GLk−2(Z). From the inverse homotopy equivalence g : Y2 → Y1, we can construct

a corresponding block matrix of g7 similar to that of f7 for some B ∈ GLk−2(Z) (mod 24).

Through suitable pre-composition of f7 and post-composition of g7 we may assume that A =

B = I where I is the identity matrix in GLk−2(Z). Thus both f7 and g7 are composition

of shearing maps with βk−1 7→ γk−1, that is, they are composition of maps associated to

βi 7→ γi + ciγk−1 for some ci ∈ Z.

We now consider the map f on the 7-skeleton

(S4 ∨ S7)∨k−1 f (7) //

∨k−1
i=1 (αi∨βi)
��

(S4 ∨ S7)∨k−1

∨k−1
i=1 (ξi∨γi)
��

Y1
f // Y2,

which takes the form

βi 7→ γi + ciγk−1 +
k−1∑
j=1

ai,jνj +
k−1∑
j=1

a′i,jν
′
j +

j=k−1
ℓ=k−1∑
j=1
ℓ=1
j ̸=ℓ

ai,j,ℓ[ξj , ξℓ], αi 7→ ξi, for 1 ≤ i ≤ k − 2,
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βk−1 7→ γk−1 +
k−1∑
j=1

bjνj +
k−1∑
j=1

b′jν
′
j +

j=k−1
ℓ=k−1∑
j=1
ℓ=1
j ̸=ℓ

bj,ℓ[ξj , ξℓ], αk−1 7→ ξk−1 −
k−2∑
j=1

cjξj .

As f is a homotopy equivalence, we must have that the attaching map of the 11-cell of Y1 must

be carried by f (7) to the attaching map of Y2, that is, f
(7) ◦ L(Y1) ≃ L(Y2). We now look at

the coefficients of ξk−1 ◦x and ξk−1 ◦ y that arises in f (7) ◦L(Y1) and note that the only terms

which contribute to these coefficients are

f (7)([αk−1, βk−1] + λsβk−1 ◦ ν(7) + ϵαk−1 ◦ x+ δαk−1 ◦ y).

We now deduce

ϵ′ = (λs + 2)bk−1 − 4b′k−1 and δ′ = (λs + 1)b′k−1,

which verifies the result for complexes of the type #k−2E0,0,0#Eλ,ϵ,δ.

For the remaining cases, we follow the same argument with Y1 = #k−3E0,0,0#E0,1,0#Eλs,ϵ,δ

with ϵ even if λs is, and Y2 = #k−3E0,0,0#E0,ϵ̂,0#Eλs,ϵ′,δ′ , where ϵ̂ = 0 or 1. Note that the

only terms which contribute to ηk−2 ◦ x are

f (7)([αk−1, βk−1] + [αk−2, βk−2] + αk−2 ◦ x+ λsβk−1 ◦ ν(7) + ϵαk−1 ◦ x+ δαk−1 ◦ y).

A direct computation implies

λsbk−2 + ϵc2k−2 + 1 ≡ ϵ̂ (mod 2). (5.1.18)

First let λs be even and ϵ ≡ 0 (mod 2). This implies ϵ̂ = 1. Finally, let λs is odd. We look at

the coefficients of [ηk−1, [ηk−2, ηk−1]] and [ηk−2, ηk−1] ◦ ν(7) in f (7) ◦ L(Y1) (mod 2), which

are bk−2,k−1+ck−2bk−1−ak−2,k−1 and λsbk−2,k−1+ak−2,k−1+bk−2−ck−2bk−1−ϵck−2. Since

both these coefficients are zero, we have bk−2 ≡ ϵck−2 (mod 2). Using the relation (5.1.18),

we observe that ϵ̂ = 1. The conditions on ϵ′ and δ′ are verified analogously as in the previous

case. This completes the proof of the various implications in the theorem.

5.1.19. The loopspace homotopy type. We study the loop space homotopy type of

E ∈ PD11
4,7 with E(7) ≃ (S4 ∨S7)∨k−1 and show that the loop space homotopy is independent

of the λ, ϵ and δ occurring in the attaching map ϕ of E.
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Theorem 5.1.20. The homotopy type of the loop space of E is a weak product of loop spaces

on spheres, and depends only on k − 1 = Rank(H4(E)). In particular,

ΩE ≃ Ω(#k−1(S4 × S7)).

Proof. This follows from the arguments in [9] and [10]. More explicitly, we first compute the

homology of ΩE via cobar construction, see [2]. In this case, H∗(E) is a coalgebra which is

quasi-isomorphic to C∗(E), and hence we may compute the cobar construction of H∗(E) and

deduce as in [10, Proposition 2.2]

H∗(ΩE) ∼= T (a1, b1, . . . , ak−1, bk−1)/(
∑

[ai, bi])

where ρ(αi) = ai and ρ(βi) = bi with ρ defined as

ρ : πr(E) ∼= πr−1(ΩE)
Hur−−−→ Hr−1(ΩE).

We then note that H∗(ΩE) is the universal enveloping algebra of the graded Lie algebra

L(a1, b1, . . . , ak−1, bk−1)/(
∑

[ai, bi]) where L is the free Lie algebra functor. Now we apply

the Poincaré-Birkhoff-Witt theorem as in [10, Proposition 3.6] to deduce the result.

5.2 Stable homotopy type of the total space.

In this section, we examine the possible stable homotopy types of the total space E for a

principal SU(2)-fibration over Mk ∈ PD8
3. We relate this to the stable homotopy type of Mk.

Let f : Mk → HP∞ be a map such that π4(f) : π4(Mk) → π4(HP∞) ∼= Z is surjective. This

ensures that the homotopy fibre E(f) is 3-connected and is a Poincaré duality complex of

dimension 11. One easily deduces

Hi(E(f)) =


Z i = 0, 11

Z⊕k−1 i = 4, 7

0 otherwise

from the Serre spectral sequence associated to the fibration S3 → E(f)→ Mk. We may now

consider a minimal CW-complex structure on E := E(f) with (k − 1) 4-cells, (k − 1) 7-cells,



62 Chapter 5. SU(2)-bundles over highly connected 8-manifolds

and one 11-cell, see [23, Section 2.2]. The 7-th skeleton E(7) is, therefore, a pushout

(S6)∨(k−1) //

∨k−1
i=1 ϕi

��

(D7)∨(k−1)

��
(S4)∨(k−1) // E(7)

(5.2.1)

We now observe that the ϕi are all 0.

Proposition 5.2.2. The maps ϕi ≃ 0 for 1 ≤ i ≤ k − 1.

Proof. Note that the homotopy class of each of the attaching maps is in π6(S
4)⊕k−1 which

lies in the stable range. Applying the Σ∞ functor on the diagram (5.2.1), we get the cofibre

sequence

Σ∞(S6)∨(k−1) Σ∞(∨k−1
i=1 ϕi)−−−−−−−−→ Σ∞(S4)∨(k−1) → Σ∞E(7)

which in turn induces a long exact sequence (on the stable homotopy groups)

· · · → πs7(E
(7))→ πs6(S

6)⊕k−1 Φ−→ πs6(S
4)⊕k−1 → πs6(E

(7))→ . . . (5.2.3)

where Φ is the induced map of ∨k−1
i=1 ϕi. We have the following commutative diagram

πs6(S
4)⊕k−1 //

��

πs6(E)

��

πs6(E
(7))≃

oo

πs6(S
7)

q
0

// πs6(S
4)⊕k // πs6(Mk).

The second row is a part of a long exact sequence and so, the map πs6(S
4)⊕k → πs6(Mk) is

injective. Hence, the map πs6(S
4)⊕(k−1) → πs6(E) is injective, in (5.2.3) Φ is forced to be 0.

The result follows.

Proposition 5.2.2 implies that E fits into the pushout

S10 //

L(E)
��

D11

��
(S4 ∨ S7)∨(k−1) // E

for some [L(E)] ∈ π10((S4 ∨ S7)∨(k−1)). Hence, E belongs to PD11
4,7. We consider

S10 L(E)−−−→ (S4 ∨ S7)∨(k−1) −→ (S7)∨(k−1)
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which is of the form

k−1∑
i=1

λiι
i
7 ◦ ν7 ∈ π10(S7)⊕k−1 ∼=

k−1⊕
i=1

Z/24{ν7}.

The coefficients λi can be computed via the e-invariant, see [3]. Recall that the e-invariant

of a map g : S11 → S8 can be computed using Chern character. The complex K-theoretic

e-invariant eC is computed via the diagram

0 //

Z{b12}
∼ =

K̃(S12) //

ch

��

K̃(ΣCg) //

ch

��

Z{b8}

∼ =

K̃(S8) //

ch

��

0

0 // H̃ev(S12;Q)

∼ =

Q{a12}

// H̃ev(ΣCg;Q) // H̃ev(S8;Q)

∼ =

Q{a8}

// 0.

We obtain

ch(b12) = a12, ch(b8) = a8 + ra12.

If g = λν(7), eC(g) = r = λ
12 ∈ Q/Z, see [3]. We also have eC = 2e, where e is computed using

the Chern character of the complexification c : KO → K. Therefore, from [3, Proposition 7.14]

b8 ∈ Im(c) =⇒ e(g) =
r

2
∈ Q/Z. (5.2.4)

5.2.5. K-theory of Mk. Consider the Atiyah-Hirzebruch spectral sequence

E∗∗
2 = H∗(Mk;π∗K) =⇒ K∗(Mk).

AsM has only even dimensional cells, this has no non-trivial differential for degree reasons. This

gives the additive structure of K0(Mk). Let H
4(Mk) ∼= Z{ψ1, . . . , ψk} and H8(Mk) ∼= Z{z}.

Note that if α1, . . . , αk ∈ π4(Mk) ∼= H4(Mk) ∼= Zk is dual to the basis ψ1, . . . , ψk, in the

expression (1.3.1), the matrix
(
(gi,j)

)
of the intersection form is related to the cup product

via the equation ψi ∪ ψj = gi,jz. Let ψ̃1, . . . , ψ̃k, z̃ be classes in K(Mk) corresponding to
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ψ1, . . . , ψk, z respectively, in the E∞-page. We have the diagram

0 // K̃0(S8)
q∗ //

ch
��

K̃0(Mk)
i∗ //

ch
��

K̃0((S4)∨k) //

ch
��

0

0 // H̃ev(S8;Q) // H̃ev(Mk;Q) // H̃ev((S4)∨k;Q) // 0

where

ch(z̃) = z, ch(i∗(ψ̃j)) = ψj( =⇒ ch(ψ̃j) = ψj + τjz), 1 ≤ j ≤ k. (5.2.6)

Note that in terms of the formula (1.3.1), ψiψj = gi,jz. We now use the fact that ch is a ring

map to get

ch(ψ̃iψ̃j) = (ψi + τiz) ∪ (ψj + τjz) = ψi ∪ ψj = gi,jz.

As ch : K(Mk)→ Hev(Mk;Q) is injective, we deduce ψ̃iψ̃j = gi,j z̃.

Further let qi : (S
4)∨k → S4 be the retraction onto the i-th factor, and note that qi ◦ L(M) is

stably equivalent to (gi,i − 2li)αi ◦ ν(7). Thus the e-invariant

eC(qi ◦ L(M)) = (gi,i − 2li)eC(Σν(7)) =
gi,i − 2li

12
∈ Q/Z.

We summarize these observations in the following proposition.

Proposition 5.2.7. LetMk ∈ PD8
3 with L(Mk) as in (1.3.1). Then,K0(Mk) ∼= Z{1, ψ̃1, ψ̃2, . . . , ψ̃k, z̃}.

The ring structure is given by

ψ̃iψ̃j = gi,j z̃ for 1 ≤ i, j ≤ k.

and

eC(qi ◦ L(M)) =
gi,i − 2li

12
∈ Q/Z for 1 ≤ i ≤ k.

5.2.8. K-theory of E(f). The space E := E(f) is the total space of the sphere bundle

associated to the quaternionic line bundle classified by f . We note that the quaternionic line

bundle has a complex structure, and therefore, has a K-orientation.

Let γH be the canonical H-bundle over HP∞. The K-theoretic Thom class of γH is given by

ΦK : = γH − 2 ∈ K̃0(HP∞). As the total space of the sphere bundle is contractible, the

Thom space Th(γH) ≃ HP∞. Consider the map π : CP∞ → HP∞. The pullback bundle
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π∗(γH) = γC ⊕ γ̄C, where γC is the canonical line bundle over CP∞. Therefore,

π∗ch(γH − 2) = ch(π∗(γH − 2)) = ch(γC) + ch(γ̄C)− 2 = ex + e−x − 2,

where H∗(CP∞;Z) ∼= Z[x] and x = c1(γC) . Since π∗ is injective on H∗, we may use this

formula to deduce

ch(ΦK(γH)) = ΦH(γH)(1 +
y

12
+

y2

360
+ . . . ) (5.2.9)

where H∗(HP∞) ∼= Z[y] , π∗(y) = x2 and ΦH(γH) is the cohomological Thom class of γH.

We use the Thom isomorphism associated to f∗(γH) to deduce the following.

Proposition 5.2.10. Assume that f∗(y) = ψk. Then,

K̃0(Th(f∗(γH))) ∼= K̃0(M){ΦK(f∗γH)}

as a K̃0(M)-module, and

ch(ΦK(f∗γH)) = ΦH(f
∗γH)(1 +

ψk
12

+
ψ2
k

360
+ . . . ).

Proof. From the naturality of the Chern character as well as the Thom class, we have

ch(ΦK(f∗(γH)) = ch(f∗(ΦK((γH)) = f∗ch(ΦK(γH)).

The result follows from (5.2.9) and the fact f∗(y) = ψk.

Notation 5.2.11. Suppose we are in the situation of Proposition 5.2.10, that is, f∗(y) = ψk.

We now assume that the basis {ψ1, . . . , ψk} is such that one of the following cases occur

Case 1 If ψk ∪ ψk = ±z, then ψjψk = 0 for 1 ≤ j ≤ k − 1.

Case 2 If ψk ∪ ψk = gk,kz for some integer gk,k ̸= ±1, then assume ψk−1ψk = 1 and ψjψk = 0

for 1 ≤ j ≤ k − 2.

In terms of these notations we prove the following calculation. Here we consider the cofibre

sequence

E →Mk → Th(f∗(γH))→ ΣE → ΣM → . . .

which demonstrates K(ΣE) as a submodule of K(Th(f∗γH)) because K(ΣMk) = 0. The

following proposition identifies this submodule.
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Proposition 5.2.12. (1) Suppose we are in Case 1 of Notation 5.2.11, then we have

K̃0(ΣE) ∼= Z{ΦK(f∗(γH))ψ̃1, . . . ,ΦK(f∗(γH))ψ̃k−1,ΦK(f∗(γH))z̃}.

(2) Suppose we are in Case 2 of Notation 5.2.11, then

K̃0(ΣE) ∼= Z{ΦK(f∗(γH))ψ̃1, . . . ,ΦK(f∗(γH))ψ̃k−2,ΦK(f∗(γH))(ψ̃k−gk,kψ̃k−1),ΦK(f∗(γH))z̃}.

Proof. We have the following short exact sequence

0 // K̃0(ΣE) // K̃0(Th(f∗(γH))
s0 // K̃0(M) // 0

which implies that

K̃0(ΣE) = Ker(s0 : K̃
0(Th(f∗(γH))→ K̃0(M))

where s0 is the restriction along the zero section. Note that s0 is a K̃0(M)-module map.

Hence,

s0(ΦK(f∗γH))z̃) = eK(f∗γH)z̃ = 0

s0(ΦK(f∗γH))ψ̃i) = eK(f∗γH)ψ̃i = gikz̃, 1 ≤ i ≤ k

since eK(f∗γH)) = ψ̃k +mz̃ for some m. The result follows from a direct calculation of the

kernel and the assumptions in the respective cases.

We now choose the various maps χj : S
7 → E for 1 ≤ j ≤ k − 1 such that on K-theory they

precisely represent the choice of the first (k− 1)-elements in the basis of Proposition 5.2.12. In

these terms we calculate the eC-value of the composite

rj ◦ L(E) : S10 L(E)→ (S4 ∨ S7)∨k−1 rj→ S7

where rj is the restriction onto the j-th factor, and L(E) is the attaching map of the top cell

of E.

Proposition 5.2.13. (1) If we are in Case 1, then

eC(rj ◦ L(E)) = τj =
gj,j − 2lj

12
∈ Q/Z, 1 ≤ j ≤ k − 1.
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(2) If we are in Case 2, then

eC(rj◦L(E)) = τj =
gj,j − 2lj

12
∈ Q/Z, 1 ≤ j ≤ k−2; eC(rk−1◦L(E)) = τk−gk,kτk−1 ∈ Q/Z.

Proof. For the e-invariant, we calculate the Chern character ch : K̃0(Th(f∗γH))→ Hev(Th(f∗γH);Q)

in terms of (5.2.6) as follows

ch(ΦK((f∗γH))z̃) = ΦH(f
∗γH)(1 +

ψk
12

+ . . . )z = ΦH(f
∗γH)z,

ch(ΦK((f∗γH))ψ̃j) = ΦH(f
∗γH)(1 +

ψk
12

+ . . . )(ψj + τjz)

= ΦH(f
∗γH)ψj + τjΦH(f

∗γH)z,

ch((ΦK(f∗γH)(ψ̃k − gk,kψ̃k−1)) = ΦH(f
∗γH)(1 +

ψk
12

+ . . . )(ψk + τkz − gk,kψk−1 − gk,kτk−1z)

= ΦH(f
∗γH)(ψk − gk,kψk−1) + ΦH(f

∗γH)(τk − gk,kτk−1)z.

We now turn our attention to the attaching map

S10 L(E)→ (S4 ∨ S7)∨k−1 → (S7)
∨k−1

.

In order to identify the composite we are required to compute the KO-theoretic e-invariant.

We know that

KO∗ = Z[η, u][µ±1]/(2η, η3, ηu, u2 − 4µ) and K∗ = Z[β±1],

with |η| = −1, |u| = −4, |µ| = −8 and |β| = −2. The complexification map c : KO → K

induces a graded ring homomorphism c : KO∗(X)→ K∗(X) with

c(η) = 0, c(u) = 2β2, c(µ) = β4.

Theorem 5.2.14. Let S3 → E →Mk be the principal SU(2)-fibration classified by a given map

f : Mk → HP∞. Suppose that ΣL(Mk) ≡ 0 (mod λ). Then Σ(rj ◦ L(E)) ≡ 0 (mod λ), 1 ≤

j ≤ k − 1 where rj : (S
4 ∨ S7)∨k−1 → S7 is the retraction onto the j-th factor.

Proof. We consider the Atiyah-Hirzebruch spectral sequences for HP∞ and Mk

E∗,∗
2 = H∗(HP∞;Z)⊗KO∗(pt) =⇒ KO∗(HP∞),

E∗,∗
2 = H∗(Mk;Z)⊗KO∗(pt) =⇒ KO∗(Mk).
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The spectral sequences have no non-trivial differentials for degree reasons. Thus,KO∗(HP∞) ∼=

KO∗[ŷ], where ŷ ∈ KO4(HP∞). The class ŷ serves as KO-theoretic Thom class for γH. We

have

c(ΦKO(γH)) = c(ŷ) = β−2ΦK(γH).

Let ψ̂j ∈ K̃O
4
(Mk), ẑ ∈ K̃O

8
(Mk) be the class in the E∞-page represented by ψj ∈ H4(Mk)

and z ∈ H8(Mk). Then we get

c(ψ̂i) = β−2ψ̃i, c(ẑ) = β−4z̃ and ψ̂iψ̂j = gi,j ẑ.

It follows that the K-theoretic generators ΦK(f∗γH)ψ̃j and ΦK(f∗γH)(ψ̃k − gk,kψ̃k−1) lie in

the image of the map c. Therefore by (5.2.4), we get in Case 2 that

e(rj ◦ L(E)) ≡


gj,j−2lj

24 (mod Z), for j < k − 1,

(gkk−2lk)−gk,k(gk−1,k−1−2lk−1)
24 (mod Z), for j = k − 1;

and in Case 1 that

e(rj ◦ L(E)) ≡ gj,j − 2lj
24

(mod Z), for j ≤ k − 1.

The result now follows from Proposition 5.2.7.

5.3 SU(2)-bundles over even complexes

We study the homotopy type of E ∈ PD11
4,7, the total space of a stable principal SU(2)-

bundle over Mk ∈ PD8
3. In this section, we consider the case where the intersection pairing

⟨−,−⟩ : H4(Mk)×H4(Mk)→ Z is even i.e. ⟨x, x⟩ ∈ 2Z for all x ∈ H4(Mk). Note that in this

case, k must be even. We observe the following.

1. If k ≥ 4, Mk supports a principal SU(2)-bundle whose total space E is 3-connected.

2. The possible stable homotopy types of E can be determined directly from the stable

homotopy type of Mk and the intersection form. In this regard, the formulas in Theorem

5.2.14 are used to demonstrate this connection.

5.3.1. Existence of SU(2)-bundles. We discuss the existence of principal SU(2)-bundle

over Mk ∈ PD8
3 with an attaching map as in (1.3.1) whose intersection form is even. If
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Rank(H4(M)) = 2, then up to isomorphism

0 1

1 0

 is the only possible matrix for the inter-

section form. The attaching map L(M) ∈ π7(S4 ∨ S4) of M is of the form

L(M) = [α1, α2] + l1ν
′
1 + l2ν

′
2, (5.3.2)

where l1, l2 ∈ Z/12. For a principal bundle SU(2) → E → Mk where E is 3-connected, the

classifying map fE : Mk → HP∞ is such that π4(f) is surjective. Suppose αi 7→ niι4, i = 1, 2

such that gcd(n1, n2) = 1 and f |Mk
◦ L(Mk) ≃ ∗, where Mk denote the lower skeleton of

Mk. If both l1 and l2 are odd, no such n1 and n2 exists. However, for k ≥ 4, one may always

construct a suitable map.

Proposition 5.3.3. SupposeMk ∈ PD8
3 such that Rank(H4(Mk)) = k ≥ 4 and the intersection

form is even. Then there exists a map ψ : Mk → HP∞ such that hofib(ψ) is 3-connected.

Proof. From [11, Theorem 4.20], if k ≥ 6, the attaching map of Mk can be expressed as

L(Mk) =
∑

1≤i<j≤k
gi,j [αi, αj ] +

k∑
1=1

gi,i
2
[αi, αi] +

k∑
i=1

siν
′
i

such that si = 0 for i ≥ 2 for a choice of basis {α1, . . . , αk} of H4(Mk). Then the map

ψ̃ : (S4)∨k
(0,0,...,0,1)−−−−−−→ HP∞ extends to a map ψ : Mk → HP∞ such that π4(ψ) is surjective.

Now if k = 4, by [33], the attaching map of Mk can be expressed as

L(Mk) = [α1, α2] + [α3, α4] +
4∑
i=1

liν
′
i

for a choice of basis of H4(Mk). Choose two positive integers m,n such that gcd(m,n) = 1

and ml1 + nl3 ≡ 0 (mod 12). Then the map ψ̃ : (S4)∨4
(m,0,n,0)−−−−−−→ HP∞ extends to a map

ψ : Mk → HP∞ such that π4(ψ) is surjective.

We now focus on the stable homotopy type of the total space E(f) for f : Mk → HP∞ such

that π4(f) is injective. From the attaching map of Mk as in (1.3.1) and even intersection form,

we have

Σ∞Mk ≃ Σ∞(S4)∨k−1 ∨ Σ∞(Cone(σ(Mk)ν(7)) (5.3.4)

for some even σ(Mk). Hence the stable homotopy type of Mk is determined by σ(Mk).
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Proposition 5.3.5. Let E(fψ) be the total space of a principal SU(2)-bundle overMk ∈ PD8
3,

classified by a map fψ : Mk → HP∞ for k ≥ 4. Then

Σ∞E(fψ) ≃ Σ∞(S4 ∨ S7)∨k−2 ∨ Σ∞Cone(λ(ψ)Σ4ν(7)),

where λ(ψ) := λs(E(fψ)), is even and a multiple of σ(Mk).

Proof. Note that E(fψ) ∈ PD11
4,7 and its stable homotopy type is given in the Corollary 5.1.15

where ϵ = ϵs(E(fψ)) ∈ Z/2 and λ(ψ) ∈ Z/24. So, it suffices to show that 2|λ(ψ) and ϵ = 0.

The fact 2|λ(ψ) follows from (5.3.4) and Theorem 5.2.14.

Now, the cofibre sequence obtained from cell structure of E and Mk induces the following

commutative diagram

πs10(S
10)

ϕ∗ // πs10(S
4 ∨ S7)

⊕
k−1

��

// πs10(E)

��
πs10(S

7)
0

πs
10(

∑∞ L(M))
// πs10(S

4)
⊕
k // πs10(Mk)

of stable homotopy groups where ϕ is the attaching map of top cell in E.

Since λ(ψ)βk−1 ◦ ν7 + ϵαk−1 ◦ x = 0 in πs10(E), its image in πs10(M) is 0. Note that bottom

left map πs10(
∑∞ L(M)) = 0 because 2|σ(Mk) in (5.3.4) and hence the bottom right map

is injective, where πs10(S
4)⊕k ∼= Z/2{α1 ◦ ν2, . . . , αk ◦ ν2}. Since 2|λ(ψ), the middle vertical

arrow sends Σ∞ϕ = λ(ψ)βk−1 ◦ ν(7) + ϵαk−1 ◦ ν2 to ϵαk−1 ◦ ν2 which is in turn mapped to 0

via the bottom right map as Σ∞ϕ = 0 ∈ πs10(E). Hence ϵ = 0 ∈ Z/2.

5.3.6. Stably trivial manifolds. The following result states that the total space of a principal

SU(2)-bundle over stably trivial Mk ∈ PD8
3 ( i.e., σ(Mk) ≡ 0 (mod 24)), is itself a connected

sum of copies of S4 × S7.

Proposition 5.3.7. Let E ∈ PD11
4,7 be the total space of a principal SU(2)-bundle over stably

trivial Mk ∈ PD8
3. Then E ≃ #k−1(S4 × S7).

Proof. It follows from Proposition 5.3.5 for k ≥ 4 that λs ≡ 0 (mod 24) and ϵs ≡ 0 (mod 2)

for the total space E ∈ PD11
4,7. From Theorem 5.1.17, we have E ≃ #k−2E0,0,0#E0,ϵ,δ, where

ϵ is even . Note that using the self homotopy equivalences in 5.1.3, we have E0,ϵ,δ ≃ E0,0,0

when ϵ is even . Hence the result follows for k ≥ 4. For k = 2, the attaching map of M2

is of the form (5.3.2). Stably trivial condition implies M2 = S4 × S4 which further implies

E = S4 × S7.
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5.3.8. Possible stable homotopy types of the total space. Let ψ ∈ H4(Mk;Z) be a

cohomology class represented by a map ψ : Mk → K(Z, 4) which has a unique lift ψ̃ : Mk → S4

up to homotopy if ψ
∣∣
(S4)∨k−1 ◦ L(Mk) ∈ π7(S4) is 0. As the inclusion (S4)∨k → Mk induces

an isomorphism on H4 and H4, a cohomology class ψ ∈ H4(Mk) always induces a map

ψ̃ : (S4)∨k → S4. We consider the following diagram

(S4)∨k //

ψ̃
��

Mk

���
�
�

S4 // HP 2

and formulate when the map Mk → HP 2 exists. Note that if the map exists then its homotopy

fibre will be 3-connected.

For ψ ∈ H4(Mk), consider the composite

S7 L(Mk)−−−−→ (S4)∨k
ψ̃−→ S4

and define τ(ψ) = [ψ̃ ◦ L(M)] ∈ πs7(S4). Thus

τ : H4(Mk)→ Z/24

and one can check it is a linear map.

Proposition 5.3.9. Suppose ψ ∈ H4(Mk) is primitive. The map ψ̃ : (S4)∨k → S4 extends to

a map fψ :Mk → HP 2 if and only if ψ ∪ ψ ≡ τ(ψ)z (mod 24) for some z ∈ H8(Mk).

Proof. Consider a primitive element ψ ∈ H4(Mk). We extend ψ to a basis of H4(Mk), and

use the dual basis of π4(Mk) to write down the attaching map of Mk is as in (1.3.1). In this

notation, we have ψ2 = gk,kz where z ∈ H8(Mk) is the chosen generator and τ(ψ) = gk,k−2lk.

Thus ψ̃ ◦ L(M) maps to 0 ∈ π7(HP 2) if and only if lk = 0, that is ψ ∪ ψ ≡ τ(ψ)z (mod 24).

Hence, the result follows.

Proposition 5.3.9 gives us criteria for constructing the maps fψ out of cohomology classes

ψ. Using this we determine which multiples of σ(Mk) may occur as λs(E) for E → Mk a

principal SU(2)-bundle where E is 3-connected. We first show that there exist fψ such that

λ(ψ) = σ(Mk) if k is large enough.

Proposition 5.3.10. Suppose the stable homotopy type of Mk is determined by σ(Mk). Then

there exists fψ : Mk → HP∞ such that
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1. λ(ψ) ≡ σ(Mk) (mod 3) for k ≥ 5,

2. λ(ψ) ≡ σ(Mk) (mod 8) for k ≥ 7.

Proof. We begin the proof with the first case. If τ ≡ 0 (mod 3), the proof follows from Theorem

5.2.14. Let τ ̸≡ 0 (mod 3) and ψ0 a primitive cohomology class such that τ(ψ0) ≡ σ(Mk) ̸≡ 0

(mod 3). We need to choose a ψ ∈ ker(− ∪ ψ0) ∩ ker(τ) such that ψ2 ≡ τ(ψ) ≡ 0 (mod 3).

This we can do for k − 2 ≥ 3, see [33, Chapter II, (3.2)-(3.4)]. By Poincaré duality, we get ψ′

such that ψ ∪ ψ′ = z. We write ψ′ = ψ′
ker(τ) + tψ0 for some t where ψ′

ker(τ) ∈ ker(τ). Since

z = ψ′ ∪ψ = ψ′
ker(τ) ∪ψ, we may assume ψ′ = ψ′

ker τ . Thus by assigning τ1 = τ(ψ0) ≡ σ(Mk)

(mod 3), τk−1 = τ(ψ′) ≡ 0 (mod 3) and τk = τ(ψ) ≡ 0 (mod 3); and choosing other ψi’s

such that τi = 0 for i = 2, . . . , k − 2 we have

λ(ψ) ≡ σ(Mk) (mod 3) for k ≥ 5.

Now we look into the second case. The proof goes similarly to that of the above, except when

we choose ψ ∈ ker(− ∪ ψ0) ∩ ker(τ) such that ψ2 ≡ τ(ψ) ≡ 0 (mod 8). We can choose such

ψ for k − 2 ≥ 5, see [33, Chapter II, (3.2)-(3.4)]. Then following similar arguments one can

deduce

λ(ψ) ≡ σ(Mk) (mod 8) for k ≥ 7.

The following theorem constructs fψ with λ(ψ) = 3σ(Mk) if σ(Mk) is not divisible by 3.

Theorem 5.3.11. Suppose 3 ∤ σ(Mk). Then for k ≥ 7, there exists fψ : Mk → HP 2 such that

λ(ψ) = 3σ(Mk).

Proof. Let

τ (3) : H4(Mk,F3)→ F3

be the restriction of τ in modulo 3. As τ (3) is surjective, there exists ψ0 ∈ H4(Mk,F3) such

that for all cohomology class ψ, τ (3)(ψ)z ≡ ψ∪ψ0 (mod 3). In particular, τ (3)(ψ0)z ≡ ψ0∪ψ0

(mod 3). We consider two cases, ψ2
0 = 0 or ψ2

0 is unit.

First let ψ2
0 is unit. Then we can choose ψ1, . . . , ψk−1 such that ψ0∪ψi = 0. We take the dual

basis αi corresponding to ψi and αk corresponding to ψ0. Thus ψ0(αi) = 0 for i = 1, . . . , k−1

and ψ0(αk) = 1. Hence

τ1 ≡ · · · ≡ τk−1 ≡ 0 (mod 3), and τk ≡ gk,k ≡ 1 (mod 3),
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which implies λ(ψ) = gcd(τ1, . . . , τk−2, τk−1) ≡ 0 (mod 3).

Now let ψ2
0 = 0. Then τ (3)(ψ0)z = 0. We choose ψ1, . . . , ψk−1 such that ψk−1 ∪ ψ0 = 1 and

ψi ∪ ψ0 = 0 for i = 1, . . . , k − 2. After taking the dual basis, with similar argument we have

τ1 ≡ · · · ≡ τk−2 ≡ 0 (mod 3), τk−1 ≡ σ(Mk) (mod 3), and τk ≡ gk,k ≡ 0 (mod 3).

Hence λ(ψ) = gcd(τ1, . . . , τk−2, τk − gk,kτk−1) ≡ 0 (mod 3).

Remark 5.3.12. We note that Proposition 5.3.9, Proposition 5.3.10, and Theorem 5.3.11

does not use the fact that the intersection form is even, and also holds in the case where the

intersection form is odd.

Now we look to prove similar results modulo 8, which in turn provide us desired construction

ψ as in Proposition 5.3.9 using the Chinese reminder theorem. However, in this case certain

conditions are required for obtaining analogous fψ.

Definition 5.3.13. � A complexMk with σ(Mk) = 2 or 4, is said to satisfy hypothesis (H8)

if (ker τ)⊥ = (σ(Mk)ψ) (mod 8) where ψ ∈ H4(Mk) ( is the unique class (mod 8
σ(Mk)

))

satisfying 
ψ2 ≡ 0 (mod 8) if σ(Mk) = 2

ψ2 ≡ 0 (mod 4) if σ(Mk) = 4.

� A complex Mk with σ(Mk) = 2 is said to satisfy hypothesis (H4) if (ker τ)⊥ = (2ψ)

(mod 4) where ψ ∈ H4(Mk) (which is unique (mod 2)) satisfies

ψ2 ≡ τ(ψ) ≡ 0 or 4 (mod 8).

Note that the hypotheses (H8) and (H4) depends only on the intersection form and τ and not

on the choice of ψ. We now prove the existence of fψ under the hypothesis defined above.

Theorem 5.3.14. 1. Suppose 8 ∤ σ(Mk). For k ≥ 5, there exist fψ : Mk → HP 2 such that

λ(ψ) ≡ 0 (mod 8) if and only if the complex satisfies hypothesis (H8).

2. Suppose σ(Mk) = 2. Then for k ≥ 5, there exist fψ : Mk → HP 2 such that λ(ψ) ≡ 4

(mod 8) if and only if the complex satisfies hypothesis (H4).

Proof. The condition k ≥ 5 comes from the fact that we are required to make certain choices

modulo 3 using Proposition 5.3.10. First suppose in case (1), a fψ exists such that λ(ψ) =
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8σ(Mk). Then there exists a basis {ψ1, . . . , ψk−2, ψ
′, ψ} satisfying (working (mod 8))

ψ ∪ ψi = 0 for 1 ≤ i ≤ k − 2, ψ ∪ ψ′ = 1,

τ(ψi) = 0 for 1 ≤ i ≤ k − 2, τ(ψ′) = σ(Mk) and τ(ψ) = ψ2 = 0.
(5.3.15)

Note that ⟨ψ⟩⊥ = ⟨ψ1, . . . , ψk−2, ψ⟩ ⊂ ker(τ) = ⟨ψ1, . . . , ψk−2, ψ,
8

σ(Mk)
ψ′⟩. This implies

(ker(τ))⊥ = (σ(Mk)ψ), and thus the hypothesis (H8) is satisfied, where ⟨V ⟩⊥ = {ψ′ : ⟨ψ ∪

ψ′, [Mk]⟩ ≡ 0 (mod 8)∀ψ ∈ V }.

For the converse part if the complex satisfies hypothesis (H8), one can check that there is a

choice of ψ such that (5.3.15) is satisfied. We look into the cases σ(Mk) = 2, 4.

First, let σ(Mk) = 2. Then (ker(τ))⊥ = (2ψ) and ψ is well defined modulo 4. We note that

χ ∪ (2ψ) ≡ τ(χ)z (mod 8) ∀χ ∈ H4(Mk). (5.3.16)

This implies

τ(ψ) ≡ 2ψ2 ≡ 0 (mod 8).

For any χ ∈ ker(τ), we have (2ψ)χ = τ(χ) ≡ 0 (mod 8). In particular 2ψ2 = τ(ψ) ≡ 0

(mod 8). Together these two implies ψ2 ≡ 0 (mod 8). The equation (5.3.16) implies that if

χ∪ψ = 0, τ(χ) = 0. Now choosing a basis as in Case (2) of Proposition 5.2.13, we obtain the

conditions in (5.3.15).

Now let σ(Mk) = 4. Then (ker(τ))⊥ = (4ψ) and ψ is determined modulo 2. We proceed

analogously observing that

χ ∪ (4ψ) ≡ τ(χ)z (mod 8) ∀χ ∈ H4(Mk),

which implies

τ(ψ) ≡ 4ψ2 ≡ 0 (mod 8).

Let ψ′ be such that τ(ψ′) = 4, and so we have that ψ ∪ ψ′ is an odd multiple of z. If ψ2 is 4

(mod 8) we change ψ to ψ+2ψ′ to ensure ψ2 = τ(ψ) ≡ 0 (mod 8). Now choosing a basis as

in Case (2) of Proposition 5.2.13, we obtain the conditions in (5.3.15).
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The case (2) also proceeds along analogous lines. For the existence (of fψ for some ψ) question,

we need a basis satisfying

ψ ∪ ψi = 0 for 1 ≤ i ≤ k − 2, ψ ∪ ψ′ = 1,

τ(ψi) ≡ 0 (mod 4) for 1 ≤ i ≤ k − 2, τ(ψ′) = σ(Mk), τ(ψ) = ψ2 ≡ 0 or 4 (mod 8),

such that at least one of τ(ψi) for 1 ≤ i ≤ k − 2, or τ(ψ) ≡ 4 (mod 8).

(5.3.17)

Note that ⟨ψ⟩⊥ = ⟨ψ1, . . . , ψk−2, ψ⟩ ⊂ ker(τ) = ⟨ψ1, . . . , ψk−2, ψ, 2ψ
′⟩ (mod 4) and (ker(τ))⊥ =

(2ψ) (mod 4). Hence, the hypothesis (H4) is satisfied.

Conversely, if (H4) is satisfied, we obtain a ψ such that ψ2 ≡ τ(ψ) ≡ 0 or 4 (mod 8). This ψ

also satisfies

χ ∪ (2ψ) ≡ τ(χ)z (mod 4) ∀χ ∈ H4(Mk).

Let ψ′ be such that τ(ψ′) = 2, which implies that ψ∪ψ′ is an odd multiple of z. Now replacing

ψ by ψ + 2ψ′ if required we may assume that ψ2 ≡ τ(ψ) ≡ 4 (mod 8). Now choosing a basis

as in Case (2) of Proposition 5.2.13, we obtain the conditions in (5.3.17).

If Rank(H4(Mk)) = k ≥ 5, the above results indicate a systematic computation of possible

stable homotopy types of the total space depending on k, σ(Mk) and the intersection form.

In lower rank cases, the results depend on the explicit formula for the attachment L(Mk), and

not just on these variables. Hence the systematic description turns out to be cumbersome. We

demonstrate some observations on the Rank(H4(M)) = 2 case.

Example 5.3.18. Recall that the attaching map L(M) ∈ π7(S4 ∨ S4) of M2 is of the form

L(M) = [α1, α2] + l1v
′
1 + l2v

′
2

where l1, l2 ∈ Z/12. We already have

� If both l1 and l2 are odd, there does not exist f : M → HP∞ such that E = hofib(f) is

3-connected.

If one of l1 and l2 is even, or both are even, there exists f : M → HP∞ such that E = hofib(f)

is 3-connected. Via an explicit calculation using Proposition 5.2.13, we observe the following.

1. If none of l1 and l2 are divisible by 3, then we obtain λ(E) ≡ 0 (mod 3).

2. If either of l1 or l2 or both are divisible by 3, then λ(E) ̸≡ 0 (mod 3).
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3. If σ(M) ≡ 4 (mod 8) and l1l2 ≡ 0 (mod 8) where none of l1 and l2 are divisible by 3,

then λ(E) ≡ 0 (mod 8).

4. If σ(M) ≡ 2 (mod 8), we can never obtain λ(E) ≡ 0, 4 (mod 8).

5.4 SU(2)-bundles over odd complexes

We now work out the case of Mk ∈ PD8
3 for which the intersection form is odd. Recall that

the notationMk means that Rank(H4(Mk)) = k. The intersection form being odd implies that

there are two possibilities of σ(Mk), namely, 1 and 3 among the divisors of 24. Here, we prove

1) For k ≥ 3, it is possible to obtain a SU(2)-bundle whose total space is 3-connected.

2) Further if k ≥ 7, it is possible to obtain maps ψ(j) : Mk → HP∞ with λ(ψ(j)) = j for

every multiple j (mod 24) of σ(Mk) which is also a divisor of 24.

5.4.1. Existence of SU(2)-bundles. Through an explicit computation, we demonstrate the

existence of principal SU(2)-bundles over Mk ∈ PD8
3 if k ≥ 3 when the intersection form is

odd.

Proposition 5.4.2. SupposeMk ∈ PD8
3 such that Rank(H4(Mk)) = k ≥ 3 and the intersection

form is odd. Then there exists a map ψ : Mk → HP∞ such that hofib(ψ) is 3-connected.

Proof. Recall that the attaching map of Mk can be expressed as (1.3.1). Using Proposition

5.3.9, we are required to find a primitive element ψ such that τ(ψ)z ≡ ψ2 (mod 24), which is

equivalent to checking that the coefficient of ν ′ in ψ̃ ◦L(Mk) is 0 (mod 12). It suffices to find

ψ (mod 8) and ψ (mod 3) separately.

We first work out the (mod 3) case, where the base ring is a field of characteristic ̸= 2 so

that the form is diagonalizable. Considering the map (S4)∨k
(0,...,0,n1,n2,n3)−−−−−−−−−−→ HP∞ which sends

L(Mk) to

(
±
(
n1
2

)
±
(
n2
2

)
±
(
n3
2

)
+ n1lk−2 + n2lk−1 + n3lk

)
· ν ′ + multiple of ν,

where the ± correspond to the diagonal entries (mod 3). We observe through a direct calcu-

lation that for every fixed choice ϵ1, ϵ2, ϵ3 of ±1s, there is a n1, n2, n3 with gcd(n1, n2, n3) = 1

such that

(
ϵ1

(
n1
2

)
+ ϵ2

(
n2
2

)
+ ϵ3

(
n3
2

)
+ n1lk−2 + n2lk−1 + n3lk

)
≡ 0 (mod 3).

This completes the argument (mod 3).
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Working (mod 8), the fact that the intersection form is odd implies that we may choose a

basis such that gk,k ≡ ±1 (mod 8) and gk,k−1 ≡ 0 (mod 8), see [33, Chapter II, (4.3)]. Also

the intersection form can be written as the block matrix

A 0

0 ±1

 .

If A is an even intersection form, then the result follows from Proposition 5.3.3 for k ≥ 5. Now

let A is not even, then the intersection form is

A′ 0

0 B′

 where B′ is a diagonal matrix of

order 2 with diagonal entries ±1. If A′ is an even intersection form, then for k ≥ 6 the result

follows from Proposition 5.3.3. If A′ is not even, the intersection form updates to

A′′ 0

0 B′′


where B′′ is a diagonal matrix of order 3 with diagonal entries ±1. For B′′ = I3, the map

(S4)∨k
(0,...,0,n1,n2,n3)−−−−−−−−−−→ HP∞ sends L(Mk) to

((n1
2

)
+

(
n2
2

)
+

(
n3
2

)
+ n1lk−2 + n2lk−1 + n3lk

)
· ν ′ + multiple of ν,

where gcd(n1, n2, n3) = 1 ensures that the corresponding ψ is primitive. We may directly

compute and observe that the equations

((n1
2

)
+

(
n2
2

)
+

(
n3
2

)
+ n1lk−2 + n2lk−1 + n3lk

)
≡ 0 (mod 8), gcd(n1, n2, n3) = 1,

have a common solution. A similar argument works for the other diagonal ±1 matrix choices

for B′′′. This proves the result for k ≥ 6.

If 3 ≤ k ≤ 5, we know from [33, Chapter II, (3.2)-(3.4)] that the form is a direct sum of ±1

and the hyperbolic form. The argument in the even case in Proposition 5.3.3 implies the result

for a sum of two hyperbolic forms, and the above argument implies the result for a sum of 3

±1s and one hyperbolic form. The remaining cases are taken care of if we show the result for

the intersection form H 0

0 ±1
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where H =

0 1

1 0

 is the hyperbolic matrix. We consider the map (S4)∨3
(n1,n2,n3)−−−−−−→ HP∞ ,

and as above we need to find a common solution of

(
n3
2

)
+ n1n2 +

3∑
i=1

nili ≡ 0 (mod 8), gcd(n1, n2, n3) = 1.

Through a direct calculation, we check that such solutions always exist. This completes the

proof.

The following example shows that Proposition 5.4.2 does not extend to the k = 2 case.

Example 5.4.3. Consider M2 such that

L(M2) = ν1 + ν2 + l1ν
′
1 + l2ν

′
2, l1 ≡ l2 ≡ 2 (mod 3).

A map M2 → HP∞ which restricts to (n1, n2) on the 4-skeleton sends L(M2) to

((n1
2

)
+

(
n2
2

)
+ n1l1 + n2l2

)
· ν ′ + multiple of ν.

We may check directly that

((n1
2

)
+

(
n2
2

)
+ n1l1 + n2l2

)
≡ 0 (mod 3) =⇒ n1 ≡ n2 ≡ 0 (mod 3).

Therefore, there is no map M2 → HP∞ whose homotopy fibre is 3-connected.

5.4.4. Possible stable homotopy type of the total space. We note from §5.3 that

Propositions 5.3.9, 5.3.10, and Theorem 5.3.11 are also valid when the intersection form is odd.

We check that all stable homotopy types are achievable in the odd case if the rank k of H4(M)

is ≥ 7. Applying the results from §5.3, it only remains to check that the different possibilities

(mod 8) are achievable. We do this in the theorem below.

Theorem 5.4.5. Suppose σ(Mk) is odd. Then for k ≥ 5 and j ∈ {0, 2, 4}, there exists

ψ : Mk → HP∞ such that λ(ψ) ≡ j (mod 8).

Proof. We work (mod 8), knowing that if k ≥ 5, Proposition 5.3.10 allows us to make a

choice of ψ so that λ(ψ) is as required (mod 3). The proof is very similar to the proof of

Theorem 5.3.11. If σ(Mk) is odd, the linear map τ : (Z/8)k → Z/8 is represented by some

primitive class ψ (that is, τ(χ) = ⟨χ, ψ⟩ (mod 8), and Z{ψ} is a summand of H4(Mk)). In

particular, ψ2 = τ(ψ). Now, we have two cases.
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First let τ(ψ) be odd, i.e. ψ2 is unit in modulo 8. Then we can extend ψ to a basis

ψ,ψ1, . . . , ψk−1 such that ψ ∪ ψi = 0 for 1 ≤ i ≤ k − 1. We take the dual basis αi cor-

responding to ψi and αk corresponding to ψ. Thus ψ(αi) = 0 for i = 1, . . . , k − 1 and

ψ(αk) = 1. Hence

τ1 ≡ · · · ≡ τk−1 ≡ 0 (mod 8), and τk ≡ gk,k (mod 8),

which implies λ(ψ) = gcd(τ1, . . . , τk−2, τk−1) ≡ 0 (mod 8) by Case (1) of Proposition 5.2.13.

Now let ψ2 be even. Extend ψ to a basis ψ,ψ1, . . . , ψk−1 such that ψk−1∪ψ = 1 and ψi∪ψ = 0

for i = 1, . . . , k − 2. After taking the dual basis, with similar argument we have

τ1 ≡ · · · ≡ τk−2 ≡ 0 (mod 8), τk−1 ≡ 1 (mod 8), and τk ≡ gk,k (mod 8).

Hence λ(ψ) = gcd(τ1, . . . , τk−2, τk−gk,kτk−1) ≡ 0 (mod 8) by Case (2) of Proposition 5.2.13.

This proves the result for j = 0.

For j = 2, or 4, we can use ψ(j) = ψ + jψ1, and note that

τ(ψ(j)) = τ(ψ), ψ(j)2 = ψ2 + j2ψ2
1 ≡ ψ2 (mod 8).

The last equivalence comes from the fact that τ(ψ1)z = ψ ∪ ψ1 ≡ 0 (mod 8), and so ψ2
1 is

forced to be an even multiple of z. We may now compute using the formulas of Proposition

5.2.13 to conclude that λ(ψ(j)) ≡ j (mod 8).

As in the even case, when the rank is high enough we have a systematic idea of the possibilities

of the total space. However, in the low rank cases (k ≤ 6) the results are not systematic, and

may depend on individual cases rather than only on σ(Mk), k, and the intersection form.
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