
Investigating Security of a Few Schemes
Based on Public Primitives

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in Computer Science

in the

Cryptology Research Group

Applied Statistics Unit

Indian Statistical Institute

Author: Anik Raychaudhuri

Applied Statistics Unit
ISI Kolkata

Advisor: Dr. Mridul Nandi

Applied Statistics Unit
ISI Kolkata

Date of Submission: 20.07.2023

To my friends and family

Acknowledgement

I begin by thanking all those who have emotionally, mentally and logically helped me to complete
my thesis. Their support and friendship have helped and motivated me deeply.

Firstly, I express my sincere gratitude to my advisor, Professor Mridul Nandi, for always
guiding and supporting me in my research work. His mentorship has played a crucial role in
shaping this thesis.

I extend my sincere thanks to all the faculty in ISI and, in particular, those in the Applied
Statistics Unit for providing assistance and support at various stages of my research.

I want to thank my collaborators: Rishiraj da, Ritam da, Avijit da and Arghya for supporting
my research.

I express my gratitude to all the research scholars in the cryptology group: Ananada, Suprita,
Abishanka, Arghya, Sayantan, Avishek, Samir, Jyotirmoy, Soumya, Biswajit, Amit, Aniruddha,
Susanta, Chandranan, Nilanjan da and all others. I have not only benefited from discussing my
work with you but also immensely enjoyed our light-hearted chit-chat over tea and snacks. I am
immensely grateful to you all for extending your friendship towards me.

I thank the office workers in ISI, especially those in ASU, for always providing me with
administrative support.

I want to thank my parents for always standing beside me. Their inspiration helped me
greatly when times were not so bright for me. They have always been a massive pillar of support
for me.

Lastly, I want to thank all my friends from all the stages in my life. My life has been shaped
for the better by your presence in it.

Contents

1 Introduction 1
1.1 General Discussion . 1
1.2 Indifferentiability. 3

1.2.1 Adversarial Games. 3
1.2.2 Indifferentiability in Terms of Adversarial Games 4
1.2.3 Related Works. 4

1.3 Discussion on Crooked Indifferentiability . 5
1.4 Key Alternating Ciphers. 6
1.5 General Structure of the Thesis. 8

2 Preliminaries 10
2.1 Bernoulli and Markov Inequalities . 11

2.1.1 Security Notions . 11
2.2 Definition for Ideal Primitives. 12
2.3 H-Coefficient Technique . 13
2.4 Security notions and Tools for Crooked Indifferentiability 14

2.4.1 Modeling Subversion Algorithms . 15

3 Indifferentiability of Tweakable LR3 17
3.1 Introduction . 17

3.1.1 The Original Construction by Coron et al.
[37] . 17

3.1.2 3-round TBC-based Luby-Rackoff . 18
3.1.3 Our Contribution . 18
3.1.4 Overview of Proof and Outline of the Chapter. 19

3.2 Description of Simulator and π̃ . 20
3.2.1 Efficiency of S . 23

3.3 Introducing the Hybrid Game G1/2 . 23
3.3.1 Transcripts and Adversary Restrictions 24
3.3.2 Bounding ∆A

�
G0,G1/2

�
. 24

3.4 Bounding ∆A
�
G1/2,G1

�
and Deriving the Final Bound 27

3.4.1 Bad Events . 28
3.4.2 Probability Bound for Bad Events . 29
3.4.3 Probabilities of a Good Transcript . 31
3.4.4 Main Theorem and Proof . 36

4 Beyond Birthday Bound Security for 5-Round Even-Mansour-Based Key-
Alternating Feistel Ciphers 37
4.1 Introduction . 37

4.1.1 Definition of EM-Based Key-Alternating
Feistel Cipher . 37

4.2 Security Notion of EM-Based Key-Alternating
Feistel Cipher . 38

4.3 Our Contribution . 38
4.4 Set up for H-Coefficient Technique . 39
4.5 Security Result of 5-Round EM-KAF . 40

4.5.1 Computation Order in the Real World and Transcript Notation 42
4.5.2 A Brief Overview of the Proof Strategy 43

4.6 Proof of Theorem 2 . 44
4.6.1 Sampling Procedure in the Ideal World 44
4.6.2 Bounding badγ-prim . 51
4.6.3 Bounding badγ-coll . 53
4.6.4 Bounding badγ-bY . 55

4.7 Bounding the Ratio of Good Probabilities . 59
4.7.1 Real World . 59
4.7.2 Ideal World . 60
4.7.3 Bounding the ratio. 62

4.8 Bounding the Probabilities of the Bad Events . 66
4.8.1 Bounding badτ -switch . 66
4.8.2 Bounding badτ -bY . 66
4.8.3 Bounding badτ -3path . 67
4.8.4 Bounding badτ -3coll . 67
4.8.5 Bounding badK-outer . 68
4.8.6 Bounding badK-source . 69
4.8.7 Bounding badµ-in&out . 70
4.8.8 Bounding badµ-source . 75
4.8.9 Bounding badµ-inner . 75
4.8.10 Bounding badµ-3coll . 79
4.8.11 Bounding badµ-size . 79
4.8.12 Bounding badλ-prim . 81
4.8.13 Bounding badλ-coll . 85

5 Crooked Indifferentiability of Enveloped Xor 87
5.1 Introduction . 87
5.2 Our Contribution . 88

5.2.1 Overview of Our Technique. 88
5.3 Recalling the Proof of Russell et al. 89

5.3.1 Enveloped XOR Construction. 89
5.4 Revisiting the Crooked Indifferenitability Security of EXoR [90]. 90

5.4.1 Techniques of [90] . 92
5.4.2 Issues with the Technique of [90] . 93

5.5 Basic Setup: Good Pairs and Critical Set . 93
5.6 Crooked Indifferentiability of Enveloped XOR Construction 96
5.7 Proof of Lemma 13 . 98

6 Subversion Resilient Hashing: Efficient Constructions and Modular Proofs for
Crooked Indifferentiability 100
6.1 Introduction . 100
6.2 Our Contributions . 102

6.2.1 Overview of Our Techniques . 102
6.2.2 Impact of Our Results . 104

6.3 Suitable Functions and Sets . 104
6.4 From Classical Indifferentiability to Crooked

Indifferentiability . 105
6.4.1 Force-Crook Game . 105
6.4.2 Achieving Crooked Indifferentiability . 106

6.5 Crooked Indifferentiability of Sponge Construction 108
6.5.1 Bounding Probability of Winning Force-Crook: Sponge on Random Functions109
6.5.2 Proof of Lemma 17 . 114

6.6 Crooked Indifferentiability of Merkle-Damg̊ard 116
6.7 Concluding Discussion . 117

6.7.1 Sponge Construction Based on Permutation 117

7 Concluding Discussion and Future Research Directions. 119
7.1 Concluding Remark . 120

List of Figures

2.1 Indifferentiability security notion . 13
2.2 The crooked indifferentiability notion. 16

3.1 TLR3 permutation . 18
3.2 Pseudocode for eπ. 21
3.3 Pseudocodes for S π. 22
3.4 Pseudocodes for S π continued. 23
3.5 Game sequence for Ideal to Real. 24

4.1 EM Based 5-round Feistel . 41
4.2 5-round Even-Mansour Based KAF. 42
4.3 badτ . 46
4.4 badK . 46
4.5 The forest structure on I∗. 47
4.6 badγ . 48
4.7 badµ . 49
4.8 badλ . 50

5.1 Simulator for EXor. 97

6.1 EXor construction and Sponge Construction. 101
6.2 The Force-Crook game . 105
6.3 The hybrid game for crooked setting. 106
6.4 Crooked-Indifferentiable Sponge Construction . 107
6.5 Recalling the notations . 108
6.6 Merkle-Damg̊ard mode of operation with random IV 116

Abstract

Random oracles are cryptographers’ conceptions of what an ’ideal’ hash function should be.
Put succinctly, a random oracle is a perfectly random function that you can evaluate quickly.
Random functions are beautiful not just because the output is random-looking (of course) but
also because they’re automatically collision-resistant and pre-image resistant. However, we know
of nothing in the ’real’ world that can approximate them. When cryptographers try to analyse
their schemes with random functions, they enter an imaginary fantasy world called the ’random
oracle model’.

In 2004, Maurer, Renner, and Holenstein gave us a powerful tool for answering this question.
What they showed is that it’s always possible to replace functionality A (e.g., a random oracle)
with another functionality B (e.g., an ideal compression function) provided that the following
rules are satisfied: We can ’construct’ something ’like’ A out of B. We can ’simulate’ something
’like’ B using A. An attacker who interacts with constructed A-like thing, B cannot tell the
difference (i.e., can’t differentiate it) from A, simulated B-like thing.

The notion of indifferentiability is very helpful for investigating the security of cryptographic
schemes based on public primitives. The public permutation model is another model that helps
to scrutinise the security of schemes based on public primitives. In this model, rather than
simulating, the adversary also has direct access to the underlying primitives in the ideal world.
This model is generally used to analyse keyed constructions as opposed to unkeyed constructions
in indifferentiability.

In this thesis, we look at indifferentiability and related security notions in detail. We look
back at the definitions and then look at some constructions that achieve the desired security
goals. Specifically:

• We look at the 3-round tweakable random permutation-based cipher introduced by Coron
et al. in [37] and improve their security results by a factor of 2.

• We also look at the security of Even-Mansour-based key-alternating ciphers in the public
permutation model. We show that 5-round Even-Mansour-based key alternating ciphers
achieve beyond birthday security (2n/3−bits).

• Finally, we dive deeper into the notion of crooked indifferentiability introduced by Russell
et al. in [90]. crooked indifferentiability is a novel concept that can be used to build secure
constructions from subverted primitives. Russell et al. showed that the enveloped xor
construction is crooked indifferentiable from a random oracle. We found some mistakes in
their proofs and then corrected them. We also develop a new technique to analyse crooked
indifferentiability and then use it to show the security of the Sponge and the Merkle-
Damg̊ard constructions, both of which are easier to implement and less costly in memory
uses than the enveloped xor construction.

Keywords— Public Primitives, Indifferentiability, Random Oracle, Hash Function, Tweakable
Permutation, Subverted Oracle, Kleptography

List of Publications

This thesis is based on the following works;

[1] Bhaumik, R., Nandi, M., Raychaudhuri, A. Improved indifferentiability security proof for
3-round tweakable Luby–Rackoff. Des. Codes Cryptogr. 89, 2255–2281 (2021). https://
doi.org/10.1007/s10623-021-00913-4 [22]

[2] Bhattacharjee, A., Bhaumik, R., Dutta, A. et al. BBB security for 5-round even-Mansour-
based key-alternating Feistel ciphers. Des. Codes Cryptogr. 92, 13–49 (2024). https://
doi.org/10.1007/s10623-023-01288-4 [14]

[3] Bhattacharyya, R., Nandi, M., Raychaudhuri, A. (2021). Crooked Indifferentiability of
Enveloped XOR Revisited. In: Adhikari, A., Küsters, R., Preneel, B. (eds) Progress
in Cryptology – INDOCRYPT 2021. INDOCRYPT 2021. Lecture Notes in Computer
Science(), vol 13143. Springer, Cham. https://doi.org/10.1007/978-3-030-92518-5 4 [20]

[4] Bhattacharyya, R., Nandi, M., Raychaudhuri, A., ”Subversion Resilient Hashing: Effi-
cient Constructions and Modular Proofs for Crooked Indifferentiability,” in IEEE Trans-
actions on Information Theory, vol. 69, no. 5, pp. 3302-3315, May 2023, doi: 10.1109/
TIT.2023.3238115 [21].

Chapter 1

Introduction

1.1 General Discussion

Cryptology is the science of secure communications. Cryptography creates ways to communicate
messages between authorised parties so that their meaning remains hidden from any eavesdrop-
per. A cipher is a cryptographic algorithm. A plaintext is an unencrypted message. Encryption
converts the plaintext to a ciphertext. Decryption turns a ciphertext back into a plaintext. Con-
fidentiality, integrity, authentication, and non-repudiation Cryptography can provide schemes
that are secure for different practical uses. It is important to note that it does not directly
provide availability. Cryptography can also provide authentication (proving an identity claim).
Additionally, cryptography can provide non-repudiation, which is an assurance that a specific
user performed a specific transaction and that the transaction did not change. The two must
be tied together. Proving that you signed a contract to buy a car is not useful if the car dealer
can increase the cost after you signed the contract. Non-repudiation means the individual who
performed a transaction, such as authenticating to a system and viewing personally identifiable
information (PII), cannot repudiate (or deny) having done so afterwards.

Cryptographic substitution replaces one character for another, which creates confusion. Per-
mutation (also called transposition) provides diffusion by rearranging the characters of the plain-
text, anagram-style. “ATTACKATDAWN” can be rearranged to “CAAKDTANTATW,” for ex-
ample. Substitution and permutation are often combined. Although these techniques were used
historically (the Caesar cipher is a substitution cipher), they are still used in combination while
designing modern ciphers, such as the Advanced Encryption Standard (AES) [41].

Strong encryption destroys patterns. If a single bit of plaintext changes, the odds of every
bit of resulting ciphertext changing should be 50/50. Any signs of non-randomness may be used
as clues to a cryptanalyst, hinting at the underlying order of the original plaintext or key.

So, we can see that we can view cryptography as a series of games or challenges played
between two parties, where one party is challenged to keep some information secret while the
other party tries to gain some knowledge about it. Cryptographic constructs are greatly useful
tools which can be used to fulfil various kinds of security goals. On the other hand, just em-
pirical evidence is often not satisfactory to guarantee the security goals would be fulfilled. So,
various kinds of security notions have been developed that correspond to various security aims.
One of the more important security notions is that of indifferentiability. In this thesis, we will
discuss indifferentiability and some other related security notions. We will investigate whether
some practical constructions fulfill those security notions or not, and as a by-product, propose
constructions that can be used in various practical scenarios.

1

Indistinguishability. Broadly speaking, there are two approaches to designing cryptographic
systems. The low-level approach is to design a circuit from scratch, say a block cipher like AES
[41] or a compression function like Secure Hash Algorithm 1 (SHA1) [1], and claim that it has
certain cryptographic properties; such claims are not mathematically provable and are usually
accepted by the community only after the design survives prolonged rigorous scrutiny from
competent cryptanalysts. The high-level approach begins with a previously-designed primitive
and uses it as a black box in a mode of operation to build a new cryptosystem on top of it, with
an extended domain or a completely different security goal, and an accompanying mathematical
reduction-based proof of its security based on some axiomatic idealised property of the underlying
primitive.

The most common type of reduction proof is that of indistinguishability, where one shows
that as long as certain given black-box assumptions on the underlying primitives hold good, the
computational distance between the construction and an ideal random system with the claimed
security is low.

Public Primitives. Usually, in the setting of indistinguishability, the primitives used as build-
ing blocks for the cryptographic schemes are considered to be secret. In reality, this is often not
the case, and the primitives might be accessed publicly. Many real-world cryptosystems depend
on such primitives. Public Permutation-based design of cryptographic constructions has seen an
increasing number of applications in different symmetric key designs. A notable example is the
Sponge design. It has been used in several lightweight authenticated encryption submissions to
the NIST lightweight standardised competition. Indifferentiability results tell us that, instead
of designing permutations from scratch, the Feistel layout can generically convert a block cipher
(modelled to be an ideal cipher) to an ideal permutation. This has been used in Oribatida, one
of the second-round NIST lightweight candidates [15]. The permutation SimP is a Feistel-based
permutation based on the Simon block cipher [7].

Indifferentiability Framework. The seminal work of Maurer et al. [67] on the indifferentia-
bility of random systems introduced a new framework for security proofs when the primitives
used as building blocks can be publicly accessed. Suppose f is a given public primitive, and Cf
is a construction with the same claimed security as that of an ideal primitive P. (Following a
commonly used notational convention, we use the f in superscript to denote that C has oracle
access to f .) Indifferentiability formalizes a necessary and sufficient condition for the construc-
tion Cf to securely replace its ideal counterpart P in a wide range of environments: to wit, there
exists a simulator S, such that the systems (Cf , f) and (P,SP) are indistinguishable, even when
the distinguisher has access to f . According to the composition theorem proved by Maurer et
al. [67], if C is indifferentiable from P, then Cf can securely replace P in arbitrary (single-stage,
[86]) contexts. Thus, proving that C is indifferentiable from P amounts to proving that all se-
curity properties implicit in P also hold for Cf . This approach has been successfully applied to
the analysis of many symmetric cryptographic constructions in various ideal-primitive models
([36], [13], [51], [42]).

Public primitive Based Indistinguishability. The theme of indifferentiability is trying to
answer the question of what happens if the adversary has access to the primitive upon which
the cryptographic construction is built. Public primitive-based indistinguishability is similar
in idea, but the difference is, in this case, even in the ideal world the adversary has access to
the public primitives instead of the simulator. A common difference with indifferentiability is
that Indifferentiability is, in general, discussed in the case of unkeyed construction, while Public
primitive-based indistinguishability is discussed in the case of keyed constructions.

2

Indifferentiability vs. Indistinguishability. Informally, two systems f and g are said to be
indistinguishable if no (efficient) algorithm, interacting with either f or g, can determine with a
probability significantly better than random which of f and g it is interacting with. The notion
of reducibility is directly based on indistinguishability. A system f is said to be reducible to G
if the system G can be used to construct a new system Bg which is indistinguishable from f .
Again, reducibility is useful for cryptographic security proofs: if f is reducible to g, then, for any

construction Cf using f as a component, there is another construction based on G, namely CBH

,
having the same functionality and, in particular, providing the same security as Cf .

However, these considerations are all subject to the assumption that each component (or
primitive) a cryptographic construction is based on is a resource belonging to one specific party
that has exclusive access to it, i.e., all other entities are unable to directly influence the compo-
nent’s behaviour or obtain any information about its randomness. In practice, we often have to
account for the scenarios where the underlying resources are publicly accessible, and using that
it is possible to mount an attack on the cryptographic scheme. For example, while for each party
the output of a random oracle R is indistinguishable from the output of a local random function
R0, the security of a construction based on R0 might be lost when replacing this component by
R.

These shortcomings of the notion of indistinguishability motivate the study of the indifferen-
tiability of cryptographic constructions. Indifferentiability allows for the same general statements
about the security of cryptosystems as the conventional definitions. Thus, if a component f is
indifferentiable from g, then the security of any cryptosystem Cg based on g is not affected when
replacing g by f . Moreover, if f is not indifferentiable from g, this implies the existence of a
construction C for which these components are not interchangeable, i.e., Cg is secure but becomes
insecure if g is substituted by f .

Crooked Indifferentiability. Suppose we have a hash function or random oracle that re-
sponds incorrectly on some inputs or might even be adversarially corrupted. It is interesting to
ask if we can securely use them. Specifically, given a function h̃ which has been drawn from a dis-
tribution that agrees with a uniform function in most places, we would like to be able to produce
a corrected version that appears uniform to adversaries with a polynomially bounded number of
queries. This model is partially motivated by the traditional study of “program checking and
self-correcting”. The goal of this theory is to transform a program that is faulty (i.e. answers
incorrectly) only at a small fraction of inputs (modelling an evasive adversary) to a program that
is correct at all points with overwhelming probability. The crooked Indifferentiability setting in-
troduced by Russell et al. intuitively adapts this classical theory of self-correction to the study
of “self-correcting a probability distribution.” Crooked Indifferentiability is conceptually similar
to Indifferentiability, but with a caveat that the simulator has access to the subverted primitive.

1.2 Indifferentiability.

In this section, we discuss a bit more about indifferentiability and mention some related works.

1.2.1 Adversarial Games.

In general, cryptological security questions are proposed in the form of an adversarial game. The
game is usually played between two parties, a challenger C, and an adversary A. C and A are
modelled as algorithms, which are usually computationally bounded. The challenge is centred
on a cryptological construction about which A has to make certain deductions. They can be

3

something like finding a pre-image of a certain ciphertext, finding a multicollision pair, or in case
of indistinguishability and indifferentiability, deducing whether the environment the adversary
is dealing with is the proposed cryptological construction, which we usually denote as the real
world or an idealised primitive which we generally denote as the ideal world. The adversary
A has information about some previous communications, which are modelled as query-response
pairs. The cryptological construct is generally modelled as a black box, i.e. the adversary can
observe the input message and the output ciphertext but is usually unaware of the internal
states, though there are exceptions to these rules, like in the case of crooked indifferentiability.
We assert a certain bound on the amount of information available to the adversary A before it
makes a decision, which is usually called the maximum number of queries available to A. The
adversary A tries to achieve his goal by using a certain amount of information or queries, while
the challenger tries to maximise the number of queries for the adversary to fulfil his goal. In
general, cryptological constructs have an input size of n-bits of {0, 1} binary strings, i.e. the
inputs come from the product of n copies of {0, 1}, where n is a positive integer. If the adversary
needs at least O(2n

2) queries to reach his goal then the construction is called birthday secure
while needing more queries than that leads a construction to be beyond birthday secure.

1.2.2 Indifferentiability in Terms of Adversarial Games

In the indifferentiability set-up, the adversary is asked to distinguish between two set-ups, which
we usually call as the real world and the ideal world. The real world consists of an ideal primitive
f and a cryptological construction P which can interact with f . The ideal world consists of an
ideal primitive F and an algorithmS which can interact with F . The adversary interacts with
either the real world or the ideal world, and after gaining responses to all its queries, outputs
either the bit 1 or 0. The distinguishing advantage of the adversary is defined as the absolute
difference between the adversary A outputting 1 in the real world and the ideal world. If this
advantage is negligible, we say that (F ,S) is indifferentiable from (P, f). In this case, using P
in place of F in a cryptological construction doesn’t hurt the security of the construction.

1.2.3 Related Works.

A Feistel network or a Luby-Rackoff network uses a round function, a function which takes two
inputs – a data block and a subkey – and returns one output of the same size as the data block. In
each round, the round function is run on half of the data to be encrypted, and its output is xored
with the other half of the data. This is repeated a fixed number of times, and the final output is
the encrypted data. The Feistel network can be designed using tweakable random permutations
in place of functions in each round. We denote a Feistel network using 3 rounds of tweakable
round permutations as TLR3. Mandal et al. in [65] proved the sequential indifferentiability of
TLR3; this is a weaker notion of indifferentiability, where the adversary is not allowed to query the
simulator any more after the first construction query. The indifferentiability of classical Feistel
networks of varying sizes has been a core area of focus in the study of indifferentiability, [43]
and [38] being two recent results. The technique of generalising the structure of Feistel networks
has been studied in detail in [58].

The indifferentiability of other well-known constructions is also a popular area of research.
Bertoni et al. proved the indifferentiability of the Sponge construction with a random oracle
in [13]. Dai et al. in [42] have shown that the 5-round iterated Even-Mansour with a non-
idealised key schedule is indifferentiable from an ideal cipher. The indifferentiability of the xor of
random permutations was examined in [64], [16], and [62]. Other studies in indifferentiability have
covered hash functions [28, 71], permutation-based compression functions [50], tweakable random

4

permutations and pseudorandom permutations [27, 71]. On the more theoretical side, [59, 39]
examined the random oracle and ideal cipher models in detail. Constructions based on random
permutation are very popular in the crypto-community. The indifferentiability of many such
constructions has been deeply analysed. Bertoni et al.in [13] discussed the indifferentiability
of Sponge construction based on random permutations. The indifferentiability of constructions
based on tweakable random permutations has been discussed in detail in [37] and [22].

1.3 Discussion on Crooked Indifferentiability

Blackbox Reduction and Kleptographic Attack. Many of the modern cryptographic
constructions are analysed in a modular and inherently black-box manner. The schemes or proto-
cols are built on underlying primitives, only exploiting the functionality of the primitives. While
analysing the security, one shows a reduction saying, a successful attack on the construction
will lead to an attack against the underlying primitive. Unfortunately, this approach completely
leaves out the implementation aspects. While the underlying primitive may be well studied, a
malicious implementation may embed a trapdoor or other sensitive information that can be used
for the attack. Moreover, such implementation may well be indistinguishable from a faithful
implementation [100]. These types of attacks fall in the realm of Kleptography, introduced by
Young and Yung [100]. While the cryptographic community did not consider kleptography as a
real threat, the scenario has changed in the past few years. The kleptographic attack has been a
real possibility in the post-Snowden world [84]. A line of work has appeared aiming to formalise
and provide security against kleptographic attacks [9, 45, 88, 89]. Specifically, in [9], Bellare, Pa-
terson, and Rogaway showed that it is possible to mount algorithm substitution attacks against
almost all known symmetric key encryption schemes to the extent that the attacker learns the
secret key. Another good example is the Dual-EC tampering attack [29] which led to the with-
drawal of a standardised PRG due to a potential backdoor in the implementation. A series
of work has been done in recent years formalizing approaches to resist algorithm substitution
attacks [48, 8, 70, 44, 45, 88, 89, 2, 4].

Indifferentiability of Hash Functions and Security against Algorithm Substitution
Attacks (ASA). Hash functions are ubiquitous in modern cryptography. Hash functions are
widely popular as the drop-in replacements of Random Oracles (RO) in cryptographic schemes
and protocols. To facilitate this application, the notion of indifferentiability from a Random Or-
acle, introduced by Maurer, Renner, and Holenstein [67], has been established as a mainstream
security criterion. Indifferentiability from a Random Oracle implies all security guarantees (like
collision resistance) satisfied by a Random Oracle in a single-stage game up to the indifferentia-
bility bound. Starting from the work of Coron, Dodis, Malinaud, and Puniya [36], a plethora
of results [28, 18, 19, 17, 69, 73] have been proven to show the indifferentiability of different
constructions based on different ideal primitives.

Surprisingly, analysis of secure hash functions against Algorithm Substitution Attacks (ASA)
has been scarce. In CRYPTO 2018, Russel, Tang, Yung and Zhou [90] studied the problem of
correcting subverted Random Oracles. They introduced the notion of crooked indifferentiability
as a replacement for classical indifferentiability for the kleptographic setting. They showed that
the Enveloped XOR construction could be proven secure in this framework.

Like classical indifferentiability, the game of crooked indifferentiability challenges the ad-
versary to distinguish between two worlds. In the real world, the adversary has access to the
underlying ideal primitive f , and the construction C, which has subroutine access to f̃ , the sub-

5

verted implementation of f .1 The implementation f̃ on input an element x queries the function
(possibly adaptively) at maximum q̃ many points and, based on the transcript, decides the eval-
uation of x. As the adversary likes the subversion to go undetected, it is assumed that f̃ differs
from f only on some negligible fraction (ϵ) of the domain.

In the ideal world, the construction is replaced by a Random Oracle F . The role of f is
played by a simulator with Oracle access to F and the subverted implementation f̃ . The job of

the simulator is to simulate f in such a way that (C f̃ , f) is indistinguishable from (F , SF,f̃). To
avoid trivial attacks, the framework allows a public random string R to be used as the salt in the
construction. The string R is fixed after the adversary publishes the implementation but stays
the same throughout the interaction. All the parties, including the simulator and the adversary,
get R as part of the initialisation input. We note that even in the weaker setting of Random
Oracles with auxiliary input, a random salt is required to prove security [35, 49].

The notion of crooked indifferentiability from a Random Oracle and the composition theorem
proved in [90] guarantees that a construction proved secure in this framework can be used to
replace a Random Oracle in any single-stage game in the kleptographic setting. While popular
hash functions are the most natural choice for instantiating the Random Oracle, their suitability
is still unknown. We ask, can the popular hashing modes, for some parameters, achieve this
many-fold stronger security notion?

1.4 Key Alternating Ciphers.

A block cipher is a length-preserving encryption function that takes a k-bit key K and an n-bit
message X and outputs an n-bit ciphertext Y . The primary security requirement of a block
cipher is its pseudorandomness. Unfortunately, we cannot establish the theoretical soundness of
the security of block ciphers. Therefore, researchers have focused on proving the security results
of block ciphers by idealising some of their components. In this direction, two popular design
approaches of block ciphers have been extensively studied—Feistel networks and Substitution-
Permutation networks (SPNs). As of today, the design of almost every block cipher roughly falls
into one of the above two categories.

Feistel Scheme. Most of the provable security results for Feistel networks fall under the Luby-
Rackoff (LR) framework, in reference to the seminal work by Luby and Rackoff [63], where the
round functions of the Feistel scheme are pseudorandom functions which are idealised as being
uniformly random (and secret) via the standard hybrid argument. It was shown in [63] that
the 3-round Feistel scheme is a pseudorandom permutation. Later on, Patarin [77] proved that
the 4-round Feistel scheme yields a strong pseudorandom permutation, which means that the
scheme is secure even if the adversary is allowed to make inverse queries to the permutation
oracle. Following [77], a long series of works have established either better security bounds
for the Feistel scheme with a larger number of rounds [68, 80, 58, 6, 72] or have reduced the
complexity of the security of the scheme [78, 92, 74, 75]. Ramzan and Reyzin [85] proved that
the (n/2)-bit security of the 4-round Feistel scheme holds even if the adversary has black-box
access to the two inner functions of the construction. Naor and Reingold [76] showed that the
similar security bound holds even if one replaces the first and last round of the 4-round Feistel
construction with pairwise independent permutations and even weaker constructions were proven
secure in [83]. Gentry and Ramzan [54] showed that the public random permutation of the one-
round Even-Mansour (EM) cipher [53] X 7→ K1 ⊕ P (X ⊕K1) can be replaced by a four-round

1The domain extension algorithms are simple, and the correctness of their implementations is easy to verify.

6

public Feistel scheme, and the resulting construction is still a strong pseudorandom permutation
that achieves O(2n/2) security bound.

Patarin [79] proved (3n/4)-bit strong pseudorandomness security for the 6-round Feistel
scheme with the conjecture of proving better bounds of the construction. In [68], Maurer and
Pietrzak have proved that the r-round Feistel scheme is secure up to 2n(r−1)/r queries. In [80],
Patarin analysed the security of the Feistel scheme with five or more rounds. He showed that the
5-round Feistel scheme is secure against all attacks that make only the forward queries, as long as
the number of queries is less than 2n. Moreover, he has also shown that 6-round Feistel is secure
against all attacks that make both forward and inverse queries to the construction as long as the
number of queries is limited to 2n. Hoang and Rogaway [58] studied the beyond-birthday-bound
security of generalised Feistel networks. In 2010 [82], Patarin showed O(2n/n) security bound
for four, five, and six rounds of balanced Feistel schemes and proved beyond birthday bound
security bound for unbalanced Feistel scheme with 2n-bit to n-bit contracting round functions.
A detailed literature study on the security of the Feistel scheme can be found in [72].

Substitution-Permutation Networks. Earlier provable security results for SPN ciphers
dealt with resistance to specific attacks such as differential [23] and linear attacks [66]. Recently,
a series of works have studied the ideal key-alternating cipher, a.k.a. the Iterated Even-Mansour
(IEM) cipher. Chen and Steinberger [31] proved a tight security bound (where the bound matches
the best-known attack on the construction) of 2rn/(r+1) for the r-round IEM cipher. In the last
couple of years, research has focussed on analysing the security of the IEM cipher with fewer
permutations and keys. Chen et al. [30] have shown a (2n/3)-bit security bound for the 2-round
IEM cipher based on a single permutation and one n-bit key. This result was extended by Wu et
al. [99] to three rounds of the IEM cipher based on a single n-bit public random permutation that
was shown secure up to O(23n/4) queries. A recent work by Tessaro and Zhang [95] showed the
existence of non-trivial distributions of the limited independence of the round key for which the
r-round IEM cipher achieves optimal security. Along with the study of the IEM cipher, security
of the tweakable IEM cipher, where the tweak is mixed with each round key of the IEM cipher,
has also been extensively studied in [33, 34, 52].

Key-Alternating Feistel Cipher. Despite the extensive research along the lines of Luby and
Rackoff [63], which has been very generic and covers many possible choices of round functions
for the Feistel scheme, a concrete scheme is yet to be established to design a keyed block cipher
from some simple key-less primitive (e.g. unkeyed round function). Therefore, to design a keyed
block cipher, it remains necessary to design some keyed round functions Fi(Ki, X), a task which,
unfortunately, is not known to be easier than designing the keyed block cipher itself. On the other
hand, concrete block ciphers following Feistel designs like Data Encryption Standard (DES),
GOST, Camellia, LBlock [98], Twine [94] usually employ length-preserving key-less functions
in each round by XOR-ing each round-key before applying the corresponding round function.
This idea naturally corresponds to the Feistel scheme with round functions instantiated with
Fi(Ki ⊕Xi), where Fi is a key-less public round function and therefore, at the i-th round of the
Feistel scheme, the intermediate state is updated as

(Xi
L, X

i
R) 7→ (Xi

R, Fi(X
i
R ⊕Ki)⊕Xi

L),

where XL and XR are two n-bit halves of the state and Xi
R and Xi

L denotes those halves in the
i-th round. This model of Feistel design was named the Key-Alternating Feistel (KAF) cipher by
Lampe and Seurin [61]. One can see that two rounds of a KAF cipher can be rewritten as a single-
key one-round EM cipher, where the permutation P is a two-round public and unkeyed Feistel

7

scheme. When the round functions of the KAF cipher are uniform random public functions,
we refer to it as an ideal KAF cipher. Thus, the ideal KAF cipher differs from the usual LR
framework in two ways: (a) one, the ideal KAF cipher considers complex round functions (i.e.,
random function oracles) instead of the keyed round functions in LR framework; (b) two, it
considers the simplest keying procedure, namely key-XOR-ing.

However, the security gap between LR and KAF ciphers is non-negligible. The best-known
generic key-recovery attacks with complexity 22n break four rounds LR [77], which is in sharp
contrast with six rounds KAF [56]. Moreover, Patarin has shown [82, 72] that six (resp. five)
rounds of LR achieve optimal pseudorandom (resp. strong-pseudorandom) security. However,
Guo and Wang. [55] have shown a generic distinguishing attack against the r-round KAF cipher
using O(2n(r−2)/(r−1)) queries, which implies that the n-round KAF cipher achieves optimal
security. As a result, the Luby-Rackoff framework fails to capture the structural properties in
practical Feistel ciphers, and hence, the KAF is likely to capture well the practical security of
Feistel designs.

The theoretical security analysis of ideal KAF ciphers is generally done using the random
function model, where one models the key-less round functions Fi as public random functions that
can be queried by the adversary in a black-box way and try to establish the indistinguishability
of (KAFF1,F2,...,Fr

K
, F1, F2, . . . , Fr) from (P, F1, F2, . . . , Fr) in the random function model, where

P is a 2n-bit uniform random permutation and K = (K1,K2, . . . ,Kr) contains r uniformly
random n-bit keys. This indistinguishability notion implies that the ideal KAF cipher with a
secret random key K is indistinguishable from a 2n-bit uniform random permutation P , even
if the adversary is given access to the r random round functions F1, F2, . . . , Fr. Note that this
security model is closely related to the security model used in proving the security of the IEM

cipher.
In this direction, the first reported work is by Ramzan and Reyzin [85] who proved the (n/2)-

bit strong pseudorandom security of the 4-round Feistel scheme even when the adversary has
black-box access to the middle two functions of the construction. Gentry and Ramzan [54] showed
the (n/2)-bit strong pseudorandom security of the one-round EM cipher when its underlying
public permutation is replaced by a four-round public Feistel scheme. Lampe and Seurin [61]
proved that an r-round ideal KAF cipher achieves security up to O(2tn/(t+1)) queries of the
adversary, where t = ⌊r/3⌋ in the non-adaptive setting with the adversary prohibited in making
inverse queries to the construction, and t = ⌊r/6⌋ in the adaptive setting with the adversary
allowed to make bi-directional queries to the construction. More recently, Guo and Wang [55]
have shown that a 4-round ideal KAF cipher with a single round function F and four n-bit
round keys (K1,K2,K3,K4) such that K1,K4 and K2 ⊕K3 are all uniform is (n/2)-bit secure
in the multi-user setting; they have further shown that a 6-round ideal KAF cipher with six
independent round functions is (2n/3)-bit secure in the multi-user setting as long as the six
round keys (K1,K2,K3,K4,K5,K6) are all uniform and adjacent round keys are independent.
In a follow-up work of [55], Shen et al. [93] studied a 4-round ideal KAF cipher with an even
more optimised key schedule, in which an n-bit master key K is XOR-ed only in the first and
last rounds of the cipher and a one-bit rotation is applied on the output of the first layer round
function, and proved the (n/2)-bit strong pseudorandom security of the construction.

1.5 General Structure of the Thesis.

Here we give a brief overview of the general structure of this thesis. In the second chapter 2
we delve into the formal definitions of indifferentiability, crooked indifferentiability, and also the
security of EM-based key alternating ciphers. We also state the Markov inequality [97] and a

8

version of the Bernoulli inequality [96]. We also introduce the famous H-coefficient technique
used in this thesis more than once. In Chapter 3 we discuss the indifferentiability of the TLR3
construction introduced by Coron et al. in [37]. TLR3 is a construction that uses three n-
bit input size tweakable random permutations to produce a 2n-bit random permutation. They
showed that it reaches n/2 bit indifferentiability security. Here we improve the bound to almost n-
bit. In the next chapter 4 we discuss the security for 5-round Even-Mansour-based key alternating
ciphers. We show that in the public permutation model, the construction is secure up to almost
2n/3 bits. In the next two chapters, we dive deep into the crooked indifferentiability notion and
tackle the problem of correcting subverted random oracles. In chapter 5 we discuss the enveloped
xor construction introduced by Russell et al. in [90]. We identify some crucial mistakes in their
proof and then go on to rectify them. In chapter 6 we discuss variants of Sponge construction
and Merkle-Damg̊ard construction and their crooked indifferentiability. We show that they reach
crooked indifferentiability security while using significantly less primitives and public randomness,
and solve the main open question raised by Russell et al. in [90].

9

Chapter 2

Preliminaries

We denote the set {1, 2, . . . ,m} by [1..m] and the set {0, 1, . . .m} by (m]. For a set X , |X | will
denote its cardinality. Let N = {0, 1, . . .} be the set of natural numbers and {0, 1}∗ be the set
of all binary strings. For a natural number n, we write the n-times Cartesian product of the
set {0, 1} with itself as {0, 1}n, which equivalently denotes the set of all n-bit binary strings. 0n

(resp. 1n) denotes the concatenation of n 0 bits (resp. n 1 bits). We write {0, 1}≥n to denote
the set of all binary strings of length at least n and {0, 1}∗ = ∪∞n=0{0, 1}n to denote the set
of all binary strings. For any X ∈ {0, 1}∗, |X| denotes the bit-length of X. For two binary
strings X,Y ∈ {0, 1}∗, X∥Y denotes the concatenation of X and Y . For two n-bit binary strings
X,Y ∈ {0, 1}n, X + Y denotes the field addition of X and Y , equivalent to their bit-wise XOR.
For any X ∈ {0, 1}∗, we denote the parsing of X into n-bit blocks as X1 · · ·Xr ←n X, where
|Xi| = n for all 1 ≤ i < r and 1 ≤ |Xr| ≤ n such that X = X1∥ · · · ∥Xr. We write ∥X∥ = ⌊|X|/n⌋
to denote the number of blocks in X.

We write X = (X1, X2, · · · , Xt) ∈ ({0, 1}n)t to denote a t tuple of n-bit binary strings.
Given any such t-tuple of n-bit binary strings X = (X1, X2, · · · , Xt) and for any two integers
a, b such that 1 ≤ a ≤ b ≤ t, we write the subtuple (Xa, Xa+1, · · · , Xb) of length (b − a + 1) as
X[a, b]. For two integers a, b such that a ≤ b, we write [a, b] to denote the set {a, a + 1, · · · , b}.
Moreover, when a = 1, we write [1, b] as [b] to denote the set {1, . . . , b}. We write MSBx(X) and
LSBx(X) to denote the most significant x bits and the least significant x bits of the binary string
X respectively. For any two integers a, b such that a ≥ b, we write (a)b to denote a(a − 1)(a −
2) . . . (a− b+ 1).

We write x←$ S to denote the process of choosing x uniformly at random from a set S and
independently from all other random variables defined so far.

We write Fn to denote the set of all functions F from {0, 1}n to {0, 1}n and Pn to denote the
set of all permutations P over {0, 1}n. For a positive integer r, we write Fr = (F1, F2, . . . , Fr) ∈
(Fn)

r to denote a tuple of r n-bit to n-bit functions. Similarly, Pr = (P1, P2, . . . , Pr) ∈ (Pn)
r

denotes a tuple of r n-bit permutations. For any two tuples of n-bit binary strings X =
(X1, X2, . . . , Xt) and Y = (Y1, Y2, . . . , Yt) having length t and for any n-bit to n-bit function F ,
we write F (X) = Y to denote F (Xi) = Yi for i ∈ [t]. We say that the pair of n-bit binary string
tuples (X,Y) is function compatible, if there exists at least one function F : {0, 1}n → {0, 1}n
such that F (X) = Y . Note that, for (X,Y) to be a function compatible pair, Xi = Xj ⇒ Yi = Yj .
Similarly, for an n-bit permutation P , we write P (X) = Y to denote that P (Xi) = Yi for i ∈ [t]
and in that case, we say that the pair of n−bit binary string tuples (X,Y) is permutation com-
patible, if there exists at least one n-bit permutation P such that P (X) = Y . Note that, for
(X,Y) to be a permutation compatible pair, Xi = Xj ⇔ Yi = Yj . We write Fr(X) = Y (resp.

10

Pr(X) = Y) to denote Fi(X) = Y (resp. Pi(X) = Y) for i ∈ [r].

2.1 Bernoulli and Markov Inequalities

We first state and prove two well-known inequalities.

Lemma 1. Suppose ∀i ∈ {1, .., k}, 0 ≤ ai ≤ 1. Then

kY

i=1

(1− ai) ≥ 1−
kX

i=1

ai.

Proof. This is a special case of Bernoulli’s inequality [96]. The proof is by induction on k. It is
trivial for k = 1; suppose it holds for all k ∈ [1, . . . , k0 − 1] for some k0 ≥ 2. Then

k0Y

i=1

(1− ai) = (1− ak0
) ·

k0−1Y

i=1

(1− ai)

≥ (1− ak0
) ·

1−

k0−1X

i=1

ai

!

= 1−
k0X

i=1

ai +

ak0
·
k0−1X

i=1

ai

!
≥ 1−

k0X

i=1

ai.

Thus, by induction, it holds for all k.

Markov’s Inequality. Suppose Y is a random variable taking value in R, the set of real
numbers. Then for all a ≥ 0,

Pr[Y ≥ a] ≤ E(Y)

a
.

This is a well-known result [97], and we include here a short proof for the case when Y is a
discrete random variable. From the definition of expectation,

E(Y) =
X

b · Pr[Y = b] ≥ a ·
X

b≥a

Pr[Y = b] = a · Pr[Y ≥ a].

Thus,
E(Y)

a
≥ Pr[Y ≥ a].

2.1.1 Security Notions

We use the term oracle to denote an interface which provides an adversary with a black-box
access to a hidden function. An oracle F providing access to a hidden function ϕ will receive
a query x and respond with ϕ(x); we simply denote this response as F (x), and say that F
provides oracle access to ϕ; wherever there is no scope for confusion, we shall refer to F and
ϕ interchangeably. We will also use the standard notation FG to denote that the oracle F has
oracle access to the oracle G.

11

Adversaries . An adversary A is an algorithm possibly with access to oracles O1, . . . ,Ok

denoted by AO1,...,Ok . The adversaries considered in this paper are computationally unbounded.
The complexities of these algorithms are measured solely by the number of queries they make.
An algorithm A having access to an oracle is called a q-query algorithm if it makes at most
q queries to its oracle. Similarly, an oracle algorithm having access to two oracles is called a
(q1, q2)-query algorithm if it makes at most q1 and q2 queries to its first and second oracles,
respectively. Adversarial queries and the corresponding responses are stored in a transcript τ.

Definition 1. Distinguishing Advantage. For two k-tuple of oracles F k = (F1, F2, . . . , Fk),
Gk = (G1, G2, . . . , Gk) and an adversary A, a distinguishing game is played as follows: the
challenger picks a bit b at random and gives A access to either F k or Gk. A makes a bounded
number of adaptive queries and outputs a bit b ∈ {0, 1}. We define the advantage of an adversary
A at distinguishing F k from Gk as

∆A(F
k ; Gk) =

��Pr[AF1,F2,...,Fk = 1]− Pr[AG1,G2,...,Gk = 1]
�� .

We will use the word game a bit more flexibly to refer to any scenario where the adversary
interacts with a k-tuple of oracles. Then, we can think of the distinguishing game described
above as the adversary trying to distinguish between two games: one against (F k) and the other
against (Gk). Let us denote the adversary A’s interaction with F k as G and that with Gk as G′.
We denote by For an adversary A trying to distinguish between two games G and G′ we denote
the distinguishing advantage of A as ∆A [G,G′], defined as

∆A [G,G′] =
���Pr[AG returns 1]− Pr[AG′

returns 1]
��� .

We note that the advantage, being a distance, is subject to the triangle inequality, i.e., for
three games G, G′ and G′′,

∆A [G,G′′] ≤ ∆A [G,G′] + ∆A [G′,G′′] .

Indifferentiability. An algorithm C with oracle access to an ideal primitive f is said to be
(t, q, ϵ)-indifferentiable from an ideal primitive P if there exists a simulator S with oracle access
to P and running time at most t, such that for any adversary A making at most q oracle queries
in all, it holds that

∆A
�
(P,S P), (Cf , f)

�
≤ ϵ.

We simply call Cf indifferentiable from P if t is bounded above by some polynomial in q and ϵ
is a negligible function of q.

The role of the simulator is not only to simulate the behaviour of f but also to remain
consistent with the behaviour of P. Note that the simulator does not see the queries made
directly to P, although it can query P whenever needed. We think of the game against (P,S P)
as the ideal world, and the one against (Cf , f) as the real world (since P is an ideal primitive,
while C is usually a real cryptosystem).

2.2 Definition for Ideal Primitives.

Random Oracles. Random Permutations. A (probabilistic) function f : X → Y with Y
finite is said to be a random oracle if for each x ∈ X the value of f(x) is chosen uniformly at
random from Y . More precisely, for any distinct x, x1, . . . , xq ∈ X and any y, y1, . . . , yq ∈ Y ,

Pr[f(x) = y | f(x1) = y1, f(x2) = y2, . . . , f(xq) = yq] =
1

|Y | .

12

f C S P

A

Figure 2.1: The indifferentiability security notion. The real world consists of the construction C
and the underlying ideal primitive f . The ideal world consists of the ideal primitive P and the
simulator S . The construction C has oracle access to the underlying primitive P . The simulator
S has oracle access to F . The distinguisher A interacts either with the real world or with the
ideal world.

A function π : X → X with X finite is said to be a random permutation if for any distinct
x, x1, . . . , xq ∈ X and any distinct y, y1, . . . , yq ∈ X,

Pr[π(x) = y | π(x1) = y1, π(x2) = y2, . . . , π(xq) = yq] =
1

|X| − q
.

A random oracle f : X → Y can be viewed as a function sampled uniformly from the set
of all functions from X to Y . A random permutation is similar to a random oracle except that
it is a permutation (i.e., bijective and with Y = X); one can thus view a random permutation
π : X → X as a permutation chosen uniformly at random from the set of all permutations on X.

Tweakable Permutations and Ideal Ciphers. A function Φ : T × D → D is said to be
a tweakable random permutation if the marginal Φ(t, ·) : D → D is an independent random
permutation for each t ∈ T ; here t is called the tweak. Identical in definition but generally used
in very different contexts is the ideal cipher : a function E : K ×D → D, such that for each key
k ∈ K, E(k, ·) : D → D is an independent random permutation. An ideal cipher can be seen as
a cipher which can be queried with chosen key-message pairs.

In our proof model for indifferentiability, we consider a construction based on (un-keyed)
tweakable random permutations, and allow the adversary to query these tweakable permutations
with tweak-message pairs; if we think of the tweak as a key, this is essentially the functionality of
an ideal cipher. This allows us to replace the tweakable random permutations with ideal ciphers
in the proof.

2.3 H-Coefficient Technique

Suppose a (deterministic) adversary A is trying to distinguish between two cryptological envi-
ronments A and A′ and the interaction of the adversary with the two environments is modelled
as games G and G′. The transcript τ is the part of the computation visible to the adversary at
the time of choosing its final response. This includes the queries and the responses, and may
also include any additional information the oracle chooses to reveal to the adversary at the end
of the query-response phase of the game. We say a game G yields τ to denote the event that A
interacts with G and obtains τ as the transcript. Now, for a transcript to be realised, two things
need to happen:

• The adversary needs to make the queries listed in the transcript;

13

• The game needs to make the corresponding responses.

Of these, the former is deterministic; the latter is probabilistic. For instance, consider a transcript
for two queries x1 and x2, with outputs y1 and y2 respectively. This transcript will be realised
only when the following four events occur:

• A begins by querying x1 (deterministic, depends only on A);
• G responds to x1 with y1 (probabilistic, depends only on G’s randomness after conditioning

on first event);

• A, on examining the output y1, next queries x2 (deterministic, depends only on A);
• G responds to x2 with y2 (probabilistic, depends only on G’s randomness after conditioning

on all earlier events).

Thus, when we talk of the probability of G yielding a transcript, we are only concerned with
the responses of G, with the assumption that the adversary’s queries are consistent with the
transcript. For any other adversary, this probability is trivially 0. Thus Pr[G yields τ] depends
only on G and τ and not on the adversary. Now, we state a theorem, due to Patarin [81],
that we’ll later use in our proofs. The name comes from the original paper, where the (scaled)
probabilities of a game yielding a transcript were called H-coefficients.

Theorem 1 (H-Coefficient Technique). Suppose we can define an event bad in game G′, and we
call τ good if it can be obtained from G′ without encountering bad. Suppose the following hold:

• Pr[bad] ≤ ϵ1.

• For any good τ,
Pr[G yields τ] ≥ (1− ϵ2) · Pr[G′ yields τ].

Then for any adversary A we have

∆A [G,G′] ≤ ϵ1 + ϵ2.

2.4 Security notions and Tools for Crooked Indifferentia-
bility

Class of Functions. HD,R denotes the set of all functions from D to R. Fm,n denotes the set of
all functions from {0, 1}m to {0, 1}n. f : (k]×Df → Rf denotes a family of k many functions from
Df to Rf . We often use the shorthand f to denote the family {f1 := f(1, ·), . . . , fk := f(k, ·)}
when the function family is given as oracles.

For any tuples of pairs τ = ((x1, y1), . . . , (x|τ |, y|τ |)) we write D(τ) (called domain of τ) to
denote the set {xi : 1 ≤ i ≤ |τ |}. We write τj = ((x1, y1), . . . , (xj , yj)). We say a function f
agrees with τ if for all (x, y) ∈ τ , f(x) = y. For every x ∈ Df , α ∈ Rf , we use fx→α to denote
the following function:

fx→α(y) =

�
f(y) if x ̸= y
α if x = y

.

Definition 2 (Domain Extension). Let D ⊇ Df . A domain extender C with oracle access to a
family of functions f : (k] × Df → R is an algorithm that implements the function H = Cf :
D → R.

During the computation of Cf (M), the f query inputs made by C are called the chaining
queries.

14

2.4.1 Modeling Subversion Algorithms

We recall the related terms and notations introduced in [90] in our terminologies.

Implementer. A (q, q̃) implementer is a q-query oracle algorithmAO. A outputs the description
of another oracle algorithm F̃O. The algorithm F̃O makes at most q̃ many queries to its oracle.
We call F̃ the implementation. We let τ̃ denote the transcript of oracle queries of A. The
transcript τ̃ is hardwired in F̃ , and all the q̃ queries made by F̃ are different from D(τ̃).
The implementation F̃ is correct if for all f ∈ HDf ,Rf

and for all x ∈ Df , f̃(x)
def
= F̃ f (x) = f(x).

A subverted implementation f̃ on input x queries α
(x)
1 , α

(x)
2 , . . . , α

(x)
q̃ , and based on the query-

responses outputs f̃(x). Without loss of generality, we assume α
(x)
1 = x, that is the first query

of f̃(x) is f(x). We use α ↠f α′ to denote that f̃(α) queries f(α′). Similarly, α ̸↠f α′, denotes

that f̃(α) does not query f(α′). We define the following two sets: (1) Q̃f (x)
def
= {y | x ↠f y}

and (2)
−→
Qf (x)

def
= {y | y ↠f x}. Specifically, Q̃f (x) denotes the set {α(x)

1 , α
(x)
2 , . . . , α

(x)
q̃ }.

−→
Qf (x)

denotes the set of all points whose (subverted) evaluation queries the point x.

Definition 3 (Crooked Implementer). A (q, q̃) implementer A1 is called ϵ-crooked for a function
family HDf ,Rf

, if for every f ∈ HDf ,Rf
, it holds that

Pr
α←$Df

[f̃(α) ̸= f(α)] ≤ ϵ

where f̃ ← Af
1 .

Summary. A (crooked) implementation f̃ , to compute f̃(x), queries f(α
(x)
1), . . . , f(α

(x)
q̃)

on q̃ many distinct points (α1 = x) and its decision of whether to subvert f(α) depends on this
transcript and the hardwired string τ̃ . For an ϵ-crooked implementation, for each f ∈ HDf ,Rf

,
for at most ϵ fraction of x ∈ Df , f(x) is subverted.

Detection Algorithm. Given an implementation, one may check the algorithm’s correctness
by comparing the implementation’s outputs with a known correct algorithm. More precisely,
we sample α1, . . . , αt ←$ {0, 1}m and then for all 0 ≤ i ≤ l, we check whether f̃(αi) = f(αi)
holds. If it does not hold, the implementation will be discarded. It is easy to see that for an
ϵ-crooked implementation, the subversion would be detected with a probability of at most tϵ.
So for negligible ϵ, this probability would be negligible for all polynomial functions t, and the
implementation can survive for further use.

Crooked Distinguisher. A crooked distinguisher is a two-stage adversary; the first stage is a
crooked implementer, and the second is a distinguisher.

Definition 4 (Crooked Distinguisher). We say that a pair A := (A1,A2) of probabilistic algo-
rithms ((q1, q̃, ϵ), q2)-crooked distinguisher for HDf ,Rf

if
(i) A1(r) is a ϵ-crooked (q1, q̃) implementer for HDf ,Rf

and
(ii) A2(r, τ̃ , R) is a q2-query distinguisher where r is the random coin of A, τ̃ is the advice-

string, the transcript of the interaction of A1 with f , and R is the (randomised) initial vector of
the target construction. The random string r and the advice-string τ̃ are hardwired to A2, and
the random IV R is provided as input.

Crooked Indifferentiability. Now, we state the crooked-indifferentiable security definition (as
introduced in [90]) in our notation and terminology. The definition is based on the following two-
stage distinguishing game. The ideal primitives f and F are sampled. The crooked-distinguisher
A (with random string r as the random coins) runs the first phase A1. The crooked implementer
A1, with oracle access to f , produces a subverted implementation F̃ . Then, a uniformly random

15

string R is sampled and published as the IV of the construction C. Finally, A2 is invoked with
an internal random string r, the advice-string τ̃ , and the random IV R as input. In the real

world, A2 interacts with the f (same from the first stage) and the construction C f̃ (R, ·). In the
ideal world, the simulator S gets the advice-string τ̃ , the initial value R, and black box access
to the subverted implementation F̃ as inputs, along with oracle access of a random oracle F .
The simulator is aimed to simulate f so that the behaviour of (f, C f̃) is as close as (S,F) to the
distinguisher A2.

Definition 5 (crooked indifferentiability [90]). Let F be an ideal primitive and Cf be an IV-
based F-compatible oracle construction. The construction C is said to be ((q1, q̃), (q2, qsim),
ϵ, δ)-crooked-indifferentiable from F if there is a qsim-query algorithm S (called simulator)
such that for all ((ϵ, q1, q̃), q2)-crooked distinguisher (A1(r), A2(r, ·, ·)) for HDf ,Rf

, we have

∆A2(r,τ̃ ,R)

(
(f, C f̃ (R, ·)) ; (SF,F̃ (τ̃ , R),F)

�
≤ δ (2.1)

where τ̃ is the advice string of Af
1 . R is the random initial value of the construction sampled

after the subverted implementation is set.

C(R, ·)F̃f S(τ̃ , R) F

F̃

A2(r, τ̃ , R)

Figure 2.2: The crooked indifferentiability notion. In the first phase of the real world, A1 interacts
with f and returns an oracle algorithm F̃ (which would be accessed by the construction C in
the second phase). In the second phase, the random initial value R will be sampled and given
to construction C and also to A2. In the ideal world, the simulator SF gets the transcript of
the first phase as an advice string, black-box access to the subverted implementation F̃ and the
initial value R.

Remark 1. The simulator S gets a black box subroutine access to the algorithm F̃ . The simulator
can compute F̃ (x) by invoking F̃ with input x and responding to the oracle queries made by F̃ .

Convention on Crooked Distinguishers. Note that there is no loss in assuming that both
A1 and A2 are deterministic (so we skip the notation r) when we consider a computationally
unbounded adversary. A can fix the best internal random coin r for which the distinguishing
advantage of A2 is maximum. As the randomness of f,F , the public IV R, and the internal
random coins of S are independently sampled from r, the maximum distinguishing advantage
would follow from an averaging argument.

We also assume that A2 makes all distinct queries distinct from those made by A1. We skip
the notation τ̃ as an input of A2 as it is fixed throughout the game. As the advice string is fixed,
we consider it part of the transcript. Specifically, the transcript τ0, view of A2 at the start of
the second stage, is set as the advice string τ̃ .

16

Chapter 3

Indifferentiability of Tweakable
LR3

3.1 Introduction

Coron et al. in TCC 2010 proposed a 2n-bit permutation by using an n-bit ideal cipher with an
n-bit key in a Feistel type structure for three rounds [37]. The authors showed n/2-bit indifferen-
tiable security. In this section, we improve their result by showing (n−2 log n)-bit indifferentiable
security by using more sophisticated counting techniques. This result will help us design ideal
permutations using block ciphers and deploy them in permutation-based cryptosystems such as
Sponge constructions.

3.1.1 The Original Construction by Coron et al.
[37]

Block ciphers have been a reliable source of cryptographic security for decades. The most well-
known block ciphers receive dedicated attention from the world’s leading cryptanalysts, and the
ones that stand the test for a reasonable time come to gain a trusted position in the cryptographic
community. Since block ciphers usually have a fixed small width, the common approach for ex-
tending their domain is through modes of operation. Many wider permutations have been built
on top of block ciphers which exhibit strong pseudorandomness among other useful properties.
However, these modes of operation are usually not indifferentiable from ideal random permuta-
tions, and thus cannot be treated as ideal ciphers upon which we can build more cryptosystems.

Coron et al. [37] first introduced a construction that extends the domain of a block cipher
from n-bits to 2n-bits. They used a tweakable block cipher of width n bits in a three-round
Feistel mode with three independent keys and showed that this is indifferentiable from an ideal
random permutation over 2n bits, and thus can be used as an ideal cipher. A detailed description
along with a diagram (Fig. 3.1) can be found in Sec. 3.1.2, pp. 18-18 of this paper. (We’ll call this
construction TLR3, short for Tweakable Luby-Rackoff 3 -round.) Their proof of indifferentia-
bility works for an adversary making O(2n/2) queries, guaranteeing security up to the birthday
bound in the input width of the underlying tweakable permutation.

17

3.1.2 3-round TBC-based Luby-Rackoff

We will study the permutation TLR3, due to Coron et al. [37], Ψ : {0, 1}2n → {0, 1}2n has oracle
access to primitives E1, E2, and E3, three un-keyed independent tweakable random permutations
{0, 1}n × {0, 1}n → {0, 1}n. Since the width of the underlying primitives is n bits, we’ll think of
Ψ as accepting and outputting pairs of n-bit blocks. For an encryption query (L,R), (S, T) :=
Ψ(L,R) is computed through the following steps:

X ← E1(R,L),

T ← E2(X,R),

S ← E3(T,X).

Similarly, for a decryption query (S, T), (L,R) := Ψ−1(S, T) is computed through the following
steps:

X ← E−13 (T, S),

R← E−12 (X,T),

L← E−11 (R,X).

As explained at the end of Sec. 2.1.1 on p. 13, we shall treat E1, E2, E3 as ideal ciphers in our
proof. Fig. 3.1 illustrates the TLR3 construction.

We denote E := (E1, E2, E3) and write Ψ as ΨE to explicitly indicate that Ψ has oracle
access to E. We’ll consistently use the letters L,R,X, S, T to indicate the same blocks as in
Fig. 3.1. We also note that a query in either direction is completely described by the 5-tuple
σ = (L,R,X, S, T), including all internal inputs and outputs of the ideal ciphers. For such a
5-tuple σ and an index i ∈ [1..5] we’ll denote the i-th element of σ by σi (e.g., σ3 = X).

L R

X

TS

E2

E3

E1

Figure 3.1: TLR3, a permutation-based on 3-round Feistel type mixing using ideal ciphers E1,
E2 and E3. The dotted input lines indicate the keys.

3.1.3 Our Contribution

In this chapter, we examine the indifferentiability of Coron et al.’s construction more closely
and show that indifferentiability still holds when we allow the adversary to make O(2n−2 logn)

18

queries. This is often found to be the optimal level of security for any construction based on a
permutation of width n bits, up to a factor of n.

More specifically, we construct a simulator such that for any adversary making queries to the
construction and the simulator not exceeding q queries in all, their differentiating advantage is
bounded by n2q/2n + 6nq/2n + n2q2/22n, and the simulator makes no more than nq queries to
the ideal permutation oracle. (We make the trivial assumption that n ≥ 6.)

To achieve this better bound, we use a more sophisticated simulator and delicate counting
techniques. In particular, when answering inner queries, the simulator in [37] only makes one
attempt at sampling a good response, while our simulator makes n independent attempts before
giving up. We also allow a lot of internal collisions, and only ban collisions with certain properties;
this necessitates a lot of careful counting. A detailed overview of our proof technique can be
found in Sec. 3.1.4, pp. 19-20.

The main security result of this paper is the following:

Theorem 2. For the TLR3 construction Ψ with oracle access to a tweakable permutation E of
output width n ≥ 6 bits (both as specified in Sec. 3.1.2, pp. 18-18), there exists a simulator S

such that for any adversary A making at most q queries, we have

∆A
�
(π,S π), (ΨE , E)

�
≤ n2q

2n
+

6nq

2n
+

n2q2

22n
,

where π is a random permutation over {0, 1}2n. Further, S makes at most nq queries to π and
has running time O(nq2).

Hence, ΨE is (t, q, ϵ)-indifferentiable from π where t = O(nq2) and ϵ = n2q/2n + 6nq/2n +
n2q2/22n. (We’ll revisit and prove this theorem at the end of the chapter in Subsec. 3.4.4,
pp. 36-36.)

We believe this security improvement is a significant leap from the best-known results, espe-
cially at a time when permutation-based cryptosystems are gaining quickly in popularity. Our
result establishes the TLR3’s claim to being a domain-extending ideal cipher on a much firmer
footing.

3.1.4 Overview of Proof and Outline of the Chapter.

To prove the indifferentiability of the TLR3 construction Ψ based on a tweakable permutation E
from a random permutation π, we first describe a simulator S , and then consider an adversary
distinguishing between two games: G0 with (π,S π), and G1 with (ΨE , E). (In ΨE , we model the
tweakable permutation E as an ideal cipher with the tweak as the key.) We consider a hybrid
game G1/2 in between, where the random permutation π is replaced with a special random

oracle eπ which answers both input queries and inverse queries (its behaviour is described in
detail in Sec. 3.2. The proof reduces to carefully bounding the two advantages ∆A

�
G0,G1/2

�
and

∆A
�
G1/2,G1

�
. We calculate these bounds through separate applications of Patarin’s H-Coefficient

Technique (Theorem 1, p. 14), and bring everything together to establish the main result.
Sec. 3.2 (pp. 20-23) describes the main simulator S we use for the proof; it deviates from

Coron et al.’s simulator [37] in how it processes the inner queries—where their simulator makes
only one attempt to come up with a ‘good’ response, our simulator makes n attempts before
giving up. The pseudocodes for S π can be found in Fig. 3.3,3.4.

Lemma 4 (p. 26) gives a bound for ∆A
�
G0,G1/2

�
, and Lemma 7 (p. 35) gives a bound for

∆A
�
G1/2,G1

�
; from these two lemmas, Theorem 2 follows immediately. Proof of Lemma 4

(Sec. 3.3.2, pp. 24-26) is a fairly straightforward application of the H-Coefficient Technique:

19

we define an event bad∗ in G1/2, bound its probability (Lemma 2, p. 25), and show that any good
transcript is at least as likely to be yielded by G0 as by G1/2 (Lemma 3, p. 26); these results
combine to establish Lemma 4.

The main challenge lies in proving Lemma 7, i.e., bounding the second advantage ∆A
�
G1/2,G1

�
;

this we do in Sec. 3.4 (pp. 27-36), the longest and the most technically dense section of this work.
One crucial problem here is that the adversary can observe multi-collisions in the π queries and
use that information to query the simulator. (In [65] this problem does not appear as the adver-
sary can not make any simulator queries after it makes its first construction query.) As in the
case of Lemma 4, we define an event bad in G1/2, and split the problem into two parts: bounding
the probability of bad (Lemma 5, p. 29) and bounding the ratio of H-Coefficients (Lemma 6,
p. 31). In Sec. 3.4.2 (pp. 29-31), through a careful case-by-case counting, we prove Lemma 5. In
Sec. 3.4.3 (pp. 31-35) another exercise in careful counting establishes Lemma 6, thus successfully
completing the proof of our main result.

3.2 Description of Simulator and π̃

eπ represents a specially defined oracle used in the game G1, which we call a two-sided random
oracle. π̃ maintains a table Q of its previously answered queries. It takes as input a pair (U, V)
and a direction + or −, where + indicates a forward query and − indicates a backward query. It
first attempts to answer the query from Q: this can be done either if (U, V) has been queried in
the same direction before (in which case the pair returned earlier is returned again), or if (U, V)
was itself the answer to an earlier query in the opposite direction (in which case the input pair
from the aforementioned query is returned). Failing this, it samples an element (W,Z) from
{0, 1}2n uniformly at random, and checks whether (W,Z) is already matched in Q, i.e. if (W,Z)
was previously queried in the opposite direction of the present (U, V) query, or was the response
to some (U ′, V ′) query in the same direction as the (U, V) query. If (W,Z) is found to be fresh
(not matched before), eπ returns (W,Z) updates Q; otherwise it aborts and returns ⊥. The
pseudocode can be found in Fig. 3.2.

It differs from a lazily sampled random permutation in the fact that new pairs are always
sampled uniformly at random from the entire {0, 1}2n, without excluding previously sampled
pairs, as we would do for a random permutation. This allows one pair to be matched with
multiple pairs, in which case eπ aborts; we treat this as a bad event in the game where we
encounter eπ. Thus eπ ensures that its table Q remains a partial permutation. We will write eπ
and eπ−1 to indicate the two-block functions eπ(+, ·, ·) and eπ(−, ·, ·) respectively.

In this section we define a simulator S in preparation for our analysis of the indifferentiability
of TLR3. We want the (π,S π)-interdependence to mimic the (ΨE , E)-interdependence as
closely as possible. This will be our principle when defining the simulator responses.

For each query, S will first choose a full 5-tuple (L,R,X, S, T) (using the mechanism de-
scribed below), and then output the required variable from this 5-tuple. There are six types of
queries that the adversary can make to the simulator: Ei and E−1i for i ∈ [1..3]. Of these, S

treats the following pairs of queries identically (except for the output value):

• E−11 (R,X) and E2(X,R);

• E−12 (X,T) and E3(T,X).

Hence we can define S by considering four cases, where each case can be identified simply by
the unordered pair of query inputs. S stores the responses to previous queries in a table H, and
while answering queries it consults H as needed; it also maintains a separate table F of failed
attempts (to be described shortly). For convenience we will use the following notation: at any

20

eπ(+, L,R):

1 : if (∃(S, T))((L,R, S, T) ∈ Q)

2 : return (S, T)

3 : else

4 : (S, T)←$ {0, 1}2n

5 : if (∃(L′
, R

′))((L′
, R

′
, S, T) ∈ Q)

6 : return ⊥

7 : else

8 : Q← Q ∪ (L,R, S, T)

9 : return (S, T)

10 : endif

11 : endif

eπ(−, S, T):
1 : if (∃(L,R))((L,R, S, T) ∈ Q)

2 : return (L,R)

3 : else

4 : (L,R)←$ {0, 1}2n

5 : if (∃(S′
, T

′))((L,R, S
′
, T

′) ∈ Q)

6 : return ⊥

7 : else

8 : Q← Q ∪ (L,R, S, T)

9 : return (L,R)

10 : endif

11 : endif

Figure 3.2: Pseudocode for eπ on forward and backward queries. Q is initialised as an empty set.

point in the query phase, Ei(a, ·) for i ∈ [3] will denote the set of all c such that S has set the
value c for some Ei(a, b) previously; similarly E−1i (a, ·) for i ∈ [1..3] will denote the set of all b
such that S has set the value x for some E−1i (a, c) previously. Finally, max{A,B} will denote
the bigger set between A and B in terms of cardinality. With this convention in mind, we now
proceed to describe how our simulator works:

{L,R}: While answering an E1(R,L) query S first checks if for some X,S, T there already
exists a 5-tuple (L,R,X, S, T) in H. If yes, then it returns X. Otherwise it sets (S, T) =
π(L,R). Then it samples X uniformly at random from {0, 1}n \max(E1(R, ·), E−13 (T, ·)).
S returns X and stores (L,R,X, S, T) in H. (We mention here that we deviate slightly
from the ‘common-sense’ simulator which would sample X uniformly from
{0, 1}n \ (E1(R, ·)SE−13 (T, ·)); this is done to help simplify the calculations.)

{S,T}: This is similar to the {L,R} case.

{R,X}: Handling this case is a bit trickier. Again S begins by trying to find L, S, T such that
(L,R,X, S, T) is already in H. If it succeeds, it returns L or T depending on whether the
query was E−11 (R,X) or E2(X,R). Otherwise, S samples L uniformly at random from
{0, 1}n \ E−11 (R, ·) and queries π with (L,R) to get (S, T). If the tuple (L,R,X, S, T)
doesn’t violate the tweakable random permutation property (i.e., if T /∈ E2(X, ·)), S adds
it to H and returns L or T as needed. Otherwise, it stores (L,R, S, T) in F and repeats
the process starting with re-sampling L. If after n attempts it remains unsuccessful, S

aborts and returns ⊥.

{X,T}: This is similar to the {R,X} case.
The pseudocode for the behaviour of S π can be found in Fig. 3.3, Fig. 3.4 (p. 22, p. 23). In

the pseudocode we denote {0, 1}n \A as Ac. For notational brevity we use the lookup functions

S
(a,b)
H (U, V), defined as follows: for an input (U, V) and indices a, b ∈ [1..5] S checks if there

already exists a 5-tuple σ in H such that σa = U and σb = V ; if yes then S
(a,b)
H (U, V) returns

the other 3 values in σ as an ordered triple; otherwise it returns 0.

21

E1(R,L)

1 : if S
(1,2)
H (R,L) = (X,S, T)

2 : return X

3 : else

4 : (S, T)← π(L,R)

5 : X ←$ max(E1(R, .), E−13 (T, .))c

6 : add (L,R,X, S, T) to H

7 : return X

8 : endif

E−13 (T, S)

1 : if S
(4,5)
H (T, S) = (X,L,R)

2 : return X

3 : else

4 : (L,R)← π−1(S, T)

5 : X ←$ max(E1(R, .), E−13 (T, .))c

6 : add (L,R,X, S, T) to H

7 : return X

8 : endif

E−11 (R,X)

1 : if S
(2,3)
H (R,X) = (L, S, T)

2 : return L

3 : else

4 : for j = 1..n do

5 : Lj ←$ E−11 (R, .)c

6 : (Sj , Tj)← π(Lj , R)

7 : if S
(3,5)
H (X,Tj) = 0

8 : add (Lj , R,X, Sj , Tj) to H

9 : return Lj

10 : else

11 : add (Lj , R, Sj , Tj) to F

12 : endif

13 : endfor

14 : return ⊥

15 : endif

E2(X,R)

1 : if S
(2,3)
H (R,X) = (L, S, T)

2 : return T

3 : else

4 : for j = 1..n do

5 : Lj ←$ E−11 (R, .)c

6 : (Sj , Tj)← π(Lj , R)

7 : if S
(3,5)
H (X,Tj) = 0

8 : add (Lj , R,X, Sj , Tj) to H

9 : return Tj

10 : else

11 : add (Lj , R, , Sj , Tj) to F

12 : endif

13 : endfor

14 : return ⊥

15 : endif

Figure 3.3: Pseudocodes for S π. The rest of the figure is continued in 3.4.

22

E−12 (X,T)

1 : if S
(3,5)
H (X,T) = (L,R, S)

2 : return R

3 : else

4 : for j = 1..n do

5 : Sj ←$ E3(T, ·)c
6 : (Lj , Rj)← π−1(Sj , T)

7 : if S
(2,3)
H (Rj , X) = 0

8 : add (Lj , Rj , X, Sj , T) to H
9 : return Rj

10 : else

11 : add (Lj , Rj , Sj , T) to F
12 : endif

13 : endfor

14 : return ⊥
15 : endif

E3(T,X)

1 : if S
(3,5)
H (X,T) = (L,R, S)

2 : return S

3 : else

4 : for j = 1..n do

5 : Sj ←$ E3(T, ·)c
6 : (Lj , Rj)← π−1(Sj , T)

7 : if S
(2,3)
H (Rj , X) = 0

8 : add (Lj , Rj , X, Sj , T) to H
9 : return Sj

10 : else

11 : add (Lj , Rj , Sj , T) to F
12 : endif

13 : endfor

14 : return ⊥
15 : endif

Figure 3.4: Pseudocodes for S π. The lookup functions S
(a,b)
H are as defined in Sec. 3.2 (p. 20).

3.2.1 Efficiency of S

To answer each simulator query of the adversary A, S makes at most n queries to π and for
each of them spends at most O(q) amount of time to determine whether its query provides a
valid answer or not. As there are at most q queries made to the simulator, the running time of
S is O(nq2) and S makes at most nq queries to π.

3.3 Introducing the Hybrid Game G1/2

To facilitate our analysis of the indifferentiability of TLR3, we introduce a hybrid game between
the ideal world and the real world. Recall the definition of eπ (Sec. 3.2. Consider an adversary
A playing the following games:

G0: This game corresponds to the ideal world, where A interacts with (π,S π).

G1/2: In this game we replace π with eπ, so A interacts with (eπ,S eπ).

G1: Finally, this game corresponds to the real world, where A interacts with (ΨE , E).

Fig. 3.5 shows this sequence of games. To prove our intended security bound, we tackle two
problems separately: bounding the distinguishing advantage between G0 and G1/2 and bounding
the distinguishing advantage between G1/2 and G1. We devote the rest of this section to the
former and defer the latter to Sec. 3.4. We begin by describing the games in more detail,
including descriptions of oracle behaviour and transcripts.

23

π S

A

G0

eπ S

A

G1/2

Ψ E

A

G1

Figure 3.5: Sequence of Games Transforming from Ideal to Real. (Arrows indicate oracle access.)

3.3.1 Transcripts and Adversary Restrictions

Consider an adversary A playing one of the games G0,G1/2,G1. We stipulate

• that A is not allowed to repeat a query;

• that A, for each simulator query, receives the entire 5-tuple (L,R,X, S, T) corresponding
to that query;

• that A, after completing all its queries and getting the answers, feeds all its Ψ (resp. π)
queries to E (resp. S); E or S can then calculate all the intermediate X values for those
queries as well, and these values are released to A;

• that at the end of the query phase, S extends all the 4-tuples in F to 5-tuples by treating
them as {L,R} queries and reveals these 5-tuples to A (as for G1, we describe below a way
for E to simulate these failed queries).

We note that these conditions in no way restrict A’s power: it clearly cannot get any extra
information by repeating queries; it is free not to use the extra information it gains when it
receives the entire 5-tuple instead of its specific query; and finally, since A has already seen
the answers to its queries beforehand and S does not get to know the π queries of A before it
answers all the simulator queries, the extra information revealed at the end to A cannot diminish
its power. We can thus view the transcript as a set of q∗ 5-tuples.

Sampling Failed Attempts in Real World. On an {R,X} query, E samples an L uniformly
at random from E−11 (R, ·), sets (S∗, T ∗) = Ψ(L∗, R), and checks if T ∗ ∈ E2(X, .); if not E adds
(L∗, R,X, S∗, T ∗) to the set F of failed attempts and tries again. On encountering the first
success E discards the successful tuple and returns to A the honest tuple (L,R,X, S, T) (where
L = E−11 (R,X) and (S, T) = Ψ(L,R)). If it remains unsuccessful after all n attempts, it directly
returns the honest tuple to A and stops.

3.3.2 Bounding ∆A

�
G0,G1/2

�

Recall that in G0 the adversary A interacts with (π,S π) and in G1/2 it interacts with (eπ,S eπ).
Suppose A makes q queries in total (it doesn’t make any repeated or redundant queries). Ac-
cording to our condition, A gives the construction queries to S after completing all queries. So
there are in total exactly q 5-tuples (L,R,X, S, T) in the transcript. For determining each of
these q 5-tuples, exactly one of π and π−1 is invoked in G0, and similarly exactly one of eπ

24

and eπ−1 is invoked in G1/2. Let us assume the construction has been queried q∗f times in the
forward direction and q∗b times in the backward direction (when asked directly by the adversary,
or through simulator queries) where q∗ = q∗f + q∗b ≤ nq. Let τ be the final adversary transcript.

The Bad Event. In the game G1/2, we say the event bad∗ has occurred if at any point during

the query phase eπ returns ⊥. This can be in response to a query from A or a query from S .
We call τ good if it can be obtained in G1/2 without encountering the event bad∗. In the next
lemma, we derive an upper bound on Pr [bad∗].

Lemma 2.

Pr [bad∗] ≤ n2q2

22n
.

Proof. There are three cases which can lead to eπ returning ⊥; we go over them one by one and
bound their probabilities.

Case 1: For a forward query (L,R), eπ picks an (S, T) such that

(S, T) = eπ(L′, R′)

for an earlier forward query (L′, R′). Call the probability of this p1. There are q∗f forward
queries. Any pair of them can provide the required collision. So

p1 ≤
q∗2f

22n+1
. (3.1)

Case 2: For a backward query (S, T), eπ picks an (L,R) such that

(L,R) = eπ−1(S′, T ′)

for an earlier backward query (S′, T ′). Call the probability of this p2. There are q
∗
b backward

queries. Any pair of them can provide the required collision. So

p2 ≤
q∗2b

22n+1
. (3.2)

Case 3: For a forward query (L,R), eπ picks an (S, T) which was itself an earlier backward
query; or for a backward query (S, T), eπ picks an (L,R) which was itself an earlier backward
query. Call the probability of this p3. There are q

∗
f forward queries and q∗b backward queries.

Hence there are at most q∗fq
∗
b possible collision pairs, giving

p3 ≤
q∗fq
∗
b

22n
. (3.3)

By union-bound,

Pr [bad∗] ≤
3X

i=1

pi. (3.4)

Substituting Eqs. 3.1, 3.2 and 3.3 in Eq. 3.4 gives us

Pr [bad∗] ≤
q∗2f

22n+1
+

q∗2b
22n+1

+
q∗fq
∗
b

22n
=

q∗2

22n+1
≤ n2q2

22n+1
,

which is the bound claimed in the lemma.

25

Probabilities of a Good Transcript. The next task is to bound the ratio of the probabilities
of a good transcript in G0 and G1/2. This we do in the following lemma.

Lemma 3. For any good transcript τ,

Pr [G0 yields τ] ≥ Pr
�
G1/2 yields τ

�
.

Proof. We fix a good transcript τ. For b ∈ {0, 1}, the event {Gb yields τ} has two independent
sources of randomness: the random coin of the oracle (π or eπ) when called by A or the simulator,
and the internal random coin of the simulator S . Accordingly, τ can be seen as consisting of
two parts: τp, which is dependent on the random coin of the oracle; and τs, which is dependent
on the random coin of the simulator. Then we can say that

Pr [G0 yields τ] = Pr [π yields τp] · Pr [S yields τs] ,

Pr
�
G1/2 yields τ

�
= Pr

� eπ yields τp

�
· Pr [S yields τs] .

To complete the proof, we need to show that

Pr [π yields τp] ≥ Pr
� eπ yields τp

�
. (3.5)

In G0, in the process of yielding τp, π is called exactly q times, including forward and backward
queries by A and S . If the i-th query is an (L,R) query, the response (S, T) is chosen distinct
from all previous (S, T) values, which are themselves all distinct since τ is a good transcript.
Similarly, if the i-th query is an (S, T) query, the response (L,R) is chosen distinct from all
previous (L,R) values, which are again themselves all distinct. Thus, conditioned on the first
(i−1) responses, the probability of the i-th response of π matching that of τp is always 1/(22n−
i+ 1). Recalling that there are q∗ distinct queries to π in τ, we have

Pr [π yields τp] =
1

22n · (22n − 1) · . . . · (22n − q∗ + 1)
≥ 1

(22n)
q∗ . (3.6)

Similarly, in G1/2, in the process of yielding τp, eπ is called exactly q times. Here, irrespective of
the direction of the query, the responses are chosen uniformly from {0, 1}2n and independently
of each other. Thus,

Pr
� eπ yields τp

�
=

1

(22n)
q∗ . (3.7)

The right hand side of Eq. 3.7 is the right hand side of Eq. 3.6, thus establishing Eq. 3.5 and
completing the proof of the lemma.

Finally, we find a bound on ∆A
�
G0,G1/2

�
in the following lemma, using the results derived

above.

Lemma 4.

∆A
�
G0,G1/2

�
≤ n2q2

22n+1
.

Proof. The result follows from Theorem 1, after substituting ϵ1 = n2q2/22n+1 (from Lemma 2)
and ϵ2 = 0 (from Lemma 3).

26

3.4 Bounding ∆A
�
G1/2,G1

�
and Deriving the Final Bound

Since the analysis of this section is the most involved part of this work, we begin by introducing
some notations to describe certain sets and counters which will often be referred to later in the
section. In the description that follows, we abuse the term simulator queries to mean queries to
S when talking about G1/2 and queries to E when talking about G1; when we specifically talk
about one of the two we explicitly name S or E. Similarly, we say construction queries to mean
queries (in either direction) to eπ when talking about G1/2 and queries to Ψ when talking about
G1. Unless otherwise mentioned, when we refer to the construction queries up to a certain point,
we include the failed queries, if any.

We will use the indicator set IA,B to denote the indices of all {A,B} simulator queries. As
in the previous proof, let q∗f denote all forward construction queries, and q∗b denote all backward

construction queries, with q∗ = q∗f +q∗b ≤ nq. Let τi
con denote the set of 4-tuples (L,R, S, T) that

were revealed to A through construction queries before the i-th simulator query. For i ∈ IR,X , if
the i-th simulator query is {R0, X0}, we define the following:

B0,iR0,X0
:= E−11 (R0, ·),

B1,iR0,X0
:=
�
L
�� some (L,R0, S, T) ∈ τi

con, T ∈ E2(X0, ·)
	
,

B2,iR0,X0
:=
�
L
�� some (L,R0, S, T) ∈ τi

con, T /∈ E2(X0, ·)
	
,

B3,iR0,X0
:= {0, 1}n \

2[

j=0

Bj,iR0,X0
,

µ
j,i
R0,X0

:=
���Bj,iR0,X0

��� for 0 ≤ j ≤ 3.

Similarly, for i ∈ IX,T , if the i-th simulator query is {X0, T0}, we define the following:

B0,iX0,T0
:= E3(T0, ·),

B1,iX0,T0
:=
�
S
�� some (L,R, S, T0) ∈ τi

con, R ∈ E−12 (X0, ·)
	
,

B2,iX0,T0
:=
�
S
�� some (L,R, S, T0) ∈ τi

con, R /∈ E−12 (X0, ·)
	
,

B3,iX0,T0
:= {0, 1}n \

2[

j=0

Bj,iX0,T0
,

µ
j,i
X0,T0

:=
���Bj,iX0,T0

��� for 0 ≤ j ≤ 3.

Next, we describe some notation specific to one of the two games G1/2 and G1. In the query

phase of G1/2, let τ
i
S

denote the set of 5-tuples (L,R,X, S, T) that were revealed to A through
S queries before the i-th query to S . Let (L0, R0, X0, S0, T0) be the 5-tuple revealed on the
i-th simulator query, irrespective of the type of this query. We define the following counters:

ri :=
���
�
(L,X, S, T)

�� (L,R0, X, S, T) ∈ τi
S

	 ���,

ti :=
���
�
(L,R,X, S)

�� (L,R,X, S, T0) ∈ τi
S

	 ���,

xi :=
���
�
(L,R, S, T)

�� (L,R,X0, S, T) ∈ τi
S

	 ���,

mi := min(ri, ti),

27

Mi := max(ri, ti).

Next, in the query phase of G1, let τi
E denote the 5-tuples that were sampled before the i-

th query. (We note that in G1, for every query, a distinct 5-tuple (L,R,X, S, T) is sampled,
irrespective of the nature and direction of the query; when E is queried, the entire 5-tuple is
immediately revealed to A, and when Ψ is queried, only (L,R, S, T) is revealed immediately, and
X is revealed at the end of the query phase; but in both cases, the sampling is done on-the-fly.)
Suppose (L0, R0, X0, S0, T0) is the 5-tuple sampled on the i-th query. We define the following
counters:

r′i :=
���
�
(L,X, S, T)

�� (L,R0, X, S, T) ∈ τi
E

	 ���,

t′i :=
���
�
(L,R,X, S)

�� (L,R,X, S, T0) ∈ τi
E

	 ���,

x′i :=
���
�
(L,R, S, T)

�� (L,R,X0, S, T) ∈ τi
E

	 ���.

Finally, let κmcoll
−→ denote the maximum number of multi-collisions on T over the forward construc-

tion queries, and κmcoll
←− denote the maximum number of multi-collisions on R over the backward

construction queries.

3.4.1 Bad Events

We define the following bad events for G1/2:

bad1:
Pq∗

i=1 mi ≥ q;

bad2:
Pq∗

i=1 mi < q, S never returns ⊥, and at some query in IL,R

S
IS,T , S violates the

tweakable random permutation property, i.e it reveals an X ∈ E1(R, ·)SE−13 (T, ·);

bad3: S returns ⊥ at some point;

bad4: max
(
κmcoll
−→ ,B

�
≥ n;

bad5: eπ returns ⊥ at some point.

Finally, we define

bad :=
5[

i=1

badi.

Thus, by union-bound,

Pr [bad] ≤
5X

i=1

Pr [badi] . (3.8)

As before, we call τ good if it can be obtained in G1/2 without encountering the event bad.

28

3.4.2 Probability Bound for Bad Events

In the next lemma, we derive an upper bound for Pr[bad].

Lemma 5. For n ≥ 6,

Pr[bad] ≤ n2q

2n
+

n2q2

22n+1
.

Proof. We bound the probabilities of the bad events bad1, . . . , bad5 separately.

bad1: We define the indicator random variables Yi,j and Zi,j as follows :

Yi,j :=

(
1, if Ri = Rj

0, otherwise

and

Zi,j :=

(
1, if Ti = Tj

0, otherwise

Note that the adversary can fix only one of R and T in any query while the other is
chosen uniformly at random. So we have either Pr[Yi,j = 1] = 1/2n for all j < i, or
Pr[Zi,j = 1] = 1/2n for all j < i. Note that

ri =
X

j<i

Yi,j , ti =
X

j<i

Zi,j .

Now let E[Y] denote the expectation of a random variable Y . Then for all i, either

E[ri] = E
X

j<i

[Yi,j] =
X

j<i

E[Yi,j] =
X

j<i

1

2n
=

i− 1

2n
,

or E(ti) = (i− 1)/2n (by similar reasoning). Now,

E

q∗X

1

mi

 =

q∗X

1

E [min(ri, ti)]

≤
q∗X

1

min (E[ri],E[ti]) ≤
q∗X

1

i− 1

2n
=

q∗(q∗ − 1)

2n+1
.

Now, as q∗ ≤ nq from Markov’s inequality, we have

Pr [bad1] = Pr

q∗X

1

mi ≥ q

≤ 1

q
· E

q∗X

1

mi

 ≤ 1

q
· nq(nq − 1)

2n+1
≤ n2q

2n+1
. (3.9)

bad2: We recall that for an {L,R} or {S, T} query, S picksX from {0, 1}n\max(E1(R, ·), E−13 (T, ·)).
Thus, bad2 can happen only when X is picked from the smaller of the two sets E1(R, ·)
and E−13 (T, ·). In the i-th query the probability of this event is bounded by mi/(2

n−Mi).
So by applying union-bound, and the fact that q ≤ 2n − 1, we have,

Pr[bad2] ≤
q∗X

1

mi

2n −Mi
≤

q∗X

1

mi

2n − q
≤ q

2n − q
≤ 2q

2n
. (3.10)

29

bad3: Consider a particular (R,X) query (R0, X0). The probability that S returns ⊥ is at
most (µ

2,i
R0,X0

+ n+µ
3,i
R0,X0

· (xi/2
n))n/(2n)n, since the number of sampling options which

guarantee failure starts at µ
2,i
R0,X0

and can go up to µ
2,i
R0,X0

+ n (it increases by one each

time a new L sampled from µ
3,i
R0,X0

leads to failure, which can happen at most n times),

and in addition, there are µ
3,i
R0,X0

options which lead to failure with probability xi/2
n. Now

(µ
2,i
R0,X0

+ n+ µ
3,i
R0,X0

· (nxi/2
n))n

(2n)n

≤
(nxi + n+ µ

3,i
R0,X0

· (nxi/2
n))n

(2n)n

≤ (nq + n+ 2n · (nq/2n))n
(2n)n

≤
�
1

n
+

n

2n
+

1

n

�n

≤ 1

2n
,

the last two inequalities following from the conditions q ≤ 2n/n2 and n ≥ 6 respectively.
The analysis for (X,T) queries will be similar. As there are at most q many such queries,
by using union-bound we have

Pr[bad3] ≤
q

2n
. (3.11)

bad4: For any forward query (L,R) and any T we have

Pr[eπ(L,R) ∈ {0, 1}n × T] =
1

2n
.

By applying union-bound and then summing over all such T we have

Pr
�
κmcoll
−→ ≥ n

�
≤

X

T∈{0,1}n

1

(2n)n
·
�
q∗

n

�

≤ 2n · q∗n

(2n)n

≤ (nq)n

2n(n−1)
≤ q

2n
,

where the last line of the inequality holds for n ≥ 4, as q ≤ 2n/n.

Similarly, we can show that

Pr [B ≥ n] ≤ q

2n
.

Then we have
Pr[bad4] = Pr

�
max

(
κmcoll
−→ ,B

�
≥ n

�

≤ Pr
�
κmcoll
−→ ≥ n

�
+ Pr [B ≥ n] ≤ 2q

2n
. (3.12)

bad5: This case is identical to bad∗ in Lemma 2 (see p. 25), and recalling the bound obtained
there we have

Pr[bad5] = Pr [bad∗] ≤ n2q2

22n+1
. (3.13)

30

Substituting the bounds from Eqs. 3.9 through 3.13 in Eq. 3.8 gives us

Pr[bad] ≤ n2q

2n+1
+

5q

2n
+

n2q2

22n+1

=

�
n2

2
+ 5

�
· q

2n
+

n2q2

22n+1
≤ n2q

2n
+

n2q2

22n+1
,

which completes the proof of Lemma 5.

3.4.3 Probabilities of a Good Transcript

In the final part of our analysis, we derive a bound for the ratio of probabilities of a good
transcript in G1 and G1/2.

Lemma 6. For any good transcript τ,

Pr [G1 yields τ] ≥
�
1− 6nq

2n

�
· Pr

�
G1/2 yields τ

�
.

Proof. We first turn our attention to bounding Pr
�
G1/2 yields τ

�
. In G1/2 there are two indepen-

dent sources of randomness: the random coin of eπ, and the internal random coin of S . Since bad
is not encountered, all responses of eπ are independent and uniformly random. For calculating
the probability of S outputting on its i-th query the 5-tuple (L0, R0, X0, S0, T0) (as well as the
failure set F0 of size ki when i ∈ IR,X ∪ IX,T) that matches the corresponding one in τ, we
condition on the transcript revealed to A over the first i− 1 queries to S and all direct queries
to eπ up to that point; call this entire transcript-so-far τi, and let pi denote this conditional
probability of S revealing (L0, R0, X0, S0, T0) and F0 (if applicable) at the i-th query. Then

Pr
�
G1/2 yields τ

�
=

qY

i=1

pi. (3.14)

We consider each type of query separately:

i ∈ IL,R: We recall that here S proceeds in two steps: it first sets (S, T) = eπ(L0, R0), and
then samples X uniformly at random from the set {0, 1}n \ max(E1(R0, ·), E−13 (T0, ·)),
which is of size 2n −Mi. Thus,

pi = Pr
�
(X,S, T) = (X0, S0, T0)

�� τi
�

= Pr
�
X = X0

�� τi
�
· Pr

�
(S, T) = (S0, T0)

�� τi
� (3.15)

by the independence of the random coins of eπ and S . We know that

Pr
�
X = X0

�� τi
�
=

1

2n −Mi
. (3.16)

Since S has just been queried with (L0, R0), we know that (L0, R0) does not occur as part
of any other 5-tuple fixed by S . Thus, even if (L0, R0, S0, T0) ∈ τi, it does not affect any
other query to S . So we can assume for simplicity that (L0, R0, S0, T0) /∈ τi. Thus,

Pr
�
(S, T) = (S0, T0)

�� τi
�
= Pr [(S, T) = (S0, T0)] =

1

22n
. (3.17)

31

(Without the simplifying assumption, for the case of (L0, R0, S0, T0) ∈ τi, this conditional
probability would instead be 1, but the 1/22n would be obtained from the probability
of that previous eπ query, so this does not affect the overall calculations.) Combining
Eqs. 3.15, 3.16 and 3.17, we get

pi =
1

22n · (2n −Mi)
. (3.18)

i ∈ IS,T : The analysis here goes just as in the case of i ∈ IL,R, so we obtain

pi =
1

22n · (2n −Mi)
. (3.19)

i ∈ IR,X : Here, S first samples L uniformly at random from the set {0, 1}n\E−11 (R0, ·)), which
is of size 2n − ri; then it provisionally sets (S, T) = eπ(L,R0), and halts if T /∈ E2(X0, ·);
else it adds (L,R0, S, T) to the failure set F , resamples L, and repeats the steps. Since τ
is good, we know S halts at some point; let L∗ be the value of L for which it halts. Now
there are two cases: L0 ∈ B2,iR0,X0

, and L0 ∈ B3,iR0,X0
. Thus, we can write

pi = Pr
�
(L∗, S, T) = (L0, S0, T0),F = F0

�� τi
�

= Pr
�
(S, T) = (S0, T0)

�� L∗ = L0,F = F0,τ
i
�
· Pr

�
L∗ = L0,F = F0

�� τi
�
.

(3.20)

As in the previous case, we have

Pr
�
(S, T) = (S0, T0)

�� L∗ = L0,F = F0,τ
i
�
= Pr [(S, T) = (S0, T0)] =

1

22n
. (3.21)

We observe that

Pr
�
L∗ = L0,F = F0

�� τi
�
= Pr

�
L∗ = L0

�� F = F0,τ
i
�
· Pr

�
F = F0

�� τi
�

=
1

2n − ri
·
�

1

2n − ri

�ki

=
1

(2n − ri)
ki+1

.
(3.22)

From Eqs. 3.20, 3.21 and 3.22 we get

pi ≤ 1

22n · (2n − ri)
ki+1

. (3.23)

i ∈ IX,T : The analysis here goes just as in the case of i ∈ IR,X , so we obtain

pi ≤ 1

22n · (2n − ti)
ki+1

. (3.24)

Substituting Eqs. 3.18, 3.19, 3.23 and 3.24 in Eq. 3.14 gives us

Pr
�
G1/2 yields τ

�
≤

Y

i∈IL,R∪IS,T

1

22n · (2n −Mi)

·
Y

i∈IR,X

1

22n · (2n − ri)
ki+1

·
Y

i∈IX,T

1

22n · (2n − ti)
ki+1

.

(3.25)

32

Bounding Pr [G1 yields τ]. We continue using the definition of τi from the analysis of G1/2,
and let p′i denote the conditional probability of E revealing (L0, R0, X0, S0, T0) as well as F0

(when i ∈ IR,X ∪ IX,T) at the i-th query given τi. Then

Pr [G1 yields τ] =

qY

i=1

p′i. (3.26)

For i ∈ IL,R∪IS,T , E reveals (L0, R0, X0, S0, T0) if and only if E1(R0, L0) = X0, E2(X0, R0) = T0,
E3(T0, X0) = S0. Thus,

p′i =
1

(2n − r′i) · (2n − x′i) · (2n − t′i)
. (3.27)

For i ∈ IR,X ∪ IX,T , in order for E to reveal (L0, R0, X0, S0, T0) and F0 (of size ki), the (ki +1)-
th attempt of E needs to succeed; call the probability of this p′is . For i ∈ IR,X , calculating the
probability of F0 as in the analysis of G1/2 and that of (L0, R0, X0, S0, T0) as in Eq. 3.27, we have

p′i =
1

(2n − r′i) · (2n − x′i) · (2n − t′i) · (2n − ti)
ki · p′is . (3.28)

Let L∗ be the L sampled in the successful attempt, and let p′is (L
∗) denote the success probability

conditioned on L∗. For L∗ ∈ B1,iX0,T0
, p′is (L

∗) = 0 and for L∗ ∈ B2,iX0,T0
, p′is (L

∗) = 1. When L∗ ∈
B3,iX0,T0

, an X is first sampled from {0, 1}n \E1(R0, ·), then a T is sampled from {0, 1}n \E2(X, ·);
it is a success if T /∈ E2(X0, ·). Define

[X]i :=
���
�
(L,R, S, T)

�� (L,R,X, S, T) ∈ τi
S

	 ���.

Then the probability of success given X is (2n−xi− [X]i)/(2
n− [X]i). Taking expectation over

X gives us

p′is (L
∗) =

1

2n − ri
·

X

X/∈E1(R0,·)

2n − xi − [X]i
2n − [X]i

≥ 1

2n − ri
·

X

X/∈E1(R0,·)

2n − xi − [X]i
2n

=
1

2n − ri
·

X

X/∈E1(R0,·)

2n − xi

2n
−

X

X/∈E1(R0,·)

[X]i
2n · (2n − ri)

≥ 2n − xi

2n
− nq

2n · (2n − ri)
≥ 2n − xi − 1

2n
= 1− xi + 1

2n
. (3.29)

Thus, p′is (L
∗) ≥ 1−(xi+1)/2n for all choices of L∗ except when L∗ ∈ B1,iX0,T0

. Taking expectation
over L∗ gives us

p′is ≥
1

2n − ri
·

X

L∗∈E−1(R0,·)\B
1,i
X0,T0

�
1− xi + 1

2n

�

=
1

2n − ri
·
�
2n − ri − µ1,i

X0,T0

�
·
�
1− xi + 1

2n

�

=

1− µ

1,i
X0,T0

2n − ri

!
·
�
1− xi + 1

2n

�
. (3.30)

33

From Eqs. 3.28 and 3.30 we have

p′i ≥ 1

(2n − r′i) · (2n − x′i) · (2n − t′i) · (2n − ri)
ki ·

1− µ

1,i
X0,T0

2n − ri

!
·
�
1− xi + 1

2n

�
. (3.31)

Similarly for i ∈ IX,T we have

p′i ≥ 1

(2n − r′i) · (2n − x′i) · (2n − t′i) · (2n − ti)
ki ·

1− µ

1,i
R0,X0

2n − ti

!
·
�
1− xi + 1

2n

�
. (3.32)

Substituting Eqs. 3.27, 3.31 and 3.32 in Eq. 3.26 gives us

Pr [G1 yields τ] ≥
Y

i∈IL,R∪IS,T∪IR,X∪IX,T

1

(2n − r′i) · (2n − x′i) · (2n − t′i)

·
Y

i∈IR,X

1

· (2n − ri)
ki ·

1− µ

1,i
X0,T0

2n − ri

!
·
�
1− xi + 1

2n

�

·
Y

i∈IX,T

1

· (2n − ti)
ki ·

1− µ

1,i
R0,X0

2n − ti

!
·
�
1− xi + 1

2n

�
.

(3.33)

Ratio of Probabilities. Finally, we look at the ratio

ρ :=
Pr [G1 yields τ]

Pr
�
G1/2 yields τ

� . (3.34)

We first observe that {r′i}, {x′i}, {t′i} are just a re-ordering of {ri}, {xi}, {ti}, so
Y

i

1

(2n − r′i) · (2n − x′i) · (2n − t′i)
=
Y

i

1

(2n − ri) · (2n − xi) · (2n − ti)
, (3.35)

where both products are taken over IL,R ∪ IS,T ∪ IR,X ∪ IX,T . We observe further that for any i,

2n ·
(
2n −M i

�
≥
(
2n − ri

�
·
(
2n − ti

�
. (3.36)

Finally, we observe that

�
1− xi + 1

2n

�
· 2n

2n − xi
= 1− 1

2n − xi
. (3.37)

After substituting Eqs. 3.25 and. 3.26 in Eq. 3.34, applying the observations in Eqs. 3.35, 3.36
and 3.37, and simplifying a little, we arrive at the inequality

ρ ≥
Y

i∈IR,X

1−

µ
1,i
X0,T0

2n − ri

!
·
Y

i∈IX,T

1− µ

1,i
R0,X0

2n − ti

!
·

Y

i∈IR,X∪IX,T

�
1− 1

2n − xi

�
. (3.38)

34

Applying Lemma 1 twice to Eq. 3.38 gives us

ρ ≥

1−

X

i∈IR,X

µ
1,i
X0,T0

2n − ri

 ·

1−

X

i∈IX,T

µ
1,i
R0,X0

2n − ti

 ·

1−

X

i∈IR,X∪IX,T

1

2n − xi

≥ 1−
X

i∈IR,X

µ
1,i
X0,T0

2n − ri
−
X

i∈IX,T

µ
1,i
R0,X0

2n − ti
−

X

i∈IR,X∪IX,T

1

2n − xi

≥ 1− 2

2n
·

 X

i∈IR,X

µ
1,i
R0,X0

+
X

i∈IX,T

µ
1,i
X0,T0

+ nq

 . (3.39)

We claim that X

i∈IR,X

µ
1,i
R0,X0

+
X

i∈IX,T

µ
1,i
X0,T0

≤ 2nq. (3.40)

To see this, consider the various 4-tuples (L,R, S, T) that arise out of the oracle queries as
well as the various (R,X) and (X,T) pairs that are set by the simulators. Consider the following
indicator function,

Ii,j,k :=

(
1, if Ri = Rj , Ti = Tk, Xj = Xk

0, otherwise

Here, i denotes the index of a query to eπ, and j, k are the indices of two distinct queries to S
eπ.

Note that X

i∈IR,X

µ
1,i
R0,X0

+
X

i∈IX,T

µ
1,i
X0,T0

≤
X

i,j,k;j ̸=k

Ii,j,k. (3.41)

The last inequality holds because any ((L,R, S, T), (R,X), (X,T)) 3-tuple can contribute 1 to at
most one of the quantities

P
µ

1,i
R0,X0

and
P

µ
1,i
X0,T0

depending on whether (R0, X0) or (X0, T0)
appears before in the transcript. Now, the various (Li, Ri, Si, Ti) can come in two ways, de-
pending on the direction of the query to eπ. So

P
Ii,j,k can be split into two sums according to

whether the i-th oracle query was forward or backwards. Let us denote these two parts respec-
tively by

Pf
Ii,j,k and

Pb
Ii,j,k. Consider

Pf
Ii,j,k. Fix a pair (X,T). There can be at most n

4-tuples (Li, Ri, Si, Ti) which arise out of forward queries and Ti = T . (As τ is a good transcript
κmcoll
−→ ≤ n). For each (Li, Ri) there can be only one (Rj , Xj) term such that Ri = Rj (as Xj has

to be equal to X after fixing (X,T)). So each (X,T) can contribute at most n to the sum. As

there are q (X,T) pairs we have
Pf

Ii,j,k ≤ nq. By fixing an (R,X) pair and following the same

line of argument, it can be shown that
Pb

Ii,j,k ≤ nq. Recalling Eq. 3.41 establishes the claim
in Eq. 3.40.

Substituting Eq. 3.40 in Eq. 3.39 gives us

ρ ≥ 1− 6nq

2n
, (3.42)

completing the proof of the lemma.

We can now use the results derived in this section to bound ∆A
�
G1/2,G1

�
.

Lemma 7. For n ≥ 6,

∆A
�
G1/2,G1

�
≤ n2q

2n
+

6nq

2n
+

n2q2

22n+1
.

Proof. The proof follows from Theorem 1, substituting ϵ1 = n2q/2n+n2q2/22n+1 (from Lemma 5)
and ϵ2 = 6nq/2n (from Lemma 6).

35

3.4.4 Main Theorem and Proof

Finally, we are ready to state and prove our main result (stated earlier in Subsec. 3.1.3).

Theorem 1 (Formal Statement). For the TLR3 construction Ψ with oracle access to E (both
as described in Sec. 3.1.2, pp. 18-18), there exists a simulator S such that for any adversary A
making at most q queries where n ≥ 6, we have

∆A
�
(π,S π), (ΨE , E)

�
≤ n2q

2n
+

6nq

2n
+

n2q2

22n
, (3.43)

where π is a random permutation over {0, 1}2n. Further, S makes at most nq queries to π and
has running time O(nq2). Hence, ΨE is (t, q, ϵ)-indifferentiable from π where t = O(nq2) and

ϵ =
n2q

2n
+

6nq

2n
+

n2q2

22n
.

Proof. We have

∆A
�
(π,S π), (ΨE , E)

�
≤ ∆A [G0,G1] ≤ ∆A

�
G0,G1/2

�
+∆A

�
G1/2,G1

�
. (3.44)

When q ≤ 2n/n2, substituting Lemmas 4 and 7 in Eq. 3.44 establishes the bound claimed in
Eq. 3.43. When q ≥ 2n/n2 this bound trivially holds, since

∆A
�
(π,S π), (ΨE , E)

�
≤ 1 ≤ n2q

2n
+

6nq

2n
+

n2q2

22n
.

The proof is completed by recalling the results on the efficiency of S discussed in Subsec. 3.2.1.

36

Chapter 4

Beyond Birthday Bound Security
for 5-Round Even-Mansour-Based
Key-Alternating Feistel Ciphers

4.1 Introduction

In this section, we study the security of the Key-Alternating Feistel (KAF) ciphers, a class of
key alternating ciphers with the Feistel structure, where each round of the cipher is instantiated
with n-bit public round permutation Pi, namely the i-th round of the cipher maps

(XL, XR) 7→ (XR, Pi(XR ⊕Ki)⊕Ki ⊕XL).

We have shown that our 5-round construction with independent round permutations and inde-
pendent round keys achieve 2n/3-bit security in the random permutation model, i.e., the setting
where the adversary is allowed to make forward and inverse queries to the round permutations
in a black box way.

4.1.1 Definition of EM-Based Key-Alternating
Feistel Cipher

Given an n-bit public permutation P , and an n-bit key K, the one-round keyed Feistel permu-
tation is the permutation on {0, 1}2n is defined as follows:

ΨP
K(L∥R) = (R,L+ P (R+K) +K).

Note that, an equivalent way of writing the above permutation ΨP
K(·) is as follows:

ΨP
K(L∥R) = (R,L+ EMP

K(R)),

where EMP
K(R) := P (R+K)+K is the one-round Even-Mansour (EM) cipher based on n-bit pub-

lic round permutation P and an n-bit key K. Now, we define r-round EM-based key-alternating
Feistel cipher based on r many n-bit public round permutations Pr = (P1, P2, . . . , Pr) ∈ (Pn)

r

and a r-tuple of n-bit keys K = (K1,K2, . . . ,Kr) ∈ ({0, 1}n)r, which is denoted as EM-KAFP
r

.
It maps an 2n-bit plaintext X ∈ {0, 1}2n to an 2n-bit ciphertext as follows:

EM-KAFP
r

K
(X) = ΨPr

Kr
◦ΨPr−1

Kr−1
◦ . . . ◦ΨP1

K1
(X).

37

A pictorial description of an EM-based key-alternating cipher is shown in Fig. 4.1a.

4.2 Security Notion of EM-Based Key-Alternating
Feistel Cipher

We consider distinguisher D interacting with r permutation oracles
Pr = (P1, P2, . . . , Pr), where each Pi is an n-bit random permutation, and a 2n-bit random
permutation oracle (and potentially its inverse), which is either the EM-based KAF cipher

EM-KAFP
r

K
specified by a uniformly sampled Pr from (Pn)

r with a uniformly random key
K = (K1,K2, . . . ,Kr) or a perfectly 2n-bit random permutation P (independent from Pr).

We refer to EM-KAFP
r

K
/ P as the construction oracle and Pr as the primitive oracle. We

assume that the distinguisher D is adaptive, i.e., the i-th query of D is determined from the
previous query-response and it is also bi-directional (i.e., it can make encryption and decryption
queries to its oracles). Moreover, D is also allowed to make bi-directional queries to the primitive
oracles (i.e., both forward and inverse queries) in an interleaved fashion with the construction
oracle queries. We assume that D makes at most q queries to the construction oracle and at
most qi queries to the permutation oracle Pi such that qp = q1 + q2 + . . .+ qr. We call D to be
a (q, q1, q2, . . . , qr) distinguisher. We define the distinguishing advantage of D in distinguishing

the outputs of the real oracle Ore = (EM-KAFP
r

K
, (EM-KAFP

r

K
)−1,Pr) from the outputs of the

ideal oracle Oid = (P, P−1,Pr) as follows:

AdvOre

Oid
(D) :=

���Pr[DOre ⇒ 1]− Pr[DOid ⇒ 1]
���, (4.1)

where DO ⇒ 1 denotes the event that D outputs 1 after interacting with the oracle O. The
first probability in Eqn. (4.1) is defined over the randomness of K and Pr, whereas the second

probability is defined over the randomness of P and Pr. We say that EM-KAFP
r

K
is ϵ-strong pseu-

dorandom permutation in the random permutation model if for all (q, q1, q2, . . . , qr)-distinguisher
D, Eqn. (4.1) is upper bounded by ϵ. This is the security notion that we require in the paper.
In the rest of the chapter, we assume that D is computationally unbounded and hence a deter-
ministic distinguisher. We call such a distinguisher as information theoretic distinguisher. We
also assume that D does not repeat queries and never makes pointless queries, i.e., queries whose
answers can be deduced from previous query responses.

4.3 Our Contribution

All the earlier research on the security of ideal KAF ciphers is largely based on round functions
and all these round functions are mostly length-preserving unkeyed functions. We know that de-
signing pseudorandom functions is harder than designing pseudorandom permutations. Unkeyed
permutations are available in plenty [12, 11, 24, 57, 47] and used in numerous Sponge-based
designs [25, 24, 87, 26, 46, 40, 15]. To the best of our knowledge, there has been no prior se-
curity result on permutation-based ideal KAF ciphers. In this chapter, we study the security of
an ideal KAF cipher based on unkeyed permutations. In particular, we prove that a five-round
ideal KAF cipher based on five independent instances of one-round EM cipher is secure up to
O(22n/3) queries in the random permutation model against all adversaries that are allowed to
make both encryption and decryption queries to the construction. We depict existing provable
security results on idealised KAF cipher in Table 4.1.

38

Table 4.1: Existing Provable Security Results for Ideal KAF Cipher. R denotes that the primitive
is a function and P denotes that the primitive is a permutation. n denotes the domain size of the
primitive. CPA denotes the adversarial model where the adversary can make only encryption
queries, and CCA denotes the adversarial model where the adversary can make both encryption
and decryption queries.

In the following table, we compare our result with existing security results, Rnds means rounds,
and Prm means primitives, while #Rnd-Prms denotes the number of rounds a primitive has been
used in the construction.

#Rnds Key-size Prm #Rnd-Prms Bound Model Ref

3 n R 1 n/2 CPA [93]
4 4n R 2 n/2 CCA [54]
4 n R 1 n/2 CCA [55]
6 2n R 6 2n/3 CCA [55]
12 12n R 12 2n/3 CCA [61]
6t 6tn R 6tn tn/(t+ 1) CCA [61]
5 5n P 5 2n/3 CCA This Paper

Remark 2. We would like to point out here that Guo and Wang [55] show that public function-
based 4-round KAF (resp. 6-round KAF) is birthday-bound (resp. beyond-birthday-bound) secure.
However, the security for 5-round KAF based on public functions remains open. We believe that
a 5-round KAF based on public round function can achieve beyond-birthday-bound security, and
the proof should follow a similar technique as adopted in this chapter. Moreover, in the case of the
public round function, we do not have to bother about the constraint that distinct inputs should
map to distinct outputs, which in turn reduces both the number and the complexity of analysing
the bad events. However, as there are almost no practical candidates of length preserving public
round function (as they are hard to design), we chose to analyse the security of the KAF using
public round permutations, which are abundance in practice (e.g., Keccak [12], SpongeNET [24],
Bettle [25] etc.). We will also point out that the constructions in [?],[93],[54] require less key
size than 5-round KAF based on public permutation. However, most of those constructions do
not achieve beyond birthday security, and while the 6-round KAF based on public functions does
so, it requires 6 rounds and is based on public functions rather than public permutations.

4.4 Set up for H-Coefficient Technique

We will use the H-coefficient technique to prove the security of EM-KAFP
r

K
. We consider an

information-theoretic deterministic distinguisher D and two games G1 and G2 where G1 and
G2 describe the distinguisher’s interactions with the real world and ideal world respectively.
In the real world, D interacts with the oracle Ore := (EM-KAFP

r

K
,Pr) for a uniformly chosen

Pr from (Pn)
r and uniformly chosen key K from ({0, 1}n)r. In the ideal world, it interacts

with the oracle Oid := (P,Pr), where P is a 2n-bit to 2n-bit uniformly sampled permutation
from P2n and Pr is uniformly chosen from (Pn)

r. After this interaction is over, D outputs
a decision bit b ∈ {0, 1}. The collection of all queries and responses that are made by D to
and from the oracle O during the interaction is summarised in a transcript (ρ, τ), where ρ
summarises the overall interaction of the distinguisher D with all the primitive oracles and τ

39

is the transcript that summarises the interaction with the construction oracle. More formally,
τ = {(L1, R1, S1, T1), (L2, R2, S2, T2), . . . , (Lq, Rq, Sq, Tq)} is the set of all construction queries
and responses and

ρ =

r[

i=1

{(U i
1, V

i
1), (U

i
2, V

i
2), . . . , (U

i
qi , V

i
qi)}

is the set of all primitive queries and responses across all the primitive oracles, where we assume
that D makes q construction queries and qi for i ∈ [r] primitive queries to the i-th primitive oracle
Pi. We define for j ∈ [r], Dj and ranj be the sets of inputs and outputs of the primitive queries
respectively to Pj , which we enumerate as Dj = {U1

j , . . . , U
qj
j } and ranj = {V 1

j , . . . , V
qj
j }. Since

D is bidirectional, D can make either forward construction query (L,R) and receive response
(S, T) or can make inverse construction query (S, T) and receive response (L,R). Similarly, for
primitive query D can either make forward query U i

j to its primitive Pi and receive response V i
j

or can make inverse query V i
j to P−1i and receive response U i

j . Since we assume that D never
makes pointless queries, none of the transcripts contain any duplicate elements.

We modify the experiment by releasing internal information to D after it has finished the
interaction but has not yet output the decision bit. In the real world, we reveal the key K =
(K1,K2, . . . ,Kr) which is used in the construction, and in the ideal world, we sample a dummy
key K uniformly at random from ({0, 1}n)r and reveal it to the distinguisher. 1 In all the
following, the complete transcript is (ρ, τ,K). Note that the modified experiment only makes
the distinguisher more powerful. Hence the distinguishing advantage of D in this experiment is
no way less than its distinguishing advantage in the former one.

4.5 Security Result of 5-Round EM-KAF

Here we formally state the main finding of this paper: the five-round key-alternating Feistel
cipher based on Even-Mansour, which is depicted in Fig. 4.1a, and its encryption and decryption
steps are listed in Fig. 4.2, is a strong pseudorandom permutation, secure against all adversaries
that make O(N2/3) construction and primitive queries in the random permutation model, where
N = 2n, n being the state size of the permutations and the size of the keys. We formally state
this as the following theorem, the proof of which is deferred to Sec. 4.6.

Theorem 2 (Security Result of EM-KAFP
5

K
). Let P5 = (P1, P2, P3, P4, P5) be five independent

n-bit public random permutations and K = (K1,K2,K3,K4,K5) be five independent n-bit keys.
Then the strong pseudorandom permutation advantage for any (q, q1, q2, q3, q4, q5)-distinguisher
against the construction in the random permutation model, making at most q queries to the
construction and qi primitive queries to Pi, where q1+2(

√
q+1) ≤ q2+ q3+ q4, q5+2(

√
q+1) ≤

q2 + q3 + q4 and q + (q1 + q2 + . . .+ q5) ≤ N/2, is given by

Advsprp-rp

EM-KAFP5

K

(q, q1, . . . , q5) ≤ ϵ,

where

ϵ =
6q2

N2
+

20q3

N2
+

2qq1q5
N2

+
q2

N2
(11q1 + 16q2 + 16q3 + 16q4 + 11q5) +

4q4

N3

+
q

N2
(2q1q2 + q1q5 + 5q2q3 + 4q2q4 + 3q2q5 + 2q1q3 + 5q3q4 + 2q3q5 + 3q1q4 + 2q4q5)

+
2q3

N3
(q1 + q5) +

q1/2

N
(q2 + q3 + q4) +

10q3/2

N
.

1Depending on the context, oracle may also release some additional internal information.

40

P1

bR
K1K1

P2

bX
K2K2

P3

bY
K3K3

P4

bZ
K4K4

P5

bS
K5K5

X

Y

Z

RL

TS

(a) Even-Mansour Based 5-round Key-
Alternating Feistel Cipher. (Diagram adapted
from an example on [60].)

P1

P2

P3

P4

P5

RL

TS

X

Y

Z

bR

cX

bY

bZ

bS

K1

K2

K3

K4

K5

µλ

γ

τ

K

(b) Splitting the construction transcript into τ , K,
γ, µ and γ. (The primitive transcript ρ is not shown
here.)

Figure 4.1: Description of the Construction and View of The Transcript of 5-round Even-
Mansour-based Key-Alternating Feistel.

The implication of the conditions q1 + 2(
√
q+ 1) ≤ q2 + q3 + q4, q5 + 2(

√
q+ 1) ≤ q2 + q3 + q4 is

that the security holds if the total number of primitive queries to the permutation P2, P3 and P4

is at least the total number of queries to permutation P1 and the square root of the construction
queries and it is also at least the total number of queries to permutation P5 and the square root
of the construction queries. With the simplifying assumption q1, q2, q3, q4 and q5 roughly in the
order of q, we have

Advsprp-rp

EM-KAFP5

K

(q, q1, . . . , q5) ≤ 6q2

N2
+

121q3

N2
+

8q4

N3
+

10q3/2

N
.

Remark 3. From the above two conditions (i.e., q1+2(
√
q+1) ≤ q2+q3+q4, and q5+2(

√
q+1) ≤

q2+q3+q4), one can think about what would happen to the bound if the adversary does not make
any primitive queries to the underlying permutations P2, P3 and P4. We would like to mention
here that we have considered an adversary that queries the underlying permutations over the

41

adversary that does not. As the distinguishing advantage of the former type of adversary is
always greater than the distinguishing advantage of the latter one, we bound the distinguishing
advantage against the former type of adversaries that make queries to the permutations.

Proof of Theorem 2 is the technical core of this paper. In the remainder of this section, we give
an overview of our proof technique, following which the rest of the chapter is devoted to the
formal proof.

EM-KAFP
5

K
(L,R)

1. X ← P1(R+K1) +K1 + L;

2. X̂ ← P2(X +K2) +K2;

3. Y ← X̂ +R;

4. Ŷ ← P3(Y +K3) +K3;

5. Z ← Ŷ +X;

6. Ẑ ← P4(Z +K4) +K4;

7. S ← Ẑ + Y ;

8. Ŝ ← P5(S +K5) +K5;

9. T ← Ŝ + Z;

10. return (S, T);

(EM-KAFP
5

K
)−1(S, T)

1. Z ← P5(S +K5) +K5 + T ;

2. Ẑ ← P4(Z +K4) +K4;

3. Y ← S + Ẑ;

4. Ŷ ← P3(Y +K3) +K3;

5. X ← Z + Ŷ ;

6. X̂ ← P2(X +K2) +K2;

7. R← Y + X̂;

8. R̂← P1(R+K1) +K1;

9. L← X + R̂;

10. return (L,R);

Figure 4.2: Encryption (left) and decryption (right) algorithm of 5-round Even-Mansour Based
Key-Alternating Feistel Cipher with five independent round permutations and five independent
round keys.

4.5.1 Computation Order in the Real World and Transcript Notation

For each j ∈ [5], let J f
j denote the set of forward queries to Pj and J b

f denote the set of backward

queries to Pj , so that J f
j ⊔ J b

j = [qj]. Similarly, we split the set of construction queries into
the set of encryption queries Ienc and the set of decryption queries Idec, with Ienc ⊔ Idec = [q].
For each i ∈ Ienc, the computation proceeds from the query (Li, Ri) as shown on the left side of
Fig. 4.2 to obtain (Si, T i), which is returned to D immediately as the response to query i, while

the intermediate variables bRi, Xi, bXi, Y i, bY i, Zi, bZi, and bSi are stored in a cache. Similarly,
for each i ∈ Idec, the computation proceeds from the query (Si, T i) as shown on the right side
of Fig. 4.2 to obtain (Li, Ri), which is returned to D immediately as the response to the query
is stored in the cache.

For the transcript τ := {(Li, Ri, Si, T i) | i ∈ [q]}, we define the transcript slices τ i :=
(Li, Ri, Si, T i) for each i ∈ [q], and τI := {τ i | i ∈ I} for each I ⊆ [q]. At the end of the
online phase, K is revealed to D, along with all the cached intermediate variables for each i ∈ [q].
This we call the internal transcript, which we split into a few parts for ease of reference. For
i ∈ [q], define γi := (bRi, bSi), µi := (Xi, bY i, Zi), and λi := (bXi, Y i, bZi). Analogous to τ , we

42

define γ := {γi | i ∈ [q]}, µ := {µi | i ∈ [q]}, and λ := {λi | i ∈ [q]} as well as the slices
γI := {γi | i ∈ I}, µI := {µi | i ∈ I}, and λI := {λi | i ∈ I} for each I ⊆ [q]. The division is
illustrated in Fig. 4.1b.

For each i ∈ [q], µi is related to γi and τ i through the equations Xi = bRi+Li = bY i+Zi and

Zi = bY i +Xi = bSi + T i, and λi is related to τ i through the equations Y i = bXi +Ri = bZi + Si.
Thus, µi can be computed from τ i and γi, while λi still retains one degree of freedom when all
of τ i, γi, and µi are fixed. Thus, in some sense, λ is the innermost part of the transcript, and
the one that we sample at the very end in the ideal world, as described in Sec. 4.6.1.

For I ⊆ [q], we also define the following counting sets (along with their sizes) on the τI and
µI , which will help us in describing the ideal-world sampling mechanism in Sec. 4.6.1, as well as
in analysing various sampling probabilities:

• RI := {Ri | i ∈ I};

• SI := {Si | i ∈ I};

• X I := {Xi | i ∈ I};

• bYI := {bY i | i ∈ I};

• ZI := {Zi | i ∈ I};

• qIR := |RI |;

• qIS := |SI |;

• qIX := |X I |;

• qI
bY
:= | bYI |;

• qIZ := |ZI |.

Maintaining notational consistency with τ, . . . , λ, when I = [q] we drop the superscript and
simply call the counting sets R, . . . ,Z and their sizes qR, . . . , qZ .

4.5.2 A Brief Overview of the Proof Strategy

We use a standard approach to bound the advantage of D with the H-Coefficient Technique. As
discussed in Sec. 4.5.1, in the real world, at the end of the online phase, all the internal variables
are released to D. In the ideal world, we need to sample these internal variables so that their
distribution is close to that in the real world. Our proof hinges on this sampling mechanism,
discussed at length in Sec. 4.6.1.

The basic idea behind our approach to sampling is as follows: when the online phase ends, we
first sample the keys K1, . . . ,K5 randomly so that all the inputs to P1 and P5 are determined.
We next check for collisions with D1 and D5, and mark these collision sets as IR and IS . We
also mark the queries where an R (resp. S) in the output has collided with a previous R (resp.
S). The rest of the queries we bunch together as I∗.

The next step is to sample γ. We need to do this carefully on I∗, since if two queries have the
same R (resp. S), the Y ’s are forced to be different, but the bY ’s can collide depending on the

choice of bS’s (resp. bR’s). For this, we arrange the queries in a tree (we can do this since we have

left the collision indices out of I∗), and sample along this tree avoiding the bY -collision described

above. For the indices outside I∗ we can choose γ randomly since a bY -collision together with
the previous collisions will constitute a low probability event, which we classify as bad.

Once we have sampled γ for all indices, we can compute µ, which can be seen as one of the
two internal strands. Here, we repeat what we did in the outer layer, marking all collision indices
(both with primitives and among themselves) into separate sets and putting the remaining indices
into I∗∗. We avoid the same index lying in two distinct collision sets, which needs the careful
bounding of a large number of bad events.

Then we come to the final step of the sampling, where we need to sample λ, maintaining
consistency over P2, P3, and P4. Again, the set where we need to be cautious is I∗∗, since the

43

consistency being accidentally violated on any of the collision sets can be classified as a bad
event. Since we have kept all the collisions out of I∗∗, we have all the µ variables distinct. Thus,
the task boils down to sampling three sets of distinct variables, each of size q∗∗ = |I∗∗|, subject to
2q∗∗ bi-variate equations. Again, we sample along the tree that was previously formed, manually
avoiding collisions on any of the three variables. Outside I∗∗, we again choose λ randomly.

The proof is then broken into two parts: bounding the probability of the bad events, and
bounding the ratio of the good probabilities. The first task is long and tedious but not too
challenging. For bounding the ratio of good probabilities, the challenge is to find a tight enough
bound for probabilities of γI∗ and λI∗∗. Handling them separately does not give us a good
enough bound. The key idea of the proof is the observation that the two balance each other in
a way: for each previous query with the same R or same S, we have an extra constraint to take
care of on γ, but we have one fewer constraint to worry about on λ, since we get the distinctness
of Y for free when we ensure bX and bZ are distinct. We bank on this observation to bound the
two together and successfully arrive at the desired bound.

4.6 Proof of Theorem 2

We deal with three principal components in the proof: (i) the sampling procedure in the ideal
world, which enables us to define the transcript; (ii) defining and bounding the probability of bad
transcripts and (iii) finally, lower bounding the ratio of the real to ideal interpolation probability
for any good transcript. We begin with the sampling procedure in the ideal world in Sect. 4.6.1.

4.6.1 Sampling Procedure in the Ideal World

In the online phase, every query from D is answered with a response sampled uniformly at
random from {0, 1}2n, as shown in Step-τa and Step-τb in Table 4.2. (We’ll refer to this table
throughout this section for the exact description of the sampling steps.) This leaves D with τ at
the end of the online phase. Next begins the offline sampling phase of the ideal oracle, during
which K1,K2,K3,K4,K5, γ, µ and λ are sampled and released to D, such that they bear the
same relations between them as their counterparts in the real world, as described in Sec. 4.5.1.

In the rest of this section, we describe step-by-step the sampling procedure in the offline phase
of the ideal world. The sampling steps are intertwined with checking for several bad events.
Whenever we delineate a bad event and then either resume our description of the sampling
procedure or proceed to describe further bad events, we implicitly assume that we are in the
scenario where the bad event was just described and all bad events described before that have
not happened. Other than the usual bad events involving one or several undesirable collisions of
the sampled intermediate variables either with primitive queries or between themselves, there is
one specific bad event that we are keen on avoiding: for two queries i, j with Ri = Rj or Si = Sj ,
Y i can never equal Y j without breaking consistency with the internal relations described earlier;
however, if for the same pair of queries bRi + bRj + bSi + bSj = Li + Lj + T i + T j , bY i if forced to
be equal to bY j , leading to an inconsistency in P3. We’ll avoid scenarios where this can happen,
and we’ll indicate this by including a bY in the name of the corresponding bad event.

Bad events on τ .

Before moving on to the online part of the sampling, we check for some bad events on τ itself.
The event badτ -switch comes from the PRP-PRF switch we perform when we respond to the
adversary’s queries with replacement instead of without replacement, as a permutation would

44

Table 4.2: Sampling steps in the ideal world and the corresponding bad events that can be
triggered.

Step Name Sampling Bad Events Triggered

Step-τa ∀i ∈ Ienc, (Si, T i)←$ {0, 1}2n
Step-τb ∀i ∈ Idec, (Li, Ri)←$ {0, 1}2n

badτ -switch, badτ -bY ,
badτ -3path, badτ -3coll

Step-K K←$ {0, 1}5n
badK-outer, badK-source

Step-γa ∀d ∈ [q∗], γ
d
∗ ←$ Γd

∗

Step-γb ∀S ∈ SIR∗ , bS ←$ {0, 1}n
Step-γc ∀R ∈ RIS∗ , bR←$ {0, 1}n

badγ-prim, badγ-coll,
badγ-bY , badµ-in&out,
badµ-source, badµ-inner,
badµ-3coll, badµ-size

Step-λa ∀h ∈ [q∗∗], λ
h
∗∗ ←$ Λh

∗∗

Step-λb ∀X ∈ X IR⊔IXX , bX ←$ {0, 1}n
Step-λc ∀Z ∈ ZIS⊔IZZ , bZ ←$ {0, 1}n
Step-λd ∀bY ∈ bYI bY bY , Y ←$ {0, 1}n
Step-λe ∀i ∈ IRR ⊔ ISS , Y

i ←$ {0, 1}n
badλ-prim, badλ-coll

do. The event badτ -bY is the forced collision on bY we mentioned earlier. badτ -3path involves a
simultaneous 3-collision on R and S, which must involve a path of length 3. (For instance, one
way to achieve this is as follows: an encryption query (L1, R) giving (S, T1); then a decryption
query (S, T2) yielding (L2, R), making a path of length 2; and finally, a second encryption query
with (L3, R) giving (S, T3), extending the path to length 3.) Finally, the event badτ -3coll involves
a 3-collision on R or S where the last two come from oracle outputs. The precise definitions of
these bad events are given in Fig. 4.3.

Sampling K and bad events thereof.

Once none of the bad events on τ has happened, we move on to the offline phase of the sampling.
Let IRR := {i ∈ Idec | Ri = Rj for some j ∈ [i− 1]} and ISS := {i ∈ Ienc | Si = Sj for some j ∈
[i − 1]} be the index sets where an R or S obtained from an oracle response collides with a
previously seen one (either as part of a query or as part of a response).

The first step in the offline phase is to sample the keys K1,K2,K3,K4, and K5 independently
and uniformly at random from {0, 1}n. This determines all the inputs to P1 and P5. We define
the index sets IR := {i ∈ [q] | Ri + K1 ∈ D1} and IS := {i ∈ [q] | Si + K5 ∈ D5}, where the
outputs of P1 and P5 are already determined from ρ.

45

Figure 4.3: badτ

badτ -switch: ∃i, j ∈ [q], i < j, [j ∈ Ienc, (Si, T i) = (Sj , T j)]∨[j ∈
Idec, (Li, Ri) = (Lj , Rj)].

badτ -bY : ∃i, j ∈ [q], i < j, [Ri = Rj] ∧ [Si = Sj] ∧ [Li + T i =
Lj + T j].

badτ -3path: ∃ i, j, l ∈ [q], i < j < l, [Ri = Rj = Rl]∧ [Si = Sj =
Sl].

badτ -3coll: ∃ i, j, l ∈ [q], i < j < l, [j, l ∈ Idec, Ri = Rj =
Rl] ∨ [j, l ∈ Ienc, Si = Sj = Sl].

Figure 4.4: badK

badK-outer: IR, IRR, IS , and ISS are not pairwise disjoint.

badK-source: ∃i, j ∈ [q], i < j, [i ∈ IS ⊔ ISS , j ∈ IRR, R
i =

Rj] ∨ [i ∈ IR ⊔ IRR, j ∈ ISS , S
i = Sj].

Sampling the keys can trigger two bad events: badK-outer is the event when an encryption
query index lies in two of the sets IR, IS , and ISS at the same time, or a decryption query index
lie in two of the sets IR, IS , and IRR at the same time; and badK-source, where the source of a
collision index in IRR (resp. ISS) (the earlier R (resp. S) value where it collided) lies in one of
IR, IS , and ISS (resp. IRR). The definitions can be found in Fig. 4.4.

Defining and computing G[τ∗].

When sampling γ, we begin with I∗. Since queries in I∗ do not come from another collision
event, we need to avoid bad collision events manually while sampling γI∗ .

Define τ∗ := τI∗ , R∗ := RI∗ , S∗ := SI∗ . Consider the directed bipartite graph G[τ∗] with
vertices in R∗ and S∗, where we put an edge between R ∈ R∗ and S ∈ S∗ if there is a query
i ∈ I∗ with Ri = R and Si = S; the direction of the edge is from R to S if i ∈ Ienc∗ := Ienc ∩ I∗
and S to R if i ∈ Idec∗ := Idec ∩ I∗.

Since we are in I∗, we know that there are no cycles in G[τ∗], making it a forest. Let M
be the number of trees in G[τ∗]. Define q∗ := |I∗|, qR∗ := |R∗|, qS∗ := |S∗|. Since G[τ∗] has
qS∗ + qR∗ vertices and q∗ edges, we have

qR∗ + qS∗ = q∗ +M. (4.2)

We observe further that a new tree is added to this forest exactly on each query in the set
{i ∈ Ienc∗ | Ri /∈ R[i−1]} ⊔ {i ∈ Idec∗ | Si /∈ S [i−1]}, i.e., on each encryption query in I∗ with

46

R1

S1 S2

R2 R3

S3

S4

R4 R5

S5

R6

S6

R7

Figure 4.5: The forest structure on I∗. For instance, the node R3 (here circled) represents a
decryption query (S2, T) for some T , that outputs (L,R3) for some L. This is the first query
where R3 appears, and to count the number of earlier queries in which S2 appears, we only need
to look at this node’s grandparent and elder siblings (R1 and R2 respectively, here underlined).

a fresh R and each decryption query in I∗ with a fresh S; we call the resulting trees R-rooted
(with root Ri) and S-rooted (with root Si) respectively.

We label R∗ and S∗ as follows: first, the trees are arranged in query order of the roots;
next, within each tree, we begin with the root and do a breadth-first traversal, discovering R-
generations and S-generations alternately. Finally, we order R∗ and S∗ separately, first by trees,
then within the same tree by generations, then within the same generation by parents’ order,
and finally among siblings by order of appearance. This gives us a total order on both R∗ and
S∗, and allow us to label them R1, . . . , RqR∗

and S1, . . . , SqS∗
respectively. We also extend the

notation bRℓ := bRi for i such that Rℓ = Ri, and bSm := bSi for i such that Sm = Si.
We will also find it convenient to refer to the queries by the end-labels of the edge they

correspond to: a query i ∈ Ienc∗ with Ri = Rℓ and Si = Sm will be referred to as (ℓ,m), while
a query i ∈ Idec∗ with Si = Sm and Ri = Rℓ will be referred to as (m, ℓ). We order the queries
as follows: two encryption queries (ℓ,m) and (ℓ′,m′) have the same order as m and m′, while
two decryption queries (m, ℓ) and (m′, ℓ′) have the same order as ℓ and ℓ′; finally, to compare
an encryption query (ℓ,m) and a decryption query (m′, ℓ′) we note that they must be either in
different trees, or in different generations of the same tree, and order them as we ordered the
vertices in the corresponding cases. Fig. 4.5 illustrates the forest structure.

For each i ∈ I∗, let di denote the rank of i in the new ordering. Then i 7→ di is a bijection
from I∗ to [q∗]. We’ll use d = di interchangeably with the end-labels (ℓ,m) or (m, ℓ) to refer to
a query in I∗. We write ℓd and md to denote the end-labels of d, irrespective of the direction of
the query. (Note that we’ll often write rank to mean the rank of some node in this ordering; it
is not to be confused with the rank of a matrix.)

Sampling γ.

Before sampling γ, we set the values already determined from primitive collisions: for each i ∈ IR
we set bRi ← V j

1 +K1 where j is such that U j
1 = Ri+K1, and for each i ∈ IS we set bSi ← V j

5 +K5

where j is such that U j
5 = Si +K5. Using the graph G[τ∗], we describe a sampling mechanism

for γI∗ . For I ⊆ I∗ we call a γI valid if it satisfies the following conditions:

• bRi +K1 /∈ ran1 for each i ∈ I \ IR;

• bSi +K5 /∈ ran5 for each i ∈ I \ IS ;

and for each distinct i, j ∈ I:

47

• Ri = Rj ⇐⇒ bRi = bRj ;

• Si = Sj ⇐⇒ bSi = bSj ;

• Ri = Rj =⇒ bSi + bSj ̸= Li + T i + Lj + T j ;

• Si = Sj =⇒ bRi + bRj ̸= Li + T i + Lj + T j .

Let dI := {di | i ∈ I}. Let γdi
∗ := γi for each i ∈ I∗, and γdI

∗ := γI for any I ⊆ I∗. Let Γgood

be the set {γI | I ⊆ I∗, γI is valid}. Given a γ
[d−1]
∗ ∈ Γgood, let Γd

∗ := Γd
∗[γ

[d−1]
∗] be the set of

values γd
∗ can take such that γ

[d]
∗ remains in Γgood. We note that unless the edge corresponding

to query d begins in a root node, one half of γd
∗ will already be fixed from γ

[d−1]
∗ . For instance,

for a query (ℓd,md) with a non-root source Rℓd , there is a previous query (mc, ℓc) with c < d

such that Rℓc = Rℓd , so bRℓd is determined from γc
∗. For this case, each value in Γd

∗ will look like

(bRℓc , bS) for some candidate value bS for bSmd .

Then we sample γI∗ = γ
[q∗]
∗ as follows: for each d ∈ [q∗], having sampled γ

[d−1]
∗ , we sample

γd
∗ uniformly at random from Γd

∗. This is shown as Step-γa in Table 4.2. Then we proceed to
compute the index sets IR∗ := {i ∈ IR ⊔ IRR | Si /∈ S∗} and IS∗ := {i ∈ IS ⊔ ISS | Ri /∈ R∗}.
Finally, for each S ∈ SIR∗ (resp. R ∈ RIS∗), we sample bS (resp. bR) uniformly at random from
{0, 1}n, as shown in Step-γb (resp. Step-γc) in Table 4.2. This completes our sampling of γ.

Figure 4.6: badγ

badγ-prim: ∃i ∈ [q], [i ∈ IcR, bRi+K1 ∈ ran1]∨ [i ∈ IcS , bSi+K5 ∈
ran5].

badγ-coll: ∃i, j ∈ [q], i < j, [[Ri ̸= Rj] ∧ [bRi = bRj]] ∨ [[Si ̸=
Sj] ∧ [bSi = bSj]].

badγ-bY : ∃i, j ∈ [q], i < j, [[Ri = Rj]∧ [bSi+ bSj = Li+T i+Lj +

T j]] ∨ [[Si = Sj] ∧ [bRi + bRj = Li + T i + Lj + T j]].

Bad events on γ.

The bad events on γ come from evaluating the conditions for γI∗ being valid on the entire γ.
badγ-prim arises from a primitive collision outside on the range of P1 (resp. P5) outside IR (resp.

IS). badγ-coll is the event of a collision of bR (resp. bS) on two distinct values of R (resp. S).

Finally, badγ-bY is the event of a collision on bR + bS + L + T on two queries with the same R
or same S (both of which forces Y to be distinct on these two queries). The definitions can be
found in Fig. 4.6.

48

Figure 4.7: badµ

badµ-in&out: Iouter ∩ Iinner ̸= ∅.

badµ-source: ∃i, j ∈ [q], [i ∈ IR, j ∈ IXX , Xi = Xj] ∨ [i ∈
IS , j ∈ IZZ , Z

i = Zj].

badµ-inner: IX , IXX , IbY , IbY bY , IZ and IZZ are not pairwise
disjoint.

badµ-3coll: ∃i, j, l ∈ Iinner, i < j < l, [Xi = Xj = X l] ∨ [bY i =
bY j = bY l] ∨ [Zi = Zj = Zl].

badµ-size: |Iinner| >
√
q.

Bad events on µ.

Next, we compute µ from τ and γ using the equations in Sec. 4.5.1. Define the collision sets
IX := {i ∈ [q] | Xi+K2 ∈ D2}, IbY := {i ∈ [q] | bY i+K3 ∈ ran3}, IZ := {i ∈ [q] | Zi+K4 ∈ D4},
IXX := {i ∈ IcR | Xi = Xj for some j ∈ [q]}, IbY bY := {i ∈ [q] | bY i = bY j for some j ∈ [q]},
IZZ := {i ∈ IcS | Zi = Zj for some j ∈ [q]}. Further define Iouter := IR ∪ IRR ∪ IS ∪ ISS

and Iinner := IX ∪ IXX ∪ IbY ∪ IbY bY ∪ IZ ∪ IZZ , and I∗∗ := I∗ \ Iinner. The event badµ-in&out

occurs when one of the outer collision indices in Iouter is also in Iinner. The event badµ-inner
occurs when an index lies at once in two inner collision sets IX , IXX , IbY , IbY bY , IZ and IZZ .
badµ-source checks for a collision index in IXX (resp. IZZ) with its source index in IR (resp.
IS). (Note that unlike in badK-source, the query order of these two indices is not important

here.) badµ-3coll captures 3-collisions on any of the variables X, bY or Z. Finally, badµ-size is
the event that the set of inner collisions grows too big. The definitions can be found in Fig. 4.7.

Sampling λ.

Before sampling λ, we set the values already determined from primitive collisions: for each i ∈ IX
we set bXi ← V j

2 +K2 where j is such that U j
2 = Xi +K2; for each i ∈ IbY we set Y i ← V j

3 +K3

where j is such that U j
3 = bY i +K3, and for each i ∈ IZ we set bZi ← V j

4 +K4 where j is such

that U j
4 = Zi +K4. To describe a sampling mechanism for λI∗∗ , we return to the graph G[τ∗].

For I ⊆ I∗∗ we call a λI valid if it satisfies the following conditions:

• bXi +K2 /∈ ran2 for each i ∈ I \ IX ;

• Y i +K3 /∈ D3 for each i ∈ I \ IbY ;

• bZi +K4 /∈ ran4 for each i ∈ I \ IZ .

• bXi + Y i = Ri for each i ∈ I;

49

• Y i + bZi = Si for each i ∈ I;

and for each distinct i, j ∈ I:

• Xi = Xj ⇐⇒ bXi = bXj ;

• bY i = bY j ⇐⇒ Y i = Y j ;

• Zi = Zj ⇐⇒ bZi = bZj .

Define q∗∗ := |I∗∗|. Suppose we take the relabeled queries 1, . . . , q∗, drop the queries pertaining
to I∗ \ I∗∗, and renumber the remaining indices 1, . . . , q∗∗. We call hi the index of query i under
this new renumbering. Thus, hi is obtained by subtracting from di the number of queries in
[di − 1] that come from outside I∗∗. Let hI := {hi | i ∈ I}. Let λhi

∗∗ := λi for any i ∈ I∗∗,
and λhI

∗∗ := λI for any I ⊆ I∗∗. Let Λgood be the set {λI | I ⊆ I∗∗, λI is valid}. Given a

λ
[h−1]
∗∗ ∈ Λgood, let Λ

h
∗∗ := Λh

∗∗[λ
[h−1]
∗∗] be the set of values λh

∗∗ can take such that λ
[h]
∗∗ remains in

Λgood.

Then we sample λI∗∗ = λ
[q∗∗]
∗∗ as follows: for each h ∈ [q∗∗], having sampled λ

[h−1]
∗∗ , we sample

λh
∗∗ uniformly at random from Λh

∗∗. This is shown as Step-λa in Table 4.2. Sampling the rest of

λ is straightforward: for each distinct X on IR ⊔ IXX , bX is sampled uniformly at random from
{0, 1}n (Step-λb); and we similarly sample bZ for each distinct Z on IS ⊔IZZ (Step-λc) and Y for

each distinct bY on IbY bY (Step-λd). Finally, for each query in IRR ⊔ISS , we sample Y i uniformly
at random. Since fixing one of the variables in λi determines the other two, this completes the
sampling of λ, and brings us to the end of our sampling procedure.

Figure 4.8: badλ

badλ-prim: ∃i ∈ [q], [i ∈ IcX , bXi+K2 ∈ ran2]∨ [i ∈ IcbY , Y
i+K3 ∈

D3] ∨ [i ∈ IcZ , bZi +K4 ∈ ran4].

badλ-coll: ∃i, j ∈ [q], i < j, [[Xi ̸= Xj] ∧ [bXi = bXj]] ∨ [[bY i ̸=
bY j] ∧ [Y i = Y j]] ∨ [[Zi ̸= Zj] ∧ [bZi = bZj]].

Bad events on λ.

The bad events on λ come from evaluating the conditions for λI∗ being valid on the entire λ.
badλ-prim arises from a primitive collision outside on the range of P2 (resp. domain of P3; range

of P4) outside IX (resp. IbY ; IZ). badλ-coll is the event of a collision of bX (resp. Y ; bZ) on two

distinct values of X (resp. bY ; Z). The definitions can be found in Fig. 4.8.

Definition of Bad Transcripts, Bad Lemma and Good Lemma.

In this sampling procedure, if none of the above bad events happens, we release all the inter-
nal variables, i.e., γ, µ, λ and the round keys (K1,K2,K3,K4,K5) along with the input-output
query responses (L,R, S, T) to the adversary. After the interaction is over with the construc-
tion oracle and the primitive oracles, we summarise the interaction in a transcript that records
all the input outputs of the interaction along with the corresponding internal variables, i.e,

50

η = (ρ, τ,K, γ, µ, λ), where τ = {(Li, Ri, Si, T i) : i ∈ [q]} and
ρ = {(U i

1, V
i
1), (U

i
2, V

i
2), . . . , (U

i
qi , V

i
qi) : i ∈ [5]}, where U i

j (resp. V i
j) is the j-th primitive input

(resp. primitive output) to the i-th permutation Pi.

Definition 6 (Bad Transcript). A transcript η = (ρ, τ,K, γ, µ, λ) is said to be bad if any of
the above bad events i.e., badτ , badK, badγ, badµ, badλ happen.

Lemma 8 (Bad Lemma). Let η = (ρ, τ,K, γ, µ, λ) be any attainable transcript. Then we bound
the proability of obtaining bad in the game G2 by the following lemma:

Pr[η ∈ bad] ≤ 6q2

N2
+

14q3

N2
+

4q4

N3
+

2q3

N3
(q1 + q5) +

q1/2

N
(q2 + q3 + q4) +

2q3/2

N

+
2qq1q5
N2

+
q2

N2
(11q1 + 12q2 + 12q3 + 12q4 + 11q5)

+
q

N2
(2q1q2 + q1q5 + 3q2q3 + 2q2q4 + 3q2q5 + 2q1q3 + 3q3q4

+2q3q5 + 3q1q4 + 2q4q5).

By assuming q1, q2, q3, q4 and q5 roughly in the order of q, then we have

Pr[η ∈ bad] ≤ 6q2

N2
+

97q3

N2
+

8q4

N3
+

5q3/2

N
.

This lemma is proved by an exhaustive case-by-case analysis of all the listed bad events and
all possible sub-events that give rise to them. The trickiest part of the proof is to bound the
probability of badγ, which is given below. The rest of the proof is more straight-forward and
deferred to section 4.8

4.6.2 Bounding badγ-prim

Proposition 1. Having defined the bad event badγ-prim in Fig. 4.6, we have

Pr[badγ-prim] ≤ qq5(q1 + q2)

N2
+

(q1 + q5)
(
q
2

�

N2
.

Now, to bound badγ-prim, we further split it into the following two cases:

• badγ-prim-1. ∃i ∈ IR∗ and j ∈ [q5] such that bSi +K1 = V j
5 .

• badγ-prim-2. ∃i ∈ IS∗ and j ∈ [q1] such that bRi +K1 = V j
1 .

Bounding badγ-prim-1.

We split the event into the following sub-cases and bound the probabilities of each of them.

• badγ-prim-1a. ∃i ∈ IR∗ ∩ IR and j ∈ [q5] such that bSi + k5 = V j
5 .

In other words, ∃i ∈ q, j ∈ [q5] and l ∈ [q2] such that Ri +K1 = U l
1 and bSi +K5 = V j

5 .
Let’s first fix the values for the indices i, j and l. The probability of each of the events
comes out to be (1/N) due to the n-bit randomness over the keys K1 and K5, respectively.
As we can choose the indices i, j, and l in q, q5, and q2 ways, we use the union bound over
all those possible choices to obtain

Pr[badγ-prim-1a] ≤ qq2q5
N2

. (4.3)

51

• badγ-prim-1b. ∃i ∈ IR∗ ∩ IRR and j ∈ [q5] such that bSi +K5 = V j
5 .

In other words, ∃i ∈ Idec, j ∈ [q5] and l ∈ [i − 1] such that Ri = Rl and bSi + K5 = V j
5 .

Let’s first fix the values for the indices i, j and l. The probability of the event Ri = Rl

comes out to be (1/N) due to the n-bit randomness over Ri as i > l and i ∈ Idec. The

probability of the event bSi +K5 = V j
5 comes out to be (1/N) due to the n-bit randomness

over the key K5. As we can choose the pair of indices (i, l) in
(
q
2

�
ways and the index j in

q5 ways, we use the union bound over all those possible choices to obtain

Pr[badγ-prim-1b] ≤ q5
(
q
2

�

N2
. (4.4)

Adding the probabilities of the above two cases, we obtain

Pr[badγ-prim-1] ≤ qq2q5
N2

+
q5
(
q
2

�

N2
. (4.5)

Bounding badγ-prim-2.

As before, we split the event into the following sub-cases and bound the probabilities of each of
them.

• badγ-prim-2a. ∃i ∈ IS∗ ∩ IS and j ∈ [q1] such that bRi +K1 = V j
1 .

In other words, ∃i ∈ q, j ∈ q1 and l ∈ q2 such that Si +K5 = V l
5 and bRi +K1 = V j

1 . Let’s
first fix the values for the indices i, j and l. The probability of each of the events comes
out to be (1/N) due to the n-bit randomness over the keys K1 and K5 respectively. As
we can choose the indices i, j and l in q, q5 and q1 ways, we use the union bound over all
those possible choices to obtain

Pr[badγ-prim-2a] ≤ qq1q5
N2

. (4.6)

• badγ-prim-2b. ∃i ∈ IS∗ ∩ ISS and j ∈ [q1] such that bRi +K1 = V j
1 .

In other words, ∃i ∈ Ienc, j ∈ [q1] and l ∈ [i − 1] such that Si = Sl and bRi + K1 = V j
1 .

Let’s first fix the values for the indices i, j and l. The probability of the event Si = Sl

comes out to be (1/N) due to the n-bit randomness over Si as i > l and i ∈ Ienc. The

probability of the event bRi +K1 = V j
1 comes out to be (1/N) due to the n-bit randomness

over the key K1. As we can choose the pair of indices (i, l) in
(
q
2

�
ways and the index j in

q1 ways, we use the union bound over all those possible choices to obtain

Pr[badγ-prim-2b] ≤ q1
(
q
2

�

N2
. (4.7)

Adding the probabilities of the above two cases, we obtain

Pr[badγ-prim-2] ≤ qq1q5
N2

+
q1
(
q
2

�

N2
. (4.8)

By combining Eqn. (4.5) and Eqn. (4.8), we have

Pr[badγ-prim] ≤ qq5(q1 + q2)

N2
+

(q1 + q5)
(
q
2

�

N2
. (4.9)

52

4.6.3 Bounding badγ-coll

Proposition 2. Having defined the bad event badγ-coll in Fig. 4.6, we have

Pr[badγ-coll] ≤ q2(q1 + q5)

N2
+

4q4

N3
+

2q3(q1 + q5)

N3
.

As before, to bound badγ-coll, we further split it into the following two cases:

• badγ-coll-1. ∃i, j ∈ IR∗ and i ̸= j such that Si ̸= Sj and bSi = bSj .

• badγ-coll-2. ∃i, j ∈ IS∗ and i ̸= j such that Ri ̸= Rj and bRi = bRj .

Bounding badγ-coll-1.

As before, we split the event into the following sub-cases and bound the probabilities of each of
them.

• badγ-coll-1a. ∃i, j ∈ IR∗ ∩ IR and i ̸= j such that Si ̸= Sj and bSi = bSj .

In other words, ∃i, j ∈ IR, such that i ̸= j, and k, l ∈ [q1] such that

Ri +K1 = Uk
1 , R

j +K1 = U l
1, bSi = bSj .

We can write the above event in an equivalent way as

Ri +K1 = Uk
1 , R

i +Rj = Uk
1 + U l

1, bSi = bSj .

Let’s first fix the values for the indices i, j, k and l and without loss of generality, we assume
that i > j. The probability of the event Ri +K1 = Uk

1 comes out to be (1/N) due to the

n-bit randomness over the key K1. Moreover, the probability of the event bSi = bSj comes
out to be at most 2/N due to the randomness of bSi. However, the number of choices of
indices (i, j, k, l) such that Ri + Rj = Uk

1 + U l
1 holds is at most

(
q
2

�
q1. By using the union

bound over all those possible choices to obtain

Pr[badγ-coll-1a] ≤ 2q1
(
q
2

�

N2
≤ q2q1

N2
. (4.10)

• badγ-coll-1b. ∃i, j ∈ IR∗ ∩ IRR and i ̸= j such that Si ̸= Sj and bSi = bSj .

In other words, ∃i, j ∈ IRR, such that i ̸= j ∈ Idec, and k ∈ [i− 1], l ∈ [j − 1] such that

Ri = Rk, Rj = Rl, bSi = bSj .

Let’s first fix the values for the indices i, j, k and l. The probability of the first two events
Ri = Rk and Rj = Rl comes out to be (1/N2) due to the n-bit randomness over Ri and

Rj . Moreover, the probability of the event bSi = bSj comes out to be at most 2/N due to

the randomness of bSi. However, the number of choices of indices (i, j, k, l) is at most q4.
By using the union bound over all those possible choices to obtain

Pr[badγ-coll-1b] ≤ 2q4

N3
. (4.11)

53

• badγ-coll-1c. ∃i ∈ IR∗ ∩ IR and j ∈ IR∗ ∩ IRR such that Si ̸= Sj and bSi = bSj .

In other words, ∃i ∈ IR, j ∈ IRR, such that i ̸= j and j ∈ Idec, and k ∈ [q1], l ∈ [j− 1] such
that

Ri +K1 = Uk
1 , R

j = Rl, bSi = bSj .

Let’s first fix the values for the indices i, j, k and l. The probability of the first two events
Ri +K1 = Uk

1 and Rj = Rl comes out to be (1/N2) due to the n-bit randomness over k1
and Rj . Moreover, the probability of the event bSi = bSj comes out to be at most 2/N due

to the randomness of bSi. However, the number of choices of indices (i, j, l) is at most q3,
and the number of choices for k is at most q1. By using the union bound over all those
possible choices to obtain

Pr[badγ-coll-1c] ≤ 2q3q1
N3

. (4.12)

Adding the probabilities of the above three cases, we obtain

Pr[badγ-coll-1] ≤ q2q1
N2

+
2q4

N3
+

2q3q1
N3

. (4.13)

Bounding badγ-coll-2

As before, we split the event into the following sub-cases and bound the probabilities of each of
them.

• badγ-coll-2a. ∃i, j ∈ IS∗ ∩ IS and i ̸= j such that Ri ̸= Rj and bRi = bRj .

In other words, ∃i, j ∈ IS , such that i ̸= j, and k, l ∈ [q5] such that

Si +K5 = Uk
5 , S

j +K5 = U l
5, bRi = bRj .

We can write the above event in an equivalent way as

Si +K5 = Uk
5 , S

i + Sj = Uk
5 + U l

5, bRi = bRj .

Let’s first fix the values for the indices i, j, k and l and without loss of generality, we assume
that i > j. The probability of the event Si +K5 = Uk

5 comes out to be (1/N) due to the

n-bit randomness over the key K5. Moreover, the probability of the event bRi = bRj comes
out to be at most 2/N due to the randomness of bRi. However, the number of choices of
indices (i, j, k, l) such that Si + Sj = Uk

5 + U l
5 holds is at most

(
q
2

�
q5. By using the union

bound over all those possible choices to obtain

Pr[badγ-coll-2a] ≤ 2q5
(
q
2

�

N2
≤ q2q5

N2
. (4.14)

• badγ-coll-2b. ∃i, j ∈ IS∗ ∩ ISS and i ̸= j such that Ri ̸= Rj and bRi = bRj . In other
words, ∃i, j ∈ ISS , such that i ̸= j ∈ Ienc, and k ∈ [i− 1], l ∈ [j − 1] such that

Si = Sk, Sj = Sl, bRi = bRj .

Let’s first fix the values for the indices i, j, k and l. The probability of the first two events
Si = Sk and Sj = Sl comes out to be (1/N2) due to the n-bit randomness over Si and Sj .

54

Moreover, the probability of the event bRi = bRj comes out to be at most 2/N due to the

randomness of bRi. However, the number of choices of indices (i, j, k, l) is at most q4. By
using the union bound over all those possible choices to obtain

Pr[badγ-coll-2b] ≤ 2q4

N3
. (4.15)

• badγ-coll-2c. ∃i ∈ IS∗ ∩ IS and j ∈ IS∗ ∩ ISS such that Ri ̸= Rj and bRi = bRj .

In other words, ∃i ∈ IS , j ∈ ISS , such that i ̸= j and j ∈ Ienc, and k ∈ [q5], l ∈ [j − 1] such
that

Si +K5 = Uk
5 , S

j = Sl, bRi = bRj .

Let’s first fix the values for the indices i, j, k and l. The probability of the first two events
Si +K5 = Uk

5 and Sj = Sl comes out to be (1/N2) due to the n-bit randomness over K5

and Sj . Moreover, the probability of the event bRi = bRj comes out to be at most 2/N due

to the randomness of bRi. However, the number of choices of indices (i, j, l) is at most q3,
and the number of choices for k is at most q5. By using the union bound over all those
possible choices to obtain

Pr[badγ-coll-2c] ≤ 2q3q5
N3

. (4.16)

Adding the probabilities of the above three cases, we obtain

Pr[badγ-coll-2] ≤ q2q5
N2

+
2q4

N3
+

2q3q5
N3

. (4.17)

By combining Eqn. (4.13) and Eqn. (4.17), we have

Pr[badγ-coll] ≤ q2(q1 + q5)

N2
+

4q4

N3
+

2q3(q1 + q5)

N3
. (4.18)

4.6.4 Bounding badγ-bY
Proposition 3. Having defined the bad event badγ-bY in Fig. 4.6, we have

Pr[badγ-bY] ≤ 4q2(q1 + q5)

N2
+

4q3

N2
.

As before, to bound badγ-bY , we further split it into the following two cases:

• badγ-bY -1. ∃i ∈ Ic∗, j ∈ [q] and i ̸= j such that Ri = Rj and bSi + bSj = Li + T i + Lj + T j .

• badγ-bY -2. ∃i ∈ Ic∗, j ∈ [q] and i ̸= j such that Si = Sj and bRi + bRj = Li + T i + Lj + T j .

Bounding badγ-bY -1

As before, we split the event into the following sub-cases and bound the probabilities of each of
them.

55

• badγ-bY -1a ∃i ∈ IR, j ∈ [q] and i ̸= j such that Ri = Rj and bSi + bSj = Li + T i + Lj + T j .

In other words, ∃i ∈ IR, j ∈ [q], with i ̸= j and k ∈ [q1] such that

Ri +K1 = Uk
1 , R

i = Rj , Ŝi + Ŝj = Li + T i + Lj + T j .

Let’s first fix the values for the indices i, j and k. The probability of the first event comes
from the n-bit randomness over K1 and the probability of the last event comes from the
randomness over Ŝi. Hence, the joint probability comes out to be at most (2/N2). However,
the number of choices of indices i and j is at most

(
q
2

�
, and the number of choices for k is

at most q1. By using the union bound over all those possible choices to obtain

Pr[badγ-bY -1a] ≤ q2q1
N2

. (4.19)

• badγ-bY -1b. ∃i ∈ IS , j ∈ [q] and i ̸= j such that Ri = Rj and bSi + bSj = Li + T i +Lj + T j .

In other words, ∃i ∈ IS , j ∈ [q], with i ̸= j and k ∈ [q5] such that

Si +K5 = Uk
5 , R

i = Rj , Ŝi + Ŝj = Li + T i + Lj + T j .

Now, we consider that j ∈ IS , as the analysis of this case is the involved one. Therefore,
we have

Si +K5 = Uk
5 , S

j +K5 = U l
5, R

i = Rj , V k
5 + V l

5 = Li + T i + Lj + T j , (4.20)

for some l ∈ [q5] and we equivalently write Eqn. (4.20) as

Si +K5 = Uk
5 , S

i + Sj = Uk
5 + U l

5, R
i = Rj , V k

5 + V l
5 = Li + T i + Lj + T j . (4.21)

Now, we analyse this case in separate subcases:

Case (a): We first assume the construction queries appear after the primitive queries
and let i < j and let j be an encryption query index (analysis for j to be a decryption
query will be similar). Then, from the first equation, we use the randomness of K5, and
from the second equation, we use the randomness of Sj , which allows us to bound the
probability of the event for a fixed choice of indices to at most 2/N2. Moreover, the
number of tuples (i, j, k, l) such that Eqn. (4.21) holds is at most

(
q
2

�
for choices of i and j,

and the number of choices for k is at most q5 which leaves a unique choice for l such that
V k
5 + V l

5 = Li + T i + Lj + T j holds. Therefore, by varying all possible choices of indices,
we bound the probability to at most q2q5/N

2.

Case (b): Now, we consider the case where the primitive queries appear after the construc-
tion queries and let k < l and let l be a forward query index. Then from the first equation
we use the randomness of K5 and from the fourth equation, we use the randomness of V l

5

which allows us to bound the probability of the event for a fixed choice of indices, to at
most 2/N2. Moreover, the number of tuples (i, j, k, l) such that Eqn. (4.21) holds is at
most

(
q
2

�
for choices of i and j, and the number of choices for k is at most q5 which leaves

a unique choice for l such that Si +Sj = Uk
5 +U l

5 holds. Therefore, by varying all possible
choices of indices, we bound the probability to at most q2q5/N

2.

Case (c): Similarly, if l is an inverse query index. Then from the first equation we use
the randomness of K5 and from the second equation, we use the randomness of U l

5 which
allows us to bound the probability of the event for a fixed choice of indices, to at most

56

2/N2. Moreover, the number of tuples (i, j, k, l) such that Eqn. (4.21) holds is at most
(
q
2

�

for choices of i and j, and the number of choices for k is at most q5 which leaves a unique
choice for l such that V k

5 +V l
5 = Li+T i+Lj +T j holds. Therefore, by varying all possible

choices of indices, we bound the probability to at most q2q5/N
2.

By taking the union of all the above cases, we obtain

Pr[badγ-bY -1b] ≤ 3q2q5
N2

. (4.22)

• badγ-bY -1c. ∃i ∈ IRR, j ∈ [q] and i ̸= j such that Ri = Rj and bSi+ bSj = Li+T i+Lj +T j .

In other words, ∃i ∈ IRR, j ∈ [q], with i ̸= j and i ∈ Idec and k ∈ [i− 1] such that

Ri = Rk, Ri = Rj , Ŝi + Ŝj = Li + T i + Lj + T j .

Let’s first fix the values for the indices i, j and k. The probability of the first event comes
from the n-bit randomness over Ri and the probability of the last event comes from the
randomness over Ŝi. Hence, the joint probability comes out to be at most (2/N2). However,
the number of choices of indices i and j is at most

(
q
2

�
, and the number of choices for k is

at most q. By using the union bound over all those possible choices to obtain

Pr[badγ-bY -1c] ≤ q3

N2
. (4.23)

• badγ-bY -1d. ∃i ∈ ISS , j ∈ [q] and i ̸= j such that Ri = Rj and bSi+ bSj = Li+T i+Lj +T j .

Analysis of this case is identical to the analysis of badγ-bY -1c., where we use the randomness
of Si as i ∈ Ienc. Hence, we obtain

Pr[badγ-bY -1d] ≤ q3

N2
. (4.24)

Adding the probabilities of the above four cases, we obtain

Pr[badγ-bY -1] ≤ q2(q1 + 3q5)

N2
+

2q3

N2
. (4.25)

Bounding badγ-bY -2

As before, we split the event into the following sub-cases and bound the probabilities of each of
them.

• badγ-bY -2a. ∃i ∈ IR, j ∈ [q] and i ̸= j such that Si = Sj and bRi + bRj = Li + T i +Lj + T j .

In other words, ∃i ∈ IR, j ∈ [q], with i ̸= j and k ∈ [q1] such that

Ri +K1 = Uk
1 , S

i = Sj , bRi + bRj = Li + T i + Lj + T j .

Now, we consider that j ∈ IR as the analysis of this case is the involved one. Therefore,
we have

Ri +K1 = Uk
1 , R

j +K1 = U l
1, S

i = Sj , V k
1 + V l

1 = Li + T i + Lj + T j , (4.26)

57

for some l ∈ [q1] and we equivalently write Eqn. (4.26) as

Ri +K1 = Uk
1 , R

i +Rj = Uk
1 + U l

1, S
i = Sj , V k

1 + V l
1 = Li + T i + Lj + T j . (4.27)

Now, we analyse this case in separate subcases:

Case (a): As before, we assume the construction queries appear after the primitive queries
and let i < j and let j be an encryption query index (analysis for j to be a decryption
query will be similar). Then from the first equation we use the randomness of K1 and from
the third equation, we use the randomness of Sj which allows us to bound the probability
of the event for a fixed choice of indices, to at most 2/N2. Moreover, the number of
tuples (i, j, k, l) such that Eqn. (4.27) holds is at most

(
q
2

�
for choices of i and j, and

the number of choices for k is at most q1 which leaves a unique choice for l such that
V k
1 + V l

1 = Li + T i + Lj + T j holds. Therefore, by varying all possible choices of indices,
we bound the probability to at most q2q1/N

2.

Case (b): Analysis for this case is identical to the case (b) of bounding badγ-bY -1c. There-
fore, by varying all possible choices of indices, we bound the probability to at most q2q1/N

2.

Case (c): Analysis for this case is exactly identical to the case (c) of bounding badγ-bY -1c.
Therefore, by varying all possible choices of indices, we bound the probability to at most
q2q1/N

2.

By taking the union of all the above cases, we obtain

Pr[badγ-bY -2a] ≤ 3q2q1
N2

. (4.28)

• badγ-bY -2b. ∃i ∈ IS , j ∈ [q] and i ̸= j such that Si = Sj and bRi + bRj = Li + T i +Lj + T j .

In other words, ∃i ∈ IS , j ∈ [q], with i ̸= j and k ∈ [q5] such that

Si +K5 = Uk
5 , R

i = Rj , bRi + bRj = Li + T i + Lj + T j .

Let’s first fix the values for the indices i, j and k. The probability of the first event
comes from the n-bit randomness over K5 and the probability of the last event comes from
the randomness over bRi. Hence, the joint probability comes out to be at most (2/N2).
However, the number of choices of indices i and j is at most

(
q
2

�
, and the number of choices

for k is at most q5. By using the union bound over all those possible choices to obtain

Pr[badγ-bY -2b] ≤ q2q5
N2

. (4.29)

• badγ-bY -2c. ∃i ∈ IRR, j ∈ [q] and i ̸= j such that Si = Sj and bRi+ bRj = Li+T i+Lj +T j .

In other words, ∃i ∈ IRR, j ∈ [q], with i ̸= j and i ∈ Idec and k ∈ [i− 1] such that

Ri = Rk, Si = Sj , R̂i + R̂j = Li + T i + Lj + T j .

Let’s first fix the values for the indices i, j and k. The probability of the first event
comes from the n-bit randomness over Ri and the probability of the last event comes from
the randomness over R̂i. Hence, the joint probability comes out to be at most (2/N2).
However, the number of choices of indices i and j is at most

(
q
2

�
, and the number of choices

for k is at most q. By using the union bound over all those possible choices to obtain

Pr[badγ-bY -2c] ≤ q3

N2
. (4.30)

58

• badγ-bY -2d. ∃i ∈ ISS , j ∈ [q] and i ̸= j such that Si = Sj and bRi+ bRj = Li+T i+Lj +T j .

Analysis of this case is identical to the analysis of badγ-bY -2c., where we use the randomness
of Si as i ∈ Ienc. Hence, we obtain

Pr[badγ-bY -2d] ≤ q3

N2
. (4.31)

Adding the probabilities of the above four cases, we obtain

Pr[badγ-bY -2] ≤ q2(3q1 + q5)

N2
+

2q3

N2
. (4.32)

By combining Eqn. (4.25) and Eqn. (4.32), we have

Pr[badγ-bY] ≤ 4q2(q1 + q5)

N2
+

4q3

N2
. (4.33)

4.7 Bounding the Ratio of Good Probabilities

Lemma 9. Let η = (ρ, τ,K, γ, µ, λ) be any attainable transcript such that η /∈ bad. Suppose
q1 + 2(

√
q + 1) ≤ q2 + q3 + q4, q5 + 2(

√
q + 1) ≤ q2 + q3 + q4 and q + (q1 + q2 + . . .+ q5) ≤ N/2.

Then, we have

Pr[G1 yields η]

Pr[G2 yields η]
≥ 1−

�
6q3 + 4q2(q2 + q3 + q4) + 2qq2q3 + 2qq2q4 + 2qq3q4

N2
+

8q3/2

N

�
.

Proof. Let η = (ρ, τ,K, γ, µ, λ) be a good transcript. We’ll calculate the probability of obtaining
η in the real world and an upper bound on its probability in the ideal world.

4.7.1 Real World

In the real world, there are N5 choices for K. Let Qj denote the number of distinct queries to
Pj for each j ∈ [5]. We first set aside the qj primitive queries to Pj for each j, and hereafter
count the additional distinct queries to each Pj that comes from the construction queries.

P1 gets qR∗ distinct queries in I∗, and qIS∗

R distinct queries in IS ; and P5 gets qS∗ distinct

queries in I∗, and qIR∗

S distinct queries in IR. Thus we have

Q1 = q1 + qR∗ + qIS∗

R , (4.34)

Q5 = q5 + qS∗ + qIR∗

S . (4.35)

For P2, there are qIRX + |IS | distinct queries in Iouter, |IXX |/2 distinct queries in IXX , and
q∗ − |IX | − |IXX | distinct queries in I∗ \ (IX ∪ IXX), bringing the total to

qIRX + |IS |+ |IXX |/2 + q∗ − |IX | − |IXX |
= qIRX + |IS |+ q − |IR| − |IS | − |IX | − |IXX |/2
= q − |IX | − |IXX |/2− |IR|+ qIRX .

By a similar argument, we have q − |IZ | − |IZZ |/2 − |IS | + qISZ distinct queries to P4 in the
construction queries. This gives us

Q2 = q2 + q − |IX | − |IXX |/2− |IR|+ qIRX , (4.36)

59

Q4 = q4 + q − |IZ | − |IZZ |/2− |IS |+ qISZ . (4.37)

Finally, we note that all queries to P3 outside IbY ∪ IbY bY are distinct, and in addition there are
|IbY bY |/2 distinct queries in IbY bY . This gives us

Q3 = q3 + q − |IbY | − |IbY bY |/2. (4.38)

We have

Pr[G1 yields η] =
1

N5
· 1

(N)Q1

· 1

(N)Q2

· 1

(N)Q3

· 1

(N)Q4

· 1

(N)Q5

, (4.39)

with Q1, . . . , Q5 as in Eqns. (4.34)-(4.38). (We’ll substitute the expressions later in Eqn. (4.39)
when cancelling out the terms.)

4.7.2 Ideal World

In the ideal world, we first observe that ρ, τ , K are sampled independently of everything else, γ
is sampled conditioned on (ρ, τ,K), and λ is sampled conditioned on (ρ, τ,K, γ). This gives

Pr[G2 yields η] = Pr
Oid

[ρ] · Pr
Oid

[τ] · Pr
Oid

[K] · Pr
Oid

[γ | ρ, τ,K] · Pr
Oid

[λ | ρ, τ,K, γ, µ].. (4.40)

Here PrOid
[θ] denoted the probability of an event θ occuring in the ideal world i.e in the game

G2. Primitive queries are answered honestly, giving

Pr
Oid

[ρ] =
1

(N)q1
· 1

(N)q2
· 1

(N)q3
· 1

(N)q4
· 1

(N)q5
. (4.41)

Next, from Step-τa and Step-τb of the sampling, we get

Pr
Oid

[τ] =
1

N2q
, (4.42)

and from Step-K, we get

Pr
Oid

[K] =
1

N5
. (4.43)

A bound for γ.

We recall that the tricky part of sampling γ is how we sample it over I∗. For each d ∈ [q∗],

we try to find an upper bound for the probability of sampling γd
∗ given γ

[d−1]
∗ has already been

sampled. We define

ad := min
γ
[d−1]
∗

���Γd
∗

h
γ
[d−1]
∗

i��� . (4.44)

Then Step-γa gives

Pr
Oid

h
γd
∗ | ρ, τ,K, γ

[d−1]
∗

i
≤ 1

ad
. (4.45)

Substituting Eqn. (4.44) in Eqn. (4.45) and taking the product over d ∈ [q∗] gives

Pr
Oid

�
γI∗ | ρ, τ,K

�
= Pr
Oid

h
γ
[q∗]
∗ | ρ, τ,K

i
≤

q∗Y

d=1

1

ad
. (4.46)

60

This takes care of γI∗ . In Iouter, Step-γb and Step-γc give

Pr
Oid

�
γIR∗⊔IS∗ | ρ, τ,K

�
=

1

Nq
IR∗
S

+q
IS∗
R

. (4.47)

From Eqns. (4.46) and (4.47) we get

Pr
Oid

[γ | ρ, τ,K] ≤

q∗Y

d=1

1

ad

!
· 1

Nq
IR∗
S

+q
IS∗
R

. (4.48)

A bound for λ.

Again we recall that the tricky part of sampling λ is over I∗∗. For each h ∈ [q∗∗], we try to find

an upper bound for the probability of sampling λh
∗∗ given λ

[h−1]
∗∗ has already been sampled. We

define
bh := min

λ
[h−1]
∗∗

���Λh
∗∗

h
λ
[h−1]
∗∗

i��� . (4.49)

Then Step-λa gives

Pr
Oid

h
λh
∗∗ | ρ, τ,K, γ, µ, λ

[h−1]
∗∗

i
≤ 1

bh
. (4.50)

From the definition of bh and by taking the product of Eqn. (4.50) over h ∈ [q∗∗] gives

Pr
Oid

�
λI∗∗ | ρ, τ,K, γ, µ

�
= Pr
Oid

h
λ
[q∗∗]
∗∗ | ρ, τ,K, γ, µ

i
≤

q∗∗Y

h=1

1

bh
. (4.51)

This takes care of λI∗∗ . On Iouter and Iinner, from Step-λb we get

Pr
Oid

�
λIR⊔IXX | ρ, τ,K, γ, µ

�
=

1

Nq
IR
X

+|IXX |/2
; (4.52)

from Step-λc we get

Pr
Oid

�
λIS⊔IZZ | ρ, τ,K, γ, µ

�
=

1

Nq
IS
Z

+|IZZ |/2
; (4.53)

and finally, Step-λd and Step-λe give

Pr
Oid

�
λI bY bY | ρ, τ,K, γ, µ

�
=

1

N |IRR|+|ISS |
(4.54)

To keep the combined exponent of N readable, we’ll use the notation

q† := qIRX + qISZ + |IRR|+ |ISS |+ (|IXX |+ |IbY bY |+ |IZZ |)/2. (4.55)

Combining Eqns. (4.51), (4.52), (4.53), and (4.54) and substituting Eqn. (4.55) yields

Pr
Oid

[λ | ρ, τ,K, γ, µ] ≤

q∗∗Y

h=1

1

bh

!
· 1

Nq†
. (4.56)

61

4.7.3 Bounding the ratio.

Plugging Eqns. (4.41), (4.42), (4.48), and (4.56) in Eqn. (4.40) gives

Pr
Oid

[η] ≤ 1

(N)q1
· 1

(N)q2
· 1

(N)q3
· 1

(N)q4
· 1

(N)q5
· 1

N5
· 1

N2q

(4.57)

From Eqn. (4.39) and Eqn. (4.57), on writing (N)Qj
/(N)qj as (N − qj)Qj−qj for each j ∈ [5], we

can calculate the H-ratio of η as

H[η] :=
Pr[G1 yields = η]

Pr[G2 yields = η]

≥ Nq
IR∗
S

+q
IS∗
R ·Qq∗

d=1 ad
(N − q1)Q1−q1(N − q5)Q5−q5

· N2q ·Nq† ·Qq∗∗
h=1 bh

(N − q2)Q2−q2(N − q3)Q3−q3(N − q4)Q4−q4

. (4.58)

Note that we have

Q2 − q2 = q − |IX | − |IXX |/2− |IR|+ qIRX

= q∗∗ + qIRX + |IRR|+ |IS |+ |ISS |
+ |IXX |/2 + |IbY |+ |IbY bY |+ |IZ |+ |IZZ |, (4.59)

so

(N − q2)Q2−q2 ≤ (N − q2)q∗∗ ·Nq
IR
X

+|IXX |/2

·N |IRR|+|IS |+|ISS |+|I bY
|+|I bY bY

|+|IZ |+|IZZ |. (4.60)

Similarly,

(N − q3)Q3−q3 ≤ (N − q3)q∗∗ ·N |IRR|+|ISS |+|I bY bY
|/2

·N |IR|+|IS |+|IX |+|IXX |+|IZ |+|IZZ |, (4.61)

(N − q4)Q4−q4 ≤ (N − q4)q∗∗ ·Nq
IS
Z

+|IZZ |/2

·N |IR|+|IRR|+|ISS |+|IZ |+|IZZ |+|I bY
|+|I bY bY

|. (4.62)

Multiplying (4.60), (4.61), and (4.62) gives

(N − q2)Q2−q2(N − q3)Q3−q3(N − q4)Q4−q4

≤ (N − q2)q∗∗(N − q3)q∗∗(N − q4)q∗∗

·Nq
IR
X

+q
IS
Z

+|IRR|+|ISS |+(|IXX |+|I bY bY
|+|IZZ |)/2 ·N2q−2q∗∗ . (4.63)

It follows that

N2q ·Nq
IR
X

+q
IS
Z

+|IRR|+|ISS |+(|IXX |+|I bY bY
|+|IZZ |)/2

(N − q2)Q2−q2(N − q3)Q3−q3(N − q4)Q4−q4

≥ N2q∗∗

(N − q2)q∗∗(N − q3)q∗∗(N − q4)q∗∗
. (4.64)

62

Since (N − q1)Q1−q1 ≤ (N − q1)qR∗
· Nq

IS∗
R and (N − q5)Q5−q5 ≤ (N − q5)qS∗

· Nq
IR∗
S , we also

have

Nq
IR∗
S

+q
IS∗
R

(N − q1)Q1−q1(N − q5)Q5−q5

≥ 1

(N − q1)qR∗
(N − q5)qS∗

(4.65)

Substituting (4.64) and (4.65) in (4.58) gives

H[η] ≥ N2q∗∗
Qq∗∗

h=1 bh
(N − q2)q∗∗(N − q3)q∗∗(N − q4)q∗∗

·
Qq∗

d=1 ad
(N − q1)qR∗

(N − q5)qS∗

. (4.66)

We count
Q

d ad ·
Q

h bh on each tree in sequence. Let q(j) be the number of queries in the j-th tree,

and define q
(j)
R∗ := |{ℓ ∈ [qR∗] | Rℓ is on the j-th tree}|, q(j)S∗ := |{m | Sm is on the j-th tree}|.

Also, define the cumulative sums

q+(j) :=

jX

l=1

q(l), q
+(j)
R∗ :=

jX

l=1

q
(l)
R∗, q

+(j)
S∗ :=

jX

l=1

q
(l)
S∗. (4.67)

By our ordering, the queries in the j-th tree are precisely the ones with labels d
(j)
1 := q+(j−1) +

1, . . . , d
(j)
q(j) := q+(j).

Bounding ad.

First, we consider the root node of the j-th tree. Here, both R and S are fresh, so we do not have
to worry about badγ-bY . We just have to exclude the ranges of P1 and P5 sampled in primitive
queries and earlier trees, giving

a
d
(j)
1
≥
�
N − q1 − q

+(j−1)
R∗

�
·
�
N − q5 − q

+(j−1)
S∗

�
. (4.68)

For a query d
(j)
k , let td

(j)
k be the number of elder siblings of its target node, plus the number of

grandparents (0 for root or second-generation nodes and 1 for all subsequent nodes). Then, for

an encryption query d
(j)
k , the number of earlier nodes with the same R (which can potentially

give rise to badγ-bY) is exactly td
(j)
k , and the number of distinct bS already sampled before this

node is md
(j)
k − 1. Thus we have

a
d
(j)
k

≥ N − q5 −
�
md

(j)
k − 1

�
− td

(j)
k , (4.69)

Reasoning similarly for a decryption query d
(j)
k we get

a
d
(j)
k

≥ N − q1 −
�
ℓd

(j)
k − 1

�
− td

(j)
k . (4.70)

We note that (4.69) and (4.70) do not depend on the tree except for the count td, and can
simply be written as

ad ≥ N − q5 − (md − 1)− td (4.71)

and

ad ≥ N − q1 − (ℓd − 1)− td (4.72)

63

for non-root encryption and decryption queries, respectively. Similarly, (4.68) can be written as

ad ≥
(
N − q1 − (ℓd − 1)

�
·
(
N − q5 − (md − 1)

�
(4.73)

for root queries, where td = 0. Let t(ℓ) (resp. t(m)) be defined as td where d is the first query
(in the tree ordering) where Rℓ (resp. Sm) appears. Then

q∗Y

d=1

ad ≥
qR∗Y

ℓ=1

[N − q1 − (ℓ− 1)− t(ℓ)] ·
qS∗Y

m=1

[N − q5 − (m− 1)− t(m)] . (4.74)

Bounding bh.

For h ∈ [q∗∗] let t
h
∗∗ be the number of elder siblings of its target node that come from I∗∗, plus

the number of grandparents that come from I∗∗. While sampling λh
∗∗, we need to maintain the

three validity conditions on bX, Y , and bZ; since X, bY , and Z are all distinct on I∗∗, we need
to avoid collisions on bX, Y , and bZ as well. For each of these three, in addition to the primitive
queries, h−1 distinct values have been sampled in the earlier nodes (in the tree-ordering), giving
a total of q2 + q3 + q4 + 3(h− 1) candidates to avoid.

However, it turns out we can do slightly better. The key observation here is that for all earlier
nodes with the same R or same S as this node, we avoid one of the three collisions for free! (For

instance, Ri = Ri′ and bXi ̸= bXi′ automatically imply that Y i = bXi + Ri ̸= bXi′ + Ri′ = Y i′ .)
Thus, for the th∗∗ earlier nodes with the same R or same S, we have one collision less to worry
about. This shows that

bh ≥ N − (q2 + q3 + q4)− 3(h− 1) + th∗∗. (4.75)

Taking product over [q∗∗] yields

q∗∗Y

h=1

bh ≥
q∗∗Y

h=1

�
N − (q2 + q3 + q4)− 3(h− 1) + th∗∗

�
. (4.76)

This th∗∗ term that we save here is crucial for the proof, as we use it to cancel out the corresponding
−td∗ in the bound for ad. That leaves us with reasonably simple bounds which we can approximate
using standard techniques.

However, we still need to be careful, because I∗∗ is slightly smaller than I∗, which means
that (i) each th∗∗ will be slightly smaller than the corresponding td∗, and (ii) there will be slightly
fewer th∗∗ terms than −td∗ terms, leaving a few −td∗ terms that we can cancel out. Fortunately,
the restrictions we have put on the bad events will be enough to bound these corner cases. We
devote the rest of the section to deriving this concrete bound.

Completing the proof.

For i ∈ I∗∗ (returning for the moment to the original query-order labelling), we look at adi
bhi

.
Suppose i is a non-root encryption query. Then from Eqns. (4.71) and (4.75) we get

adi
bhi
≥
�
N − q5 − (mdi − 1)− tdi

�
·
�
N − (q2 + q3 + q4)− 3(hi − 1) + thi

∗∗

�
. (4.77)

We want to transfer the thi
∗∗ from the right parenthesis to the left. For any N1, N2, to claim

N1(N2 + thi
∗∗) ≥ (N1 + thi

∗∗)N2, we just need to show that N1 ≥ N2 (since thi
∗∗ is positive). Here

we have N1 = N − [q5 − (mdi − 1) − tdi] and N2 = N − [(q2 + q3 + q4) + 3(hi − 1)], so we just

64

need to show that (q2 + q3 + q4) + 3(hi− 1) > q5− (mdi − 1)− tdi . Since mdi ≤ di, and tdi ≤ di,
we get

q2 + q3 + q4 + 3(hi − 1)− q5 − (mdi − 1)− tdi

≥ q2 + q3 + q4 + 3hi − 3− q5 − di + 1− di

≥ q2 + q3 + q4 − 2(di − hi)− q5 − 2

≥ q2 + q3 + q4 − 2|Iinner| − q5 − 2

≥ q2 + q3 + q4 − (2
√
q + q5 + 2) ≥ 0, (4.78)

since q2 + q3 + q4 ≥ 2
√
q+ q5 +2. This allows us to carry out the intended transfer in (4.77) and

get

adi
bhi
≥
�
N − q5 − (mdi − 1)− (tdi − thi

∗∗)
�
· [N − (q2 + q3 + q4)− 3(hi − 1)]

≥
�
N − q5 − (mdi − 1)− |Iinner|

�
· [N − (q2 + q3 + q4)− 3(hi − 1)]

≥
�
N − q5 − (mdi − 1)−√q

�
· [N − (q2 + q3 + q4)− 3(hi − 1)] . (4.79)

Similarly, when i is a non-root decryption query, we have

adi
bhi
≥
�
N − q1 − (ℓdi − 1)−√q

�
· [N − (q2 + q3 + q4)− 3(hi − 1)] . (4.80)

From here on, we can proceed to bound the two branches separately. For the parenthesis on the
right of Eqn. (4.80), taking product over I∗∗ gives

Y

i∈I∗∗

[N − (q2 + q3 + q4)− 3(hi − 1)] =
Y

h∈[q∗∗]

[N − (q2 + q3 + q4)− 3(h− 1)] . (4.81)

We observe that

N2 · (N − q2 − q3 − q4 − 3(h− 1))

= (N − q2 − (h− 1))(N − q3 − (h− 1))(N − q4 − (h− 1))

−N [(q2 + (h− 1))(q3 + (h− 1)) + (q2 + (h− 1))(q4 + (h− 1))

+(q3 + (h− 1))(q4 + (h− 1))] + (q2 + (h− 1))(q3 + (h− 1))(q4 + (h− 1))

≥ (N − q2 − (h− 1)) · (N − q3 − (h− 1)) · (N − q4 − (h− 1))

·
�
1− 2

N2
· [(q2 + (h− 1))(q3 + (h− 1)) + (q2 + (h− 1))(q4 + (h− 1))

+(q3 + (h− 1))(q4 + (h− 1))]

�
. (4.82)

Thus,

N2q∗∗ ·
"

q∗∗Y

h=1

(N − (q2 + q3 + q4)− 3(h− 1))

#

≥ (N − q2)q∗∗ · (N − q3)q∗∗ · (N − q4)q∗∗ · (1− ϵ0), (4.83)

where ϵ0 = 2q[(q2+q∗∗)(q3+q∗∗)+(q2+q∗∗)(q4+q∗∗)+(q3+q∗∗)(q4+q∗∗)]/N
2. This completes

the bounding of the branch on the right of Eqn. (4.80). The final task that remains is to bound
the branch on the left, combined with the ad terms in Iinner (where the td did not get cancelled
out). For each i ∈ I∗, let wi denote

√
q if i ∈ I∗∗ (corresponding to the

√
q in the left parenthesis

65

of Eqn. (4.80)) and q if i ∈ Iinner (corresponding to the t(ℓ) or t(m) in Eqn. (4.74)). Let w(ℓ)
(resp. w(m)) be defined as wi where di is the first query where Rℓ (resp. Sm) appears. Then

qR∗Y

ℓ=1

[N − q1 − (ℓ− 1)− w(ℓ)] ·
qS∗Y

m=1

[N − q5 − (m− 1)− w(m)]

≥ (N − q1)qR∗
(N − q5)qS∗

"
1− 2

N
·

qR∗X

ℓ=1

w(ℓ) +

qS∗X

m=1

w(m)

!#

≥ (N − q1)qR∗
(N − q5)qS∗

�
1− 4

N
· (√q · |I∗∗|+ q · |Iinner|)

�

≥ (N − q1)qR∗
(N − q5)qS∗

�
1− 8q3/2

N

�
. (4.84)

From Eqns. (4.79), (4.80), (4.83) and (4.84) we have

q∗Y

d=1

ad

q∗∗Y

h=1

bh ≥
(N − q2)q∗∗(N − q3)q∗∗(N − q4)q∗∗

N2q∗∗

· (N − q1)qR∗
(N − q5)qS∗

�
1− ϵ0 −

8q3/2

N

�
. (4.85)

Plugging in the value of ϵ0 in Eqn. (4.85), using the inequality q∗∗ ≤ q and substituting Eqn. (4.85)
in Eqn. (4.66) gives

H[η] ≥ 1−
�
6q3 + 4q2(q2 + q3 + q4) + 2qq2q3 + 2qq2q4 + 2qq3q4

N2
+

8q3/2

N

�
, (4.86)

which completes the proof.

4.8 Bounding the Probabilities of the Bad Events

4.8.1 Bounding badτ -switch

Let’s first fix a pair of values for the indices i and j. If j ∈ Ienc, then the probability of the event
(Sj , T j) = (Si, T i) comes out to be (1/N) · (1/N) due to the n-bit randomness over each of Sj

and T j . Similarly, if j ∈ Idec, then the probability of the event (Lj , Rj) = (Li, Ri) comes out to
be (1/N) · (1/N) due to the n-bit randomness over each of Lj and Rj . As we can choose the pair
of indices (i, j) in

(
q
2

�
ways, we use the union bound over all those possible choices to obtain

Pr[badτ -switch] ≤
(
q
2

�

N2
. (4.87)

4.8.2 Bounding badτ -bY
Let’s first fix a pair of values for the indices i and j. If j ∈ Ienc, then the probability of each of
the events Si = Sj and Li +T i = Lj +T j comes out to be (1/N2) due to the n- bit randomness
over Sj and T j respectively. Similarly, if j ∈ Idec, then the probability of each of the events
Ri = Rj and Li + T i = Lj + T j comes out to be (1/N2) due to the n- bit randomness over Rj

66

and Lj respectively. As we can choose the pair of indices (i, j) in
(
q
2

�
ways, we use the union

bound over all those possible choices to obtain

Pr[badτ -bY] ≤
(
q
2

�

N2
. (4.88)

4.8.3 Bounding badτ -3path

Proposition 4. Having defined the bad event badτ -3path in Fig. 4.3, we have

Pr[badτ -3path] ≤
(
q
3

�

N2
.

To prove the proposition, let’s first fix three distinct values for the indices i, j, and l. We’ll study
this bad event in the following four sub-cases.

• badτ -3path-1: If j, l ∈ Idec, then Pr[Ri = Rj = Rl] = Pr[Ri = Rj] · Pr[Ri = Rj = Rl|Ri =
Rj] (as Pr[Ri = Rj = Rl|Ri ̸= Rj] = 0). This probability comes out to be (1/N2). The
n-bit randomness for the first term on the RHS comes from Rj , and the same randomness
for the second term on the RHS comes from Rl.

• badτ -3path-2: If j, l ∈ Ienc, then Pr[Si = Sj = Sl] = Pr[Si = Sj] ·Pr[Si = Sj = Sl|Si = Sj]
(as Pr[Si = Sj = Sl|Si ̸= Sj] = 0). This probability comes out to be (1/N2). The n-bit
randomness for the first term on the RHS comes from Sj and the same randomness for the
second term on the RHS comes from Sl.

• badτ -3path-3: If j ∈ Idec and l ∈ Ienc, then the probability of each of the events Ri = Rj =
Rl and Si = Sj = Sl comes out to be (1/N). The n-bit randomness comes from Rj and
Sl, respectively.

• badτ -3path-4: If j ∈ Ienc and l ∈ Idec, then the probability of each of the events Ri = Rj =
Rl and Si = Sj = Sl comes out to be (1/N). The n-bit randomness comes from Rl and
Sj respectively.

As we can choose the 3-tuple of indices (i, j, l) in
(
q
3

�
ways, we use the union bound over all those

possible choices to obtain

Pr[badτ -3path] ≤
(
q
3

�

N2
. (4.89)

4.8.4 Bounding badτ -3coll

Once we fix three distinct values for the indices i, j, and l, the analysis of this bad event exactly
corresponds to the first two sub-cases of the previous bad event(e.g., badτ -3path). As we can
choose the 3-tuple of indices (i, j, l) in

(
q
3

�
ways, we use the union bound over all those possible

choices to obtain

Pr[badτ -3coll] ≤
(
q
3

�

N2
. (4.90)

67

4.8.5 Bounding badK-outer

Proposition 5. Having defined the bad event badK-outer in Fig. 4.4, we have

Pr[badK-outer] ≤ qq1q5 + q2(q1 + q5)

N2
.

To prove this proposition, we note that this bad event occurs when one of the following happens.
Note that the event IRR ∩ ISS ̸= ∅ is an impossible event as IRR ⊆ Idec and ISS ⊆ Ienc from
definition.

• badK-outer-1 IR ∩ IS ̸= ∅. This bad event occurs when for some i ∈ [q], j ∈ [q1] and
l ∈ [q5], R

i +K1 = U j
1 and Si +K5 = U l

5. Let’s first fix the values for the indices i, j and

l. Then the probability of each of the events Ri +K1 = U j
1 and Si +K5 = U l

5 comes out
to be (1/N). The n-bit randomness comes from the keys K1 and K5, respectively. As we
can choose the indices i, j and l in q, q1 and q5 ways respectively, we use the union bound
over all those possible choices to obtain

Pr[IR ∩ IS ̸= ∅] ≤
qq1q5
N2

. (4.91)

• badK-outer-2 IR ∩ IRR ̸= ∅. This bad event occurs when for some i ∈ Idec, j ∈ [q1] and
l ∈ [i− 1], Ri +K1 = U j

1 and Ri = Rl. Let’s first fix the values for the indices i, j and l.

The probability of the event Ri +K1 = U j
1 comes out to be (1/N). The n-bit randomness

comes from the key K1. The probability of the event Ri = Rl also comes out to be (1/N).
The n-bit randomness comes from Ri as i > l and i ∈ Idec. As we can choose the pair of
indices (i, l) in

(
q
2

�
ways and the index j in q1 ways, we use the union bound over all those

possible choices to obtain

Pr[IR ∩ IRR ̸= ∅] ≤
q1
(
q
2

�

N2
. (4.92)

• badK-outer-3 IS ∩ ISS ̸= ∅. This bad event occurs when for some i ∈ Ienc, j ∈ [q5] and
l ∈ [i − 1], Si +K5 = U j

5 and Si = Sl. Let’s first fix the values for the indices i, j and l.

The probability of the event Si +K5 = U j
5 comes out to be (1/N). The n-bit randomness

comes from the key K5. The probability of the event Si = Sl also comes out to be (1/N).
The n-bit randomness comes from Si as i > l and i ∈ Ienc. As we can choose the pair of
indices (i, l) in

(
q
2

�
ways and the index j in q5 ways, we use the union bound over all those

possible choices to obtain

Pr[IS ∩ ISS ̸= ∅] ≤
q5
(
q
2

�

N2
. (4.93)

• badK-outer-4 IR ∩ ISS ̸= ∅. This bad event occurs when for some i ∈ Ienc, j ∈ [q1] and
l ∈ [i − 1], Ri +K1 = U j

1 and Si = Sl. Let’s first fix the values for the indices i, j and l.

The probability of the event Ri +K1 = U j
1 comes out to be (1/N). The n-bit randomness

comes from the key K1. The probability of the event Si = Sl also comes out to be (1/N).
The n-bit randomness comes from Si as i > l and i ∈ Ienc. As we can choose the pair of

68

indices (i, l) in
(
q
2

�
ways and the index j in q1 ways, we use the union bound over all those

possible choices to obtain

Pr[IS ∩ ISS ̸= ∅] ≤
q1
(
q
2

�

N2
. (4.94)

• badK-outer-5 IS ∩ IRR ̸= ∅. This bad event occurs when for some i ∈ Idec, j ∈ [q5] and
l ∈ [i − 1], Si +K5 = U j

5 and Ri = Rl. Let’s first fix the values for the indices i, j and l.

The probability of the event Si +K5 = U j
5 comes out to be (1/N). The n-bit randomness

comes from the key K5. The probability of the event Ri = Rl also comes out to be (1/N).
The n-bit randomness comes from Ri as i > l and i ∈ Idec. As we can choose the pair of
indices (i, l) in

(
q
2

�
ways and the index j in q5 ways, we use the union bound over all those

possible choices to obtain

Pr[IR ∩ IRR ̸= ∅] ≤
q5
(
q
2

�

N2
. (4.95)

Adding the probabilities of all these sub-cases, we obtain

Pr[badK-outer] ≤ qq1q5 + q2(q1 + q5)

N2
. (4.96)

4.8.6 Bounding badK-source

Proposition 6. Having defined the bad event badK-source in Fig. 4.4, we have

Pr[badK-source] ≤ (q1 + q5)
(
q
2

�
+ 2
(
q
3

�

N2
.

This bad event occurs when one of the following happens.

• badK-source1. ∃i ∈ IS , j ∈ IRR, i < j and Ri = Rj . In other words, ∃i ∈ [q] and j ∈ Idec
with i < j and l ∈ [q5] such that Si +K5 = U l

5 and Ri = Rj . Let’s first fix the values for
the indices i, j and l. The probability of each of the events Si + K5 = U l

5 and Ri = Rj

comes out to be (1/N). The n-bit randomness comes from the key K5 and Rj , respectively.
As we can choose the pair of indices (i, j) in

(
q
2

�
ways and the index l in q5 ways, we use

the union bound over all those possible choices to obtain

Pr[badK-source1] ≤ q5
(
q
2

�

N2
. (4.97)

• badK-source2. ∃i ∈ ISS , j ∈ IRR, i < j and Ri = Rj . In other words, ∃l ∈ [q], i ∈ Ienc and
j ∈ Idec with k < i < j such that Ri = Rj and Si = Sk. Let’s first fix the values for the
indices i, j and l. The probability of each of the events Ri = Rj and Si = Sk comes out
to be (1/N). The n-bit randomness comes from Rj and Si respectively. As we can choose
the 3-tuple of indices (i, j, l) in

(
q
3

�
ways, we use the union bound over all those possible

choices to obtain

Pr[badK-source2] ≤
(
q
3

�

N2
. (4.98)

69

• badK-source3. ∃i ∈ IR, j ∈ ISS , i < j and Si = Sj . In other words, ∃i ∈ [q] and j ∈ Ienc
with i < j and l ∈ [q1] such that Ri +K1 = U l

1 and Si = Sj . Let’s first fix the values for
the indices i, j and l. The probability of each of the events Ri + K1 = U l

1 and Si = Sj

comes out to be (1/N). The n-bit randomness comes from the key K1 and Sj , respectively.
As we can choose the pair of indices (i, j) in

(
q
2

�
ways and the index l in q1 ways, we use

the union bound over all those possible choices to obtain

Pr[badK-source3] ≤ q1
(
q
2

�

N2
. (4.99)

• badK-source4. ∃i ∈ IRR, j ∈ ISS , i < j and Si = Sj . In other words, ∃l ∈ [q], i ∈ Idec and
j ∈ Ienc with k < i < j such that Si = Sj and Ri = Rk. Let’s first fix the values for the
indices i, j and l. The probability of each of the events Si = Sj and Ri = Rk comes out
to be (1/N). The n-bit randomness comes from Sj and Ri, respectively. As we can choose
the 3-tuple of indices (i, j, l) in

(
q
3

�
ways, we use the union bound over all those possible

choices to obtain

Pr[badK-source4] ≤
(
q
3

�

N2
. (4.100)

Adding the probabilities of all these sub-cases, we obtain

Pr[badK-source] ≤ (q1 + q5)
(
q
2

�
+ 2
(
q
3

�

N2
. (4.101)

4.8.7 Bounding badµ-in&out

Proposition 7. Having defined the bad event badµ-in&out in Fig. 4.7, we have

Pr[badµ-in&out] ≤ q2(3q1 + 3q5 + q2 + q3 + q4)

N2
+

5q3

N2
+

qq1(q3 + q4 + q5)

N2

+
qq5(q2 + q3 + q4)

N2
+

2q2q1q5
N3

+
2q3(q1 + q5)

N3
+

2q2

N2
.

This bad event occurs when (IR ⊔ IS ⊔ IRR ⊔ ISS) ∩ (IX ∪ IXX ∪ IbY ∪ IbY bY ∪ IZ ∪ IZZ) ̸= ∅.
Note that by definition IR ∩IXX = ∅ and IS ∩IZZ = ∅. We individually bound each of the bad
events as follows:

• badµ-in&out-1. IR ∩ IX ̸= ∅. This bad event occurs when ∃i ∈ [q], j ∈ [q1] and l ∈ [q5]
such that Ri +K1 = U j

1 and Xi +K2 = U l
2. Let’s first fix the values for the indices i, j

and l. The probability of each of the events Ri +K1 = U j
1 and Xi +K2 = U l

2 comes out
to be (1/N) due to the n-bit randomness over the keys K1 and K2 respectively. As we can
choose the indices i, j and l in q, q1 and q5 ways respectively, we use the union bound over
all those possible choices to obtain

Pr[badµ-in&out-1] ≤ qq1q5
N2

. (4.102)

70

• badµ-in&out-2. IRR∩IX ̸= ∅. This bad event occurs when ∃i ∈ Idec, j ∈ [i−1] and l ∈ [q2]
such that Ri = Rj and Xi +K2 = U l

2. Let’s first fix the values for the indices i, j and l.
The probability of each of the events Ri = Rj and Xj +K2 = U l

2 comes out to be (1/N)
due to the n-bit randomness over Ri and K2 respectively. As we can choose the pair of
indices (i, j) in

(
q
2

�
ways and the index l in q2 ways, we use the union bound over all those

possible choices to obtain

Pr[badµ-in&out-2] ≤ q2
(
q
2

�

N2
. (4.103)

• badµ-in&out-3. IRR ∩ IXX ̸= ∅. This bad event occurs when ∃i ∈ Idec, j ∈ [i − 1], and
l ∈ [q] with i ̸= l such that Ri = Rj and Xi = X l, which we equivalently write as

Ri = Rj , bRi + bRl = Li + Ll.

We analyse this event into two separate subcases: (a) when l = j and if j is a decryption
query, then the above event boils down to the event Ri = Rj , Li = Lj , which triggers the
bad event badτ -switch. Therefore, we analyse the case (b) when l ̸= j. In this case, we

use the randomness of Ri and bRi to bound the above event to at most (2/N2) As we can
choose the pair of indices {i, j} in

(
q
2

�
ways and for each of those choices, we can choose the

index l in (q − 1) ways, we use the union bound over all those possible choices to obtain

Pr[badµ-in&out-3] ≤ q3

N2
. (4.104)

• badµ-in&out-4. IR ∩ IbY ̸= ∅. This bad event occurs when ∃i ∈ [q], j ∈ [q1] and k ∈ [q3]

such that Ri +K1 = U j
1 and bY i +K3 = V k

3 , which we equivalently write as

Ri +K1 = U j
1 ,
bRi + Li + bSi + T i +K3 = V k

3 .

For a fixed choice of indices, the probability of the event is at most 1/N2 due to the n-bit
randomness over K1 and K3. We can choose the triplet of indices (i, j, k) in at most qq1q3
ways; we use the union bound over all those possible choices to obtain

Pr[badµ-in&out-4] ≤ qq1q3
N2

. (4.105)

• badµ-in&out-5. IR ∩ IbY bY ̸= ∅. This bad event occurs when ∃i ∈ [q], j ∈ [q] and k ∈ [q1]

such that Ri +K1 = Uk
1 and bY i = bY j , which we equivalently write as

Ri +K1 = Uk
1 , bRi + bSi + bRj + bSj = Li + Lj + T i + T j .

For a fixed choice of indices, the probability of the event is at most 2/N2 due to the n-bit

randomness over K1 and the n-bit randomness over bSi (note that i /∈ IS and i /∈ ISS). As
we can choose the pair of indices {i, j} in

(
q
2

�
ways and for each of those choices, we can

choose the index k in q1 ways, we use the union bound over all those possible choices to
obtain

Pr[badµ-in&out-5] ≤ q2q1
N2

. (4.106)

71

• badµ-in&out-6. IR ∩ IZ ̸= ∅. This bad event occurs when ∃i ∈ [q], j ∈ [q1] and k ∈ [q4]
such that Ri +K1 = U j

1 and Zi +K4 = Uk
4 , which we equivalently write as

Ri +K1 = U j
1 ,
bSi + T i +K4 = Uk

4 .

For a fixed choice of indices, the probability of the event is at most 1/N2 due to the n-bit
randomness over K1 and K4. However, the total number of choices of the indices is at
most qq1q4, we use the union bound over all those possible choices to obtain

Pr[badµ-in&out-6] ≤ qq1q4
N2

. (4.107)

• badµ-in&out-7. IR ∩ IZZ ̸= ∅. This bad event occurs when ∃i ∈ [q], j ∈ [q] and k ∈ [q1]
such that Ri +K1 = Uk

1 and Zi = Zj , which we equivalently write as

Ri +K1 = Uk
1 ,
bSi + T i = bSj + Tj .

For a fixed choice of indices, the probability of the event is at most 2/N2 due to the n-bit

randomness over K1 and bSi (note that bSi is freshly sampled as i /∈ IS and i /∈ ISS).
However, the total number of choices of the indices is at most

(
q
2

�
q1; we use the union

bound over all those possible choices to obtain

Pr[badµ-in&out-7] ≤ q2q1
N2

. (4.108)

• badµ-in&out-8. IS ∩ IX ̸= ∅. Analysis of this case is similar to that of badµ-in&out-1.,
where we use the randomness of K5 and K2. Looking ahead, we bound the probability to
be at most

Pr[badµ-in&out-8] ≤ qq2q5
N2

. (4.109)

• badµ-in&out-9. IS ∩IXX ̸= ∅. Analysis of this case is again similar to that of badµ-in&out-

7., where we use the randomness of K5 and bRi. Looking ahead, we bound the probability
to be at most

Pr[badµ-in&out-9] ≤ q2q5
N2

. (4.110)

• badµ-in&out-10. IS ∩IbY ̸= ∅. Analysis of this case is again similar to that of badµ-in&out-

4., where we use the randomness of K5 and K3. Looking ahead, we bound the probability
to be at most

Pr[badµ-in&out-10] ≤ qq3q5
N2

. (4.111)

• badµ-in&out-11. IS∩IbY bY ̸= ∅. Analysis of this case is again similar to that of badµ-in&out-

5., where we use the randomness of K5 and bRi. Looking ahead, we bound the probability
to be at most

Pr[badµ-in&out-11] ≤ q2q5
N2

. (4.112)

72

• badµ-in&out-12. IS ∩IZ ̸= ∅. Analysis of this case is again similar to that of badµ-in&out-

6., where we use the randomness of K5 and K4. Looking ahead, we bound the probability
to be at most

Pr[badµ-in&out-12] ≤ qq4q5
N2

. (4.113)

• badµ-in&out-13. IRR ∩ IbY ̸= ∅. This bad event occurs when ∃i ∈ Idec, j ∈ [i − 1] and

k ∈ [q3] such that Ri = Rj and bY i +K3 = V k
3 , which we equivalently write as

Ri = Rj , bRi + Li + bSi + T i +K3 = V k
3 .

For a fixed choice of indices, the probability of the event is at most 1/N2 due to the n-bit
randomness over Ri and K3. We can choose the triplet of indices (i, j, k) is at most

(
q
2

�
q3

ways, we use the union bound over all those possible choices to obtain

Pr[badµ-in&out-13] ≤ q2q3
2N2

. (4.114)

• badµ-in&out-14. IRR ∩ IbY bY ̸= ∅. This bad event occurs when ∃i ∈ Idec, j ∈ [i − 1] and

k ∈ [q] such that Ri = Rj and bY i = bY k, which we equivalently write as

Ri = Rj , bRi + bSi + bRk + bSk = Li + Lk + T i + T k.

Now, we consider two separate subcases: (i) if k = j and it is a decryption query, then the
above event boils down to Ri = Rj , Li+Lj = T i+T j (assuming in both of the decryption
queries S values are same). Then, using the randomness of Ri and Li, we bound the above
probability by at most 1/N2. Moreover, the number of choices for (i, j) to be at most

(
q
2

�
.

Therefore, by using the union bound, the probability of the above event is at most q2/2N2.

Now, we consider the other case when k ̸= j. In this case, we use the randomness of Ri and
bRi to bound the above event to at most 2/N2. The number of choices for triplets (i, j, k)
is q3. Therefore, by using the union bound, the probability of the above event is at most
q3/N2.

Combining the above two cases, we obtain

Pr[badµ-in&out-14] ≤ q2

2N2
+

q3

N2
. (4.115)

• badµ-in&out-15. IRR ∩ IZ ̸= ∅. This bad event occurs when ∃i ∈ Idec, j ∈ [i − 1] and
k ∈ [q4] such that Ri = Rj and Zi +K4 = Uk

4 , which we equivalently write as

Ri = Rj , bSi + T i +K4 = Uk
4 .

For a fixed choice of indices, the probability of the event is at most 1/N2 due to the n-bit
randomness over Ri and K4. However, the total number of choices of the indices is at most(
q
2

�
q4, we use the union bound over all those possible choices to obtain

Pr[badµ-in&out-15] ≤ q2q4
2N2

. (4.116)

73

• badµ-in&out-16. IRR ∩ IZZ ̸= ∅. This bad event occurs when ∃i ∈ Idec, j ∈ [i − 1] and
k ∈ [q] such that Ri = Rj and Zi = Zk, which we equivalently write as

Ri = Rj , bSi + T i = bSk + T k.

For a fixed choice of indices, the probability of the event is at most 2/N2 due to the n-bit

randomness over bRi and bSi (note that bSi is freshly sampled as Si ̸= Sj and i /∈ IS).
However, the total number of choices of the indices is at most

(
q
2

�
q, we use the union bound

over all those possible choices to obtain

Pr[badµ-in&out-16] ≤ q3

2N2
. (4.117)

• badµ-in&out-17. ISS∩IX ̸= ∅. Analysis of this bad event is similar to that of badµ-in&out-

12, where we use the randomness of Si and K2. Looking ahead, we bound the probability
of the event to at most

Pr[badµ-in&out-17] ≤ q2
(
q
2

�

N2
. (4.118)

• badµ-in&out-18. ISS ∩ IXX ̸= ∅. This bad event occurs when ∃i ∈ Ienc, j ∈ [i − 1], and
l ∈ [q] with i ̸= l such that Si = Sj and Xi = X l, which we equivalently write as

Si = Sj , bRi + bRl = Li + Ll.

We use the randomness of Si and bRi to bound the above event to at most (2/N2) As we
can choose the pair of indices {i, j} in

(
q
2

�
ways and for each of those choices, we can choose

the index l in (q−1) ways, we use the union bound over all those possible choices to obtain

Pr[badµ-in&out-18] ≤ q3

N2
. (4.119)

• badµ-in&out-19. ISS ∩IbY ̸= ∅. Analysis of this bad event is similar to that of badµ-in&out-

13, where we use the randomness of Si and K3. Looking ahead, we bound the probability
of the event to at most

Pr[badµ-in&out-19] ≤ q2q3
2N2

. (4.120)

• badµ-in&out-20. ISS ∩ IbY bY ̸= ∅. Analysis of this bad event is similar to that of badµ-
in&out-16, where we use the randomness of Si instead of Ri, wherever applicable. Looking
ahead, we bound the probability of the above event to at most

Pr[badµ-in&out-20] ≤ q2

2N2
+

q3

N2
. (4.121)

• badµ-in&out-21. ISS ∩IZ ̸= ∅. Analysis of this bad event is similar to that of badµ-in&out-

15, where we use the randomness of Si and K4. Looking ahead, we bound the above event
to at most

Pr[badµ-in&out-21] ≤ q2q4
2N2

. (4.122)

74

• badµ-in&out-22. ISS ∩ IZZ ̸= ∅. Again, the analysis of this bad event is similar to that of
badµ-in&out-3, where we use the randomness of Si, wherever applicable. Looking ahead,
we bound the above probability to be at most

Pr[badµ-in&out-22] ≤ q3

2N2
. (4.123)

By combining Eqn. (4.102)-Eqn. (4.123), we obtain

Pr[badµ-in&out] ≤ q2(2q1 + 2q5 + q2 + q3 + q4)

N2
+

5q3

N2
+

qq1(q3 + q4 + q5)

N2

+
qq5(q2 + q3 + q4)

N2
+

2q2

N2
. (4.124)

4.8.8 Bounding badµ-source

Proposition 8. Having defined the bad event badµ-source in Fig. 4.7, we have

Pr[badµ-source] ≤ 2
(
q
2

�
(q1 + q5)

N2
.

To prove the proposition, we first fix the values for the indices i, j and l.

• badµ-source-1. i, j ∈ [q] with i ̸= j and l ∈ [q1] such that Ri + K1 = U l
1 and bRi + bRj =

Li + Lj . The probability of the event Ri + K1 = U l
1 comes out to be (1/N) due to the

randomness over the key K1. The probability of the event bRi + bRj = Li + Lj comes out
to be at most (2/N) due to the randomness over bRj .

• badµ-source-2. i, j ∈ [q] with i ̸= j and l ∈ [q5] such that Si+K5 = U l
5 and

bSi+bSj = T i+T j .
The probability of the event Si +K5 = U l

5 comes out to be (1/N) due to the randomness

over the key K5. The probability of the event bSi + bSj = T i + T j comes out to be at most
(2/N) due to the randomness over bSj .

As we can choose the pair of indices (i, j) in 2
(
q
2

�
ways and the index l in q1 or q5 ways (for

badµ-source-1 and badµ-source-2 respectively), we use the union bound over all those possible
choices to obtain

Pr[badµ-source] ≤ 2
(
q
2

�
(q1 + q5)

N2
. (4.125)

4.8.9 Bounding badµ-inner

Proposition 9. Having defined the bad event badµ-inner in Fig. 4.7, we have

Pr[badµ-inner] ≤ q(q2q3 + q3q4 + q1q4)

N2
+

3q2(q2 + q3 + q4)

N2
+

3q3

N2
.

This bad event occurs when one of the following happens.

• badµ-inner-1. IX ∩ IbY ̸= ∅. This bad event occurs when ∃i ∈ [q], j ∈ [q2] and l ∈ [q3] such

that Xi +K2 = U j
2 and bY i +K3 = V l

3 . Let’s first fix the values for the indices i, j and l.

The probability of each of the events Xi +K2 = U j
2 and bY l = V l

3 comes out to be (1/N)

75

due to the randomness over the keys K2 and K3 respectively. As we can choose the indices
i, j and l in q, q2 and q3 ways respectively, we use the union bound over all those possible
choices to obtain

Pr[badµ-inner-1] ≤ qq2q3
N2

. (4.126)

• badµ-inner-2. IbY ∩ IZ ̸= ∅. This bad event occurs when ∃i ∈ [q], j ∈ [q3] and l ∈ [q4] such

that bY i +K3 = V j
3 and Zi +K4 = U l

3. Let’s first fix the values for the indices i, j and l.

The probability of each of the events bY i + K3 = V j
3 and Zi + K4 = U l

3 comes out to be
(1/N) due to the randomness over the keys K3 and K4 respectively. As we can choose the
indices i, j and l in q, q3 and q4 ways respectively, we use the union bound over all those
possible choices to obtain

Pr[badµ-inner-2] ≤ qq3q4
N2

. (4.127)

• badµ-inner-3. IZ ∩ IX ̸= ∅. This bad event occurs when ∃i ∈ [q], j ∈ [q4] and l ∈ [q1] such
that Zi +K4 = U j

4 and Xi +K1 = U l
1. Let’s first fix the values for the indices i, j and l.

The probability of each of the events Zi + K4 = U j
4 and Xi + K1 = U l

1 comes out to be
(1/N) due to the randomness over the keys K4 and K1 respectively. As we can choose the
indices i, j and l in q, q4 and q1 ways respectively, we use the union bound over all those
possible choices to obtain

Pr[badµ-inner-3] ≤ qq4q1
N2

. (4.128)

• badµ-inner-4. IX ∩IXX ̸= ∅. This bad event occurs when ∃i, j ∈ [q] with i ̸= j and l ∈ [q2]
such that Xi +K2 = U l

2 and Xi = Xj . Let’s first fix the values for the indices i, j and l.
The probability of the event Xi +K2 = U l

2 comes out to be (1/N) due to the randomness
over the key K2. The probability of the event Xi = Xj comes out to be at most (2/N)
due to the n-bit randomness over Xi or Xj . As we can choose the pair of indices (i, j) in
2
(
q
2

�
and l in q2 ways, we use the union bound over all those possible choices to obtain

Pr[badµ-inner-4] ≤ 2q2
(
q
2

�

N2
. (4.129)

• badµ-inner-5. IX ∩ IbY bY ̸= ∅. This bad event occurs when ∃i, j ∈ [q] with i ̸= j and l ∈ [q2]

such that Xi +K2 = U l
2 and bY i = bY j . Let’s first fix the values for the indices i, j and l.

The probability of the event Xi +K2 = U l
2 comes out to be (1/N) due to the randomness

over the key K2. The probability of the event bY i = bY j comes out to be at most (2/N) due

to the n-bit randomness over bY i or bY j . As we can choose the pair of indices (i, j) in 2
(
q
2

�

and l in q2 ways, we use the union bound over all those possible choices to obtain

Pr[badµ-inner-5] ≤ 2q2
(
q
2

�

N2
. (4.130)

• badµ-inner-6. IX ∩ IZZ ̸= ∅. This bad event occurs when ∃i, j ∈ [q] with i ̸= j and l ∈ [q2]
such that Xi +K2 = U l

2 and Zi = Zj . Let’s first fix the values for the indices i, j and l.
The probability of the event Xi +K2 = U l

2 comes out to be (1/N) due to the randomness
over the key K2. The probability of the event Zi = Zj comes out to be at most (2/N) due

76

to the n-bit randomness over Zi or Zj . As we can choose the pair of indices (i, j) in 2
(
q
2

�

and l in q2 ways, we use the union bound over all those possible choices to obtain

Pr[badµ-inner-6] ≤ 2q2
(
q
2

�

N2
. (4.131)

• badµ-inner-7. IbY ∩IXX ̸= ∅. This bad event occurs when ∃i, j ∈ [q] with i ̸= j and l ∈ [q3]

such that bY i +K3 = U l
3 and Xi = Xj . Let’s first fix the values for the indices i, j and l.

The probability of the event bY i +K3 = U l
3 comes out to be (1/N) due to the randomness

over the key K3. The probability of the event Xi = Xj comes out to be at most (2/N)
due to the n-bit randomness over Xi or Xj . As we can choose the pair of indices (i, j) in
2
(
q
2

�
and l in q3 ways, we use the union bound over all those possible choices to obtain

Pr[badµ-inner-7] ≤ 2q3
(
q
2

�

N2
. (4.132)

• badµ-inner-8. IbY ∩ IbY bY ̸= ∅. This bad event occurs when ∃i, j ∈ [q] with i ̸= j and l ∈ [q3]

such that bY i +K3 = U l
3 and bY i = bY j . Let’s first fix the values for the indices i, j and l.

The probability of the event bY i +K3 = U l
3 comes out to be (1/N) due to the randomness

over the key K3. The probability of the event bY i = bY j comes out to be at most (2/N) due

to the n-bit randomness over bY i or bY j . As we can choose the pair of indices (i, j) in 2
(
q
2

�

and l in q3 ways, we use the union bound over all those possible choices to obtain

Pr[badµ-inner-8] ≤ 2q3
(
q
2

�

N2
. (4.133)

• badµ-inner-9. IbY ∩ IZZ ̸= ∅. This bad event occurs when ∃i, j ∈ [q] with i ̸= j and l ∈ [q3]

such that bY i +K3 = U l
3 and Zi = Zj . Let’s first fix the values for the indices i, j and l.

The probability of the event bY i +K3 = U l
3 comes out to be (1/N) due to the randomness

over the key K3. The probability of the event Zi = Zj comes out to be at most (2/N) due
to the n-bit randomness over Zi or Zj . As we can choose the pair of indices (i, j) in 2

(
q
2

�

and l in q3 ways, we use the union bound over all those possible choices to obtain

Pr[badµ-inner-9] ≤ 2q3
(
q
2

�

N2
. (4.134)

• badµ-inner-10. IZ ∩IXX ̸= ∅. This bad event occurs when ∃i, j ∈ [q] with i ̸= j and l ∈ [q4]
such that Zi +K4 = U l

4 and Xi = Xj . Let’s first fix the values for the indices i, j and l.
The probability of the event Zi +K4 = U l

4 comes out to be (1/N) due to the randomness
over the key K4. The probability of the event Xi = Xj comes out to be at most (2/N)
due to the n-bit randomness over Xi or Xj . As we can choose the pair of indices (i, j) in
2
(
q
2

�
and l in q4 ways, we use the union bound over all those possible choices to obtain

Pr[badµ-inner-10] ≤ 2q4
(
q
2

�

N2
. (4.135)

• badµ-inner-11. IZ ∩IbY bY ̸= ∅. This bad event occurs when ∃i, j ∈ [q] with i ̸= j and l ∈ [q4]

such that Zi +K4 = U l
4 and bY i = bY j . Let’s first fix the values for the indices i, j and l.

The probability of the event Zi +K4 = U l
4 comes out to be (1/N) due to the randomness

77

over the key K4. The probability of the event bY i = bY j comes out to be at most (2/N) due

to the n-bit randomness over bY i or bY j . As we can choose the pair of indices (i, j) in 2
(
q
2

�

and l in q4 ways, we use the union bound over all those possible choices to obtain

Pr[badµ-inner-11] ≤ 2q4
(
q
2

�

N2
. (4.136)

• badµ-inner-12. IZ ∩IZZ ̸= ∅. This bad event occurs when ∃i, j ∈ [q] with i ̸= j and l ∈ [q4]
such that Zi +K4 = U l

4 and Zi = Zj . Let’s first fix the values for the indices i, j and l.
The probability of the event Zi +K4 = U l

4 comes out to be (1/N) due to the randomness
over the key K4. The probability of the event Zi = Zj comes out to be at most (2/N) due
to the n-bit randomness over Zi or Zj . As we can choose the pair of indices (i, j) in 2

(
q
2

�

and l in q4 ways, we use the union bound over all those possible choices to obtain

Pr[badµ-inner-12] ≤ 2q4
(
q
2

�

N2
. (4.137)

• badµ-inner-13. IXX ∩ IbY bY ̸= ∅. This bad event occurs when ∃i, j, l ∈ [q] with i ̸= j and

i ̸= l such that Xi = Xj and bY i = bY l. Let’s first fix the values for the indices i, j and
l. The probability of each of the events comes out to be at most (2/N) due to the n-bit

randomness of Xi or Xj and bY i or bY j . As we can choose the index i in q ways and for
each of those choices, we can choose each of the indices j and l in (q− 1) ways, we use the
union bound over all those possible choices to obtain

Pr[badµ-inner-13] ≤ q(q − 1)2

N2
. (4.138)

• badµ-inner-14. IbY bY ∩ IZZ ̸= ∅. This bad event occurs when ∃i, j, l ∈ [q] with i ̸= j and

i ̸= l such that bY i = bY j and Zi = Zl. Let’s first fix the values for the indices i, j and
l. The probability of each of the events comes out to be at most (2/N) due to the n-bit

randomness of bY i or bY j and Zi or Zj . As we can choose the index i in q ways and for
each of those choices, we can choose each of the indices j and l in (q− 1) ways, we use the
union bound over all those possible choices to obtain

Pr[badµ-inner-14] ≤ q(q − 1)2

N2
. (4.139)

• badµ-inner-15. IZZ ∩ IXX ̸= ∅. This bad event occurs when ∃i, j, l ∈ [q] with i ̸= j and
i ̸= l such that Zi = Zj and Xi = X l. Let’s first fix the values for the indices i, j and
l. The probability of each of the events comes out to be at most (2/N) due to the n-bit
randomness of Zi or Zj and Xi or Xj . As we can choose the index i in q ways and for
each of those choices, we can choose each of the indices j and l in (q− 1) ways, we use the
union bound over all those possible choices to obtain

Pr[badµ-inner-15] ≤ q(q − 1)2

N2
. (4.140)

By combining Eqn. (4.126)-Eqn. (4.140), we have

Pr[badµ-inner] ≤ q(q2q3 + q3q4 + q1q4)

N2
+

3q2(q2 + q3 + q4)

N2
+

3q3

N2
. (4.141)

78

4.8.10 Bounding badµ-3coll

Proposition 10. Having defined the bad event badµ-3coll in Fig. 4.7, we have

Pr[badµ-3coll] ≤ 4
(
q
3

�

N2
.

To prove the proposition, we first fix the values for the indices i, j and l.

• badµ-3coll-1. i, j, l ∈ [q] with i < j < l such that Xi = Xj = X l. We can write Pr[Xi =
Xj = X l] = Pr[Xi = Xj] · Pr[Xi = Xj = X l|Xi = Xj] (as Pr[Xi = Xj = X l|Xi ̸= Xj] =
0). Each term on the RHS can be at most (2/N) due to the randomness over Xj and X l,
respectively.

• badµ-3coll-2. i, j, l ∈ [q] with i < j < l such that bY i = bY j = bY l. We can write Pr[bY i =
bY j = bY l] = Pr[bY i = bY j] · Pr[bY i = bY j = bY l|bY i = bY j] (as Pr[bY i = bY j = bY l|bY i ̸= bY j] = 0).

Each term on the RHS can be at most (2/N) due to the randomness over bY j and bY l

respectively.

• badµ-3coll-3. i, j, l ∈ [q] with i < j < l such that Zi = Zj = Zl. We can write Pr[Zi =
Zj = Zl] = Pr[Zi = Zj] · Pr[Zi = Zj = Zl|Zi = Zj] (as Pr[Zi = Zj = Zl|Zi ̸= Zj] = 0).
Each term on the RHS can be at most (2/N) due to the randomness over Zj and Zl

respectively.

As we can choose the 3-tuple of indices (i, j, l) in
(
q
3

�
ways, we use the union bound over all those

possible choices to obtain

Pr[badµ-3col] ≤ 4
(
q
3

�

N2
. (4.142)

4.8.11 Bounding badµ-size

Proposition 11. Having defined the bad event badµ-size in Fig. 4.7, we have

Pr[badµ-size] ≤ q1/2(q2 + q3 + q4)

N
+

2q3/2

N
.

We say that the bad event badµ-size happens if one of the following events happens.

• badµ-size-prim This event holds if either of the following three events holds:

– badµ-size-IX : This event holds if |IX | > q1/2.

– badµ-size-IbY : This event holds if |IbY | > q1/2.

– badµ-size-IZ : This event holds if |IZ | > q1/2.

• badµ-size-coll This event holds if either of the following three events holds:

– badµ-size-IXX : This event holds if |IXX | > q1/2.

– badµ-size-IbY bY : This event holds if |IbY bY | > q1/2.

– badµ-size-IZZ : This event holds if |IZZ | > q1/2.

79

Bounding badµ-size-prim

To bound this event, we bound each of the following events: badµ-size-IX , badµ-size-IbY , and
badµ-size-IZ . We begin with bounding the size of |IX |. Let for each i ∈ [q], Ii be an indicator
random variable that takes the value 1 if there exists a j ∈ [q2] such that Xi +K2 = U j

2 . Note
that the probability of this event holds is at most q2/N using the randomness of key K2, i.e., for
a fixed i ∈ [q],

Pr[Ii = 1] ≤ q2
N

.

Therefore, by the linearity of expectations and by applying Markov’s inequality, we have

Pr[|IX | > q1/2] ≤ q1/2q2
N

≈ q3/2

N
, (provided, q2 ≈ q).

Similarly, we can show that

Pr[|IbY | > q1/2] ≤ q1/2q3
N

, Pr[|IZ | > q1/2] ≤ q1/2q4
N

.

By combining the above three cases, we have

Pr[badµ-size-prim] ≤ q1/2(q2 + q3 + q4)

N
. (4.143)

Bounding badµ-size-coll

To bound this event, we bound each of the following events: badµ-size-IXX , badµ-size-IbY bY , and
badµ-size-IZZ . We begin with bounding the size of |IXX |. Let for each i ∈ [q], Ii be an indicator
random variable that takes the value 1 if there exists a j ∈ [q] with j ̸= i such that Xi = Xj .

Note that the probability this event holds is at most q/N using the randomness of key bRi (as
i /∈ IR), i.e., for a fixed i ∈ [q],

Pr[Ii = 1] ≤ q

N
.

Therefore, by the linearity of expectations and by applying Markov’s inequality, we have

Pr[|IXX | > q1/2] ≤ q3/2

2N
.

Similarly, we can show that

Pr[|IbY bY | > q1/2] ≤ q3/2

2N
, Pr[|IZZ | > q1/2] ≤ q3/2

2N
.

By combining the above three cases, we have

Pr[badµ-size-coll] ≤ 2q3/2

N
. (4.144)

Finally, by combining Eqn. (4.143) and Eqn. (4.144), we have

Pr[badµ-size] ≤ q1/2(q2 + q3 + q4)

N
+

2q3/2

N
.

80

4.8.12 Bounding badλ-prim

Proposition 12. Having defined the bad event badλ-prim in Fig. 4.8, we have

Pr[badλ-prim] ≤ qq2(q1 + q3 + q4 + q5)

N2
+

qq3(q1 + q2 + q4 + q5)

N2

+
qq4(q1 + q2 + q3 + q5)

N2
+

7q2(q2 + q3 + q4)

N2
.

We say that the bad event badλ-prim happens if one of the following events happens.

• badλ-prim 1. ∃i ∈ (IX ⊔ I∗∗)c and j ∈ [q2] such that bXi + k2 = V j
2 .

• badλ-prim 2. ∃i ∈ (IbY ⊔ I∗∗)c and j ∈ [q3] such that Y i + k3 = V j
3 .

• badλ-prim 3. ∃i ∈ (IZ ⊔ I∗∗)c and j ∈ [q4] such that bZi + k4 = V j
4 .

In the following subsections, we bound the above events.

Bounding badλ-prim 1

To bound this event, we further split it into various sub-cases and bound their probabilities as
follows:

• badλ-prim 1a. ∃i ∈ IR and j ∈ [q2] such that bXi + K2 = V j
2 . In other words, ∃i ∈ [q],

j ∈ [q2] and l ∈ [q1] such that Ri+K1 = U l
1 and bXi+K2 = V j

2 . Let’s first fix the values for

the indices i, j and l. The probability of each of the events Ri+K1 = U l
1 and

bXi+K2 = V j
2

comes out to be 1/N2 each due to the randomness of the keys K1 and K2 respectively. As
we can choose the index i, j and l in q, q2 and q1 ways respectively, we use the union bound
over all those possible choices to obtain

Pr[badλ-prim 1a] ≤ qq1q2
N2

. (4.145)

• badλ-prim 1b. ∃i ∈ IS and j ∈ [q2] such that bXi + K2 = V j
2 . Analysis of this bad event

is similar to that of badλ-prim 1a, where we use the randomness of K5 and K2. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 1b] ≤ qq2q5
N2

. (4.146)

• badλ-prim 1c. ∃i ∈ IRR and j ∈ [q2] such that bXi +K2 = V j
2 . Analysis of this bad event

is similar to that of badλ-prim 1a, where we use the randomness of Ri and K2. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 1c] ≤ q2q2
2N2

. (4.147)

• badλ-prim 1d. ∃i ∈ ISS and j ∈ [q2] such that bXi + K2 = V j
2 . Again, analysis of this

bad event is similar to that of badλ-prim 1c, where we use the randomness of Si and K2.
Looking ahead, we bound the probability of the event to at most

Pr[badλ-prim 1d] ≤ q2q2
2N2

. (4.148)

81

• badλ-prim 1e. ∃i ∈ IbY and j ∈ [q2] such that bXi + K2 = V j
2 . In other words, ∃i ∈ [q],

j ∈ [q2] and l ∈ [q3] such that bY i+K3 = V l
3 and bXi+K2 = V j

2 . Let’s first fix the values for

the indices i, j and l. The probability of each of the events bY i+K3 = V l
3 and bXi+K2 = V j

2

comes out to be 1/N2 due to the randomness of the keys K2 and K3. As we can choose
the index i, j and l in q, q2 and q3 ways, we use the union bound over all those possible
choices to obtain

Pr[badλ-prim 1e] ≤ qq2q3
N2

. (4.149)

• badλ-prim 1f . ∃i ∈ IZ and j ∈ [q2] such that bXi +K2 = V j
2 . Analysis of this bad event

is similar to that of badλ-prim 1e, where we use the randomness of K4 and K2. Looking
ahead, we bound the probability of the above event to at most

Pr[badλ-prim 1f] ≤ qq2q4
N2

. (4.150)

• badλ-prim 1g. ∃i ∈ IXX and j ∈ [q2] such that bXi +K2 = V j
2 . In other words, ∃i ∈ [q],

j ∈ [q2] and l ∈ [q] such that i ̸= l and Xi = X l, bXi + K2 = V j
2 , which we equivalently

write as
bRi + bRl = Li + Ll, bXi +K2 = V j

2 .

For a fixed choice of indices, we use the randomness of bRi and K2 to bound the probability
of the event to at most 2/N2. As we can choose the index i, j and l in q, q2 and (q − 1)
ways, respectively, we use the union bound over all those possible choices to obtain

Pr[badλ-prim 1g] ≤ 2q2q2
N2

. (4.151)

• badλ-prim 1h. ∃i ∈ IbY bY and j ∈ [q2] such that bXi + K2 = V j
2 . In other words, ∃i ∈ [q],

j ∈ [q2] and l ∈ [q] such that i ̸= l and bY i = bY l, bXi + K2 = V j
2 , which we equivalently

write as
bRi + bRl + bSi + bSl = Li + T i + Ll + T l, bXi +K2 = V j

2 .

For a fixed choice of indices, we use the randomness of bRi and K2 to bound the probability
of the event to at most 2/N2. As we can choose the index i, j and l in q, q2 and (q − 1)
ways respectively, we use the union bound over all those possible choices to obtain

Pr[badλ-prim 1h] ≤ 2q2q2
N2

. (4.152)

• badλ-prim 1i. ∃i ∈ IZZ and j ∈ [q2] such that bXi + k2 = V j
2 . In other words, ∃i ∈ [q],

j ∈ [q2] and l ∈ [q] such that i ̸= l and Zi = Zl, bXi + K2 = V j
2 , which we equivalently

write as
bSi + bSl = T i + T l, bXi +K2 = V j

2 .

For a fixed choice of indices, we use the randomness of bSi and K2 to bound the probability
of the event to at most 2/N2. As we can choose the index i, j and l in q, q2 and (q − 1)
ways respectively, we use the union bound over all those possible choices to obtain

Pr[badλ-prim 1i] ≤ 2q2q2
N2

. (4.153)

82

Adding all the above nine cases, we obtain

Pr[badλ-prim 1] ≤ qq2(q1 + q3 + q4 + q5 + 7q)

N2
. (4.154)

Bounding badλ-prim 2.

As before, to bound this event, we further split it into various sub-cases and bound their proba-
bilities as follows:

• badλ-prim 2a. ∃i ∈ IR and j ∈ [q3] such that bY i + K3 = V j
3 . In other words, ∃i ∈ [q],

j ∈ [q2] and l ∈ [q1] such that Ri+K1 = U l
1 and bY i+K3 = V j

3 . Let’s first fix the values for

the indices i, j and l. The probability of each of the events Ri+K1 = U l
1 and bY i+K3 = V j

3

comes out to be 1/N2 each due to the randomness of the keys K1 and K3 respectively.
As we can choose the index i, j and l in q, q3 and q1 ways, respectively, we use the union
bound over all those possible choices to obtain

Pr[badλ-prim 2a] ≤ qq1q3
N2

. (4.155)

• badλ-prim 2b. ∃i ∈ IS and j ∈ [q3] such that bY i + K3 = V j
3 . Analysis of this bad event

is similar to that of badλ-prim 2a, where we use the randomness of K5 and K3. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 2b] ≤ qq3q5
N2

. (4.156)

• badλ-prim 2c. ∃i ∈ IRR and j ∈ [q3] such that bY i +K3 = V j
3 . Analysis of this bad event

is similar to that of badλ-prim 2a, where we use the randomness of Ri and K3. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 2c] ≤ q2q3
2N2

. (4.157)

• badλ-prim 2d. ∃i ∈ ISS and j ∈ [q3] such that bY i +K3 = V j
3 . Analysis of this bad event

is similar to that of badλ-prim 2c, where we use the randomness of Si and K3. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 2d] ≤ q2q3
2N2

. (4.158)

• badλ-prim 2e. ∃i ∈ IZ and j ∈ [q3] such that bY i +K3 = V j
3 . Analysis of this bad event is

again similar to that of badλ-prim 1f , where we use the randomness of K4 and K3. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 2e] ≤ qq3q4
N2

. (4.159)

• badλ-prim 2f . ∃i ∈ IX and j ∈ [q3] such that bY i +K3 = V j
3 . Analysis of this bad event is

again similar to that of badλ-prim 2a, where we use the randomness of K2 and K3. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 2f] ≤ qq2q3
N2

. (4.160)

83

• badλ-prim 2g. ∃i ∈ IXX and j ∈ [q3] such that bY i + K3 = V j
3 . Analysis of this event

is similar to that of badλ-prim 1g, where we use the randomness of bRi and K3. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 2g] ≤ 2q2q3
N2

. (4.161)

• badλ-prim 2h. ∃i ∈ IbY bY and j ∈ [q3] such that bY i + K3 = V j
3 . Analysis of this event

is similar to that of badλ-prim 1h, where we use the randomness of bRi and K3. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 2h] ≤ 2q2q3
N2

. (4.162)

• badλ-prim 2i. ∃i ∈ IZZ and j ∈ [q3] such that bY i + K3 = V j
3 . Again, the analysis of

this event is similar to that of badλ-prim 1i, where we use the randomness of bSi and K3.
Looking ahead, we bound the probability of the event to at most

Pr[badλ-prim 2i] ≤ 2q2q3
N2

. (4.163)

Adding all the above nine cases, we obtain

Pr[badλ-prim 2] ≤ qq3(q1 + q2 + q4 + q5 + 7q)

N2
. (4.164)

Bounding badλ-prim 3.

As before, to bound this event, we further split it into various sub-cases and bound their proba-
bilities as follows:

• badλ-prim 3a. ∃i ∈ IR and j ∈ [q4] such that bZi + K4 = V j
4 . In other words, ∃i ∈ [q],

j ∈ [q4] and l ∈ [q1] such that Ri+K1 = U l
1 and bZi+K4 = V j

4 . Let’s first fix the values for

the indices i, j and l. The probability of each of the events Ri+K1 = U l
1 and bZi+K4 = V j

4

comes out to be 1/N2 each due to the randomness of the keys K1 and K4 respectively. As
we can choose the index i, j and l in q, q4 and q1 ways respectively, we use the union bound
over all those possible choices to obtain

Pr[badλ-prim 3a] ≤ qq1q4
N2

. (4.165)

• badλ-prim 3b. ∃i ∈ IS and j ∈ [q4] such that bZi + K4 = V j
4 . Analysis of this bad event

is similar to that of badλ-prim 3a, where we use the randomness of K5 and K4. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 3b] ≤ qq4q5
N2

. (4.166)

• badλ-prim 3c. ∃i ∈ IRR and j ∈ [q4] such that bZi +K4 = V j
4 . Analysis of this bad event

is similar to that of badλ-prim 3a, where we use the randomness of Ri and K4. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 3c] ≤ q2q4
2N2

. (4.167)

84

• badλ-prim 3d. ∃i ∈ ISS and j ∈ [q4] such that bZi +K4 = V j
4 . Analysis of this bad event

is similar to that of badλ-prim 3a, where we use the randomness of Si and K4. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 3d] ≤ q2q4
2N2

. (4.168)

• badλ-prim 3e. ∃i ∈ IX and j ∈ [q4] such that bZi + K4 = V j
4 . Analysis of this bad event

is similar to that of badλ-prim 3a, where we use the randomness of K2 and K4. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 3e] ≤ qq2q4
N2

. (4.169)

• badλ-prim 3f . ∃i ∈ IbY and j ∈ [q4] such that bZi +K4 = V j
4 . Analysis of this bad event

is similar to that of badλ-prim 3a, where we use the randomness of K3 and K4. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 3f] ≤ qq3q4
N2

. (4.170)

• badλ-prim 3g. ∃i ∈ IXX and j ∈ [q4] such that bZi +K4 = V j
4 . Analysis of this bad event

is similar to that of badλ-prim 1g, where we use the randomness of bRi and K4. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 3g] ≤ 2q2q4
N2

. (4.171)

• badλ-prim 3h. ∃i ∈ IbY bY and j ∈ [q4] such that bZi +K4 = V j
4 . Analysis of this bad event

is similar to that of badλ-prim 1h, where we use the randomness of bRi and K4. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 3h] ≤ 2q2q4
N2

. (4.172)

• badλ-prim 3i. ∃i ∈ IZZ and j ∈ [q4] such that bZi +K4 = V j
4 . Analysis of this bad event

is similar to that of badλ-prim 1i, where we use the randomness of bSi and K4. Looking
ahead, we bound the probability of the event to at most

Pr[badλ-prim 3i] ≤ 2q2q4
N2

. (4.173)

Adding all the above nine cases, we obtain

Pr[badλ-prim 3] ≤ qq4(q1 + q2 + q3 + q5 + 7q)

N2
. (4.174)

4.8.13 Bounding badλ-coll

Proposition 13. Having defined the bad event badλ-coll in Fig. 4.8, we have

Pr[badλ-coll] ≤
(
q
2

�
(5q + q1 + q2 + q3 + q4 + q5)

N2
.

85

We say that the bad event badλ-coll happens if one of the following events happens.

• badλ-coll 1. ∃i ∈ Ic∗∗, j ∈ [q] and i ̸= j such that Xi ̸= Xj and bXi = bXj .

• badλ-coll 2. ∃i ∈ Ic∗∗, j ∈ [q] and i ̸= j such that bY i ̸= bY j and Y i = Y j .

• badλ-coll 3. ∃i ∈ Ic∗∗, j ∈ [q] and i ̸= j such that Zi ̸= Zj and bZi = bZj .

In the following subsection, we bound the above events. To do this, we first define a condition
set and then analyse these three bad events on that condition set.

Condition Set

1. ∃i ∈ IR. In other words, ∃i ∈ [q] and k ∈ [q1] such that Ri +K1 = Uk
1 .

2. ∃i ∈ IS . In other words, ∃i ∈ [q] and k ∈ [q5] such that Si +K5 = Uk
5 .

3. ∃i ∈ IRR. In other words, ∃i ∈ Idec and k ∈ [i− 1] such that Ri = Rk.

4. ∃i ∈ ISS . In other words, ∃i ∈ Ienc and k ∈ [i− 1] such that Si = Sk.

5. ∃i ∈ IX . In other words, ∃i ∈ [q] and k ∈ [q2] such that Xi +K2 = Uk
2 .

6. ∃i ∈ IbY . In other words, ∃i ∈ [q] and k ∈ [q3] such that bY i +K3 = Uk
3 .

7. ∃i ∈ IZ . In other words, ∃i ∈ [q] and k ∈ [q4] such that Zi +K4 = Uk
4 .

8. ∃i ∈ IXX . In other words, ∃i, k ∈ [q] with i ̸= j such that Xi = Xk.

9. ∃i ∈ IbY bY . In other words, ∃i, k ∈ [q] with i ̸= j such that bY i = bY k.

10. ∃i ∈ IZZ . In other words, ∃i, k ∈ [q] with i ̸= j such that Zi = Zk.

Let’s first fix the values for the indices i, j and k. For any of badλ-coll 1, badλ-coll 2 and badλ-coll
3, any one of the conditions from the above condition set satisfies. Once we fix that condition,
the probability of that condition comes out to be (1/N). On the other hand, the probability of

the event bXi = bXj is at most (2/N) when j ∈ IX , and is equal to (1/N) otherwise. Similarly, the
probability of the event Y i = Y j is at most (2/N) when j ∈ IY , and is equal to (1/N) otherwise;

and the probability of the event bZi = bZj is at most (2/N) when j ∈ IZ , and is equal to (1/N)
otherwise. Now one can choose the pair of indices (i, j) in

(
q
2

�
ways and the index k in as many

ways as the maximum number of queries to the relevant permutation (in case of conditions 1, 2,
5, 6 and 7) or in q ways (otherwise). Using the union bound over all those possible indices, we
obtain the upper bound of each of these bad events as (2q ·

(
q
2

�
)/(N2) or (2ql ·

(
q
2

�
)/(N2) (where

the relevant permutation is Pl).

86

Chapter 5

Crooked Indifferentiability of
Enveloped Xor

5.1 Introduction

In CRYPTO 2018, Russell, Tang, Yung, and Zhou (RTYZ) introduced the notion of crooked
indifferentiability to analyse the security of a hash function when the underlying primitive is
subverted. They showed that the n-bit to n-bit function implemented using enveloped XOR
construction (EXor) with 3n+ 1 many n-bit functions and 3n2-bit random initial vectors can be
proven secure asymptotically in the crooked indifferentiability setting. We identify several major
issues and gaps in the proof by RTYZ; we argue that their proof can achieve security only in
a restricted setting. We present a new proof of crooked indifferentiability where the adversary
can evaluate queries related to multiple messages. Our technique can handle function-dependent
subversion.
Random Oracle and Indifferentiability. The Random Oracle methodology is a very
popular platform for proving the security of cryptographic constructions in the black-box fashion.
In this model, all the parties, including the adversary, are given access to a common truly random
function. One proves the security of a protocol, assuming such a random function exists. During
the implementation of the protocol, the random function is replaced by a hash function H. The
Indifferentiability framework and the composition theorem [67] assert that if the hash function
H is based on an ideal primitive f , and Indifferentiable from a random function, then the
instantiated protocol is as secure as the protocol in the random oracle model (assuming the
security of the ideal primitive f). Indifferentiability from Random Oracle has been one of the
mainstream security criteria of cryptographic hash functions. Starting from the work of Coron,
Dodis, Malinaud, and Puniya [36], a plethora of results [28, 18, 19, 69, 73] have been proven,
showing the indifferentiability of different constructions based on different ideal primitives.

Crooked Indifferentiability. In CRYPTO 2018, Russel, Tang, Yung and Zhou [90] in-
troduced the notion of crooked indifferentiability as a security notion for hash functions in the
kleptographic setting. Like classical indifferentiability, the game of crooked indifferentiability
challenges the adversary to distinguish between two worlds. In the real world, the adversary has
access to the underlying ideal primitive f , and the construction C, which has subroutine access
to f̃ , the subverted implementation of f .1 The implementation f̃ on input an element x, queries
the function (possibly adaptively) at maximum q̃ many points and, based on the transcript,

1The domain extension algorithms are simple and the correctness of their implementations is easy to verify.

87

decides the evaluation of x. As the adversary likes the subversion to go undetected, it is assumed
that f̃ differs from f only on some negligible fraction (ϵ) of the domain.

In the ideal world, the construction is replaced by a Random Oracle F . The role of f is
played by a simulator with Oracle access to F and the subverted implementation f̃ . The job of

the simulator is to simulate f in such a way that (C f̃ , f) is indistinguishable from (F , SF,f̃). To
avoid trivial attacks, the framework allows a public random string R to be used as the salt in the
construction. The string R is fixed after the adversary publishes the implementation but stays
the same throughout the interaction. All the parties, including the simulator and the adversary,
get R as part of the initialisation input. We note that even in the weaker setting of Random
Oracles with auxiliary input, a random salt is required to prove security [35, 49].
Enveloped Xor Construction and its crooked indifferentiability. We recall the
Enveloped XOR construction. We fix two positive integers n and l. Let D := {0, 1, . . . , l} ×
{0, 1}n. Let H be the class of all functions f : D → {0, 1}n. For every x ∈ {0, 1}n and an initial
value R := (r1, . . . , rl) ∈ ({0, 1}n)l, we define

gR(x) =

lM

i=1

f(i, x⊕ ri) and EXor(R, x) = f(0, gR(x)).

In [90], Russell et al. proved crooked indifferentiability of the enveloped-xor construction. Their
analysis is based on an interesting rejection sampling argument.

5.2 Our Contribution

Another Look at Russell et al.’s Proof. We uncover that the techniques of [90], while novel
and interesting, bear significant shortcomings. The consistency of the simulator is not proven.
Moreover, their technical treatment requires that the subversion for the final function f(0, ·) be
independent of gR. In other words, the proof is applicable against a restricted class of subversion.
Finally, the proof does not consider the messages queried to F . We elaborate on the issues in
Section 5.4.

A New Proof of the Crooked Indifferentiability of Enveloped XOR. We present a new
proof of the crooked indifferentiability of Enveloped XOR. Interestingly, our techniques do not
involve heavy technical machinery. Rather, we identify core domain points related to functions
and use simple tools like Markov inequality.

5.2.1 Overview of Our Technique.

We observe the Enveloped XOR (EXoR) construction is in the class of Generalised Domain Ex-
tensions considered in [18]. It is known that for a GDE construction with independent functions
and preimage awareness, the indifferentiability advantage is bounded by the probability that the
final chaining query is not fresh. However, EXoR construction instantiated with the crooked

functions (denoted by]EXor) is not part of GDE. The main issue is that the final output of]EXor
need not be the output of f(0, ·) evaluation, as required by the condition of GDE.

We consider an intermediate construction EXor(R,m) = f(0, g̃R(m)). In other words, the
intermediate construction restricts that the finalization
function f(0, ·) is not subverted. EXor is a GDE construction and crooked indifferentiability of
EXor can be proved following the structure of [18]. In particular, the generic simulator of [18],
adopted for EXor along with access to f̃ work out here along with the consistency arguments.
Our proof is modularised via the following two claims.

88

• Claim 2 shows distinguishing advantage for (f,EXoR) and (f, ÊXoR) is bounded by the
probability of hitting a crooked point or domain point for f0 (Bad1).

• Claim 3 shows the distinguishing advantage of the intermediate world (f,EXoR), and the
ideal world of crooked indifferentiability is bounded by the probability of Bad2 event. This
event is classified into two main categories. In the first category, while responding to a
query to the primitive (or the simulator), input g̃R(m) appeared already in the transcript.
In the second category, the input g̃R(m) appeared in the extended transcript which includes
all queries of a subverted computation f̃(x) of a crooked point x.

The challenge remaining is to bound the probability of the bad events. Our proof works with
a counting approach. We say a point α ∈ {0, 1}n is robust with respect to a function f if all
points that query α are not subverted with all but negligible probability if the output f(α) is
re-sampled. A point is good if it is queried by only a few robust and un-crooked points. By
an averaging argument, we show that for an overwhelming fraction of candidate f , R, for every
message m, there will exist an index i such that mri is good for function f(i, ·). Now, we can
say that even though f(i,mri) was queried by other points, they are robust. If we re-sample at
(i,mri), the subverted outputs of those robust points will not change. Thus, we can talk about
g̃R(m) independently of the outputs of the function f̃(0, ·).

Finally, we shall show that the output distribution of g̃R(m) is close to uniform. We could
find a rejection resampling lemma on two or more points, and argue the uniformity of g̃R(m).
However, we simplify things further. We observe that with high probability over the output
values of f(i,mri) for every i for which mri is good in f , the transcript of the previous internal
queries remains unchanged. Hence, we consider the conditional probabilities by conditioning on
all possible transcripts and take union bound to show near uniformity of g̃R(m).

Relation of GDE Constructions with Our Results and Further Uses.

A majority of this work focuses on EXor construction, which is a GDE construction (defined
in [18]). GDE constructions cover a wide range of domain extension algorithms. We believe
that many ideas developed in this result to deal with the EXor construction can be extended
to investigate the crooked indifferentiability of different GDE constructions. However, the bad
events and their analysis will depend on the particular construction being investigated.

Revised Proof by Russell et al.

After we communicated our findings to the authors of [90], they acknowledged the issues, and
uploaded a major revision in eprint [91]. Our proof is done independently and significantly differs
from their revised proof in some crucial aspects.

5.3 Recalling the Proof of Russell et al.

5.3.1 Enveloped XOR Construction.

Recall that, in the real world, the distinguisher is interacting with the subverted construction
]EXor which is defined as

]EXor(R,M) = f̃(0, g̃R(M)) where g̃R(M) =

lM

i=1

f̃(i,M ⊕ ri).

89

We also define a hybrid construction EXor[f](R,M) = f(0, g̃R(M)). Now consider an adversary
A interacting with (f,EXor := EXor[f]).

Assumption on Adversary. For all primitive queries of the form (j, x) with j > 0, we return
EXor(m) and all responses of all queries (a, αa), a ∈ [l] where αa = m+Ra and m = x+Rj . Note
that the simulator can compute m, so responding EXor(m) honestly for the simulator would not
be a problem. Moreover, we assume that the adversary discloses all queries for the construction
to the simulator.

Transcript of Interaction. For j ≥ 0, let τj := (R, τj , πj) denote the transcript (ran-
dom variable due to randomness of f only) of A after j queries where R is the initial value of
the construction, and τj , πj denote the query-responses for the primitive and the construction
respectively. Note that τj contains τ0 for all j.

5.4 Revisiting the Crooked Indifferenitability Security of
EXoR [90].

A Brief Detour: Classical Indifferentiability Simulator for EXor.

Before describing the crooked indifferentiability simulator, we would like to briefly recall the
principle behind the indifferentiability simulator and proof principles behind EXor construction
in the classical setting.

The goal of the simulator is to simulate each f(i, ·) honestly so that for every queried message
m, it holds that EXor(R,m) = F(m) for all queried m. Without loss of generality, assume that
whenever the adversary makes queries f(i, x) for i > 0, it also makes queries f(j, x⊕ri⊕rj) for all
j > 0 simultaneously. In other words, it makes a batch query of the form (f(j,m⊕ rj))1≤j≤l for
some m ∈ {0, 1}n. We simply say that the adversary A queries m to gR and obtains responses
(f(j,m ⊕ rj))1≤j≤l. On receiving a batch query gR(m), the simulator will honestly sample
outputs for the corresponding f(i,mRi) queries for all i ∈ (l], and compute gR(m) by xoring
those sampled outputs. Also, the simulator will save the queried m along with the computed
gR(m) in a list L. For a f(0, x) query, the simulator will first search in L, whether for some m,
it has given x = gR(m) as output. If yes, the simulator simply returns F(m). If no such entry
exists, the simulator samples an output z uniformly at random and returns z.

Now, we briefly recall how the indifferentiability is proved for this simulator. There are two
bad events.

• for distinct m,m′, it holds that gR(m) = gR(m
′). In this case, the simulator, on query

f(0, gR(m)) can not be consistent with both F(m) and F(m′) with any significant proba-
bility.

• For a batch query gR(m) the output is such that it matches with a previous f(0, .) query.
In this case, the simulator has already given output to the f(0, .) query, which, with all
but negligible probability, is not equal to F(m).

One can indeed summarise these bad events as one; gR(m) ∈ E, where E is the set of f(0, .)
queries made by the adversary.

The Simulator for Crooked Indifferentiability.

We now describe the main idea behind the simulator in the crooked indifferentiability setting.
The same principle was used in [90]. Note, here, the main goal of the simulator is different. It

90

needs to simulate f ←$ H as honestly 2 as possible such that]EXor(R,m) = F(m) for all queried
m. Thus, the simulator needs to ensure that the output of the random oracle matches with the
subverted implementation of EXor.

The simulator maintains a list L of pairs (α, β) to record f(α) = β for α ∈ D and β ∈
{0, 1}n. It also maintains a sub-list LA ⊆ L consisting of all those pairs which are known to the
distinguisher. Both lists are initialised to z (the advice string in the first stage which we fix to
any tuple of q1 pairs). L0 = LA

0 = z. Now we describe how the simulator responds.

1. (Query f(0, w)) We call this query a Type-1 Query. Type-1 Queries are returned honestly.
If ((0, w), y) ∈ L for some y, the simulator returns the same y. Otherwise, it samples y
uniformly from {0, 1}n, updates the list L and LA, and returns y.

2. (Query gR(m)) We call this Type-2 Query. For a query gR(m) (i.e. batch query) the
simulator computes f̃(αj) for all j, one by one by executing the subverted implementation

F̃ , where αj = (j,m ⊕ Rj). During this execution, the simulator responds honestly to
all queries made by the subverted implementation and updates the L-list by incorporating
all query responses of h. However, it updates LA list only with (αj , f(αj)) for all j. Let

g̃ :=
L

j f̃(αj). If (0, g̃) ∈ D(L), the simulator aborts . If the simulator does not abort, it

makes a query F(m) and adds ((0, g̃),F(m)) into both lists L and LA.

For f(0, w) made by A2 where w = g̃R(m) for some previous query m to gR, the simulator
responds as F(m).

Cautionary Note. Even though F is a random oracle, we cannot say that the probability
distribution of the response of (0, g̃) in the ideal world is uniform. Note that, the adversary can
choose m after making several consultations with F . In other words, m can be dependent on
F . For example, the adversary can choose a message m for which the last bit of F(m) is zero.
Thus, the response for the query (0, w) always has zero as the last bit (which diverts from the
uniform distribution). However, the randomness can be considered when we consider the joint
probability distribution of all query responses.

Transcript: Now we describe what is the transcript to the distinguisher and for the simulator
in more detail. First, we introduce some more relevant notations.

1. Let LF denote the set of all pairs (m′, z̃) of query response of F by A2.

2. Let Lg denote the set of all pairs (m,βl) of query response of gR oracle (batch query) made
by A2 to the simulator where βl := (β1, . . . , βl) and βj = h(j,m⊕Rj) for all j. According
to our convention, all these m must be queried to F beforehand.

3. As we described, we also have two lists, namely L and its sublist LA, keeping the query
responses of h oracle.

Now, we define the transcript and partial transcript of the interaction. We recall that q1 is
the number of queries in the first stage and A2 is a (qF , q2)-query algorithm. Let q = q2 + qF
For any 1 ≤ i ≤ q, we define the partial transcript of A and the simulator as τAi := (LF

i , L
A
i)

and τSi := (Li, L
g
i) respectively, where LF

i , L
A
i , Li, L

g
i denote the contents of the corresponding

lists just before making i-th query of the distinguisher. So when, i = 1, LA
1 = L1 = z and the

rest are empty and when i = q+1, these are the final lists of transcripts. Let τi := (τAi , τSi) and

2By honestly we mean perfectly simulating a random function. If the responses are already in the list it returns

that value; otherwise, it samples a fresh random response and includes the input and output pairs in the list.

91

τ := (τA, τS) denote the joint transcript on i-th query or after completion respectively. As the
adversary is deterministic, the simulator is also deterministic for a given h and F , and we have
fixed z, a (partial) transcript is completely determined by the choice of R, h and F (in the ideal
world). We write (R, f,F) ⊢ τSi if the transcript τSi is obtained when the initial value is R, the
random oracles are F and f . We similarly define (R, f,F) ⊢ τAi and (R, f,F) ⊢ τi.

5.4.1 Techniques of [90]

Overview of the Techniques in [90]. We assume, without any loss of generality, that the
second stage adversary A2 queries m to F before it queries to gR oracle. In addition, like before,
we assume that it makes batch queries.

For every query number i, we define a set Ei := D(Li) ∪ subvf where subvf is the set of all
crooked elements for f . The event badi holds if and only if (0, g̃R(mi)) ∈ Ei where mi denotes the
i-th query of A (made to gR oracle of the simulator). So, the crooked indifferentiable advantage
is bounded by

Pq2
i=1 Pr(g̃R(mi) ∈ Ei). The authors wanted to show that the distribution of

g̃R(mi) is almost uniform. They proposed the following theorem.

(Theorem 5 from [90]). With overwhelming probability (i.e., one minus a negligible amount)
there exists a set Rτ0 ⊆ ({0, 1}n)l and for every i, a set of transcripts T A

i (before i-th query)
such that for all R ∈ Rτ0 , τi := (LF

i , L
A
i) ∈ T A

i , and m ̸∈ D(Lg
i),

Pr
f
[(0, g̃R(m)) ∈ Ei | (R, f,F) ⊢ τi] ≤ poly(n)

p
|Ei|+ negl(n).

The authors claimed that the crooked indifferentiability of EXor can be derived from the
above theorem. To describe the issues we need to dive into the main idea which is to show that
g̃R(m) behaves close to the uniform distribution over {0, 1}n. Thus the above probability would
be negligible as q1/2

n and |subvf |/2n is negligible. By using Markov inequality, authors are able
to identify a set of overwhelming amount of pairs (R, f), called unpredictable pair, such that for
any unpredictable (R, f) all m, there exists an index i such that

1. Prβ [αi ∈ subvf | f(αi) = β] is negligible and

2. αj /∈ Q−1f (αi) for all j ̸= i, where αj = m⊕Ri.

Thus, if we resample β = f(αi) then with overwhelming probability f̃ |αi→β(αi) = f |αi→β(α)

(i.e. αi is not crooked and returned a random value) and all corresponding values for indices j
different from i will remain the same. So, g̃R(m) = β +A where A does not depend on choice of
β. Thus, the modified distribution is close to uniform (as almost all values of β will be good).
In particular, the authors made the following claim:

Claim 1. Under the modified distribution (i.e. after resampling), Pr[g̃R(m) ∈ E1] ≤ q1/2
n+ ϵ+

pn where pn denotes the probability that a random pair (R, f) is not unpredictable.

As the choice of i depends on the function f and so a new rejection resampling lemma is used
to bound the probability of the event under the original distribution (i.e. before resampling).

Lemma 10 (Rejection Resampling [90]). Let X := (X1, . . . , Xk) be a random variable uniform
on Ω = Ω1×Ω2×· · ·×Ωk. Let A : Ω→ (k] and define Z = (Z1, . . . , Zk) where Zi = Ai except at
j = A(Xk) for which Zj is sampled uniformly and independently of remaining random variables.
Then for any event S ⊆ Ω, it holds that

|S|/|Ω| ≤
p

kPr(Z ∈ S)

92

With this rejection resampling result and Claim 1, the authors concluded the following under
original distribution:

Pr
h∗
(g̃R(x) ∈ E1) ≤

r
l · Pr

resampled h
(g̃R(x) ∈ E1) ≤

p
l · (q1/2n + ϵ+ pn).

5.4.2 Issues with the Technique of [90]

Now we are ready to describe the issues and the limitations of the techniques in [90]. To prove the
general case (i.e. for any query), the authors provide a proof sketch where they argue that with
an overwhelming probability of realizable transcript T and for all τ ∈ T , Pr(g̃R(mi) ∈ Ei | τ) is
negligible.

The Number of Queries to F is Essential. An incompleteness of the proof of [90] comes
from the fact that the analysis does not consider the F queries of the distinguisher. The bound
is almost vanishing if q1 = 0 and q2 = 2 and there is no crooked point. However, a distinguisher
can search for m ̸= m′ such that F(m) = F(m′). Conditioned on collision at the final output, the
event gR(m) = gR(m

′) holds with probability of about 1/2. On the other hand, for the honest
simulation of all f values, the g value will collide with a very low probability. If the adversary
can make 2n/2 many queries to F , the above inconsistency can be forced. Hence, the probability
upper bound of Theorem 5 of [90] can not be independent of the number of queries made to F .
Inconsistency for Multiple Queries: Controlling Query Dependencies for the Same
Index. Authors claimed that for all unpredictable (R, h), for all m, an index i exists on which
the resampling can be done without affecting the transcript. Recalling the notion of unpredictable
(R, h) we see that the resampling is done on an index i, that is honest (f̃(i,mRi) = f(i,mRi),
and f(i,mRi) is not queried by f(j,mRj) for any other j. From here, the authors argued that
the transcript of the interaction remains the same if we resample at such i. This claim is justified
for a single message and not for multiple queries. We note that it is easy to construct a subverted
implementation F̃ for which all inputs of f for a batch response are queried during some other
previous query. For example, if it queries f(i, x1n) for an input (i, x), and the distinguisher makes
two batch queries, g̃R(m1n), and g̃R(m). The simulator, while simulating g̃R(m1n) responds to
all the queries made by f̃(i,m1nRi), and in particular the value of f(i,mRi) is now gets fixed.
So, an appropriate analysis was missing in case of multiple queries.

The Bad Event Ei Depends on the Function f . The main technical claim of [90] that
Prresampled f

(g̃R(x) ∈ E) is small because g̃R(x) is uniformly distributed under the resampling

distribution of f and the size of E is negligibly small. However, the crooked set of f(0, ·) may
depend on the other functions f(1, ·), . . . , f(·). Thus the event E is not independent of g̃R(x).
In particular, one cannot upper bound the Pr(g̃R(x) ∈ E) as |E|/2n . This is one of the crucial
observations which makes the crooked security analysis quite a complex task.

5.5 Basic Setup: Good Pairs and Critical Set

Subverted inputs. For a function f : D → R agreeing on τ0, we define

subvf = {x | x ∈ D(τ0) ∨ f̃(x) ̸= f(x)},

union of the set of all subverted points for the function f and the D(τ0). We consider elements of
the domain of τ0 as subverted points as the outputs of those have no entropy and are hard-coded

93

into an implementation. Thus, we treat all those inputs as subverted points. Clearly, for all
function f ,

|subvf | ≤ q1 + ϵ|D|.

where q1 denotes the size of τ0. Let ϵ1 := ϵ+ q1/|D|.

Definition 7 (robust point). Let f agree on τ0. A point y is called robust in f (or the pair
(y, f) is called robust) if for all x ∈ Q−1f (y),

Pr
β

�
x ∈ subvfβ

�
≤ √ϵ1

where β ←$R and fβ := f |y→β.

Note that the robustness of y in f does not depend on the value f(y). In other words, if y is
robust in f , then so in f |y→β for all β.

Definition 8 (popular point). A point y ̸∈ D(τ0) is called popular for a function f if |Q−1f (y)| >
ϵ
−1/4
1 .

Recall that the subversion algorithm f̃ makes at most q̃ many queries for any y. So,P
y |Q−1f (y)| ≤ q̃|D|. Using the simple averaging argument, the number of popular points is

at most q̃ϵ
1
4
1 |D|.

Pr
x,f

[x is popular in f] ≤ q̃ϵ
1
4
1 (5.1)

We call the robust pair (y, f) good if (1) y is not popular for f and (2) for all x ∈ Q−1f (y),
x ̸∈ subvf . In particular, for good (y, f), it holds that y ̸∈ subvf and y ̸∈ subvfβ with high
probability over randomness of β where fβ := f |y→β .

Lemma 11. For a random y ←$ D, we have

Pr
y,f

[(y, f) is not good] ≤ 3q̃ϵ
1
4
1 .

Proof. We define two indicator functions:

d(x, f) =

(
1, if x ∈ subvf

0, otherwise
dj,β(x, f) =

1, if x ∈ subvf |

γ
(x)
j

→β

0, otherwise.

In other words, d(x, f) is simply an indicator function for capturing crooked points, and dj,β(x, f)
is an indicator function capturing whether a point x becomes crooked for f after replacing the
j-th query output with β. For 1 ≤ j ≤ q̃, let Dj(x, f) = Exβ(dj,β(x, f)). For any function
g ∈ Γτ0 , let Sx,g := {(f, β) : f |

γ
(x)
j →β

= g}. It is easy to see that we have |Sx,g| = 2n. Now, for

each j,

Exx,f
(
Dj(x, f)

�
=Exx,fExβ

(
dj,β(x, f)

�

=
X

x,f,β

Pr(f) Pr(x) Pr(β) · dj,β(x, f)

94

= 2−n
X

(f,β)∈Sx,g

X

x,g

Pr(g) Pr(x) · d(x, g)

=
X

x,g

Pr(g) Pr(x) · d(x, g)

= Exx,gd(x, g) ≤ ϵ+
q1
|D| := ϵ1

Applying Markov inequality, we get for every j ∈ (q̃]

Pr
x,f

h
Dj(x, f) ≥ ϵ

1
2
1

i
≤ Exx,f

(
Dj(x, f)

�

ϵ
1
2

≤ ϵ
1
2
1 (5.2)

We recall there are three ways x can be not good in f .

Pr
f,x

[(x, f) is not good] ≤ Pr
f,x

[x is popular for f] +

Pr
f,x

[x is queried by some point in subvf] +

Pr
f,x

[(x, f) is not robust | x is not popular for f]

As there are at most ϵ1|D| many points in subvf ,

Pr
f,x

[x is queried by some point in subvf] ≤ q̃ϵ1.

From the definition of robust points and Equation ??

Pr
x,f

[x is non robust in f | x is not popular for f] ≤ ϵ
−1/4
1

q̃X

j=1

Pr
x,f

h
Dj(x, f) ≥ ϵ

1
2
1

i

≤ q̃ϵ
1
4
1

Adding above two inequalities and Equation 5.1

Pr
f,x

[x is not good in f] ≤ q̃
�
ϵ1 + ϵ

1
4
1 + ϵ

1
4
1

�
≤ 3q̃ϵ

1
4
1

Critical Set. We consider a set G of pairs (R, f) of initial values R and functions f satisfying
the condition that for every m ∈ {0, 1}n there exists 1 ≤ i ≤ l such that (αi := (i,m ⊕ Ri), f)
is good. The following lemma says that for a uniformly random string R (initial value) and a
randomly chosen function f agreeing on τ0, with high probability (R, f) is in the critical set.

Lemma 12. Let q̃ ≤ 2n/2, ϵ1 ≤ 1
216 and ℓ > 2n. It holds that

Pr
R,f

((R, f) ̸∈ G) ≤ 3q̃ϵ
1/8
1 + 2−n.

Proof. We know that Prf

h
Prx[(x, f) is not good] > ϵ

1/8
1

i
≤ 3q̃ϵ

1/8
1 . We say f is convenient if

Prx[(x, f) is not good] ≤ ϵ
1/8
1 . Fix a convenient f

Pr
R
[(R, f) ̸∈ G]

95

≤
X

m

lY

i=1

�
Pr
Ri

[(i,m⊕Ri) is not good in f]

�

≤ 2n ×
�
ϵ
1/8
1

�l
≤ 1/2n.

In the first step, the sum is taken over m ∈ {0, 1}n. The last inequality follows from l > n, and
ϵ1 ≤ 1

216 . Hence, we have

Pr
R,f

((R, f) ̸∈ G) ≤ Pr
f
[f is not convenient] + Pr

R
[(R, f) ̸∈ G|f is convenient]

≤ 3q̃ϵ
1/8
1 + 1/2n. .

5.6 Crooked Indifferentiability of Enveloped XOR Con-
struction

In this section, we analyse the crooked indifferentiability security of the EXor construction. Our
main result in this section is Theorem 3.

Theorem 3. Let l = 3n+ 1, q̃ ≤ 2n/2 and ϵ1 = ϵ+ q1
(l+1)2n ≤ 1

16 . Let f : [l]× {0, 1}n → {0, 1}n
be a family of random functions and EXor : {0, 1}n → {0, 1}n be the enveloped-xor construction.
Then there exists a simulator S such that for all ((q1, q̃), (q2, qsim), ϵ, δ) crooked distinguisher
A = (A1,A2)

Advcrooked-indiffA,(EXor,f) ≤ (4l2q̃)q22/2
n + (4q̃ + 2l)q2ϵ

1/16
1

The simulator is described in Fig 5.1, which makes at most q2 query to the random oracle F and
makes q2lq̃ many calls to the subverted implementation f̃ .

Proof. We recall that, in the real world, the distinguisher is interacting with the subverted

construction]EXor which is defined as

]EXor(R,m) = f̃(0, g̃R(m)) where g̃R(m) =

lM

i=1

f̃(i,m⊕ ri).

We also define a hybrid construction EXor[f](R,m) = f(0, g̃R(m)). Now consider an adversary
A interacting with (f,EXor := EXor[f]) in the second phase.

Bad Events

We consider the bad event happening immediately after the i-th query of the adversary, which
is of the form (j, xi) for j > 0. We write mi = xi +Rj . We define four bad events.

1. bad1i holds if (0, g̃R(mi)) ∈ subvf

2. bad2ai holds if (0, g̃R(mi)) ∈ D(τi−1)

3. bad2bi holds if g̃R(mi) = g̃(mj) for some j < i

4. bad2ci holds if (0, g̃R(mi)) ∈ Q(x) for some x ∈ D(τi) and x ∈ subvf .

Let bad1 = ∨ibad1i, bad2 = ∨i(bad2ai ∨ bad2bi ∨ bad2ci), and bad = bad1 ∨ bad2.

96

O(j, x)
1 : if (j, x, z) ∈ Lf return z

2 : z ←$ {0, 1}n

3 : Add the entry (j, x, z)→ Lf

4 : return z

g̃R(M)

1 : Sum = 0n

2 : for j = 1 to ℓ do

3 : Sum = Sum⊕ Õ(j,M ⊕Rj)

4 : endfor

5 : return Sum

offline phase

1 : for all (i,Mk ⊕Ri) ∈ L
A

2 : recompute g̃R(Mk) and update Lf

Õ(j, x) (j > 0)

1 : return h̃
O(j, x)

Main(j, x)

1 : if j = 0

2 : temp = O(0, x), LA = L
A ∪ {(0, x, temp)},

3 : return temp

4 : M = x⊕Rj , LM = ∅, S = g̃R(M)

5 : if (0, S, t) ∈ L
A

bad2a = 1

6 : else Add (0, S,F(M)) to L

7 : if (0, S, z) ∈ Lf

8 : Overwrite the entry(0, S,F(M))

9 : for i = 1 to ℓ

10 : Add (i,O(i,M ⊕Ri)) to LM

11 : return LM

Figure 5.1: Simulator for EXor: Offline Phase is executed after all the distinguisher queries.

Claim 2.
∆A2(r,τ̃ ,R)

(
(f,EXor(R, ·)) ; (f,]EXor(R, ·))

�
≤ Pr(bad1)

where bad1 holds while A interacting with (f,EXor).

Proof of the above claim is straightforward as both worlds behave identically until bad1 does
not hold.

We have defined our simulator SF in Figure 5.1 where F : {0, 1}n → {0, 1}n is a random
function. The simulator has also observed the above bad events, in particular, bad2. Now we
claim that the hybrid construction and the ideal world are indistinguishable provided bad2 does
not hold (in the hybrid world) while A interacting with (f,EXor).

Claim 3.

∆A2(r,τ̃ ,R)

(
(f,EXor(R, ·)) ; (SF,f̃ (τ̃ , R),F)

�
≤ Pr(bad2).

We call a transcript good if bad2 does not hold. In the case of the simulator world, whenever
bad2 does not hold, the simulator maintains an extended transcript consistent with the hybrid
world. As the simulator sets all outputs of the function either randomly or through outputs of F ,
realising any such good transcript τ ′ has probability 2−nσ where σ = |τ ′ \ τ0|. We have already
seen that the probability of realising a good transcript in the hybrid world is exactly 2−nσ. In
other words, both worlds behave identically until bad2 does not hold. Combining Claims 2 and
3, we get

Advcrooked-indiffA,(EXor,f) ≤ Pr[bad].

The proof of Theorem 3 follows from the following lemma.

Lemma 13.

Pr[bad] ≤ (4l2q̃)q22/2
n + (4q̃ + 2l)q2ϵ

1/16
1

97

The lemma is proved in section 5.7.

5.7 Proof of Lemma 13

We write f ⇒j τj to denote the event that after j queries to (f,EXor), an adversary obtains the
transcript τj . We skip the notation j if it is understood from the context.

Definition 9. A transcript τi−1 is good if

Pr((R, f) ∈ G | f ⇒ τi−1) ≥ 1− 3q̃ϵ
1/16
1 .

Applying Markov inequality on Lemma 12, we have Pr(τi−1 is good) ≥ 1− ϵ
1/16
1 . Let us fix

a good transcript τi−1 (which also determines mi for the i-th query) and a function f agreeing
on τi−1 such that (R, f) ∈ G.
Definition 10. For any fix k, we say that f is called τi-good if (i) f ⇒ τi−1 and (ii) (αk, f) is
good.

Claim 4. For any τi-good f there exists a set S of size at least 2n(1 − ϵ
1/4
1) such that for all

β ∈ S, fβ := f |α→β is also τi-good.

Proof. We fix a function f ∈ ΓR,τi−1,πi−1
such that (αk, f) is τi-good. Now we identify a set of

good values of β such that fβ := f |αk→β ∈ ΓR,τi−1,πi−1
such that (αk, f) is τi-good. In other

words, setting the output of f on the point αk to β keeps the pair (αk, fβ) good. For every
x ∈ D(τi−1) ∩ Q−1f (αk), let Bx denote the set of all bad β values for which good condition of

(αk, f) gets violated. By definition, |Bx| ≤ ϵ
1/2
1 and hence | ∪x Bx| ≤ 2nϵ

1/4
1 . We define

S = D \ ∪x∈Q−1
f

(αk)
Bx.

Note that for all β ∈ S, (αk, fβ) is τi-good.

Due to the above claim, we have

Pr(f(αk) = z | (αk, f) is τi-good,) ≤
1

|S| ≤
1

2n(1− ϵ
1/4
1)

≤ 2

2n
.

The last inequality holds because ϵ1 ≤ 1
16 . Now note that for any event E, we have

Pr(E|τi−1) ≤ Pr
f
(E ∧ (R, f) ∈ G|τi−1) + 3q̃ϵ

1/16
1

≤
lX

k=1

Pr
f
(E ∧ (αk, f) is τi−1-good | τi−1) + 3q̃ϵ

1/16
1

≤
lX

k=1

Pr
f
(E | (αk, f) is τi−1-good) + 3q̃ϵ

1/16
1

For the last inequality, we simply use the fact that

Pr
f
((αk, f) is τi−1-good | τi−1) ≤ 1.

Now we bound each bad event, and then we can multiply by l and add all the terms to get the
bound.

98

Bound of Pr(bad2ai ∪ bad2bi)

Fix a τi-good f . Let B2 denote the set of all elements containing g̃R(mj) (for all j < i) and all

elements from D(τi−1) of the form (0, ∗). Note that the set B2 and
P

j ̸=k f̃(mi + Rj) does not
depend on the value f(αk) provided f(αk) ∈ S. Hence,

Pr
f
(bad2ai ∪ bad2bi | (αk, f) is τi−1-good) ≤ 2i/2n.

Bound of Pr(bad2ci)

We first note that for all β ∈ S and an input x which queries αk, x is not crooked and a robust
point. Let A = D(τi) \ ({αk} ∪ Q−1f (αk)). Let Ã denote the set of all points queried by the

elements of A. Suppose g̃R(mi) ̸∈ Ã. Then, for every x from the domain of τi querying g̃R(mi)
must query αk and hence bad2ci does not hold. So, bad2ci can hold only if g̃R(mi) ∈ Ã. Once
again by randomness of f(αk), we have

Pr(bad2ci | (αk, f) is τi−1-good) ≤ 2q̃il/2n.

Bound of Pr(bad1i)

Clearly, f̃β(x) can be different from f̃(x), only if x ∈ Q−1f (αk). Moreover for every x ∈ Q−1f (αk),
as both (αk, f) and (αk, fβ) are good, it holds that x /∈ subvf and x /∈ subvfb . Thus for any such
τi-good f, fβ , we have the following conditions: subvf = subvfβ . Thus,

Pr[bad1i | (αk, f) good, τi good] ≤ 2ϵ1

So,

Pr[badi | τi−1] ≤ 4l2q2q̃/2
n + 2lϵ1 + 3q̃ϵ

1/16
1

Finally, we add the probability that we realise a not good transcript τi−1 and we obtain bound
for Pr(badi). By taking union bound over i ∈ [q2], we get

Pr[bad] ≤ 4l2q22 q̃/2
n + 2lq2ϵ1 + 3q̃q2ϵ

1/16
1 + q2ϵ

1/16
1

≤ (4l2q̃)q22/2
n + (4q̃ + 2l)q2ϵ

1/16
1

This finishes the proof of Lemma 13.

99

Chapter 6

Subversion Resilient Hashing:
Efficient Constructions and
Modular Proofs for Crooked
Indifferentiability

6.1 Introduction

We consider the problem of constructing secure cryptographic hash functions from subverted
ideal primitives. Hash functions are used to instantiate Random Oracles in cryptographic pro-
tocols. The notion of indifferentiability security is a popular tool for certifying the structural
soundness of a hash design for such instantiations. In CRYPTO 2018, Russell, Tang, Yung, and
Zhou introduced the notion of crooked indifferentiability to extend this paradigm even when
the underlying primitive of the hashing mode is subverted. They showed that an n-to-n-bit
function implemented using Enveloped XOR construction (EXor) with 3n+1 many independent
n-to-n-bit functions and 3n2-bit random seed can be proven secure asymptotically in the crooked
indifferentiability setting. Unfortunately, known techniques to prove crooked indifferentiability
are extremely complicated, and no practical hashing mode has been analysed in this setting.

• We introduce new techniques to prove crooked indifferentiability. We establish that upper
bounding the subversion probability of a chaining query is sufficient to argue subversion
resistance of a standard indifferentiable mode of operation. Our technique links stan-
dard indifferentiability and crooked indifferentiability and circumvents the complications
of proving the consistency of the simulator in the crooked setting.

• We prove the crooked indifferentiability of the Sponge construction when the underlying
primitive is modelled as an n-to-n-bit random function. Our proofs only require n-bit
randomly chosen but fixed IV and do not mandate any independent function requirement.
The result naturally extends to the Merkle-Damg̊ard domain extension with prefix-free
padding. Our results minimise required randomness and solve the main open problem
raised by Russell, Tang, Yung, and Zhou.

Traditionally, cryptographic hash functions are designed by applying a domain extension algo-
rithm on suitable primitives of a smaller domain. Security of the hash functions is often derived

100

via information-theoretic arguments, assuming the underlying primitives behave as ideal where
the adversary is permitted only to query the primitives. In practice, however, the implemen-
tations of the primitives may leak more information to the adversary and possibly even allow
malicious tampering. A good example is the Dual-EC tampering attack [29] which led to the
withdrawal of a standardised PRG due to a potential backdoor in the implementation.

The framework of Kleptography, introduced by Young and Yung [100, 101] more than twenty
years ago, allows a “proud but curious” adversary to replace a cryptographic implementation
with a crooked version intending to subvert its security without getting caught. Bellare, Paterson,
and Rogaway [9] revitalised the framework under the name of Algorithmic Substitution Attack
(ASA). They showed that it is possible to mount an algorithm substitution attack against almost
all known symmetric key encryption schemes to the extent that the attacker learns the secret
key. A series of work has been done in recent years formalizing approaches to resist algorithm
substitution attacks [48, 8, 70, 44, 45, 88, 89].

The notion of crooked indifferentiability from a Random Oracle and the composition theorem
proved in [90] guarantees that a construction proved secure in this framework can be used to
replace a Random Oracle in any single-stage game in the kleptographic setting. While popular
hash functions are the most natural choice for instantiating the Random Oracle, their suitability
is still unknown. We ask, can the popular hashing modes, for some parameters, achieve this
many-fold stronger security notion? Given the surge of new constructions in the ASA setting
[32, 3, 4], the importance of the question cannot be overstated.

Proving a construction secure in the crooked indifferentiability setting is an immensely chal-
lenging task. Unlike the classical setting where the adversary is passive, the crooked indif-
ferentiability adversary is active and could subvert any algorithm. The only known crooked
indifferentiability bound is for the construction called Enveloped XOR (EXor), depicted in Fig-
ure 6.1. In [90], the authors using the rejection-sampling technique showed the security of EXor
construction. The instantiation requires 3n + 1 many independent functions and n2 many ran-
dom bits. We note, however, that the Enveloped XOR construction produces an n-bit to n-bit
random function. Instantiating a hash function would require applying domain extension tech-
niques on top of it, implying more function calls and possibly more independent random bits.
Minimising randomness and reducing the number of function calls while still achieving crooked
indifferentiability was left as the main challenge in [90].

Finally, the technique of [90], though ingenious, is very complex. It is difficult to give an
intuitive justification for why the construction and the approach work. The alternative proof of
[20] is also quite involved. Given that we have established tools to prove indifferentiability in
the classical setting, it is natural to ask whether we can leverage those tools to prove crooked
indifferentiability.

h(1, ·) h(2, ·) h(3, ·) · · · h(l, ·)

m⊕R1 m⊕R2 m⊕R3 m⊕Rl

+ + · · · + h(0, ·)

0r

0c

R0

c bits

r bits

R1

m0

f

m1

f

m2

· · ·

· · ·

m`

f

z0

f

z1

f

z2

Figure 6.1: EXor construction (left) and Sponge Construction with random IV (right).

101

6.2 Our Contributions

We introduce new techniques to prove crooked indifferentiability and establish security bounds
for popular hashing modes, the Sponge construction, and the ubiquitous Merkle-Damg̊ard con-
struction. We elaborate on our contributions below.

New Techniques for Crooked Indifferentiability. We present new techniques to prove
crooked indifferentiability. We introduce a new security game called Force-Crook, where the
challenge to the adversary is to produce a message for which the construction makes a primitive
query on a subverted input. We show that bounding the advantage of the adversary in the
Force-Crook game is sufficient to prove the crooked indifferentiability of constructions which are
secure under the classical indifferentiability paradigm.

Crooked Indifferentiability of Popular Hashing Modes. We apply our techniques to
prove the security of popular hashing modes. Our main contribution is to show that the Sponge
construction, instantiated with a random function and a randomised initial value, is crooked-
indifferentiable from a Random Oracle. The construction uses the same function at every iter-
ation. The design is identical to the one proven indifferentiable in [13]. This result positively
answers our quest for a practical crooked-indifferentiable hashing mode. Moreover, the proof re-
quires only a linear (in terms of the security parameter) number of random bits and thus answers
the main open question raised by RTYZ [90].

We show that the technique with a minor modification is sufficient to prove the security of
the classical Merkle-Damg̊ard construction with prefix-free padding. The hash function uses an
n+ 1-to-n-bit compression function.

6.2.1 Overview of Our Techniques

Technical Challenges in Crooked Indifferentiability.

The main challenge in the crooked setting is to prove the randomness of the construction’s output.
As the underlying primitives are subverted, the adversary may have full information about the
function on some points without querying the oracles. Consider the following example. We
are given an n-to-n-bit random function f . By definition, f is classically indifferentiable from a
random oracle. Now consider a simple subverted implementation f̃ of f . The program f̃ honestly
implements f everywhere except at point 0, where it outputs f̃(0) = 0. Such an f̃ can be easily
distinguished from a random oracle.

The established technique to correct the situation would be the random-masking technique,
but that does not work either. Consider, for example, simple input masking with a random string

R obtained by the function gR(M)
def
= f(MR). As the string R is fixed at the start of the game

(after the adversary submits the subverted implementation), the distinguisher can indeed choose
the message M = R, resulting in a distinguishing condition gR(R) = 0. From the above two ex-
amples, one can abstract out the first challenge of proving crooked indifferentiability. The output
distribution of the underlying primitive, conditioned on the adversary’s view, is not uniform for
every point. The challenge becomes even more daunting when we consider an implementation
that can subvert a point based on the function evaluations at that and possibly some other
points. We can no longer assume function values are independently distributed. Thus the tools
and techniques developed for classical indifferentiability seem to be useless here.

102

The Intermediate Game Force-Crook.

We found a seemingly obvious but powerful technique to handle subversions. The difference
between the real world in the crooked indifferentiability and the real world in the classical in-
differentiability setting is only in the oracle of the construction C. In the crooked setting, C is
given oracle access to f̃ whereas, in the classical setting, C queries the primitive f itself. As
long as no chaining value results in querying f on a crooked point, the output distributions of
these two worlds are identical! In other words, if for every message M submitted by the adver-

sary to C, it holds with a high probability that Cf (M) = C f̃ (M), then (Cf , f) and (C f̃ , f) are
indistinguishable. If C is indifferentiable in the classical setting, then that simulator would work
perfectly as the simulator in the crooked setting.

In Section 6.4, we introduce a security game Force-Crook where the adversary is challenged

to find a message where Cf (M) ̸= C f̃ (M). We show that for a construction which is proven
indifferentiable from a random oracle in the classical setting (with security bound δi), the crooked
indifferentiability advantage is bounded by the advantage of winning the Force-Crook game plus
δi.

Bounding Winning Advantage of Force-Crook

To bound the adversary’s success probability of winning the game Force-Crook, we focus on
ensuring all the chaining inputs remain uncrooked with high probability. Our intuition is to
argue that if a chaining query is uncrooked, the output is uniform. Given that only a negligible
fraction of points are crooked, when we use random iv, the first chaining inputs are random and,
thus, with high probability, uncrooked. Suppose only a few bits of the message are injected at
every iteration. Then, the following chaining query input is close to being uniform, and thus,
with high probability, uncrooked as well. Now we can repeat this argument throughout the
computation of C. For the Sponge and Merkle-Damg̊ard constructions, this idea in itself is
sufficient for handling simple subversion.

We explain it in more detail for the following simplified setting. Suppose the subverted
implementation f̃ is such that on input a point x, the output of f̃(x) depends only on the value
of f(x), and it is independent of f(y) for all y ̸= x. Consider the Sponge construction based on
a random function f : {0, 1}n → {0, 1}n. By definition of worst-case subversion by a proud but
curious adversary, for all choices for the function f , at most ϵ fraction of the inputs are crooked
(f̃(x) ̸= f(x)). In addition, there are at most q1 many points queried by the implementor before
producing the subverted implementation. Hence for every function f , there is a set Sf of size
at least (1− ϵ)2n − q1 whose members are neither fixed by the implementor nor subverted. For
a randomly chosen function f and a random string with overwhelming probability, the random
string will be a member of Sf . If we set the rate part of the Sponge construction to be 1, for both
the choice of m0 ∈ {0, 1}, the first chaining query to f will be a member of Sf with probability
(1− 2ϵ− 2q1

2n).
We can repeat the above argument inductively. Consider the lazy sampling framework of

random functions. We say a chaining query xi is good if, for all choices of mi+1 ∈ {0, 1}, the
next chaining query xi+1 = f(xi)mi+1 is subverted with low probability (say ϵ

1
2). In other

words, xi+1 is a member of Sf with high probability. One can show that a randomly chosen
point is good with high probability. As f(xi) is uniformly distributed, xi+1 would also be a good
chaining query. For the base case of the induction argument, we recall that the first chaining
query is generated from the initial random string. For all values of m0 ∈ {0, 1}, it is a good
chaining query with high probability. Thus, we get all the chaining queries would be good, and
by extension, all the chaining queries will be uncrooked with overwhelming probability.

103

The matter gets complicated when we consider a general f̃ whose output can depend on
adaptively chosen multiple points. With careful analysis, we extend our arguments to this general
case. In Section 6.5, we present the analysis in detail.

6.2.2 Impact of Our Results

Subversion Agnostic Indifferentiability.

We achieve a strong form of crooked indifferentiability where the simulator is subversion agnostic.
When we establish crooked indifferentiability via the Force-Crook game, S does not even need
access to subverted implementation f̃ . While we show Sponge and Merkle-Damg̊ard attain
such security, not all constructions achieve such strong crooked indifferentiability. One notable
example is the Enveloped Xor construction, where the simulator must have access to f̃ to achieve
crooked indifferentiability as formulated in [90]. Thus, our modular proof technique illustrates a
simple condition for a classical indifferentiable construction to achieve crooked indifferentiability.

Crooked vs Classical.

A learned reader may observe that a crooked-indifferentiable construction’s efficiency and security
parameters are worse than what can be proven in the classical indifferentiability setting. One can
wonder about the crooked indifferentiability framework’s significance and our results’ impact. In
particular, for the Sponge construction with n bit function, we prove crooked indifferentiability
security of asymptotically n/4 bits when at each round, one bit of message is injected and
ϵ ≤ 1/2n/2. In contrast, SHA3, with each iteration consuming r bits of messages, achieves
(n− r)/2 bits of security in the classical indifferentiability setting.

However, comparing bit-security without considering the adversary’s power leads to mislead-
ing impressions. While proving indifferentiability, we aim to achieve independent and uniformly
sampled hash output for every point. The classical indifferentiability assumes that an adversary
is passive and is content with only black-box access to the underlying primitive. Thus, the prim-
itive could be modelled as ideal. In particular, each point is mapped independently following a
high-entropy probability distribution.

In comparison, the adversary in the kleptographic setting is active. The implementation of
the primitive is subverted. The points are not mapped independently and for some “small” yet
non-zero fraction of the inputs, the adversary has carefully chosen the function. We can no
longer directly leverage the randomness of the underlying primitive. Naturally, the security-
efficiency tradeoff achieved in the crooked setting against such an active adversary is somewhat
weaker than what is accomplished against the passive adversary of the classical indifferentiability
paradigm.

6.3 Suitable Functions and Sets

Let f : Df → Rf be a function. For a transcript τ , we define Cf,τ to be the union of the set of
subverted points for the function f and the points fixed by τ .

Definition 11. Cf,τ = {x | x ∈ D(τ) ∨ f̃(x) ̸= f(x)}.
By the definition of ϵ-crooked,

|Cf,τ |
|Df |

≤ ϵτ := ϵ+
|τ |
|Df |

.

104

At the beginning of the second stage of the crooked indifferentiability game, the transcript
contains the interaction of the q1 many queries made by the implementer. We define

ϵ1 = ϵ+
q1
2n

.

Let τ be a (partial) transcript. Recall that we say a function g agrees on a transcript τ when
the transcript holds for the function g.

Fn,n|τ
def
= {g ∈ Fn,n | g agrees on τ}.

6.4 From Classical Indifferentiability to Crooked
Indifferentiability

In this section, we establish sufficient conditions to lift the classical indifferentiability results to
the crooked indifferentiability setting.
Security Games. The results in this work are proven in the framework of code-based games [10].
A game G consists of a main oracle and zero or more stateful oracles O1, O2, . . . , On. If a game
G is implemented using a function f , we write G[f] to denote the game. The success probability

of algorithm A in the game G is defined by SuccA,G
def
= Pr

�
GA = 1

�
. The query complexity of

A is the number of queries made by A to its oracles.
Let f : Df → R and F : D → R be two random oracles where D ⊇ Df . Let Cf be an

F-compatible construction. We consider a crooked distinguisher A = (A1,A2).

6.4.1 Force-Crook Game

Game Force-Crook(C)

1 : f ←$ Fn,n

2 : (τ̃ , ⟨f̃⟩)← Af
1

3 : M ← A
(Cf (·,R),f)
2 (τ̃ , R)

4 : if C
f (M) ̸= C

f̃ (M)

5 : return 1

6 : else

7 : return 0

Figure 6.2: The Force-Crook game

In this section, we introduce the security game Force-Crook. Formally the game is defined in
Figure 6.2. The force-crook advantage of an adversary is defined as

Advforce-crook
A,C

def
= SuccA,force-crook[C].

Given a construction C, we define

Insecforce-crookC,(q1,q̃,ϵ),q2

def
= maxAAdvforce-crook

A,C .

where the maximum is taken over all ((q1, q̃, ϵ), q2)-crooked-distinguishers.

105

6.4.2 Achieving Crooked Indifferentiability

Our main technique to prove the security of Sponge and prefix-free Merkle-Damg̊ard construc-
tions results from Theorem 4. The idea is depicted in Figure 6.3. Suppose C is indifferentiable
from F (the advantage of distinguishing middle and rightmost worlds is small). If the Force-
Crook advantage is small, then the advantage of distinguishing between the leftmost and the
middle-world is small. Then the classical simulator S successfully acts as the simulator in the
real world of the crooked setting.

C(R, ·)F̃f

A2(r, τ̃ , R)

C(R, ·)f

A2(r, τ̃ , R)

S(τ̃ , R) F

A2(r, τ̃ , R)

Figure 6.3: The hybrid: The leftmost picture is the real world of the crooked setting. The middle
picture is the real world in the classical setting. The rightmost picture is the ideal world in the
classical setting.

Theorem 4. Let Cf : D → R be a hash function built on primitive f : Df → R. Let Cf

be ((qP , qC , qsim), δi)-indifferentiable from a random oracle F . Cf is ((q1, q̃), (q2, qsim), ϵ, δc)-
crooked-indifferentiable from F where

δc ≤ δi + Insecforce-crookC,(q1,q̃,ϵ),q2

and q1 + q2 ≤ qP .

Proof. From the definitions and using triangle inequality, we get

δc ≤ δi +∆A2(r,τ̃ ,R)

(
(f, C f̃ (R, ·)) ; (f, Cf (R, ·))

�
.

To prove the theorem, we need to show

∆A2(r,τ̃ ,R)

(
(f, C f̃ (R, ·)) ; (f, Cf (R, ·))

�
≤ Insecforce-crookC,(q1,q̃),(q2,qs).

Let bad denote the event A2(r, τ̃ , R) makes a query to C f̃ (or Cf) oracle with input M such that

Cf (R,M) ̸= C f̃ (R,M).

Now unless bad is set, the outputs of the oracles in both the world (f, C f̃ (R, ·)) and (f, Cf (R, ·))
are the same. Thus we get

Pr[A(f,Cf̃ (R,·))
2 (r, τ̃ , R) = 1 ∩ ¬bad] = Pr[A(f,Cf (R,·))

2 (r, τ̃ , R) = 1 ∩ ¬bad]. (6.1)

We derive, using Definition ??, triangle inequality, and Equation 6.1

∆A2(r,τ̃ ,R)

(
(f, C f̃ (R, ·)) ; (f, Cf (R, ·))

�

=

����Pr[A
(f,Cf̃ (R,·))
2 (r, τ̃ , R) = 1]− Pr[A(f,Cf (R,·))

2 (r, τ̃ , R) = 1]

����

106

≤
����Pr[A

(f,Cf̃ (R,·))
2 (r, τ̃ , R) = 1 ∩ bad]− Pr[A(f,Cf (R,·))

2 (r, τ̃ , R) = 1 ∩ bad]

����+
����Pr[A

(f,Cf̃ (R,·))
2 (r, τ̃ , R) = 1 ∩ ¬bad]− Pr[A(f,Cf (R,·))

2 (r, τ̃ , R) = 1 ∩ ¬bad]
����

=

����Pr[A
(f,Cf̃ (R,·))
2 (r, τ̃ , R) = 1 ∩ bad]− Pr[A(f,Cf (R,·))

2 (r, τ̃ , R) = 1 ∩ bad]

����
≤ Pr[bad].

The last inequality follows as both Pr[A(f,Cf̃ (R,·))
2 (r, τ̃ , R) = 1 ∩ bad]

and Pr[A(f,Cf (R,·))
2 (r, τ̃ , R) = 1∩bad] are numbers between 0 and Pr[bad]. Finally, if bad happens

then A2(r, τ̃ , R) wins the game Force-Crook. Thus

Pr[bad] ≤ Insecforce-crookC,(q1,q̃),(q2,qs).

The theorem follows.

Procedure Sponge

// random string R, Message m ∈ {0, 1}
ℓ

1 : x = (xa, xc) = R

2 : for i = 0 to

�

ℓ

r

�

− 1 do

3 : (xa, xc) = f(xa ⊕mi, xc)

4 : endfor

5 : for i = 0 to
l

s

r

m

− 1 do

6 : Append xa to output

7 : (xa, xc) = f(xa, xc)

8 : endfor

0r

0c

R0

c bits

r bits

R1

m0

f

m1

f

m2

· · ·

· · ·

m`

f

z0

f

z1

f

z2

Figure 6.4: Crooked-Indifferentiable Sponge Construction

107

6.5 Crooked Indifferentiability of Sponge Construction

In this section, we show that the Sponge construction based on an n-to-n-bit random function
can be proved crooked-indifferentiable from a random oracle when initialised with a random IV.
Sponge Construction. The details of the parameters of the Sponge construction we consider
are listed below.

Target Hash Function. The construction implements a FIL-hash function H such that
H : {0, 1}ℓ → {0, 1}s.
Primitives. The underlying primitive of the construction is an n-to-n bit function f : {0, 1}n →
{0, 1}n. In the security proof, f is modelled as a random oracle.
Public Randomness. The public randomness is R←$ {0, 1}n.
Padding. We use the same padding scheme as the original Sponge construction, where it is
required that the last message block is non-zero.
Construction. The chaining value of the Sponge construction is divided into two parts, rate
(length denoted by r) and capacity (length denoted by c). The message is divided into r-bit
blocks. The construction works in two phases, absorbing and squeezing. In one round of the
absorbing phase, one r-bit message block is xored with the rate part of the chaining value. The
function f is then applied to the result (of the xor) to get the chaining value of the next round.
The construction enters the squeezing phase once all the input message blocks are processed. At
each round, the rate part of the chaining value is stored as the output block, followed by the
application of f on the whole chaining value. The algorithm stops once we have s bits of output.
The construction is described in Figure 6.4.

q1 Number of f queries made by the implementor A1

q̃ Number of f queries made by the subverted implementation f̃
q2 Total number of queries made by the distinguisher A2

qsim Total number of F queries made by the simulator S

ϵ Fraction of subverted points under f̃

Figure 6.5: Recalling the notations

Our main result in this section is Theorem 5. We recall the notations in Figure 6.5.

Theorem 5. Let f : {0, 1}n → {0, 1}n be a random function and Cf : {0, 1}ℓ → {0, 1}s be the
Sponge construction. Let r be the rate part, and c = n−r be the capacity part of the chain. Then
there exists a simulator S such that for all ((q1, q̃, ϵ), q2)-crooked distinguishers A = (A1,A2), it
holds that

Advcrooked-indiffA,(C,f) ≤ O
�
2r × σ ×

�
ϵ

1
2
1 +

q̃

2
n
4
+ ϵ

1
2
1 +

σ

2n
+

σ

2
n
2

��

where ϵ1 = ϵ + q1
2n , σ is the total number of blocks in the queries made by A2. The simulator

makes O(σ) queries.
The rest of the section is dedicated to proving Theorem 5. First, we recall the result of

Bertoni, Daemen, Peeters, and Van Assche [13] to find the classical Indifferentiability bound of
the Sponge construction. Then we shall bound the Insecforce-crookC,(q1,q̃),(q2,qs), the advantage of any
distinguisher against our construction in the Force-Crook game. Finally, using Theorem 4, we
shall get Theorem 5.
Classical Indifferentiability of Sponge with Random Function. We recall the classical
indifferentiability result of Sponge mode from [13] in our notations and parameters.

108

Theorem 6 (Theorem 1 in [13]). Let f : {0, 1}n → {0, 1}n be a random function. The Sponge
construction instantiating Cf : {0, 1}ℓ → {0, 1}s is (q, qsim, δi)-indifferentiable from a random

oracle for qsim = O(σ) and δi = O(σ2

2c) where σ is the total number of queries made by the
distinguisher.

We note that in [13], the above theorem is proved to hold for any fixed IV. Thus, we can
conclude that the theorem holds for a randomly chosen and then fixed IV, as required in our
case.

6.5.1 Bounding Probability of Winning Force-Crook: Sponge on Ran-
dom Functions

Now we bound Insecforce-crookC,(q1,q̃),(q2,qs). We shall prove the following lemma, which summarises the
main findings of this section. We recall the notations in Figure 6.5.

Lemma 14. Let C be the Sponge construction with randomised IV. Let r be the rate part, and
c = n− r be the capacity part of the chain. It holds that

Insecforce-crookC,(q1,q̃),(q2,qs) ≤ O
�
2r × σ ×

�
ϵ

1
2
1 +

q̃

2
n
4
+ ϵ

1
2
1 +

σ

2n
+

σ

2
n
2

��

where σ = q2(ℓ+ s) + qS.

The Setup of Bounding Adversary’s Advantage.

The main idea of our proof is to bound the probability that the adversary can produce a message
such that a chaining query is subverted. We need the following definition.

Definition 12 (Robust Point). A point x ∈ {0, 1}n is said to be a (r, ϵ1)-robust point with
respect to a transcript τ , if

1. x /∈ D(τ).

2. Define yζ = f(x)ζ0n−r for ζ ∈ {0, 1}r. It holds that

Pr
f←Fn,n|τ

 _

ζ∈{0,1}r

yζ ∈ Cf,τ

 ≤ 2r

�
ϵ

1
2
1 +
|τ |
2n

+
|τ |
2

n
2

�
.

Popular Points. Consider a point x ∈ Df \ D(τ). x is called favourite of y with respect to τ if

Pr
f←$Fn,n|τ

[y ↠f x] ≥ 1

2
n
2
.

Definition 13. x is popular with respect to τ if

Pr
y
[x is favourite of y] >

1

2
n
4
.

Recall that the subversion algorithm f̃ makes at most q̃ many queries; for all y ∈ Df , it holds

that |f̃(y)| ≤ q̃. Using an averaging argument, we get the following lemma.

Lemma 15. For all transcript τ , it holds that the number of popular points is at most q̃2
3n
4 .

109

Definition 14 (Good Point). A point x is (r, ϵ1)-good with respect to τ if it is (r, ϵ1) robust and
not popular with respect to τ .

The following lemma is a corollary of Lemma 15 and the definition of the ϵ-crooked imple-
mentor. It says a random point is good with a high probability.

Lemma 16. Let τ be a transcript. It holds that

Pr
x←$Df

[x is not (r, ϵ1) good with respect to τ] ≤ ϵ
1
2
1 +
|τ |
2n

+
q̃

2
n
4
.

Proof. Define yζ = f(x) + ζ0n−r for ζ ∈ {0, 1}r. From the definition of ϵ crooked implementor,

Pr
x←$Df ,f←Fn,n|τ

 _

ζ∈{0,1}r

yζ ∈ Cf,τ

 ≤ 2rϵ1.

By an averaging argument,

Pr
x←$Df

 Pr
f←Fn,n|τ

 _

ζ∈{0,1}r

yζ ∈ Cf,τ

 > 2rϵ

1
2
1

 ≤ ϵ

1
2
1 .

We derive,

Pr
x←$Df

[x is not (r, ϵ1) good with respect to τ]

= Pr
x←$Df

[x is not (r, ϵ1) robust with respect to τ]

+ Pr
x←$Df

[x is popular with respect to τ]

≤ ϵ
1
2
1 +
|τ |
2n

+
q̃

2
n
4
.

Next, we wish to ensure that all possible chaining values generated from a good point also
become good points. We need the following definition.

Definition 15. Let x be an (r, ϵ1)-good point with respect to τ . We say y is eligible for (τ, x) if

1. y is an (r, ϵ1)-good point with respect to τ .

2. for τ ′ = τ ∪ (x, y), it holds that y is (r, ϵ1)-good point with respect to τ ′.

Now, we are ready to state our main tool.

Proposition 1. Let x be ϵ1-good point with respect to τ .

Pr
y←$Df

[y is not eligible with respect to (τ, x)] ≤ ϵ
1
2
1 +
|τ |
2n

+
q̃ + 2r

2
n
4

.

110

Proof. The idea of the proof is to show that if we sample a point uniformly at random from Df ,
then by Lemma 16, with high probability, the point is (r, ϵ1)-good with respect to τ . That means

Pr
f←$Fn,n|τ

 _

b′∈{0,1}r

(f(y)b′0n−r ∈ Cf,τ ′)

 ≤ 2r

�
ϵ

1
2
1 +
|τ |
2n

+
|τ |
2

n
2

�
.

Now, if it also holds that (f(y)b′0n−r) ̸↠ x for any b′ ∈ {0, 1}r, the point y will remain ϵ1-good
with respect to τ ∪ (x, y). To prove it formally, we consider the following events.

1. y-is-bad: y is not (r, ϵ1)-good with respect to τ .

2. x-is-queried: Prf←$Fn,n|τ
[(f(y)b′0n−r) ↠ x] ≥ 1

2
n
2

for some b′ ∈ {0, 1}r.

The following lemma (to be proved in Section 6.5.2) says that if the above two events do not
occur, then f(y) is an (r, ϵ1)-good point with respect to τ ′.

Lemma 17. Suppose y is such that the event ¬y-is-badV¬x-is-queried holds. Then it holds
that y is (r, ϵ1)-good with respect to τ ′ = τ ∪ (x, y).

Pr
f←$Γτ′

 _

b′∈{0,1}r

(f(y)b′0n−r ∈ Cf,τ ′)

 ≤ 2r

�
ϵ

1
2
1 +
|τ |+ 1

2n
+
|τ |+ 1

2
n
2

�
.

Thus to prove Proposition 1, we need to bound the probability of the events y-is-bad and
x-is-queried. By Lemma 16,

Pr
y←$Df

[y-is-bad] ≤ ϵ
1
2
1 +
|τ |
2n

+
q̃

2
n
4
.

Finally, by the definition of popular points,

Pr
y←$Df

[x-is-queried] = 2r Pr
z←$Df

[x is favourite of z] ≤ 2r

2
n
4
.

This finishes the proof of Proposition 1.

Bounding Probability of Winning Force-Crook. We are ready to bound the success prob-
ability of any adversary in the Force-Crook game against the Sponge construction when the
underlying primitive is a random function f : {0, 1}n → {0, 1}n. Specifically, we shall show that
the adversary can not force a crooked chaining input for any query made by C.
Bad events. Recall that the adversary makes at most q2 many queries to the oracle Cf . Each
such query leads to ℓ + s many calls (referred to as chaining queries) to f made by C. We
consider these chaining queries to be a sequence of σ = q2(ℓ + s) many queries. By saying i-th
query, we denote the i-th chaining query from this sequence. We consider the following bad
events. The first bad event (CrookedFirstInput) occurs if, for any message, the first chaining
value is crooked. We set the second bad event (BadChain) if, for some message queried by the
distinguisher, we get a chaining value that is not (r, ϵ1)-good as defined in Definition 14.

1. CrookedFirstInput. We say a bad event occurs if for the initial random R, for some
m0 ∈ {0, 1}r,

Pr
f←$Γτ̃

[Rm00
n−r ∈ Cf,τ̃] ≥ 2r

�
ϵ

1
2
1 +

q1
2n

�
.

111

2. BadChain. We say the i-th chaining query xi raises bad event (denoted by BadChaini)
if xi is not (r, ϵ1)-good with respect to the (up to that query) transcript τ . We define

BadChain
def
= ∪σi=1BadChaini.

Note that, for standard indifferentiability proofs, we usually consider a bad event when a
chaining query input collides with some unchained query (made by the adversary to the oracle
f) input. In our setting, such unchained queries are part of the transcript, and the definition of
good points ensures that the chaining query does not result in such a collision.
Bounding Probabilities of Bad Events. First, we bound the probability ofCrookedFirstInput.
From the definition of ϵ-subversion, when the probabilities are taken over f ←$ Γτ̃ and x←$ Df

Pr [x ∈ Cf,τ̃] ≤ ϵ1.

By an averaging argument, we get that

Pr
R←$Df

�
Pr

f←$Γτ̃

[R ∈ Cf,τ̃] > ϵ
1
2
1

�
≤ ϵ

1
2
1 .

Thus we bound

Pr
R←$Df

[CrookedFirstInput] ≤ 2rϵ
1
2
1 . (6.2)

Next, we bound Pr[BadChain]. For this case, we derive

Pr[BadChain] = Pr[BadChain1] +

σX

j=2

Pr[BadChainj |
j−1̂

j′=1

¬BadChainj′].

We start with bounding Pr[BadChain1]. As R is uniformly chosen, from Lemma 16

Pr[BadChain1] = Pr
R←$Df

[R is not (r, ϵ1) -good with respect to. τ̃]

≤ ϵ
1
2
1 +

q1
2n

+
q̃

2
n
4
.

Consider the i-th chaining query xi where i > 1. Let τi denote the transcript up to i-th query.
We find the chaining query xk, queried before xi (k < i) such that

xi = f(xk)b0
n−r for some b ∈ {0, 1}r.

Given
Vi−1

j′=1 ¬BadChainj′ , we conclude xk is (r, ϵ1)-good. If f(xk)b0
n−r is not (r, ϵ1)-good

with respect to τk+1, this means f(xk)b0
n−r was not eligible with respect to (τk, xk) for some

b ∈ {0, 1}r. Using Proposition 1,

Pr
f←$Γτk

 _

b∈{0,1}r

(f(xk)b0
n−r) is not eligible w.r.t. (τk, xk)

≤ 2r
�
ϵ

1
2
1 +

q̃ + 2r

2
n
4

+
k

2n

�
.

Thus we get

Pr[BadChainj |
j−1̂

j′=1

¬BadChainj′] ≤ 2r
�
ϵ

1
2
1 +

q̃ + 2r

2
n
4

+
j

2n

�
.

112

Taking the sum over all j we get

Pr[BadChain] ≤ 2r
�
σϵ

1
2
1 +

σ(q̃ + 2r)

2
n
4

+
σ2

2n

�
. (6.3)

Bounding the Force-Crook Advantage. Let Wi denote the event that the input to the i-th
query is crooked.

Pr[A wins the game Force-Crook]

≤ Pr[CrookedFirstInput] + Pr[BadChain]

+

σX

i=1

Pr[Wi | ¬CrookedFirstInput
^
¬BadChain].

As we already have the bound on the probabilities of the bad events, we need to bound

Pr
h
Wi | ¬CrookedFirstInput

^
¬BadChain

i
.

Consider the i-th chaining query xi where i > 1. We find the chaining query xk previous to xi

(k < i). As ¬BadChain holds, xk is (r, ϵ′)-good with respect to the partial transcript τk.

Pr
f←$Γτk

 _

b∈{0,1}r

(
f(xk)b0

n−r ∈ Cf,τk

�

 ≤ 2r

�
ϵ

1
2
1 +

k

2n
+

k

2
n
2

�
.

This implies

Pr
f←$Γτk

[xi ∈ Cf,τk] ≤ 2r
�
ϵ

1
2
1 +

k

2n
+

k

2
n
2

�
≤ 2r

�
ϵ

1
2
1 +

i

2n
+

i

2
n
2

�
.

As the responses of all the f queries are answered truthfully, for a f ←$ Γτk , f ∪ τk is a uniform
random element of Γτ̃ . Thus we get

Pr
f←$Γτ̃

[xi ∈ Cf,τ̃ | ¬CrookedFirstInput ∧ ¬BadChain] ≤ 2r
�
ϵ

1
2
1 +

i

2n
+

i

2
n
2

�
.

Taking the sum over all i, we get

σX

i=1

Pr
f←$Γτ̃

[Wi | ¬CrookedFirstInput ∧ ¬BadChain]

≤
σX

i=1

2r
�
ϵ

1
2
1 +

i

2n
+

i

2
n
2

�

≤ 2r
�
σϵ

1
2
1 +

σ2

2n
+

σ2

2
n
2

�
. (6.4)

Finally, adding Inequalities (6.2),(6.3), and (6.4) we get

Pr[A wins the game Force-Crook]

≤ O
�
2r × σ ×

�
ϵ

1
2
1 +

(q̃ + 2r)

2
n
4

+ ϵ
1
2
1 +

σ

2n
+

σ

2
n
2

��
.

This finishes the proof of Lemma 14 and thus the proof of Theorem 5.

113

6.5.2 Proof of Lemma 17

Proof. Lemma 17 considers a transcript τ and points x, y ∈ {0, 1}n. Suppose y is such that the
condition (¬y-is-badV¬x-is-queried) holds. The condition (¬y-is-bad) implies that y is a
(r, ϵ1)-good point with respect to τ . The lemma says that y is a (r, ϵ1)-good point with respect
to τ ′ = τ ∪ (x, y).
Given the conditions and following Definition 14, we get that y is (r, ϵ1)-robust with respect to
τ and y is not popular. By Definition 12 we have

Pr
f←$Fn,n|τ

 _

b′∈{0,1}r

(f(y)b′0n−r ∈ Cf,τ)

 ≤ 2r

�
ϵ

1
2
1 +
|τ |
2n

+
|τ |
2

n
2

�
.

Our target is to bound the probability that y is not (r, ϵ1)-good with respect to τ ′. Let Yb′ denote
f(y)b′0n−r. First, we bound the probability (over f ←$ Γτ ′) that Yb′ is not a (r, ϵ1)-robust point
with respect to τ ′ = τ ∪ (x, y). We have two cases:

a) Yb′ = x for some b′ ∈ {0, 1}r,

b) Yb′ ∈ Cf,τ for some b′ ∈ {0, 1}r.

By union bound

Pr

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ ′)

 ≤ Pr

 _

b′∈{0,1}r

(Yb′ = x)] + Pr[
_

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

 . (6.5)

The term Pr[
W

b′∈{0,1}r (Yb′ = x)] is bounded above by 2r

2n . For the second term, we can bound

the probability (over f ←$ Γτ ′) as

Pr

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

 ≤Pr

 _

b′∈{0,1}r

(Yb′ ↠f x)

+

Pr

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

^ ^

b′∈{0,1}r

(Yb′ ̸↠f x)

 . (6.6)

Bounding Pr
hW

b′∈{0,1}r (Yb′ ↠f x)
i
. We first show that the probability that Yb′ queries x is

the same for all the transcripts, irrespective of where the value of f(x) is set. In other words, we
shall establish that the probability that Yb′ queries x is the same in both transcripts τ and τ ′.

Pr
f←$Fn,n|τ

 ^

b′∈{0,1}r

(Yb′ ̸↠f x)

 =

X

z

Pr
f←$Fn,n|τ

 ^

b′∈{0,1}r

(Yb′ ̸↠f x)
^

f(x) = z

= 2n Pr
f←$Fn,n|τ

 ^

b′∈{0,1}r

(Yb′ ̸↠f x)
^

f(x) = y

= Pr
f←$Fn,n|τ

 ^

b′∈{0,1}r

(Yb′ ̸↠f x)

 | f(x) = y

114

= Pr
f←$Γτ′

 ^

b′∈{0,1}r

(Yb′ ̸↠f x)

 .

Now, taking the complement

Pr
f←$Γτ′

 _

b′∈{0,1}r

(Yb′ ↠f x)

 = 1− Pr

f←$Γτ′

 ^

b′∈{0,1}r

(Yb′ ↠f x)

= 1− Pr
f←$Fn,n|τ

 ^

b′∈{0,1}r

(Yb′ ↠f x)

= Pr
f←$Fn,n|τ

 _

b′∈{0,1}r

(Yb′ ↠f x)

 .

Bounding Pr
h�W

b′∈{0,1}r (Yb′ ∈ Cf,τ)
�
∧Vb′∈{0,1}r (Yb′ ̸↠f x)

i
. Similar to the first case, we

show the probability is identical for both transcripts.

Pr
f←$Fn,n|τ

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

^ ^

b′∈{0,1}r

(Yb′ ̸↠f x)

=
X

z

Pr
f←$Fn,n|τ

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

^ ^

b′∈{0,1}r

(Yb′ ̸↠f x)
^

f(x) = z

= 2n Pr
f←$Fn,n|τ

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

^ ^

b′∈{0,1}r

(Yb′ ̸↠f x)
^

f(x) = y

= Pr
f←$Fn,n|τ

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

^ ^

b′∈{0,1}r

(Yb′ ̸↠f x) | f(x) = y

= Pr
f←$Γτ′

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

^ ^

b′∈{0,1}r

(Yb′ ̸↠f x)

 .

The Final Derivation. Now we are ready to bound Prf←$Γτ′ [
W

b′∈{0,1}r (Yb′ ∈ Cf,τ ′)]. In the
following derivation, we use inequality 6.5 in the first step, inequality 6.6 in the second step, and
the above two cases in the third step.

Pr
f←$Γτ′

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ ′)

≤ Pr
f←$Γτ′

 _

b′∈{0,1}r

(Yb′ = x)

+ Pr

f←$Γτ′

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

≤ 2r

2n
+ Pr

f←$Γτ′

 _

b′∈{0,1}r

(Yb′ ↠f x)

115

pad(M) = M1 M2 M3 · · · Mµ

f
h1 = R

f
h2

f
h3

f
hµ

· · · Cf (M)

Figure 6.6: Merkle-Damg̊ard mode of operation with random IV

+ Pr
f←$Γτ′

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

^ ^

b′∈{0,1}r

(Yb′ ̸↠f x)

=
2r

2n
+ Pr

f←$Fn,n|τ

 _

b′∈{0,1}r

(Yb′ ↠f x)

+ Pr
f←$Fn,n|τ

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

^ ^

b′∈{0,1}r

(Yb′ ̸↠f x)

≤ 2r

2n
+ Pr

f←$Fn,n|τ

 _

b′∈{0,1}r

(Yb′ ↠f x)

+ Pr

f←$Fn,n|τ

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

≤ 2r

2n
+

2r

2
n
2
+ 2r

�
ϵ

1
2
1 +
|τ |
2n

+
|τ |
2

n
2

�
.

In the last line, we used, as the event (¬y-is-bad) holds,

Pr
f←$Fn,n|τ

 _

b′∈{0,1}r

(Yb′ ∈ Cf,τ)

 ≤ 2r

�
ϵ

1
2
1 +
|τ |
2n

+
|τ |
2

n
2

�
.

and as the event (¬x-is-queried) holds

Pr
f←$Fn,n|τ

 _

b′∈{0,1}r

(Yb′ ↠f x)

 ≤ 2r

2
n
2
.

6.6 Crooked Indifferentiability of Merkle-Damg̊ard

In this section, we show that the classical Merkle-Damg̊ard construction using n+1-to-n-bit com-
pression function f and instantiated with a random initialisation vector is crooked-indifferentiable
from a random oracle.
Merkle-Damg̊ard Construction. The details of the parameters of Merkle-Damg̊ard construc-
tion are listed below. The construction is shown in Figure 6.6
Target Hash Function. The construction implements a hash function H : {0, 1}µ → {0, 1}n.
Primitives. The underlying primitive of the construction is an n + 1-to-n bit function f :
{0, 1}n+1 → {0, 1}n.
Public Randomness. The public randomness is R←$ {0, 1}n .

116

Message Preprocessing. The indifferentiability of Merkle-Damg̊ard requires the message space
to be prefix-free. We assume the same. Note if we consider the fixed input length hash func-
tion, we do not need any prefix-free padding. The input message M ∈ {0, 1}µ is parsed as bits
M1M2 . . .Mµ.
Our main result in this section is Theorem 7.

Theorem 7. Let f : {0, 1}n+1 → {0, 1}n be a random function and Cf : {0, 1}µ → {0, 1}n be the
Merkle-Damg̊ard construction. There exists a simulator S such that for all ((q1, q̃, ϵ), q2)-crooked
distinguisher A = (A1,A2)

Advcrooked-indiffA,(C,f) ≤ O
�
σ ×

�
ϵ

1
2
1 +

q̃

2
n
4
+ ϵ

1
2
1 +

σ

2n
+

σ

2
n
2

��

where ϵ1 = ϵ + q1
2n q2 is the total number of construction queries made by A2 and σ is the total

number of blocks in the queries made by A2.

The Theorem follows from Theorem 8 and Lemma 18.
Classical Indifferentiability of Merkle-Damg̊ard Construction. We recall the classical
indifferentiability result of Merkle-Damg̊ard mode from [36] in our notations.

Theorem 8 (Theorem 3.1 in [36]). Prefix-free Merkle-Damg̊ard mode instantiating Cf : {0, 1}µ →
{0, 1}n is (q2, qsim, δi)-indifferentiable from a random oracle for qsim = O(σ2) and δi = O(σ

2

2n)
where σ is the total number of blocks in the queries made by the distinguisher.

Bounding Probability of Winning Force-Crook.

Lemma 18. Let C be the Merkle-Damg̊ard construction considered in this section.

Insecforce−crookC,(q1,q̃),(q2,qs)
≤ O

�
σ ×

�
ϵ

1
2
1 +

q̃

2
n
4
+ ϵ

1
2
1 +

σ

2n
+

σ

2
n
2

��

where σ = q2µ+ qS.

The proof of the lemma works exactly as the proof of Lemma 14. The only difference is in
the parameters of the definitions. We skip the proof.

6.7 Concluding Discussion

We wish to finish the chapter with some discussion on the possibility and challenges of extending
our proof to Sponge construction with permutations. Finally, we present some research directions
we find interesting.

6.7.1 Sponge Construction Based on Permutation

The reader may note that the Sponge construction in practice is based on a fixed permutation
where the adversary is allowed to make inverse queries. We attempted to extend our proof for
the permutations as well but could not solve one key issue. One main step (Proposition 1) in
our proof was to show that a good point y with respect to a partial transcript τ remains a good
point if another good point x is mapped to y. To prove that, we argued that the queries of f̃(y)
and f̃(f(y)) are independent from the preimage of y. Thus, we could include a good point and
extend the transcript without invoking bad.

117

This argument does not hold when f is a permutation. In that case f̃ can indeed make
f−1 queries. Extending the transcript with good points and simultaneously handling inverse
queries seem to require a different technique. One could try adding additional ingredients like
xoring independent random strings in each iteration. However, that would increase the number
of random strings to be linear with the message length, and the resulting construction would not
be practical.

118

Chapter 7

Concluding Discussion and
Future Research Directions.

In this thesis, we have discussed indifferentiability and some of the other related security notions
in detail. We have investigated constructions which achieve some pre-stated security goals, and
are of practical importance. We can summarise our contributions and some future research
directions which can be investigated building upon our work as follows:

• We have shown that the TLR3 construction introduced by Coron et al. in [37] is secure in
the indifferentiability model up to almost 2n queries; in establishing this improved bound
we have taken forward the work that begun in [37] and [65]. A future direction of research
can be to investigate whether our bounds are tight, i.e., if there exists an adversary which
can attack TLR3 in the indifferentiability model, making O(2n) queries.

• Next, we study the security analysis of a five-round ideal KAF cipher based on five inde-
pendent public round permutations and five independent round keys. We show that the
construction is secure up to almost 2

2n
3 queries. However, we believe that one can reduce

the number of keys and round permutations of the construction and achieve a similar se-
curity bound. Unfortunately, the security proof for such a construction will be extremely
tedious due to the increased degree of input-output dependency at each round, which forces
one to use technical machinery like the sum-capture lemma [31] and its variants [95] in the
security proof. Establishing the tightness of the proven bound or improving the bound of
the construction from 2n/3-bits to 3n/4-bits is also left as a future research problem.

• Next, we investigate the crooked indifferentiability security notion in detail. Subversion
Resistance of the hash function is an important security property when used to replace
random oracles in the kleptographic setting. This work is the first to analyse the secu-
rity of practically used hashing modes in the crooked indifferentiability framework. Our
techniques show how to prove crooked indifferentiability when the underlying primitive
is modelled as a random function. At first, We discuss the enveloped xor construction
as defined in [90] and discover some errors in their proof. We then present a corrected
proof for the crooked indifferentiability of the envelope xor construction. We then try to
simplify the process to prove the crooked indifferentiability of some construction and in-
troduce the force-crook game, which bridges the gap between classical indifferentiability
and crooked indifferentiability. We use the force-crook game to show that a version of the
Sponge construction and a version of the Merkle-Damg̊ard construction achieve crooked

119

indifferentiability from a random oracle both of which are relatively cheaper and easier to
implement than the enveloped xor construction. The first natural research problem would
be to consider the crooked indifferentiability of Sponge construction in the random permu-
tation model. It would also be interesting to consider proving the crooked indifferentiability
of the ideal cipher constructions like the Feistel Network.

7.1 Concluding Remark

Indifferentiability is a greatly useful tool, which can be used to investigate the security of
many real world cryptographic schemes, especially if we assume that the primitives used
in building the scheme are publicly accessible. That doesn’t mean that indifferentiability
provides all the answers we look for in such scenarios. As Ristenpart et al. in [86] showed,
the composition theorem for indifferentiability holds only for single-stage games and not
for multi-stage games. Towards this end, they proposed the security notion of Reset in-
differentiability. While the stronger version of this security notion, where one needs one
simulator to work for all distinguishers is subject to significant impossibility results [5],
the weaker version, where one uses different simulators for different distinguishers is still
thought to be useful [103]. Zhandry recently showed that quantum indifferentiability is
achievable [102]. New techniques have come up to prove the quantum indifferentiability
of schemes, but still, the task remains challenging, particularly in the case where inverse
queries are allowed. As we all know quantum computers are a very real threat in today’s
world and thus coming up with new techniques to prove quantum indifferentiability and
designing quantum indiffrentiable schemes can be a worthwhile and rewarding future goal.

120

Bibliography

[1] Sha-1. [Online; accessed 21-December-2023].

[2] G. Ateniese, D. Francati, B. Magri, and D. Venturi. Public immunization against com-
plete subversion without random oracles. In R. H. Deng, V. Gauthier-Umaña, M. Ochoa,
and M. Yung, editors, Applied Cryptography and Network Security - 17th International
Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings, volume 11464 of
Lecture Notes in Computer Science, pages 465–485. Springer, 2019.

[3] G. Ateniese, A. Kiayias, B. Magri, Y. Tselekounis, and D. Venturi. Secure outsourcing of
cryptographic circuits manufacturing. In J. Baek, W. Susilo, and J. Kim, editors, Provable
Security, pages 75–93, Cham, 2018. Springer International Publishing.

[4] G. Ateniese, B. Magri, and D. Venturi. Subversion-resilient signatures: Definitions, con-
structions and applications. Theor. Comput. Sci., 820:91–122, 2020.

[5] P. Baecher, C. Brzuska, and A. Mittelbach. Reset indifferentiability and its consequences.
Cryptology ePrint Archive, Paper 2013/459, 2013. https://eprint.iacr.org/2013/459.

[6] M. Barbosa and P. Farshim. The related-key analysis of feistel constructions. In C. Cid
and C. Rechberger, editors, FSE 2014. Revised Selected Papers, volume 8540 of LNCS,
pages 265–284. Springer, 2014.

[7] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and L. Wingers. The simon
and speck lightweight block ciphers. In 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, 2015.

[8] M. Bellare and V. T. Hoang. Resisting randomness subversion: Fast deterministic and
hedged public-key encryption in the standard model. In E. Oswald and M. Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015, pages 627–656, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[9] M. Bellare, K. G. Paterson, and P. Rogaway. Security of symmetric encryption against
mass surveillance. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, pages 1–19, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[10] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In S. Vaudenay, editor, Advances in Cryptology - EUROCRYPT
2006, pages 409–426, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[11] D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel, K. Nawaz, T. Schneider,
P. Schwabe, F. Standaert, Y. Todo, and B. Viguier. Gimli : A cross-platform permutation.
In CHES 2017, Proceedings, pages 299–320, 2017.

121

[12] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak. In EUROCRYPT 2013.
Proceedings, pages 313–314, 2013.

[13] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability of the
sponge construction. In N. Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
2008.

[14] A. Bhattacharjee, R. Bhaumik, A. Dutta, M. Nandi, and A. Raychaudhuri. Bbb security
for 5-round even-mansour-based key-alternating feistel ciphers. Des. Codes Cryptography,
92(1):13–49, oct 2023.

[15] A. Bhattacharjee, C. M. López, E. List, and M. Nandi. The oribatida v1.3 family of
lightweight authenticated encryption schemes. J. Math. Cryptol., 15(1):305–344, 2021.

[16] S. Bhattacharya and M. Nandi. Full Indifferentiable Security of the Xor of Two or More
Random Permutations Using the χ2 Method, pages 387–412. 01 2018.

[17] R. Bhattacharyya and A. Mandal. On the indifferentiability of fugue and luffa. In J. Lopez
and G. Tsudik, editors, Applied Cryptography and Network Security, pages 479–497, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[18] R. Bhattacharyya, A. Mandal, and M. Nandi. Indifferentiability characterization of hash
functions and optimal bounds of popular domain extensions. In B. Roy and N. Sendrier,
editors, Progress in Cryptology - INDOCRYPT 2009, pages 199–218, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[19] R. Bhattacharyya, A. Mandal, and M. Nandi. Security analysis of the mode of jh hash
function. In S. Hong and T. Iwata, editors, Fast Software Encryption, pages 168–191,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[20] R. Bhattacharyya, M. Nandi, and A. Raychaudhuri. Crooked indifferentiability of en-
veloped xor revisited. In A. Adhikari, R. Küsters, and B. Preneel, editors, Progress in
Cryptology – INDOCRYPT 2021, pages 73–92, Cham, 2021. Springer International Pub-
lishing.

[21] R. Bhattacharyya, M. Nandi, and A. Raychaudhuri. Subversion resilient hashing: Efficient
constructions and modular proofs for crooked indifferentiability. IEEE Trans. Inf. Theory,
69(5):3302–3315, 2023.

[22] R. Bhaumik, M. Nandi, and A. Raychaudhuri. Improved indifferentiability security proof
for 3-round tweakable luby–rackoff. Des. Codes Cryptography, 89(10):2255–2281, oct 2021.

[23] E. Biham and A. Shamir. Differential cryptanalysis of des-like cryptosystems. In
A. Menezes and S. A. Vanstone, editors, CRYPTO ’90, Proceedings, volume 537 of LNCS,
pages 2–21. Springer, 1990.

[24] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede. SPON-
GENT: the design space of lightweight cryptographic hashing. IEEE Trans. Computers,
62(10):2041–2053, 2013.

[25] A. Chakraborti, N. Datta, M. Nandi, and K. Yasuda. Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(2):218–241, 2018.

122

[26] B. Chakraborty and M. Nandi. Orange. NIST LWC, 2019.

[27] D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong
pseudo-random permutation. In M. Robshaw, editor, Fast Software Encryption, pages
293–309, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[28] D. Chang and M. Nandi. Improved indifferentiability security analysis of chopmd hash
function. In K. Nyberg, editor, Fast Software Encryption, pages 429–443, Berlin, Heidel-
berg, 2008. Springer Berlin Heidelberg.

[29] S. Checkoway, R. Niederhagen, A. Everspaugh, M. Green, T. Lange, T. Ristenpart, D. J.
Bernstein, J. Maskiewicz, H. Shacham, and M. Fredrikson. On the practical exploitability
of dual EC in TLS implementations. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 319–335, San Diego, CA, Aug. 2014. USENIX Association.

[30] S. Chen, R. Lampe, J. Lee, Y. Seurin, and J. P. Steinberger. Minimizing the two-round
even-mansour cipher. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Proceedings,
Part I, volume 8616 of LNCS, pages 39–56. Springer, 2014.

[31] S. Chen and J. P. Steinberger. Tight security bounds for key-alternating ciphers. In P. Q.
Nguyen and E. Oswald, editors, EUROCRYPT 2014. Proceedings, volume 8441 of LNCS,
pages 327–350. Springer, 2014.

[32] S. S. M. Chow, A. Russell, Q. Tang, M. Yung, Y. Zhao, and H.-S. Zhou. Let a non-
barking watchdog bite: Cliptographic signatures with an offline watchdog. In D. Lin
and K. Sako, editors, Public-Key Cryptography – PKC 2019, pages 221–251, Cham, 2019.
Springer International Publishing.

[33] B. Cogliati, R. Lampe, and Y. Seurin. Tweaking even-mansour ciphers. In R. Gennaro and
M. Robshaw, editors, CRYPTO 2015, Proceedings, Part I, volume 9215 of LNCS, pages
189–208. Springer, 2015.

[34] B. Cogliati and Y. Seurin. Beyond-birthday-bound security for tweakable even-mansour ci-
phers with linear tweak and key mixing. In T. Iwata and J. H. Cheon, editors, ASIACRYPT
2015, Proceedings, Part II, volume 9453 of LNCS, pages 134–158. Springer, 2015.

[35] S. Coretti, Y. Dodis, S. Guo, and J. P. Steinberger. Random oracles and non-uniformity.
In J. B. Nielsen and V. Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 -
37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, volume 10820 of
Lecture Notes in Computer Science, pages 227–258. Springer, 2018.

[36] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-damg̊ard revisited: How to
construct a hash function. In V. Shoup, editor, Advances in Cryptology – CRYPTO 2005,
2005.

[37] J.-S. Coron, Y. Dodis, A. Mandal, and Y. Seurin. A domain extender for the ideal cipher.
In D. Micciancio, editor, Theory of Cryptography, pages 273–289, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[38] J.-S. Coron, T. Holenstein, R. Künzler, J. Patarin, Y. Seurin, and S. Tessaro. How to build
an ideal cipher: The indifferentiability of the feistel construction. Journal of Cryptology,
29(1):61–114, Jan 2016.

123

[39] J.-S. Coron, J. Patarin, and Y. Seurin. The random oracle model and the ideal cipher
model are equivalent. In D. Wagner, editor, Advances in Cryptology – CRYPTO 2008,
pages 1–20, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[40] J. Daemen, S. Hoffert, M. Peeters, G. V. Assche, and R. V. Keer. Xoodyak, a lightweight
cryptographic scheme. IACR Trans. Symmetric Cryptol., 2020(S1):60–87, 2020.

[41] J. Daemen and V. Rijmen. The rijndael block cipher. [Online; accessed 21-December-2023].

[42] Y. Dai, Y. Seurin, J. Steinberger, and A. Thiruvengadam. Indifferentiability of iterated
even-mansour ciphers with non-idealized key-schedules: Five rounds are necessary and
sufficient. In J. Katz and H. Shacham, editors, Advances in Cryptology – CRYPTO 2017,
pages 524–555, Cham, 2017. Springer International Publishing.

[43] Y. Dai and J. Steinberger. Indifferentiability of 8-round feistel networks. In M. Robshaw
and J. Katz, editors, Advances in Cryptology – CRYPTO 2016, pages 95–120, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[44] J. P. Degabriele, P. Farshim, and B. Poettering. A more cautious approach to security
against mass surveillance. In G. Leander, editor, Fast Software Encryption, pages 579–598,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[45] J. P. Degabriele, K. G. Paterson, J. C. N. Schuldt, and J. Woodage. Backdoors in pseu-
dorandom number generators: Possibility and impossibility results. In M. Robshaw and
J. Katz, editors, Advances in Cryptology – CRYPTO 2016, pages 403–432, Berlin, Heidel-
berg, 2016. Springer Berlin Heidelberg.

[46] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, B. Mennink, R. Primas, and T. Un-
terluggauer. Isap v2.0. IACR Trans. Symmetric Cryptol., 2020(S1):390–416, 2020.

[47] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. Ascon v1.2. NIST LWC, 2019.

[48] Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, and T. Ristenpart. A formal treatment of
backdoored pseudorandom generators. In E. Oswald and M. Fischlin, editors, Advances
in Cryptology – EUROCRYPT 2015, pages 101–126, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[49] Y. Dodis, S. Guo, and J. Katz. Fixing cracks in the concrete: Random oracles with
auxiliary input, revisited. In J.-S. Coron and J. B. Nielsen, editors, Advances in Cryptology
– EUROCRYPT 2017, pages 473–495, Cham, 2017. Springer International Publishing.

[50] Y. Dodis, L. Reyzin, R. L. Rivest, and E. Shen. Indifferentiability of permutation-based
compression functions and tree-based modes of operation, with applications to md6. In
O. Dunkelman, editor, Fast Software Encryption, pages 104–121, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[51] Y. Dodis, M. Stam, J. Steinberger, and T. Liu. Indifferentiability of confusion-diffusion
networks. In M. Fischlin and J.-S. Coron, editors, Advances in Cryptology – EUROCRYPT
2016, pages 679–704, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[52] A. Dutta. Minimizing the two-round tweakable even-mansour cipher. In S. Moriai and
H. Wang, editors, ASIACRYPT 2020, Proceedings, Part I, volume 12491 of LNCS, pages
601–629. Springer, 2020.

124

[53] S. Even and Y. Mansour. A construction of a cipher from a single pseudorandom permu-
tation. J. Cryptol., 10(3):151–162, 1997.

[54] C. Gentry and Z. Ramzan. Eliminating random permutation oracles in the even-mansour
cipher. In P. J. Lee, editor, ASIACRYPT 2004, Proceedings, volume 3329 of LNCS, pages
32–47. Springer, 2004.

[55] C. Guo and L. Wang. Revisiting key-alternating feistel ciphers for shorter keys and multi-
user security. In T. Peyrin and S. D. Galbraith, editors, ASIACRYPT 2018, Proceedings,
Part I, volume 11272 of LNCS, pages 213–243. Springer, 2018.

[56] J. Guo, J. Jean, I. Nikolic, and Y. Sasaki. Meet-in-the-middle attacks on generic feistel
constructions. In P. Sarkar and T. Iwata, editors, ASIACRYPT 2014. Proceedings, Part I,
volume 8873 of LNCS, pages 458–477. Springer, 2014.

[57] J. Guo, T. Peyrin, and A. Poschmann. The PHOTON family of lightweight hash functions.
In CRYPTO 2011. Proceedings, pages 222–239, 2011.

[58] V. T. Hoang and P. Rogaway. On generalized feistel networks. In T. Rabin, editor,
CRYPTO 2010. Proceedings, volume 6223 of LNCS, pages 613–630. Springer, 2010.

[59] T. Holenstein, R. Künzler, and S. Tessaro. The equivalence of the random oracle model and
the ideal cipher model, revisited. In Proceedings of the Forty-third Annual ACM Symposium
on Theory of Computing, STOC ’11, pages 89–98, New York, NY, USA, 2011. ACM.

[60] J. Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/, 2016.

[61] R. Lampe and Y. Seurin. Security analysis of key-alternating feistel ciphers. In C. Cid and
C. Rechberger, editors, FSE 2014. Revised Selected Papers, volume 8540 of LNCS, pages
243–264. Springer, 2014.

[62] J. Lee. Indifferentiability of the sum of random permutations toward optimal security.
IEEE Transactions on Information Theory, 63(6):4050–4054, June 2017.

[63] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudoran-
dom functions. SIAM J. Comput., 17(2):373–386, 1988.

[64] A. Mandal, J. Patarin, and V. Nachef. Indifferentiability beyond the birthday bound for
the xor of two public random permutations. In G. Gong and K. C. Gupta, editors, Progress
in Cryptology - INDOCRYPT 2010, pages 69–81, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[65] A. Mandal, J. Patarin, and Y. Seurin. On the public indifferentiability and correlation
intractability of the 6-round feistel construction. In Proceedings of the 9th International
Conference on Theory of Cryptography, TCC’12, page 285–302, Berlin, Heidelberg, 2012.
Springer-Verlag.

[66] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor, EURO-
CRYPT ’93, Proceedings, volume 765 of LNCS, pages 386–397. Springer, 1993.

[67] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on re-
ductions, and applications to the random oracle methodology. In M. Naor, editor, Theory
of Cryptography Conference — TCC 2004, volume 2951 of Lecture Notes in Computer
Science, pages 21–39. Springer-Verlag, 2 2004.

125

[68] U. M. Maurer and K. Pietrzak. The security of many-round luby-rackoff pseudo-random
permutations. In E. Biham, editor, EUROCRYPT 2003, Proceedings, volume 2656 of
LNCS, pages 544–561. Springer, 2003.

[69] B. Mennink. Indifferentiability of double length compression functions. In M. Stam, editor,
Cryptography and Coding - 14th IMA International Conference, IMACC 2013, Oxford, UK,
December 17-19, 2013. Proceedings, volume 8308 of Lecture Notes in Computer Science,
pages 232–251. Springer, 2013.

[70] I. Mironov and N. Stephens-Davidowitz. Cryptographic reverse firewalls. In E. Oswald
and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in
Computer Science, pages 657–686. Springer, 2015.

[71] D. Moody, S. Paul, and D. Smith-Tone. Improved indifferentiability security bound for the
JH mode. Des. Codes Cryptography, 79(2):237–259, May 2016.

[72] V. Nachef, J. Patarin, and E. Volte. Feistel Ciphers - Security Proofs and Cryptanalysis.
Springer, 2017.

[73] Y. Naito. Indifferentiability of double-block-length hash function without feed-forward op-
erations. In J. Pieprzyk and S. Suriadi, editors, Information Security and Privacy - 22nd
Australasian Conference, ACISP 2017, Auckland, New Zealand, July 3-5, 2017, Proceed-
ings, Part II, volume 10343 of Lecture Notes in Computer Science, pages 38–57. Springer,
2017.

[74] M. Nandi. The characterization of luby-rackoff and its optimum single-key variants. In
G. Gong and K. C. Gupta, editors, INDOCRYPT 2010. Proceedings, volume 6498 of LNCS,
pages 82–97. Springer, 2010.

[75] M. Nandi. On the optimality of non-linear computations of length-preserving encryption
schemes. In T. Iwata and J. H. Cheon, editors, ASIACRYPT 2015, Proceedings, Part II,
volume 9453 of LNCS, pages 113–133. Springer, 2015.

[76] M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-
rackoff revisited. J. Cryptol., 12(1):29–66, 1999.

[77] J. Patarin. Pseudorandom permutations based on the DES scheme. In G. D. Cohen and
P. Charpin, editors, EUROCODE ’90, Proceedings, volume 514 of LNCS, pages 193–204.
Springer, 1990.

[78] J. Patarin. How to construct pseudorandom and super pseudorandom permutations from
one single pseudorandom function. In R. A. Rueppel, editor, EUROCRYPT ’92, Proceed-
ings, volume 658 of LNCS, pages 256–266. Springer, 1992.

[79] J. Patarin. About feistel schemes with six (or more) rounds. In S. Vaudenay, editor, FSE
’98, Proceedings, volume 1372 of LNCS, pages 103–121. Springer, 1998.

[80] J. Patarin. Security of random feistel schemes with 5 or more rounds. In M. K. Franklin,
editor, CRYPTO 2004, Proceedings, volume 3152 of LNCS, pages 106–122. Springer, 2004.

[81] J. Patarin. The “coefficients h” technique. In R. M. Avanzi, L. Keliher, and F. Sica,
editors, Selected Areas in Cryptography, pages 328–345, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

126

[82] J. Patarin. Security of balanced and unbalanced feistel schemes with linear non equalities.
IACR Cryptol. ePrint Arch., page 293, 2010.

[83] S. Patel, Z. Ramzan, and G. S. Sundaram. Towards making luby-rackoff ciphers optimal
and practical. In L. R. Knudsen, editor, FSE ’99, Proceedings, volume 1636 of LNCS,
pages 171–185. Springer, 1999.

[84] B. Preneel. Cryptography in the post-snowden era. [Online; accessed 7-April-2021].

[85] Z. Ramzan and L. Reyzin. On the round security of symmetric-key cryptographic prim-
itives. In M. Bellare, editor, CRYPTO 2000, Proceedings, volume 1880 of LNCS, pages
376–393. Springer, 2000.

[86] T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limitations
of the indifferentiability framework. In K. G. Paterson, editor, Advances in Cryptology –
EUROCRYPT 2011, pages 487–506, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[87] P. Rogaway, M. Bellare, and J. Black. Sha-3 standard. (TISSEC), 6(3):365–403, 2003.

[88] A. Russell, Q. Tang, M. Yung, and H. Zhou. Cliptography: Clipping the power of klep-
tographic attacks. In J. H. Cheon and T. Takagi, editors, Advances in Cryptology - ASI-
ACRYPT 2016 - 22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part
II, volume 10032 of Lecture Notes in Computer Science, pages 34–64, 2016.

[89] A. Russell, Q. Tang, M. Yung, and H. Zhou. Generic semantic security against a klep-
tographic adversary. In B. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors,
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 907–922.
ACM, 2017.

[90] A. Russell, Q. Tang, M. Yung, and H. Zhou. Correcting subverted random oracles. In
H. Shacham and A. Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part II, volume 10992 of Lecture Notes in Computer Science, pages
241–271. Springer, 2018.

[91] A. Russell, Q. Tang, M. Yung, H. Zhou, and J. Zhu. Correcting subverted random oracles.
IACR Cryptol. ePrint Arch., page 42, 2021.

[92] B. Sadeghiyan and J. Pieprzyk. A construction for super pseudorandom permutations from
A single pseudorandom function. In R. A. Rueppel, editor, EUROCRYPT ’92, Proceedings,
volume 658 of LNCS, pages 267–284. Springer, 1992.

[93] Y. Shen, H. Yan, L. Wang, and X. Lai. Secure key-alternating feistel ciphers without key
schedule. Sci. China Inf. Sci., 64(1), 2021.

[94] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi. Twine: A lightweight block
cipher for multiple platforms. In L. R. Knudsen and H. Wu, editors, SAC 2012, Revised
Selected Papers, volume 7707 of LNCS, pages 339–354. Springer, 2012.

[95] S. Tessaro and X. Zhang. Tight security for key-alternating ciphers with correlated sub-
keys. In M. Tibouchi and H. Wang, editors, ASIACRYPT 2021, Proceedings, Part III,
volume 13092 of LNCS, pages 435–464. Springer, 2021.

127

[96] E. W. Weisstein. Bernoulli inequality. From MathWorld—A Wolfram Web Resource. [On-
line; accessed 30-November-2023].

[97] E. W. Weisstein. Markov’s inequality. From MathWorld—A Wolfram Web Resource. [On-
line; accessed 7-April-2021].

[98] W. Wu and L. Zhang. Lblock: A lightweight block cipher. In J. López and G. Tsudik,
editors, ACNS 2011. Proceedings, volume 6715 of LNCS, pages 327–344, 2011.

[99] Y. Wu, L. Yu, Z. Cao, and X. Dong. Tight security analysis of 3-round key-alternating
cipher with a single permutation. In S. Moriai and H. Wang, editors, ASIACRYPT 2020,
Proceedings, Part I, volume 12491 of LNCS, pages 662–693. Springer, 2020.

[100] A. L. Young and M. Yung. The dark side of ”black-box” cryptography, or: Should we
trust capstone? In N. Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-
22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 89–103.
Springer, 1996.

[101] A. L. Young and M. Yung. Kleptography: Using cryptography against cryptography. In
W. Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International Conference
on the Theory and Application of Cryptographic Techniques, Konstanz, Germany, May
11-15, 1997, Proceeding, volume 1233 of Lecture Notes in Computer Science, pages 62–74.
Springer, 1997.

[102] M. Zhandry. How to record quantum queries, and applications to quantum indifferentia-
bility. In A. Boldyreva and D. Micciancio, editors, Advances in Cryptology – CRYPTO
2019, pages 239–268, Cham, 2019. Springer International Publishing.

[103] M. Zhandry. Redeeming reset indifferentiability and post-quantum groups. Cryptology
ePrint Archive, Paper 2021/288, 2021. https://eprint.iacr.org/2021/288.

128

		2024-11-21T09:41:35+0000
	SignNow
	Digitially Signed Read Only PDF Created by SignNow for Document ID : 3101ec45044a4d20a710e058c61243c869d663af

