
Leveraging software engineering frameworks,

methods and tools to automate CRM pre-sales

in real estate applications

Submitted to Indian Statistical Institute
in partial fulfillment of the thesis requirements for the Degree of

Doctor of Philosophy in Computer Science

Author: Parthasarathi Ray

Senior Research Fellow

Supervisor: Pinakpani Pal

Associate Professor

Applied Statistics Unit

Indian Statistical Institute

Kolkata - 700108, India



2



Dedicated to

my wife, Sugata,

and

our son, Sambuddha.

3



4



DECLARATION OF AUTHORSHIP

I, Parthasarathi Ray , a research scholar at Applied Statistics Unit (ASU), Indian

Statistical Institute (ISI), Kolkata, declare that this thesis encompasses the research

conducted by me under the guidance of Pinakpani Pal (ECSU, ISI Kolkata)

with valuable inputs from Prof. Subhamoy Maitra (ASU, ISI Kolkata). I

affirm that this work is entirely original, both in terms of research content and narra-

tive, and to the best of my knowledge, the materials contained in this thesis have not

previously been published or written by any other person, nor has been submitted as

a whole or as a part for any degree/diploma or any other academic award anywhere

before.

Parthasarathi Ray

Applied Statistics Unit

Indian Statistical Institute, Kolkata

203, Barrackpore Trunk Road

Kolkata 700108, INDIA.

5



6



CERTIFICATE FROM SUPERVISOR

This is to certify that the work contained in the thesis entitled “Leveraging software

engineering frameworks, methods and tools to automate CRM pre-sales in

real estate applications”, submitted by Parthasarathi Ray for the award of the

degree of Doctor of Philosophy in Computer Science to Indian Statistical Institute,

Kolkata, is a record of the bonafide research works carried out by him under my direct

supervision and guidance.

I consider that the thesis has reached the standards and fulfilling the requirements

of the rules and regulations relating to the nature of the degree. The contents em-

bodied in the thesis have not been submitted as a whole or as a part for the award

of any degree or diploma or any other academic award anywhere given before.

Pinakpani Pal

Associate Professor

ECSU

Indian Statistical Institute, Kolkata

203, Barrackpore Trunk Road

Kolkata 700108, INDIA.

7



8



LIST OF PUBLICATIONS/MANUSCRIPTS

The list of publications/manuscripts that are included in this thesis is as follows.

Chapter 3 is based on papers 1 and 3. Chapter 4 is based on paper 2. Chapter 5 is

based on paper 4. Chapter 6 is based on paper 5. Chapter 7 is based on paper 6.

1. Parthasarathi Ray and Pinakpani Pal, “Extending the SEMAT Kernel for

the Practice of Designing and Implementing Microservice-Based Applications

using Domain Driven Design”, IEEE 32nd Conference on Software Engineering

Education and Training (CSEE&T), 2020,

DOI: https://doi.org/10.1109/CSEET49119.2020.9206200.

2. Parthasarathi Ray and Pinakpani Pal, “An agile approach to automate Real

Estate CRM (pre-sales) using Scrum and Essence”, Conference on Software

Engineering Research & Practice (SERP), 2021, (In Press)

3. Parthasarathi Ray and Pinakpani Pal, “An Essence based framework using a

Domain Driven Design approach to address Microservices lifecycle from identi-

fication to implementation”, Conference on Scientific Computing (CSC), 2021,

(In Press)

4. Parthasarathi Ray and Pinakpani Pal, “Extending Essence to adopt User

Story and Microservice practices leveraging Scrum to automate pre-sales func-

tion of real estate CRM”, communicated to: Journal of Software: Evolution

and Process, Manuscript ID: JSME-24-0292.

5. Parthasarathi Ray and Pinakpani Pal, “Petri net modelling of key CRM pre-

sales functionalities for real estate”, communicated to: IEEE Transactions on

Software Engineering, Manuscript ID: TSE-2024-07-0377.

6. Parthasarathi Ray and Pinakpani Pal, “Petri net modelling of certain key

operational aspects regarding leads and Sales Executives in real estate CRM”,

communicated to: IEEE Transactions on Software Engineering, Manuscript ID:

TSE-2024-07-0375.

9

https://doi.org/10.1109/CSEET49119.2020.9206200


ACKNOWLEDGEMENT

I would like to express my heartfelt gratitude and appreciation to my research project

guide, Pinakpani Pal, who spent countless hours to ideate and refine the ideas with his

focused guidance and constructive criticism. It has been a wonderful and instructive

journey for me. I extend my deep gratitude to the head of my department, Professor

Subhamoy Maitra, for sharing his expertise and knowledge, timely facilitation and

thought provoking insights. I also extend my thanks and gratitude to the Applied

Statistics Unit (ASU) in particular and Indian Statistical Institute in general, and

my heartfelt appreciation to the esteemed faculty members at ISI, Kolkata, for their

guidance and support throughout my tenure at the institute. I am also grateful to

the non-teaching staff at the ASU and the Dean’s office (like Nayan, Arijit, Surajit

and Amarjit) for their assistance.

My heartfelt gratitude goes to my parents for their love and encouragement, and

a special shout out to my wife, Sugata, for her patient understanding and unwavering

support throughout the highs and lows of this period. I am also thankful to the

other family members and friends, and my colleagues and juniors in ISI like Animesh,

Debasmita, Jyotirmoy, Subhra, Abhinav, Manmatha and Suman for their continuous

support and help.

10



ABSTRACT

In this thesis, we leverage the learning from Essence, a “language and kernel“ of

Software Engineering, which has resulted from the efforts of the SEMAT initiative

founded to bring together industry, research and education to deal with the problem

of immature practice in software engineering.

We have developed a framework to address the microservices lifecycle using Do-

main Driven Design (DDD), and introduced three alphas along with the Work Prod-

ucts and Activities associated with those alphas. This is industry agnostic and can

be used anywhere.

Then onwards, we have focused our attention on automating real estate CRM (pre-

sales) as our industry scenario, and have stated with creating an agile approach using

Scrum and Essence, intended to address the issues that many Scrum implementations

face by leveraging the strengths of Essence.

Our next endeavour has been to create a full-fledged software engineering method

that adopts the User Story practice to address the requirements area and the mi-

croservices practice to develop and deploy the software system. This is intended to

provide a comprehensive view of the software endeavor by creating a method adopting

a set of practices using Essence as the common ground. This exercise, carried out

for our industry scenario, can be similarly extended for other industries as well with

Essence as the unifying framework.

Delving deeper into CRM pre-sales functionalities, we have decided to focus on

the core area of the assignment process that deals with the dynamics of schedul-

ing/rescheduling of site visit requests from leads in the backdrop of the availabil-

ity/unavailability of Sales Executives on the said day of site visit along with applica-

ble constraints. This is essentially a workflow process, and we have used Petri nets

to model the same, given the widespread applicability of Petri net in modelling sim-

ilar application domains and workflows. We have constructed generalized Petri net

models of the assignment process and verified if they satisfy the desired properties of

the systems being modelled by carrying out their behavioural analysis.

11



We would next consider those processes whose execution is necessary as prereq-

uisites for the assignment process to function, and which are also instrumental in

setting up the post-processing aspects of the assignment process. Key outcome of

those processes would be the priority setting of leads (indicative of their maturity po-

tential) and the queue adjustment of Sales Executives (indicative of their availability

at that point of time). To ensure the smooth running of the automation process it is

necessary to consider the operational aspects of these processes we are talking about.

Accordingly we have detailed out the underlying functionalities of these processes

with their operational characteristics during system go-live followed by the steady

state execution. We have modelled those processes using Petri net and validated

their conformance to certain verification criteria by doing behavioural analysis.

The value of the Petri net based modelling exercises in terms of clarifying and

improving our design understanding can also apply to other industry domains where

similar Petri net based modelling and analysis can be conducted.

12



Contents

1 Introduction 25

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.1 General objectives . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Preliminaries and Background 31

2.1 SEMAT and Essence . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 The SEMAT initiative . . . . . . . . . . . . . . . . . . . . . . 32

2.1.2 SEMAT in the industry and academia . . . . . . . . . . . . . 33

2.1.3 SEMAT Essence Kernel . . . . . . . . . . . . . . . . . . . . . 33

2.1.4 SEMAT Essence Language . . . . . . . . . . . . . . . . . . . . 36

2.1.5 Integrating specific theories and practices using Essence . . . . 38

2.2 Microservices and Domain Driven Design (DDD) - An Architectural

Overview and Activities involved . . . . . . . . . . . . . . . . . . . . 38

2.3 Petri net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Customer Relationship Management (CRM) . . . . . . . . . . . . . . 43

13



2.4.1 CRM functionalities prevalent in real estate industry . . . . . 44

3 An Essence based framework using a Domain Driven Design ap-

proach to address Microservices lifecycle from identification to im-

plementation 47

3.1 Alphas for Microservices practice using DDD . . . . . . . . . . . . . . 48

3.1.1 Alpha: Features . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 Alpha: Microservice . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 Alpha: Domain Model . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Work Products and Activities for Microservices practice using DDD . 55

3.2.1 Work Products and Activities for the Feature alpha . . . . . . 55

3.2.2 Work Products and Activities for the Microservice alpha . . . 58

3.2.3 Work Products and Activities for the Domain Model alpha . . 60

3.3 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 An agile approach to automate Real Estate CRM (pre-sales) using

Scrum and Essence 65

4.1 Business Process Modelling for in-scope CRM pre-sales functionalities 66

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.2 Broad Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.3 Functionalities to be Modelled . . . . . . . . . . . . . . . . . . 67

4.1.4 Process Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Adoption of Essence and Scrum . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 The Kernel Alpha states of the development endeavor under-

taken by the Nirmanik Team . . . . . . . . . . . . . . . . . . 70

4.2.2 Adoption of Scrum within the Essence framework . . . . . . . 72

4.3 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Extending Essence to adopt User Story and Microservice practices

leveraging Scrum to automate pre-sales function of real estate CRM 75

5.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

14



5.2 Considerations for composing practices into method using Essence . . 79

5.3 Adoption of User Story practice . . . . . . . . . . . . . . . . . . . . . 81

5.3.1 User Story Lite practice - an overview . . . . . . . . . . . . . 82

5.3.2 How we adopted User Story Lite practice for Nirmanik . . . . 82

5.3.3 Alpha state cards for Requirements . . . . . . . . . . . . . . . 86

5.3.4 Applicable Essence cards for User Story Lite . . . . . . . . . . 86

5.3.5 The Value of the Kernel to the User Story Lite practice . . . . 87

5.4 Adoption of Microservice practice . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Microservices Lite practice - an overview . . . . . . . . . . . . 89

5.4.2 How we adopted Microservices Lite practice for Nirmanik . . 91

5.4.3 Applicable Essence cards for Microservices Lite . . . . . . . . 96

5.4.4 The Value of the Kernel to the Microservices Lite practice . . 96

5.5 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Construct a generalized Petri net model of key CRM pre-sales real

estate functionalities 101

6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Functionalities for assigning leads to appropriate Sales Executives: life-

cycle of leads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Functionalities for assigning leads to appropriate Sales Executives: as-

signment workflow process description . . . . . . . . . . . . . . . . . 108

6.3.1 Provisional Assignment process for Prospective Leads . . . . . 108

6.3.2 Rescheduling for Scheduled Leads . . . . . . . . . . . . . . . . 109

6.3.3 Assignment process for Visited Leads . . . . . . . . . . . . . . 111

6.3.4 Requesting Original Sales Executive change while requesting

re-visit for Visited Leads . . . . . . . . . . . . . . . . . . . . . 113

6.3.5 Rescheduling for Active Leads . . . . . . . . . . . . . . . . . . 114

6.3.6 Requesting Original Sales Executive change for Active Leads . 115

6.3.7 Requesting Original Sales Executive as well as Date change for

Active Leads . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

15



6.3.8 The rules of ordering of Sales Executives to be considered for

the concerned lead for the date in question . . . . . . . . . . . 118

6.4 Modelling considerations . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.1 Desired properties of the model being constructed . . . . . . . 120

6.4.2 Suitability of Petri net as our modelling tool . . . . . . . . . . 121

6.5 Petri net modelling of the assignment process workflow . . . . . . . . 122

6.5.1 Creating generalized Petri net models for the process flows . . 122

6.5.2 Petri net modelling of Block I (flow for selection of dates) . . . 125

6.5.3 Petri net modelling of Block II (flow for selection of slots) . . . 131

6.6 Verification of our Petri net models . . . . . . . . . . . . . . . . . . . 136

6.6.1 Verification of Petri net modelling - Block I . . . . . . . . . . . 139

6.6.2 Verification of Petri net modelling - Block II . . . . . . . . . . 143

6.6.3 Additional behavioural properties exhibited by the Petri net

models for Block I and Block II . . . . . . . . . . . . . . . . . 147

6.6.4 Summary of the verification exercise conducted on the Petri net

models for Block I and Block II . . . . . . . . . . . . . . . . . 149

6.7 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Petri net modelling of certain key operational aspects regarding

leads and Sales Executives in real estate CRM 153

7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2 System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2.1 Slot Initialization with queue setting (Go-Live) . . . . . . . . 158

7.3 Steady State Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.3.1 Slot Initialization with queue setting (Steady State) . . . . . . 160

7.3.2 Priority setting of leads . . . . . . . . . . . . . . . . . . . . . . 161

7.3.3 Queue adjustment for SEs . . . . . . . . . . . . . . . . . . . . 163

7.4 Modelling considerations: Desired properties for the model to exhibit 170

7.5 Petri net modelling of functionalities in scope . . . . . . . . . . . . . 171

7.5.1 Petri net modelling of slot initialization with queue setting . . 171

16



7.5.2 Petri net modelling of priority setting of leads . . . . . . . . . 173

7.5.3 Petri net modelling of queue adjustment for SE . . . . . . . . 177

7.6 Verification of our Petri net models . . . . . . . . . . . . . . . . . . . 179

7.6.1 Verification of Petri net modelling of slot initialization with

queue setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.6.2 Verification of Petri net modelling of priority setting of leads . 182

7.6.3 Verification of Petri net modelling of queue adjustment of SEs 183

7.6.4 Summary of the verification exercise conducted on the Petri net

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.7 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8 Conclusion 187

17



18



List of Figures

2-1 Method architecture [1]. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2-2 (a) User Story alpha card; (b) Prepare User Story activity card. Both

showing linkage with Essence elements. . . . . . . . . . . . . . . . . . 36

3-1 The Essentialized model showing the work products and the activities

for the Feature alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3-2 The Essentialized model showing the work products and the activities

for the Microservice alpha . . . . . . . . . . . . . . . . . . . . . . . . 58

3-3 The Essentialized model showing the work products and the activities

for the Domain Model alpha . . . . . . . . . . . . . . . . . . . . . . . 61

4-1 Communication Flow of real-estate pre-sales CRM . . . . . . . . . . . 68

4-2 Functional Flowchart of real-estate pre-sales CRM . . . . . . . . . . . 68

4-3 Alpha State Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5-1 (a) An example of a shared Practice Library. (b) Method: composition

of practices on top of the Essence kernel and language (for Nirmanik) 81

5-2 The Essentialized model showing the User Story Lite practice [2]. . . 83

5-3 Splitting the first user story: Nirmanik::Track pre-sales leads. . . . . 85

5-4 Requirements alpha state card [2]: (a) Conceived. (b) Bounded. (c)

Coherent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

19



5-5 (a) User Story alpha card; (b) Prepare User Story activity card. Both

showing linkage with Essence elements. . . . . . . . . . . . . . . . . . 87

5-6 (a) Story Card work product. (b) Find User Story activity card. . . . 87

5-7 (a) The Splitting User Story pattern card [2]. (b) Accept User Story

activity card. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5-8 User Story Lite coverage of kernel solution activity spaces. . . . . . . 88

5-9 The Essentialized model showing the Microservices Lite practice [2]. . 90

5-10 Design Model for Nirmanik::Lead Tracking Subsystem. . . . . . . . . 92

5-11 Microservice Design of Nirmanik:: Ingesting Leads from external sources. 95

5-12 Microservice alpha card. . . . . . . . . . . . . . . . . . . . . . . . . . 96

5-13 Work product card (a) Design Model. (b) Microservice Design. . . . . 97

5-14 Microservices Lite coverage of kernel solution activity spaces. . . . . . 97

5-15 Coverage of the composition of User Story Lite and Microservices Lite

of kernel solution activity spaces. . . . . . . . . . . . . . . . . . . . . 99

6-1 Statechart Diagram for the life cycle of the leads. . . . . . . . . . . . 120

6-2 Petri net diagram of Block I first variant - DateSelector . . . . . . . . 126

6-3 Petri net diagram of Block I second variant - DateIterator . . . . . . 126

6-4 Petri net diagram of Block II - SlotAllocator and SlotUpdater . . . . 132

6-5 Reachability tree for Block I (DateSelector) . . . . . . . . . . . . . . . 140

6-6 Reachability tree for Block II (SlotUpdater) . . . . . . . . . . . . . . . 145

7-1 Petri net modelling of Slot Initialization with Queue - for one SE. . . 172

7-2 Petri net diagram of priority setting for a lead. . . . . . . . . . . . . . 174

7-3 Petri net diagram for queue adjustment for SEs. . . . . . . . . . . . . 177

20



List of Tables

2.1 Elements of Essence language . . . . . . . . . . . . . . . . . . . . . . 37

5.1 The states of the Essence Kernel alphas mapped with regard to the

development endeavor undertaken by Nirmanik [3]. . . . . . . . . . . 79

6.1 Categorization of flows described in sections 6.3.1 to 6.3.7 according

to the composition of the respective variants of the date selection flow

and the slot selection flow as applicable. . . . . . . . . . . . . . . . . 125

7.1 Reachability Tree for fig. 7-1. . . . . . . . . . . . . . . . . . . . . . . 182

7.2 Reachability Tree for fig. 7-2: decrement operation. . . . . . . . . . . 183

7.3 Reachability Tree for fig. 7-2: increment operation. . . . . . . . . . . 184

21



LIST OF ACRONYMS AND ABBREVIATIONS

Expansion Acronyms/ Abbreviations

Customer Relationship Management CRM
Sales Executive SE
Software Engineering Method and Theory SEMAT
Object Management Group OMG
Unified modeling language UML
Domain Driven Design DDD
INVEST Independent, Negotiable, Valuable,

Estimable, Small, and Testable
That is i.e.
Visit request VR
Initial visit request InitVR
Reschedule request RR
Original Sales Executive OS
OS change request OSCR
Reschedule and OS change request ROSCR
Callback CB
No Queue NQ

22



LIST OF SYMBOLS

Lrd - Lead requesting to schedule an appointment for Requested Date rd;

SEi - ith Sales Executive;

EAdt - Evaluate Allocation possibility of the given date from the date range dt;

mdt - Instances of dates in the range opened up / made available for allocation;

ARdt - Accept or Reject date dt (evaluate whether the instance dt matches rd);

Rdt - Reject date dt since it doesn’t match with rd;

Adt - Accept date dt since it matches with rd;

RRdt - Return Rejected date instances;

Lcb - Lead to be called back at a later date;

odLrd - Lead requesting to schedule an appointment for date rd, with possible

presence of an Original Date od (in case the request is for rescheduling);

SEj
od - Possible un-allocation of the previous assignment of jth Sales Executive

for the said lead on Original Date od;

ESi - Evaluate Suitability of ith Sales Executive;

SEi
sd - Collection of assignable slots sd prepared for ith Sales Executive (for the

date considered dt);

mi
sd - instances of slots (collection of sd) available to be assigned for ith Sales

Executive for date dt;

ARsd - Accept or Reject slot sd;

Rsd - Reject slot sd;

RRsd - Return Rejected slot instances;

23



L
ip/o
sd (for SlotAllocator) - Matching of ith Sales Executive (SEi) for the lead

for slot sd for the first time (with no previous allocation to be unassigned),

indicating a provisional matching;

L
ip/o
sd (for SlotUpdater) - Matching of ith Sales Executive (SEi) for the lead for

slot sd, which is either L
ip
sd indicating SEi is an Alternate Sales Executive (a

provisional matching) where i ̸= j, or else it is Ljosd indicating the matching is

for the Original Sales Executive (SEj) where i = j;

Visited : previous day lead visited information;

Skipped : previous day lead skipped visit information;

p - System capacity in days to provision future site visit requests;

P l
i - Priority value i assumed by lead l;

ψ - Maximum priority value that can be assumed by a lead capped to a specific

value (positive integer) by the system administrator.

Qi
j - Queue value at priority group j for SE SEi;

hgi - The global queue value of SEi

hdti - The daily queue value of SEi for date dt

NQi - No Queue state for ith Sales Executive;

dtgl - go-live date

dtsys - system date

npr - the number of leads belonging to the priority group pr having SEi as OS

tpr - the threshold value for the priority group pr

fpr - a function f mapping the number of leads npr belonging to the priority

group pr having SEi as the OS, with respect to the threshold value tpr for that

priority group pr.

24



1
Introduction

Contents

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 28

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.1 General objectives . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . 30

Software seems to be all-pervasive nowadays [4]. However, even though there have

been numerous success stories, there have been significant failures with software im-

plementation as well. The situation today is just as Brooks [5] stated many years ago:

“In no other discipline is the gulf between best practice and typical practice so wide.”

Lethbridge et al [6] noted that while most practitioners can quickly get up to speed

when it comes to software technologies (such as web, mobile, cloud technologies, etc.),

it is much harder to raise capabilities in software engineering, such as requirements,

analysis, architecture, testing, and project management. Practitioners frequently rely

solely on their, often limited, experience and proceed by trial-and-error without any

real learning.

In the continuously evolving landscape of Software Engineering, a multitude of

25



approaches have made their way, lending structure and discipline to the creation of

software products. While the number of these methods and practices has shown a

remarkable increase over time, one fall-out of this has been the propensity of throwing

out the methods and way of workings that the organizations had established thus far,

and again starting over with new methods. Perhaps unsurprisingly, while there have

been success stories, they are punctuated by way too many failed efforts, some of

them turning out to be quite costly ones.

In this thesis, we have started off by leveraging the learning from Essence, a

“language and kernel“ of Software Engineering, which has resulted from the efforts of

the SEMAT initiative founded to bring together industry, research and education to

deal with the problem of immature practice in software engineering and has evolved

as a method- and practice-independent approach.

Our focus has been on creating reusable assets as we have created frameworks and

built up methods consisting of practices by essentializing those.

We have developed a framework to address the microservices lifecycle using Do-

main Driven Design (DDD) and introduced three alphas to extend the SEMAT Ker-

nel, and added the Work Products and Activities associated with those alphas. This

is industry agnostic and can be used anywhere.

We have then taken up the industry area of our interest and created an agile ap-

proach for automating Real Estate CRM (pre-sales) aspects using Scrum and Essence,

intended to address the issues that many Scrum implementations face by leverag-

ing the strengths of Essence. Our next endeavour has been to create a full-fledged

Software Engineering method that adopts the User Story practice to address the re-

quirements area and the microservices practice to develop and deploy the software

system being built by Essentializing them. Thus we have been able to provide a

comprehensive view of the software endeavor by creating a method adopting a set

of practices using Essence as the common ground. This exercise, carried out for a

specific industry use case, can be similarly extended for other industry use cases as

well with Essence as the unifying framework.

We have continued with the industry context of the automation of CRM pre-sales

26



for real estate as a running thread. Amongst the functionalities, we have identi-

fied a focus area of the assignment process dealing with the dynamics of schedul-

ing/rescheduling of site visit requests from leads in the backdrop of the availabil-

ity/unavailability of Sales Executives on the said day of the site visit along with

applicable constraints. We have decided to use Petri nets to model the same which

is essentially a workflow process, given the widespread applicability of Petri net in

modelling related application domains and workflows.

After explaining the life-cycle of leads and allocation of Sales Executives, we have

constructed generalized Petri net models of the assignment process. The resulting

generalized Petri net models have system properties that can be directly linked to

certain desirable performance criteria of systems as borne out by the behavioural

analysis conducted on them to obtain a verification of the suitability of our modelling.

We also acknowledge that in order to ensure the smooth running of the automation

process when it is eventually implemented, it is crucial to focus on the operational

aspects of the same, with the execution of the assignment process being central to it.

One such aspect would be the initiation of the automated system on the very first day

of its operation (i.e. the go-live date), while the other aspect to follow logically in its

wake would deal with how it runs in steady state. We have described the underlying

functionalities, modelled those using Petri net, and verified if they satisfy the desired

properties of the systems being modelled by carrying out behavioural analysis of the

Petri nets.

However, the value of the Petri net based modelling exercise undertaken in terms

of clarifying and improving our design understanding that is key to successful imple-

mentation applies not only to the business scenarios in scope for our current work

(i.e. real estate CRM), but it can also extend to other industry domains where similar

Petri net based modelling and analysis can be conducted.

27



1.1 Problem statement

Usage of software is ubiquitous across the globe, and stories of success and failure

have proliferated over time. As Lethbridge et al. have mentioned, it might be possi-

ble to pick up speed quickly in software technologies but swift upskilling in Software

Engineering is a much more difficult proposition [6]. Practitioners in Software Engi-

neering are guided more by their own experience which is usually limited and hence

the proceedings happen mostly by trial-and-error. The key question is how to enable

practitioners or project teams with the necessary wherewithal to ensure success in

project delivery.

1.2 Research questions

The following questions are defined:

1. There are several practices in use for different aspects of software development.

How can they be adopted into a method to ensure successful project delivery?

2. While SEMAT speaks about bridging the gap between industry and academia

using Essence, can we take up an industry agnostic scenario as well as an in-

dustry scenario and show how we can leverage Essence to deliver in both cases?

3. Amongst the functionalities involved in the industry scenario, can we focus on

a core functionality and model it using a suitable framework, and validate that

against certain desirable verification criteria?

4. Can we focus on the operational aspects of the said functionality and identify

the operations necessary for it to function correctly, model those appropriately

and verify those models’ effectiveness?

28



1.3 Objectives

1.3.1 General objectives

For the industry scenario of automating pre-sales CRM for real estate, leverage soft-

ware engineering frameworks, methods and tools like Essence to construct a method

consisting of several practices for development purposes, and Petri net to model a

core functionality and the associated processes that carry out the pre-processing and

post-processing of that functionality from an operational aspect.

1.3.2 Specific objectives

1. Create an industry agnostic framework to adopt certain practices leveraging

Essence.

2. Create an agile method leveraging Essence out of representative practices used

in different areas of software development in the context of an industry scenario.

3. Focus on a core functionality in that industry scenario, model it using a suitable

framework and validate against certain verification criteria.

4. Describe the operational aspects of system initialization followed by the steady

state operation by focusing on a set of processes needed for the pre and post-

processing of the said core functionality.

1.4 Scope

This thesis involves the automation of CRM in real estate leveraging various methods

and tools of Software Engineering like Essence and Petri net, and select practices in

use. The scope of this research is described as follows:

1. Provide a background of the key frameworks/methods and the industry scenario.

2. Create an industry agnostic framework to address the Microservices lifecycle

using DDD, leveraging Essence.

29



3. Craft a method to deliver the functionalities of real estate CRM (pre-sales) by

selecting the representative practices from the respective areas of software de-

velopment, essentialize and adopt them into the unifying framework of Essence.

4. Focus on a core functionality from the industry scenario, assignment of leads to

Sales Executives based on their site visit requests, and model that using Petri

net, and validate that against certain desirable verification criteria.

5. Use Petri net to model the operation of processes responsible for pre-processing

and post-processing of the assignment process, key outcomes being lead priority

setting and SE queue adjustment, and verify those models.

1.5 Structure of the thesis

This Ph.D. Thesis is organized into eight chapters as follows:

In this Chapter (Chapter 1) we provide an overview of the research including an

introduction, problem statement, research question, objectives and scope.

In Chapter 2 we discuss the preliminaries and provide a background of the key

frameworks/methods utilized and the industry scenario.

In Chapter 3 we create an Essence based framework using a Domain Driven Design

approach to address Microservices lifecycle from identification to implementation.

In Chapter 4 we show how to create an agile approach to automate Real Estate

CRM (pre-sales) using Scrum and Essence.

In Chapter 5 we extend Essence to adopt User Story and Microservice practices

leveraging Scrum to automate the pre-sales function of real estate CRM.

In Chapter 6 we construct a generalized Petri net model of a key functionality in

CRM pre-sales, the assignment process.

In Chapter 7 we carry out the Petri net modelling of certain key operational

aspects regarding leads and Sales Executives in real estate CRM.

In Chapter 8 we take a look back at the work we have covered in this thesis and

conclude.

30



2
Preliminaries and Background

Contents

2.1 SEMAT and Essence . . . . . . . . . . . . . . . . . . . . . 31

2.2 Microservices and Domain Driven Design (DDD) - An

Architectural Overview and Activities involved . . . . . 38

2.3 Petri net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Customer Relationship Management (CRM) . . . . . . . 43

In this section, we take a look at the landscape of Software Engineering focusing

on the methods and tools that we would be leveraging extensively (Essence, Microser-

vices, Domain Driven Design and Petri net) in this thesis, as well as discuss the key

concepts of the domain/industry (CRM in real estate) to be used as a common thread

throughout our thesis.

2.1 SEMAT and Essence

Software usage is ubiquitous across the globe, and stories of success and failure have

proliferated over time. The following quote by Brooks, while made long back, still

seems to hold: “In no other discipline is the gulf between best practice and typical

practice so wide” [5]. As Lethbridge et al. have mentioned, it might be possible to pick

up speed quickly in software technologies but swift upskilling in software engineering is

31



a much more difficult proposition [6]. Practitioners in software engineering are guided

more by their own experience which is usually limited and hence the proceedings

happen mostly by trial-and-error.

As software engineering has continued to evolve, it has brought in its wake a host

of methods over time that have been embraced to create software products. The

number of these methods has been on the rise over time, and a consequence observed

of their adoption has been the discarding of methods previously being used by the

organizations while embracing the new. That inevitably takes a toll on the software

practitioners as the established way of working gets upset, which may very well have

a bearing on the forthcoming outcomes. This points to an inherent immaturity in

software engineering which needs to be addressed.

2.1.1 The SEMAT initiative

“The recent SEMAT (Software Engineering Method and Theory) initiative was founded

to bring together industry, research and education to deal with the problem of imma-

ture practice in software engineering” [7]. In that regard, SEMAT focuses its effort

towards the following :

1. “a software engineering language and kernel”, and,

2. “a general and widely accepted theoretical framework.”

The outcome of the first element of the initiative is a “language and kernel” of

software engineering - termed Essence. It allows us to extend according to practices

adopted for a given project and facilitates analysis and comparison of software de-

velopment methodologies [4, 2], and has been demonstrated to provide guidance to

both small and large development [8, 9].

The second element of the initiative culminates in a framework that is pragmatic

enough to be of use to software teams [7, 10].

32



2.1.2 SEMAT in the industry and academia

The kernel and language defined in the Essence are scalable, extensible, and easy to

use, including the ability to compare, evaluate, adapt, simulate and measure meth-

ods [11, 1]. The kernel includes elements forming the basis of vocabulary and it is ex-

tensible for defining future technologies, practices, social working patterns, methods,

and research [1]. Besides, the kernel is extensible to support different projects, allow-

ing the possibility to add practices, such as use cases, architecture, and component-

based development. Also, according to OMG, SEMAT reduces the gap between

academic research and heuristic application in industry. The method architecture

included in the Kernel is shown in Figure 2-1 [1].

Figure 2-1: Method architecture [1].

The SEMAT Essence kernel addresses industry orientation through the incorpo-

ration of relevant features and tools. Also, it has been augmented with different

approaches to arrive at solutions for different organizational challenges.

2.1.3 SEMAT Essence Kernel

Essence is the software engineering kernel resulting from the efforts of SEMAT which

has become an OMG industry standard [11, 1]. Embodying “the essential rather than

the accidental in software engineering” [2], it extracts the salient features of software

engineering and ”makes them practical and actionable” for real life software imple-

mentation utilizing a ”multi-dimensional state-based method-independent model of

software engineering endeavors” [8, 9].

The kernel includes elements forming the basis of vocabulary and it is extensible

33



for defining future technologies, practices, social working patterns, methods, and re-

search [1]. It allows for “extension mechanisms to add project or practice specifics”

which makes Essence versatile enough to reach out to and compare various develop-

ment methodologies [2]. It is used to describe practices in a method-agnostic way,

allowing us to select necessary practices and compose them to form the method as

required for the engagement. Thus Essence is like a complementary framework that

can be used with whatever framework or method an organization is using.

SEMAT Essence Kernel defines the most basic elements needed by all kinds of

development. It also facilitates the understanding of developers regarding the state

the project is in and the activities to be accomplished next [9].

Essence Kernel includes six elements:

• Alpha,

• State,

• Checklist,

• Activity,

• Activity Space, and

• Work Product [9].

Essence examines the prevailing software development lifecycles through several

dimensions utilizing the principle of separation of concerns [12, 13]. Essence terms

these dimensions as alphas. Tracking the progress of alphas is of critical importance

in the development process. The alphas are characterized by states indicating their

advancement through a lifecycle. Each state is accompanied by a checklist containing

quantitative criteria that must be achieved, thus allowing for measurements. A state

is said to be achieved on completion of all the items in the checklist and this is

how it enables a development team to gain awareness of their project situation. The

checklist equips a team to assess the current project situation and identify problems

in the current step [9]. State transition without satisfying the checklists implies

34



assuming risk in that dimension [4]. Work products are tangible artifacts describing

an alpha and they help verify achievement of alpha states. Activity is performed for

the creation or updation of a work product [2]. Activity Space is another key aspect of

Essence Kernel which talks about concrete development activities and tasks, whereas

a Work Product captures the results [9]. This is how Essence Kernel facilitates the

management and monitoring of projects utilizing all these elements [9].

The progress of an alpha might be achieved by progressing smaller parts of the

alpha, called a sub-alpha. “Sub-alphas are alphas in their own right that help to move

forward or slow the progress of the kernel alphas” [2]. We would be using these two

terms alpha and sub-alpha interchangeably as we build the model for the practices

in focus of this thesis subsequently.

The Essence specification identifies seven alphas that are commonly applicable for

all software engineering endeavors:

• “Opportunity,

• Stakeholders,

• Requirements,

• Software System,

• Work,

• Team, and

• Way-of-Working” [4].

The above-mentioned alphas help categorize the factors identified in the existing

literature. For the uncategorized ones, Essence allows for “extension mechanisms to

add project or practice specifics” which makes Essence versatile enough to reach out

to various development methodologies [9].

Essence organizes the elements of software engineering, e.g. the seven common

alphas as above, into three areas of concern, the ambit of each of those covering a

distinct dimension of software development [9].

35



Customer: covers everything related to the usage of the software system intended

to be delivered. The alphas Opportunity and Stakeholders are mapped here.

Solution: contains everything to do with the specification and construction of the

software system. The alphas Requirements and Software System are mapped here.

Endeavor: about the team undertaking development work and their way of ap-

proach to carry it out. The alphas Work, Team and Way of Working are mapped

here.

Table 2.1 summarizes the concepts for the elements used in Essence language along

with their corresponding icon symbols [2].

Out of the artifacts mentioned there, we have selected two key artifacts, an alpha

card and an activity card, and shown the two corresponding cards for illustration

purposes. Fig. 2-2(a) and Fig. 2-2(b) show the Essence alpha card “User Story”

and the Essence activity card “Prepare a User Story” respectively, pointing out their

linkage with the constituent Essence elements.

(a) (b)

Figure 2-2: (a) User Story alpha card; (b) Prepare User Story activity card. Both
showing linkage with Essence elements.

2.1.4 SEMAT Essence Language

A collection of elements is used to delineate and articulate the relationships among

concepts in Essence in a visual manner. “The elements in Essence Language are the

36



Table 2.1: Elements of Essence language

37



same as the elements in Kernel: Alpha, Alpha State, Activity, Activity Space, Work

Product and Competency” [1].

It is also possible for developers to use Essence Language to “define new Kernel,

State, and practices based on SEMAT Essence” to address specific requirements [14].

2.1.5 Integrating specific theories and practices using Essence

We have to appreciate that each software engineering methodology is unique with

different objectives and factors, hence the need for a specific theory that explores the

relationship among them. Those factors of interest, however, still have to remain valid

within “a more general software engineering context” which is “modelled in Essence

through alphas and alpha states” [4].

Understanding of the above would prove useful in chapters 3, 4 and 5 where we

would be leveraging Essence to essentialize practices and create our own methods.

2.2 Microservices and Domain Driven Design (DDD)

- An Architectural Overview and Activities in-

volved

Microservices architecture is becoming increasingly instrumental for organizations

across the globe in their quest for digital transformation, as well as to help shorten

the time to market for their new lines of products and services. Initiatives by organi-

zations like Netflix, Amazon, Coca-Cola, Uber and so on to migrate legacy applica-

tions into a microservice architecture or build new applications altogether leveraging

microservices bear testimony to that [15].

The microservices architecture is about developing an application as a collection

of single-purpose services. Each of these services would be in charge of its individual

data, logic, and behaviour. A microservice is expected to realize only a specific busi-

ness capability that stems from distilling the functionalities around a common theme

resulting in a bounded context [16]. Careful identification and implementation of the

38



constituent microservices and combining those together are key to developing a full-

fledged application. The change and redeployment can be restricted to only a single

microservice to accomplish the desired update needed for a domain [17]. However,

this architecture can also bring in its wake fresh challenges since an organization’s

core business processes are likely to encompass several microservices, thus obscuring

visibility into an end-to-end process. Here adoption of Domain Driven Design (DDD)

can prove beneficial as it strives to map business domain concepts into software using

the domain model as the central concept [17].

DDD is a set of tools that aid in designing and implementing software delivering

high value, both strategically and tactically [18]. Any organization needs to excel at

its core business and the DDD strategic development tools facilitate making optimum

software design and integration choices for the business. DDD promotes continuous

refinement of domain understanding and has a natural fit to agile software develop-

ment processes [19].

Adopting a distributed software architecture for splitting the business domain can

pose certain challenges, which is why functional decomposition of an application and

decentralized governance become important factors to consider in this context [15].

A particularly relevant design challenge is about “identifying the right kind of par-

tition of the system into microservices” [20], as it can have repercussions on system

performance [21]. As mentioned before, ideally each service needs to cater to one

single responsibility [22], which would have a bearing on “the application’s quality of

service” [23] and the microservices count [15].

The celebrated book by Evans [17] identifies “the essential principles, activities

and patterns required when adopting DDD”. This facilitates depicting “the real world

in the architecture”, e.g. by using “bounded contexts representing organizational

units” [24], while also focusing on the core domain, thus bringing about an all-around

qualitative improvement in the software architecture [25].

Classifying the principles and patterns according to architectural concepts like

architecture perspectives and architecture requirements can be of help while designing

microservice architectures, and so would the mapping of DDD activities against an

39



established software development life cycle [19].

Designing The Architecture

While the framework provided by Vogel et al. for software architecture [26] has

relevance in classifying microservices and DDD, the hexagonal architectural pat-

tern introduced by Cockburn [27] can be adapted in DDD’s context to structure a

microservice-based application by segregating the concerns of a microservice in multi-

ple layers in the resultant architecture [28]. The hexagonal architecture comprises the

domain model, application services and adapters with ports (facilitating information

exchange between microservice and clients). A client utilizes an exposed port along

with its adapter for consuming the microservice.

Evans suggests a “four-layered architecture for DDD, consisting of the user inter-

face, application, domain and infrastructure layers, to separate the domain from other

concerns” [17]. This layering concept’s influence on the microservice architecture can

be understood as we look into the adaptation of the hexagonal architecture pat-

tern [27]. As Vernon suggests, the hexagonal architecture and the onion architecture

are the same [18]. The onion architecture, building on the hexagonal architecture,

provides good clarity in terms of the representation of the fine-grained building blocks

of a microservice’s underlying structure [28, 29].

Activity Overview

During analysis, a knowledge crunching activity takes place with domain experts for

the discovery of the information model (part of the domain model) with the possible

creation of a prototype [19]. These two would influence each other given domain

knowledge obtained respectively and thus enrich the other stream.

The feedback obtained from the prototype demonstration would help accomplish

the following activities: refinement of the information model, discussion and finaliza-

tion of the design ideas and application of design patterns [19].

Domain design, a critical activity, is part of the ”Strategic Design” in DDD which

deals with matters of strategic importance to the business, by dividing work by im-

40



portance and devising the most optimum integration mechanisms. As we’ll elaborate

later, a strategic design pattern called bounded context would be important in seg-

regating the domain models. A Ubiquitous Language would be developed as part of

the domain model within each individual bounded context. Domain design is similar

to the system design activity described by Bruegge et al. [30]. The system is divided

into subsystems that can be realized by individual teams using bounded contexts

according to Conway’s Law [24].

Subdomain is another concept relevant while delving deeper into strategic design.

While useful for bespoke/new development, they are also key in dealing with legacy

systems. Legacy systems are likely to be designed in a way divergent from the fun-

damental tenets of DDD advocating design with bounded contexts, thus inviting the

term ”Big Ball of Mud” by Vernon. The legacy system effectively becomes a jumbled

entity housing a number of logical domain models enmeshed together. Treating each

of those logical domain models as a Subdomain helps manage the complexity involved

by effectively translating the problem space into one equivalent to that developed us-

ing DDD and multiple bounded contexts. Multiple Ubiquitous Languages may also

need to be considered.

Context mapping (about integrating multiple bounded contexts) would be a key

activity. As elaborated later, context maps define both team relationships and tech-

nical mechanisms that exist between two integrating bounded contexts.

Each bounded context is implemented as a microservice. The web APIs related

to the microservices’ entry points and the corresponding application logic would cor-

respondingly undergo implementation and testing [19].

Developing a “deep model” to facilitate software development requires “explo-

ration and experimentation” [17]. This implies that domain insights can be obtained

throughout the software development lifecycle, which might lead to modification of

artifacts created earlier.

This would become relevant in chapter 3 while creating an Essence based frame-

work using a Domain Driven Design approach to address the Microservices lifecycle.

41



2.3 Petri net

We’d come across the need to decide on a suitable approach to model the flow of cer-

tain key processes of the CRM pre-sales functionalities. The increasing complexity

of modern systems has implications in system development, and it makes eminent

sense to make room for due considerations during the planning phase itself as invari-

ably different constraints tend to come into play due to scarcity of system resources.

Hence the design and operation of such a system would demand appropriate model-

ing and analysis. As modelling deficiencies can have telling effects on development

time/cost as well as operational efficiency, the correctness of the models deployed

during the planning phase becomes a key imperative. With the workflow being a

recurring concept in many application domains, and processes tending to be a key

part of that, it follows that the adoption of a framework suitable for modeling and

analyzing workflow processes would be necessary [31].

The classical Petri net was invented by Carl Adam Petri in the sixties and has

been used since then to model and analyze an array of processes in various application

domains ranging from communication protocols and embedded systems to flexible

manufacturing systems and distributed information systems, and is found particularly

suitable to model workflows [32, 31, 33]. Petri net would be our model of choice given

its usefulness in modelling, formal analysis and design of systems like the one in the

current scope. While Petri net would be used to model the flow of the assignment

process in our application domain (CRM pre-sales), an important objective would be

to carry out the validation of our modelled system with regard to a specific set of

properties. We’d leverage Petri net based behavioural analysis techniques to verify

the suitability of our modelling. This would enable us to determine from a system

designer capacity whether the desired functional properties of the system are present

or not [34].

This initial understanding would help us in chapters 6 and 7 where we would use

Petri net to model specific functionalities of CRM pre-sales in real estate.

42



2.4 Customer Relationship Management (CRM)

CRM helps companies stay connected to customers, streamline processes, and im-

prove profitability [35]. Client centricity/accessibility fuels the growth story of CRM

as organizations strive for real-time access to customer data to drive higher sales and

improve customer experience with increased personalization. The share of CRM soft-

ware, “the largest and fastest growing enterprise application software” [36], continues

to rise.

CRM manages the customer interactions for a company by analyzing the cus-

tomer’s history with the company to improve business relationships, focusing on cus-

tomer retention and driving sales growth [37]. The systems of CRM compile data from

a variety of communication channels, including a company’s website, phone/mail/chat,

campaigns (both digital and non-digital) and social media [38].

As with other industry segments, a number of software offerings are available in

the market today in the CRM space, addressing a host of functionalities and business

scenarios. “To exploit the significant market opportunity, product managers in CRM

application providers should double down on cloud deployments and consider adding

functionality in the fast-growing marketing segment,” said Julian Poulter, senior di-

rector analyst at Gartner [36]. While the pros and cons of those CRM applications

need to be carefully considered in the given context, there’s also the option of devel-

oping bespoke solutions. To make the right decision to achieve the desired benefits,

we should be leveraging software engineering.

The prevalent challenges in CRM business and the fluidity of the market resulting

in newer opportunities and constraints make a strong case for using software engi-

neering to realize the desired effectiveness and efficiency in a time-bound manner.

Ever-increasing complexity is a given and software engineering needs to address that

by applying proven practices and attaining consistency.

43



2.4.1 CRM functionalities prevalent in real estate industry

“Business of real estate is not merely an operating necessity; it’s a strategic re-

source” [39]. “It is increasingly apparent that real estate can help organizations

change or can prove to be a hindrance” [40]. As technology is redefining the way of

transactions and managing things, business process automation has become a crucial

driver for real estate companies to achieve excellence. Factors like “communication,

improved service delivery, time to market and new avenues for growth are driving the

real estate businesses to adopt technology” [41].

The real estate business can be quite complex involving multiple, often interlinked,

processes. Let’s take a look at the major business processes that characterize this

segment.

1. Property Management: Property search is usually technology enabled (e.g. via

internet search). Real estate companies manage property listings online through

web applications allowing online search [41].

2. Automated Workflows: These promote efficiency by sending regular notifications

to staff / management which are configurable per requirements. Data can be

consolidated and reports automated for sending to higher authorities.

3. Lead Generation and Marketing for Properties: Generating high-quality leads

from various sources or campaigns is crucial. Campaigning is a useful marketing

strategy in the real estate industry utilizing social media/email advertising to

target potential clients. Website property listings help generate inquiries and

qualified leads.

4. Projects, Inventories and Assets: Integrated online software enables project

management and inventory management at multiple locations.

5. Legal Documentation: The agreements, sale deeds, etc. which are important

from a compliance perspective for projects can be stored by digital document

management.

44



6. Vendors and Bill of Material (BOM): Tracking stock, inviting quotes from ven-

dors, etc. can be made possible by the software. The accessibility of consump-

tion status and BOM allows higher transparency and more informed inventory

usage.

7. Valuation and Advisory Services: This is utilized for determining the property

value. This entire process can be automated, facilitating decisions to rent, lease

or sell assets.

8. Analytics: Correlating different data points allows for comprehensive analysis

and decision making for a real estate business [41].

This understanding would be of use in chapters 4, 5, 6 and 7 where the automation

of CRM pre-sales in real estate runs as a common thread.

45



46



3
An Essence based framework using a Domain

Driven Design approach to address Microservices

lifecycle from identification to implementation

Contents

3.1 Alphas for Microservices practice using DDD . . . . . . 48

3.2 Work Products and Activities for Microservices practice

using DDD . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . 63

To counter the digital disruption in today’s world, the organizations are opting for

digital transformation. While there is a marked propensity to turn towards microser-

vices architecture to re-imagine the application landscape, there are also challenges

involved. This is where applying proven practices through software processes can help

us, as well as the adoption of the Domain Driven Design (DDD) approach.

A microservice is expected to realize only a specific business capability which

stems from distilling the functionalities around a common theme resulting into a

bounded context [16]. Careful identification and implementation of the constituent

microservices and combining those together are key to developing a full-fledged appli-

cation. However, this architecture can also bring in its wake fresh challenges since an

organization’s core business processes are likely to encompass several microservices,

47



thus obscuring visibility into an end-to-end process. Here adoption of Domain Driven

Design (DDD) can prove beneficial as it strives to map business domain concepts into

software using the domain model as the central concept [17]. We have provided an

architectural overview for the same and the activities involved in section 2.2 of this

thesis.

Here we would endeavour to extend the standard SEMAT Kernel to deal with

different aspects of Microservices practice foundation leveraging DDD. We would

identify the alphas characterizing this practice, specify the work products involved,

describe associated activities and establish inter-linkages among the artifacts.

The subsequent sections would address the following:

• Alphas proposed for Microservices practice using DDD: here we would identify

and propose the alphas as we model the Microservices practice using DDD in

Essence;

• Work Products and Activities for Microservices practice using DDD: this is

where we identify and describe the work products and the associated activities

for the above-mentioned alphas as well as the inter-relationship amongst those

elements within the process flow as part of the model building;

• Summary of chapter.

3.1 Alphas for Microservices practice using DDD

3.1.1 Alpha: Features

Features are artifacts addressing user or system requirements, with a bearing on the

usability and value of the software system in question. The way of addressing the

features would have ramifications on system architecture, data models and so on,

right up to implementation. The requirements are specified with behaviour-driven

development (BDD) [42] in the form of features. As a method of agile software de-

velopment, BDD should specify a software system by referencing its behaviour. Thus

48



a feature describes a functionality of the application. The use of natural language

and predefined keywords allows the developer to create features directly with the

customer [43]. Analyzing the features leads to the initial domain model by deriving

domain objects and their relationships.

During design, DDD should be applied based on the features defined with BDD.

DDD’s main focus is the domain and the domain’s functionality, rather than technical

aspects [44]. The central design artifact is the domain model, which represents the

target domain.

The states of the Features alpha are defined as follows.

Formulated

The needs for the proposed system are articulated via an initial feature set.

Coherent

The features are clarified to the level of specific details, allowing us to form a consistent

view of the essential characteristics of the proposed system.

Addressed

The extent of the feature set that has been addressed thus far is good enough to

justify the motivation for a new system in an acceptable manner to the stakeholders.

Fulfilled

The entire collection of the feature set has been addressed in depth such that the

needs for a new system are completely satisfied.

3.1.2 Alpha: Microservice

The primary alpha in this practice is the Microservice alpha which will advance from

its identification to its deployment. Since a software system consists of microservice

49



sub-alphas, the progress and health of the former are dependent on each and every

microservice.

The states of the Microservice alpha are defined as follows.

Foundational

This is about establishing the scope of the microservice. We would leverage DDD to

reflect the customer’s business domain into the intended application by the use of a

domain model wherein all relevant information about the domain or business would

be stored [45]. Once the requirements have been specified with BDD in the form

of features, an initial domain model would be created from the features through the

derivation of a tactical diagram (consisting of the domain objects and their interre-

lationships). This initial domain model contains the application’s business logic and

provides the semantic foundation for all the specified features.

Stratified

A key artifact of DDD, the bounded context, is formed here which is a potential can-

didate for a microservice. Knowledge crunching from DDD [17] is applied to gather

the domain knowledge and the structure of the business. As an organization’s domain

knowledge may remain scattered across the whole business, analysing the business is

essential to understand the business processes and the interaction of different depart-

ments. Various sources like domain experts, documents and organizational aspects

should be considered to extract the domain knowledge, which should be leveraged

to structure the domain and form the bounded contexts. Application analysis and

business analysis considerations from [28] would lead to the bounded contexts [45].

A bounded context (1) exhibits high cohesion and low coupling, (2) can be man-

aged by one development team, (3) ideally has high autonomy to reduce commu-

nication/coordination effort between development teams, (4) has a unique language

that is not (necessarily) shared and (5) represents a meaningful excerpt of the do-

main [45]. Each of the established bounded contexts can be considered a microservice

and requires or provides a unique interface for communication. When developing a

50



microservice-based application, a bounded context may not be so fine-grained to start

with, thus being large enough to contain two or more microservices. It should be re-

considered as it is preferable to have a one-to-one relationship. This facilitates the

maintenance of the architecture through a clean mapping between bounded contexts,

microservices and the development teams responsible.

Choreographed

Here the context map gets created that establishes the communication path between

the bounded contexts. In other words, the candidate microservices are choreographed

to realize the intended application functionality. An application consists of multiple

bounded contexts, each having its own domain model and its own ubiquitous lan-

guage based on the domain knowledge and acting as a contract for communication

between project members and stakeholders. For the development of microservice-

based applications, the multiple bounded contexts support the idea of a microservice

architecture. The bounded contexts and their interconnections altogether constitute

the entire domain knowledge of the application. Context map models the bounded

contexts and their relationships [45].

For bounded contexts which are related to each other, teams may require inter-

communication. This would entail assessing the extent of communication effort re-

quired between the said teams and establishing clear communication paths between

those. This would drive the specification of dependencies and communication channels

between teams and accordingly choosing a communication pattern based on [17, 18].

Communication patterns like Anti-Corruption Layer (ACL), Open Host Service and

Published Language serve to minimize the communication between different teams,

as well as the impact on interface changes. Adding those bounded contexts and

communication relationships is an essential part of the context map. For instance,

when communication between teams is not possible (such as when foreign services

are adopted), DDD patterns like ACL should be applied. Finally, the relationships

(including the pattern) and the bounded contexts are added to the context map

diagram [45]. Aligning the context map to the customer’s domain leads to a natural-

51



looking architecture [46].

Complete

Following the iterative process of analysis/design to implementation, models are im-

plemented and tested as specific parts of the application get developed and new

features are addressed in successive cycles. These features require analysis and may

impact the domain model, potentially leading to the formation of new bounded con-

texts. Thus the models, including the bounded contexts and the context map, are

refined according to the features and the knowledge crunching process in the previous

steps. Effectively the microservice gets evolved to fulfil all its required interfaces with

possible refinement of its structure.

3.1.3 Alpha: Domain Model

The domain model is central to DDD and treated as an alpha for the practice we

are considering. It contains everything necessary to understand the domain. As

collaboration with customers is essential to explore and model the domain, the first

and recurring step of DDD is Knowledge crunching [17]. In tandem with customer

discussions, the development team carries out the modelling activity and creates

the domain model iteratively. A ubiquitous language is established, acting as the

cross-team language. The creation of the domain model is strongly influenced by

exploration and experimentation [17]. A judicious approach would be to refine the

domain model repeatedly, if needed, to minimize implementation risk. Domain model

creation is an iterative activity, aligned with the principles from agile development

processes.

The Model-Driven Engineering (MDE) [47], describing an approach used to ef-

fectively express domains in models, is relevant in this regard. The model-driven

architecture (MDA) framework [48], which supports the implementation of MDE,

suggests three steps that would be required to progress an application from abstract

design to implementation. Three models are created accordingly which bear relevance

52



to our subsequent discussion. Those are as follows [19]:

• computation independent model (CIM): provides domain concepts without any

technology consideration,

• platform independent model (PIM): enriches CIM with computational aspects;

and

• platform specific model (PSM): enriches PIM with implementation specifics for

the chosen technology platform.

The states of the domain model alpha are defined as follows.

Initiated

This is about creating an initial domain model. The goal of DDD is to align the

customer’s business domain with the intended application. The domain model is in-

strumental in achieving the said goal by storing all relevant information about the

domain or business, aided by the usage of the ubiquitous language [45]. Once the

requirements are specified with BDD in the form of features, an initial domain model

would be created from the features through the derivation of a tactical diagram (con-

sisting of the domain objects and their inter-relationships). This initial domain model

contains the application’s business logic and provides the semantic foundation for all

the specified features. A domain model, as per Evans, contains everything necessary

to understand the domain [17] and goes beyond what we traditionally understand by a

domain model (connected to a formalized model using UML [49]). The connotation is

similar to the term information model introduced by Fairbanks [50] to distinguish be-

tween the two concepts. The model here corresponds to the computation-independent

model (CIM) in MDA.

Foundational

If the domain structure is not sufficiently clear even after addressing several features,

more features need to be considered until the domain model appears to be meaningful.

53



Subsequently, that domain model is examined and structured into several bounded

contexts [45].

The focus of DDD practice is on an intended application [17] to ensure the “perfect

fit” of the gathered information, called “domain knowledge,” for the application. This

domain knowledge is captured in domain models. An application consists of multiple

bounded contexts, each with its own domain model. To effectively assimilate the

collective business knowledge (which can be of significant proportions), the domain

knowledge is split into multiple domain models. The validity of each domain model

is limited through the bounded context. Of the two types of “design activities” intro-

duced by DDD [17], the first is of relevance here. It is called the “strategic design”,

with tasks in modelling and structuring the domain’s macro architecture (e.g., depart-

ments are used to define boundaries). The resultant domain model can be regarded

as a platform-independent model (PIM) equivalent as per MDA parlance [19].

Implementable

Here a context map is developed as the domain model gets refined further. The second

of the two types of DDD “design activities” [17], the “tactical design”, is of relevance

here. It refines the macro architecture even further and enriches the bounded contexts

with domain knowledge. This activity represents the micro-architecture of the domain

and that of the microservice.

By now the development team exploring the customer’s domain has created the

context map and domain model. Both the strategic and tactical designs are completed

at this stage, whereby the context map should get integrated at this point [45]. To

enable further downstream implementation, platform-specific implementation details

need to be added and the ensuing domain model can be regarded as a platform-specific

model (PSM) equivalent as per MDA parlance [19]. It enriches the PIM equivalent

domain model created previously with implementation specifics of the chosen tech-

nology platform.

54



Evolved

In iterative development, implementation of the models takes place along with testing

as specific parts of the application are developed. Following the iterative process, new

features are implemented into successive cycles. These features would require analysis

and may impact the domain model, potentially leading to new bounded contexts being

created. Thus the models, including the bounded contexts and the context map, are

refined according to the features and the knowledge crunching process in the previous

steps.

3.2 Work Products and Activities for Microser-

vices practice using DDD

This section deals with the work products and the associated activities for the three

respective alphas that we have proposed in the previous section.

3.2.1 Work Products and Activities for the Feature alpha

The Microservices practice using DDD has the following work products for the Feature

alpha:

• Scenarios,

• UI/UX (User Interface/User Experience) Design Prototype, and,

• Test Cases.

Figure 3-1 represents a model of the Microservices practice using DDD, showing

the relationships between the elements (alpha, work products and activities) in the

practice corresponding to the Feature alpha, the activity flow and the relationships

with kernel elements (e.g. Features and Requirements).

55



Figure 3-1: The Essentialized model showing the work products and the activities for
the Feature alpha

Work Product - Scenarios (describing the Feature alpha):

Requirements in BDD are elicited by developers as well as application users. The

shared understanding is captured in an executable requirement specification, lever-

aging the ubiquitous language known from DDD [43].

This requirement elicitation activity is carried out in an outside-in fashion [9],

extracting the most visible behavior which is subsequently implemented. During im-

plementation, new details are discovered, leading to unearthing further requirements

or refining existing ones. Requirements, captured as features, are broken into gran-

ular artifacts called scenarios [9], described using the formal language Gherkin and

having the following levels of detail:

• Each scenario consists of an initial context, event and expected outcome, re-

ferred to as steps.

• Each of the above three steps starts with a predefined Gherkin keyword, which

is necessary to execute the tests in later stages.

56



Work Product - UI/UX Design Prototype (describing the Feature alpha):

Knowledge crunching is essential to obtain an understanding of the domain. Fea-

tures/scenarios enable capturing the application requirements and provide a useful

abstraction of the domain logic to be modelled in the domain model.

The design prototype, useful in assessing design concept feasibility, would be pred-

icated on features identified. The design prototype being considered here would be

specifically oriented to the User Interface/ User Experience (UI/UX) aspects of the

application. This also opens up opportunities for domain model discovery/validation

via client interaction with the UI.

The associated activity, “Prototyping of UI/UX based on identified features”, is

iterative. Brainstorming sessions for the iterations deal with the design ideas and

their feasibility given the constraints/boundary conditions. The accumulated design

ideas are implemented to refine and build the design prototype [28]. Client inputs are

assessed along with internal improvement recommendations to decide on the design

changes forming part of the subsequent iteration’s scope. The iterations are concluded

upon satisfactory closure of all client requirements.

Work Product - Test Cases (describing the Feature alpha):

BDD is conceptualized on test-driven development (TDD) and automated acceptance

tests to verify the correctness of the application [43, 51]. The scenarios in the features

are broken down into steps, starting with a predefined Gherkin keyword to help test

execution in later stages as test cases are created.

The requirement specification becomes a “living documentation” [43] via the trace-

ability of features to implementation and testing activities. The validation of the test

cases happens via the activity “Validate from customer/via system testing” as the

validation counterpoints happen to be the (internal) system testing and the cus-

tomer/user acceptance testing.

57



3.2.2 Work Products and Activities for the Microservice al-

pha

The Microservices practice using DDD has the following work products for the Mi-

croservice alpha:

• Microservice Design,

• Microservice Build and Deployment Script, and

• Microservice Test Cases.

Figure 3-2 represents a model of the Microservices practice using DDD, showing

the relationships between the elements (alpha, work products and activities) in the

practice corresponding to the Microservice alpha, the activity flow and the relation-

ships with kernel elements (e.g. Microservice and Software System).

Figure 3-2: The Essentialized model showing the work products and the activities for
the Microservice alpha

Work Product - Microservice Design (describing the Microservice alpha):

This captures microservice design aspects like behavior, internal design and interfaces.

The activity to “Identify Microservices using Bounded Contexts” is key since bounded

contexts with proper granularity, would be candidates for microservices on a 1:1 basis.

Related activities to specify UI, Application and Infrastructure layers and subsequent

58



derivation of APIs would be carried out to complete the design. This work product

comprises the following levels of detail:

• Scope of a microservice is articulated to specify the behavior.

• The elements within the microservice are next specified which would constitute

the more detailed internal structure, facilitating coding activities.

• Scope of a microservice in terms of its interfaces is specified.

Work Product - Microservice Build and Deployment Script (describing

the Microservice alpha):

This is about realizing the design by using the implementation specifics (like pro-

gramming languages, APIs, databases or repositories, any framework that might be

used, and so on). Automation would be leveraged to enable the production and de-

ployment of each microservice in a repeatable fashion. This work product comprises

the following levels of detail:

• Initially there would be a plan to attain the said objectives, breaking it down

into steps without an actual implementation in terms of scripts.

• Then the actual script is constructed and its workability in the development/deployment

instance is ensured.

• Subsequently the efficacy of the script in the eventuality of microservice up-

grades (which may be a continuous process) is ensured so that other elements

(like other microservices) are not affected.

Work Product - Microservice Test Cases (describing the Microservice al-

pha):

Testing of a microservice starts with identifying scenarios. Given a microservice’s ex-

ecution dependencies, it might necessitate stubbing out the associated dependencies.

This work product comprises the following levels of detail:

59



• First the scenarios for the microservice usage are listed in priority order.

• Test case scope is established with stubbing of dependencies if needed.

• The scripting and automation of the test cases are accomplished, which are to

be executed as part of the build and deployment process.

3.2.3 Work Products and Activities for the Domain Model

alpha

The Microservices practice using DDD has the following work products for the Do-

main Model alpha:

• Domain Views,

• Bounded Contexts, and

• Context Map.

Figure 3-3 represents a model of the Microservices practice using DDD, show-

ing the relationships between the elements (alpha, work products and activities) in

the practice corresponding to the Domain Model alpha, the activity flow and the

relationships with kernel elements (e.g. Domain Model and Software System).

Work Product - Domain Views (describing the Domain Model alpha):

To simplify the modeling and make it more structured, modelling the various domain

aspects via different diagrams is encouraged, and “domain views” are utilized in that

context [44, 28]. Accordingly, the domain model would comprise different domain

views (containing domain objects) that are assigned to a specific domain view type.

This domain view type is used to determine the domain objects and identify the

possible representation (say with UML diagrams). A type of domain view is specified

through one or more stakeholders.

A domain view may be of two types, having the following levels of detail:

60



Figure 3-3: The Essentialized model showing the work products and the activities for
the Domain Model alpha

• the “relation view” addressing the static behavior of the domain. This would

be utilized for modelling domain objects with emphasis on their (real-life) inter-

relationships [28].

• the “process view” addressing the dynamic behavior of the domain. This would

be utilized for modelling the processes of the domain, as the focus would be on

domain objects’ interactions [28].

The associated activities are “knowledge crunching” to create the domain design and

apply the design patterns, which are essentially iterative in nature.

Work Product - Bounded Context (describing the Domain Model alpha):

As “knowledge crunching” [17] is applied to gather the domain knowledge and the

structure of the business, such “application business analysis considerations would

lead to the bounded contexts” [45]. ”A bounded context (1) exhibits high cohesion

and low coupling, (2) can be managed by one development team, (3) ideally has

high autonomy to reduce communication/coordination effort between development

teams, (4) has a unique language that is not (necessarily) shared and (5) represents

a meaningful excerpt of the domain” [45].

61



Each of the established bounded contexts is a potential microservice requiring

or offering a communication interface. Efforts should be taken to make a bounded

context fine-grained enough to contain one and only one microservice, such that it

results in a clean mapping amongst the bounded contexts, microservices and the

respective development teams in charge which can help maintain the architecture

over time. The crucial activity here is to map the bounded contexts to microservices.

In a DDD project, there would be multiple bounded contexts in play - one of those

being the Core Domain. There will also be various Subdomains in other bounded

contexts. With DDD strategic design, the most optimal modeling composition would

result in one Subdomain per bounded context and vice versa. Sometimes there might

be multiple Subdomains in one bounded context, but it’s a sub-optimal modeling

outcome [52].

A Subdomain is a sub-part of the overall business domain. Subdomains help

logically break up the whole business domain to facilitate understanding the problem

space on a large, complex project. It is also a clear area of expertise.

Layers usually found in a bounded context would be “Input Adapters (UI con-

trollers, REST endpoints and message listeners); Application Services orchestrating

use cases and managing transactions; and Output Adapters such as persistence man-

agement and message senders” [52].

Work Product - Context Map (describing the Domain Model alpha):

The bounded contexts with their interconnections represent the application’s domain

knowledge, as context map models the bounded contexts’ relationships [45]. Re-

garding the context mapping activity, understanding inter-team relationships and

integration between bounded contexts are important. Clear separation and defined

contracts between those make change management easier.

Teams in charge of interdependent bounded contexts need proper communication

amongst themselves. The extent of communication efforts needed between them

as well as clear inter-communication paths need to be established. This drives the

specification of dependencies and communication channels between teams, eventually

62



helping to select a communication pattern based on [17, 18]. Communication patterns

like Anti-Corruption Layer (ACL), Open Host Service and Published Language help

minimize inter-team communication as well as the interface change repercussions.

Adding those bounded contexts and communication relationships is an essential part

of the context map. For instance, when communication possibilities between teams

may not be very apparent (cases involving the adoption of foreign services), DDD

patterns like ACL can be useful. Finally, the relationships (including the pattern)

and the bounded contexts would be used to embellish the context map diagram [45].

The type of interface supplied to enable integration with a given bounded context

is predicated on what the owning team of the said bounded context provides (e.g.

RPC via SOAP or messaging interface using queues). If database integration is

unavoidable, it is advisable to ensure consuming model isolation via ACL [52].

While carrying out the activity of using implementation specifics (like mapping

the domain objects into classes for an object oriented programming context), the

alignment of the context map to the customer’s domain needs to be maintained;

consequently, a natural-looking architecture is realized [46].

3.3 Summary of chapter

A Domain Driven Design (DDD) approach can help organizations reap the full bene-

fits of adopting microservice architecture. We have leveraged Essence in our endeav-

our to develop a framework to address the microservices lifecycle leveraging DDD. We

have identified and proposed three alphas [53] and the associated work products and

activities, depicting their inter-relationships within the process flow [54]. We hope

this can act as an aid in the successful adoption of related practices in the industry.

While this is completely industry agnostic, we would now focus our attention

on a specific industry scenario, the automation of CRM pre-sales for the real estate

industry, for the remaining parts of this thesis. We would endeavour to create an

agile approach using Scrum and Essence to address project development in the said

industry scenario in the next chapter.

63



64



4
An agile approach to automate Real Estate CRM

(pre-sales) using Scrum and Essence

Contents

4.1 Business Process Modelling for in-scope CRM pre-sales

functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Adoption of Essence and Scrum . . . . . . . . . . . . . . . 69

4.3 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . 73

Agile transformation seems to be in use all around us but according to Jeff Suther-

land, co-founder of Scrum, a significant number of Scrum implementations tend to

run into issues. At least part of the solution, according to Sutherland, can be found

in the Essence framework as he goes on to underline the value of Essence by pointing

out Essence as “the key to success” in his blog ‘Better Scrum with Essence’ [55].

Here we talk about the automation of the pre-sales function of real-estate CRM

in an agile way while leveraging Essence by presenting the journey of a representative

real-estate organization named Nirmanik to address real-life industry problems.

To understand the key concepts of Essence one can refer back to section 2.1 of this

thesis. The domain/industry understanding is provided in section 2.4 of this thesis.

We have the subsequent sections to address the following:

• Business Process Modelling for in-scope CRM pre-sales functionalities

65



• Adoption of Essence and Scrum

• Summary of chapter

Let us now discuss the imperatives facing a real-estate organization, Nirmanik,

as we attempt to address the requirements to automate the pre-sales Management

system and analyze the business processes using a modelling approach.

4.1 Business Process Modelling for in-scope CRM

pre-sales functionalities

4.1.1 Background

A large conglomerate, as part of its diversification strategy, had ventured into real

estate to take advantage of the favourable market conditions and synergy with its

other affiliated operations and spun off the Nirmanik organization. It had recruited

people with knowledge of real estate business in key positions to execute the plans

to kickstart the real estate venture. While the operation started in a predominantly

manual mode, a clear need was felt to automate the processes. The conglomerate

had an in-house IT team with a track record of catering to many of the affiliated

organizations’ IT initiatives and hence a good knowledge of the prevailing software

stacks and experience of collaboration. An empowered team was formed consisting

of key people from the real estate business, key people from the IT team and specific

representation of the top management stakeholders.

The designated team went about evaluating the existing CRM products in the

market. Features of some license-based products mapped favourably to the required

functionalities but operating expenditures like yearly license renewal were high as li-

censes were needed for all the telecallers, sales executives and the management team.

Other products would require significant customization for extending the product

features to realize desired functionalities, resulting in a sizeable one-time implemen-

tation cost on top of recurring licensing costs. None of these seemed to be an attractive

66



proposition.

After a lot of deliberation, the designated team decided to recommend leverag-

ing the conglomerate’s in-house IT team to custom build a solution to address the

requirements. Based on the team’s recommendations, the management approved an

internal project to engage the in-house IT team along with the business experts to

build a home-grown software solution on cloud using a standardized software stack

to address the business requirements in an agreed time window. While there would

be a one-time investment for implementation cost, the yearly operating expenditure

should be reasonably low since there would be no recurring product licensing costs

involved.

4.1.2 Broad Scope

As part of the pre-sales automation scope for Nirmanik, the focus would be on the

following business processes:

• Property Management

• Lead Generation / Marketing for Properties

• Automated Workflows

Let us now model the above functionalities and process flow using appropriate

methodologies.

4.1.3 Functionalities to be Modelled

Nirmanik had put up a company website with its property listings to solicit enquiries

from prospective customers. A team of tele-callers would sift through those inquiries

as well as scout the leads from online real estate portals or social media after those are

de-duplicated (removing potential repetitions), and call up the promising prospects.

The leads finding response, termed “opportunities”, would next be allocated (follow-

ing some algorithm) to a team of Sales Executives for subsequent site visits. The Sales

67



Executives would meet the prospective customers at the appointed time to carry out

actual site visits. Subsequent interactions would lead to either a showing of intent

from the prospect eventually culminating in a sale of property (booking) or lost op-

portunity. Handling of the sale of property would be done via the sales / post-sales

process which would be beyond our scope.

4.1.4 Process Modelling

We have captured the workflow of real-estate pre-sales CRM functionalities in scope

using the “high and low communication flow orientation diagrams” [56] in Fig. 4-1

and Fig. 4-2.

Figure 4-1: Communication Flow of real-estate pre-sales CRM

Figure 4-2: Functional Flowchart of real-estate pre-sales CRM

Let us now narrate how the real-estate organization, Nirmanik, adopted Essence

and Scrum to address their business challenges.

68



4.2 Adoption of Essence and Scrum

To understand how Essence and Scrum come together to create a strong value propo-

sition, it is important to note that Essence doesn’t propose any fundamental change

to the actual Scrum content but allows for an enriched presentation of the same to

teams. As popularized in the experiment conducted by Sutherland [55], a key aspect

of Essence is the usage of cards to represent the main concepts of any practice, such

as the principles, roles, activities and work products.

Thus a pragmatic approach to achieve project success would be for the “Agile

mindset” and Essence to go hand in hand facilitated by the “Alpha State Cards” [57]

(shown in Fig. 4-3).

Figure 4-3: Alpha State Cards

Most teams using Scrum would track the state of fine-grained things like individual

Product Backlog Items or Improvements. While Essence offers to help by clearly

delineating the states they go through, the team may still miss the forest for the trees

by focusing too much on the finer details and missing the big picture in the process

until it’s too late.

Essence comes to the rescue by pointing out “the essential things to track as

Alphas, each with a defined life-cycle of states and a checklist for each state”. An

alpha is “an essential element of the software engineering endeavor; one that is relevant

to an assessment of its progress and health.” [9].

Essence prescribes certain key Alphas that are universally applicable irrespective

of the practices considered, as they enable a team to figure out where they are in

the big picture. Let’s map out the states of the Essence Kernel Alphas with regard

69



to the development endeavour undertaken by the Nirmanik team, based on certain

assumptions regarding the Essence kernel alpha states for the Nirmanik project.

4.2.1 The Kernel Alpha states of the development endeavor

undertaken by the Nirmanik Team

We would use the convention of adding Nirmanik:: prefix to the generic artifact name,

with the resulting name put in italics, to distinguish artifacts used in the Nirmanik

project context from the generic Essence artifacts.

Let’s start with alphas in the Nirmanik::Customer area of concern and map their

states.

• Nirmanik::Opportunity - Value Established

The Nirmanik management had already approved an internal project to ad-

dress the business requirements. The in-house IT team would be engaged along

with business experts to build a home-grown software solution on cloud using

a standard software stack.

• Nirmanik::Stakeholders - Involved

External stakeholders would include the top management of the Nirmanik orga-

nization who had shown a willingness to fund the new software effort. Internal

stakeholders would include the development team.

Next, we would be considering the alphas in the Nirmanik::Solution area of con-

cern.

• Nirmanik::Requirements - Coherent

The requirements for the proposed Nirmanik software solution that had to be

built were clarified and the internal algorithms were well-articulated.

• Nirmanik::Software System - Architecture Selected

Nirmanik had discussed and budgeted for the software solution to be built and

the associated fees. The team had identified the sources for leads (company

70



website, real estate portals, social media feeds, etc.), obtained interface specifi-

cations and decided on the specifics for triggering the alerts in the workflow.

Finally, we talk about the alphas in the Nirmanik::Endeavor area of concern.

• Nirmanik::Work - Prepared

There was evident clarity regarding which all stakeholders were funding this

work. The team had decided to utilize a backlog stemming from the require-

ment set drawn up for planning purposes. They also decided to keep a regular

communication channel open with their stakeholders to ensure the relevance of

their backlog.

• Nirmanik::Team - Performing

While the development team’s IT personnel had different skill sets on an in-

dividual basis (like the front-end technologies, the backend technologies, and

integration skills), collectively they possessed the know-how of the full software

stack needed for development. The IT people used their previous shared experi-

ence of implementing IT initiatives of the parent conglomerate, while the wider

team leveraged their experience of undertaking the joint exercise to recommend

appropriate products.

• Nirmanik::Way of Working - Foundation Established

The team continually made sure to understand the scope of each requirement

item by maintaining regular touchpoints with stakeholders. They routinely

scrutinized the way of working and made changes if necessary. The team had

established a development/test environment and agreed on the software stack

to be used [2].

The Nirmanik team members had their own ideas of which industry-related prac-

tices they’d like to select. While the team would brainstorm later to select the key

practices for their development process, they decided at the outset to utilize the ker-

nel extensively to apply the essence of software engineering and adopt Scrum on top

of it. The following subsection provides an elaboration of the same.

71



4.2.2 Adoption of Scrum within the Essence framework

“A practice expressed in the Essence language provides explicit guidance to teams by

clarifying the things to work with, the things to do, the required competencies and

patterns” [2].

If a team’s starting point is a full-scale prescriptive ‘framework’ and then it keeps

on making decisions as to which elements need to be left out, there’s a likelihood of

adopting more than what’s needed. An inexperienced team may become saddled with

unnecessary techniques at the outset that way or burdened with unnecessary process

overhead. On the contrary, starting with the essential and then adding one practice

as required for a specific area is a better strategy, which is in line with what Essence

recommends.

The Nirmanik development team had to decide on which specific practices to be

adopted on top of the kernel. They held brainstorming sessions to select the key

practices and decided to opt for iterative development in the agile way as the agreed

approach of work, settling on Scrum.

Alphas are key to assessing progress and health in a development endeavor per

Essence. “The kernel calls out universal alphas explicitly, while practices call out

practice-specific alphas” [2]. The practice specific alpha-s for the Scrum practice are

the sprint and the Product Backlog Item (PBI) alphas.

By definition, a sprint is a given interval of time whereby completion of some

useful work is achieved. States of the sprint alpha would be: Scheduled, Planned

and Reviewed. As teams address work items in a backlog, the work items, known as

Product Backlog Items (PBIs), are considered to be alphas as well. States of the PBI

alpha would be: To Do, Ready, Doing and Done.

The team would split up the whole endeavor into iterations to help build the

software in increments, leveraging Scrum. This would entail the following activities:

Sprint Planning, Daily Scrum, Sprint Review and Sprint Retrospective [2].

During sprint planning, the team along with the product owner (PO) would select

the PBIs for the sprint and agree on the prioritized ones for inclusion in the upcoming

72



sprint. Each day, a brief team meeting (daily scrum or daily standup) is held to

coordinate the work and plan for the upcoming day. Each team member explains

the work accomplished since the last meeting, the current plan, and any obstacle in

meeting the goal. This meeting does not discuss solutions to problems - a separate

meeting for that may be convened. A sprint review activity is held at the end of

the sprint with key stakeholders to review the product in its current state. The

stakeholders might recommend certain product improvements that will get added to

the product backlog. The sprint retrospective, conducted at the end of each sprint,

provides an opportunity to figure out improvements in the way of working going

forward.

There are three key roles: the PO, the Scrum master and developers [2]. These

roles are represented as patterns in the Essence language; Sprint Planning, Daily

Scrum, Sprint Review, and Sprint Retrospective are activities; while Product Backlog,

Sprint Backlog, and Increment are work products [2].

Essence uses cards to represent the main concepts of a practice. There is a set of

cards that describe Scrum. They facilitate a tactile way to get familiarized with the

ideas, especially via game play with a team, and help drive the discussions within the

team. Typically they have some annotation summarizing each concept. Making this

information accessible to the team acts in setting up quick reminders and provides

ground truths around the Scrum framework. The process thus is kept living and

breathing within the context of the usual workflow.

4.3 Summary of chapter

We have shown how a representative real-estate organization has gone about au-

tomating their pre-sales CRM function in an agile way leveraging Scrum within the

Essence framework after we have done the business process modelling for in-scope

CRM pre-sales functionalities.

However, additional practices would be needed to carry out specific software de-

velopment activities like requirement elicitation or deployment. For example, since

73



the solution area is not addressed by Scrum, the team would require explicit guidance

there. We would be showing subsequently the adoption of the User Story practice to

address the requirements area and the microservices practice to develop and deploy

the software system being built with regard to this endeavour.

74



5
Extending Essence to adopt User Story and

Microservice practices leveraging Scrum to

automate pre-sales function of real estate CRM

Contents

5.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Considerations for composing practices into method us-

ing Essence . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Adoption of User Story practice . . . . . . . . . . . . . . 81

5.4 Adoption of Microservice practice . . . . . . . . . . . . . 89

5.5 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . 98

Here we would be extending the exercise to automate the pre-sales CRM function

of the real-estate organization, Nirmanik, leveraging Essence as we would adopt two

practices, User Story and Microservices, into the method being constructed using

Essence.

As far as the domain/industry is concerned, section 2.4 of this thesis provides an

understanding of the background. For the key concepts of Essence, section 2.1 may

be referred to.

The IT organization structure of a real estate company has a strong bearing on

its technology adoption. Typically, a real estate company tends to fall into one of the

75



following three categories that are applicable to all non-IT companies in general:

C-I: While there is a clear IT strategy present for the organization, it may

not have a support IT structure, or even if it does, that IT structure is not

equipped to implement the IT strategy on its own. So it is necessary for that

organization to hire external consultants and/or IT vendors to implement that

IT strategy. If a support IT structure does exist for such an organization, it may

not be capable of executing projects by itself, and would likely find it difficult

to embrace the latest technology stack/programming paradigms. However, its

personnel might possess the skills to interact with external consultants / IT

vendors for successful project implementation and can possibly take over the

support and maintenance post go-live. Joint application development might

also be a possibility.

C-II: This organization is characterized by the presence of a mature in-house

IT division capable of executing project(s) (which can involve greenfield devel-

opment or package solution adoption) on its own. The IT division also has the

expertise and maturity to embrace the latest technology stack/programming

paradigms.

C-III: IT support is almost non-existent in this case, with the organization

just being able to stay afloat with no significant investment in IT resources

forthcoming.

Nirmanik belongs to category C-I above. It has an in-house IT team that would

need prescriptive guidance to translate the IT vision into reality, necessitating the in-

volvement of external IT consultants to provide the necessary expertise and facilitate

methodology adoption.

As we made Essence central to Nirmanik ’s endeavor as a framework while lever-

aging Scrum, it became clear that we would need to induct additional practices to

address the four consecutive kernel solution activity spaces: “Understand the Re-

quirements”, “Shape the System”, “Implement the System” and “Test the System”,

76



which are key to the software development lifecycle spanning requirement analysis,

design, development and testing. The primary aim here would be to articulate our

accomplishment in leveraging Essence to help Nirmanik address the said kernel solu-

tion activity spaces by adopting the User Story and the Microservice practices, and

detail those out along with the alphas and work products associated with them as

part of their essentialization.

While the User Story and the Microservice practices are both quite well estab-

lished in their individual capacities, the value addition here would be to weave them

into a method leveraging Scrum after essentializing them as guided by the Essence

framework. The resulting method can also act as a guidance for similar project imple-

mentation endeavors in a variety of industry/domain settings where these practices

are deemed to be good choices, assuming the organization in question either falls in

the aforementioned category C-I requiring help from external IT consultants / IT

service providers or belongs to category C-II by virtue of having a robust internal

IT organization. Organizations belonging to category C-III would not qualify for the

reasons already stated.

There is an even wider context where it might be possible to extend our work,

whereby the exercise carried out here can act as a blueprint for a variety of indus-

try/domain settings where the practices selected (or found suitable) happen to be

different from the ones used here. Leveraging the principles of our work here and

keeping Essence as the central framework, those practices can be essentialized and

composed into a method to realize the objectives for the industry/domain setting

under consideration.

We have the subsequent sections to address the following:

• Context

• Considerations for composing practices into method using Essence

• Adoption of User Story practice

• Adoption of Microservice practice

77



• Conclusion and future direction

5.1 Context

The industry being considered is the real estate business where technology driven

automation has been making a real difference.

The real-estate organization, Nirmanik, has put up a company website with its

property listings to solicit enquiries from prospective customers apart from traditional

advertisement channels like billboards and hoardings. The inquiries from these chan-

nels, online real estate portals, social media and call inquiries would be scouted after

being de-duplicated (removing potential repetitions), and the list of these potential

customers i.e. the leads (resorting to the customarily used term) would be called up.

The status of a lead who is getting ingested into the system for the first time

(Fresh Lead) would be one of the following:

• Guest Lead: Any Fresh Lead who wants to visit but is yet to confirm a visit

date. It is expected that a telecaller would try calling up the lead a certain

number of times to fix the visit date to convert the lead to a Prospective Lead.

• Prospective Lead: Any Fresh Lead who shows a clear intent to visit right away

by providing a visit date.

In response to the request by the Prospective Lead, an assignment process would

be carried out to match the request to an available Sales Executive to arrive at a

mutually acceptable time slot for the requested site visit date.

The Sales Executives would meet the prospective customers at the appointed time

to carry out actual site visits. Subsequent interactions would lead to either a showing

of intent from the prospect eventually culminating in a sale of property (booking)

or lost opportunity. Handling of the sale of property would be done via the sales /

post-sales process which is beyond our scope.

While the key practices for Nirmanik ’s development process were yet to be se-

lected, it was decided at the outset to leverage Essence as the framework. The states

78



of the Essence Kernel alphas were mapped with regard to the development endeavor

undertaken by Nirmanik, based on certain assumptions regarding the Essence kernel

alpha states for the project, as shown in Table 5.1. [3].

Table 5.1: The states of the Essence Kernel alphas mapped with regard to the devel-
opment endeavor undertaken by Nirmanik [3].

Areas of concern Alpha Alpha state
Nirmanik::Customer Nirmanik::Opportunity Value Established

Nirmanik::Stakeholders Involved
Nirmanik::Solution Nirmanik::Requirements Value Conceived

Nirmanik::Software System Architecture Selected
Nirmanik::Endeavor Nirmanik::Work Initiated

Nirmanik::Team Performing
Nirmanik::Way of Working Foundation Established

We would continue to follow the convention of adding Nirmanik:: prefix to the

generic artifact name, with the resulting name put in italics, to distinguish the Nir-

manik artifacts from the generic Essence artifacts.

A successful progression of the Nirmanik development endeavor would be reflected

in the advancement of the above-mentioned states of the Essence Kernel alphas. It

clearly would become an imperative to decide on the best practices to adopt, culmi-

nating in the selection of key practices for the development process while continuing

to have Essence as the framework while leveraging Scrum. The next section would

talk about the considerations that would apply to compose practices to arrive at a

method using Essence.

5.2 Considerations for composing practices into method

using Essence

A method exists to facilitate the progress of software development teams by provid-

ing guidance on things to be done during the development process; in other words,

providing access to the necessary practices. Methods are compositions of practices,

79



and as the number of practices increases, possible combinations of those can increase

significantly. It thus follows that while methods and method variants abound in the

world, the instances of reusable practices are much less.

A key value of Essence is in its ability to act as a common ground and to provide

guidelines for all practices, thus providing clarity in understanding and subsequently

enabling appropriate modification of practices. Essence provides a language and a

kernel of software engineering, and facilitates the comparison of practices described

using the same common ground [2].

While this allows the practices contributed by the software engineering community

to be composed in different ways as necessary to form methods, those practices need

to be essentialized first i.e. they need to be described using Essence (the kernel

and the language) and as a result, the methods composed by using those practices

would also be essentialized. Essentialization ensures that the descriptions of the

method/practice are detailed to the basics. The value addition is realized by libraries

of practices created out of many different methods. Thus we can mix and match

practices selected from a shared Practice Library such as one illustrated in Fig. 5-1(a)

to obtain a method that suits a project context for organizations like Nirmanik which

belong to category C-I as well as those belonging to category C-II. While the starting

point involved the Essence kernel as the base, we would go on to select a number of

practices that would constitute Nirmanik ’s way of working. The set of practices thus

selected, along with the kernel, would become the method for Nirmanik, as shown in

Fig. 5-1(b) and described in detail later.

If a team’s starting point is a full-scale prescriptive ‘framework’ and then it keeps

on making decisions as to which elements need to be left out, there’s a likelihood of

adopting more than what’s needed. An inexperienced team may become saddled with

unnecessary techniques at the outset that way or burdened with unnecessary process

overhead. On the contrary, starting with the essential and then adding one practice

as required for a specific area is a better strategy, which is in line with what Essence

recommends. This is very much applicable for organizations in category C-I, where

the external IT consultants or the vendor IT organizations entrusted with the project

80



(a) (b)

Figure 5-1: (a) An example of a shared Practice Library. (b) Method: composition
of practices on top of the Essence kernel and language (for Nirmanik)

implementation should be well versed with this methodology and can facilitate the

composition of the method based on the practices chosen after essentializing them.

This can also be extended to the organizations in category C-II as they undertake

project implementations on their own, because even though they have good experi-

ence/knowledge of the technical stack, their understanding of software engineering

can always benefit from the stated guidance. The applicability to organizations be-

longing to category C-III is ruled out for reasons already stated before.

It was decided to opt for the iterative development in the agile way as the agreed

approach of work for Nirmanik, building the software in increments leveraging Scrum.

However, Scrum primarily addresses the activity spaces in the endeavor area of con-

cern. We could discern gaps in the requirements area for instance, which is part of

the solution area of concern, as we thought about the next steps. Acknowledging

that the team would benefit from some explicit guidance regarding activities in the

solution area of concern to attain greater effectiveness, we would adopt User Story

practice as detailed in the following section.

5.3 Adoption of User Story practice

In the previous section where we mapped the states of the Essence Kernel Alphas for

the project, the Requirements alpha [2] was deemed to be at the Conceived state, as

shown in Fig. 5-4(a). To address the requirements and thus advance the Requirements

81



alpha along the subsequent states, we decided to use the User Story Lite practice, a

simplified version of the User Story practice, in our endeavor. User stories enable a

team to contemplate, question, and understand the value of their endeavors from a

user-centric point of view.

5.3.1 User Story Lite practice - an overview

A user story is a depiction of the system functionalities of interest, articulated by an

approach utilizing informal discussion between the system user and the developer [58].

User stories might be considered as sub alphas, like treating Requirement Items as

sub-alphas of Requirements [2]. The User Story Lite practice enables us to break

down Requirements into User Story sub-alphas. The corresponding alpha card is

shown in Fig. 5-5(a).

The work products in the User Story Lite practice are the Story Card, and the

Test Case for each user story. A story card captures the narrative of a user story

(shown in Fig. 5-6(a)), and a test case helps verify the same [2].

Fig. 5-2 represents the Essentialized model showing the User Story Lite practice,

showing relationships between the elements (alpha, work products and activities) in

the practice, the activity flow and relationships with kernel elements. These will be

elaborated upon in the subsequent description of how we had gone about adopting

the User Story Lite practice for Nirmanik.

5.3.2 How we adopted User Story Lite practice for Nirmanik

Working with User Story Lite would entail several activities, such as to find user

stories, prepare each user story for development, and then accept the implementation

of each user story.

The following user story was created:

Nirmanik::Basic User Story

The top management of the Nirmanik real estate organization wants to have an

automated pre-sales management system in place so that leads obtained from

82



Figure 5-2: The Essentialized model showing the User Story Lite practice [2].

various sources can be acted upon and nurtured to closure quickly using well

defined workflows with provision of appropriate and timely alerts before

handing over to Sales/Post-Sales functions

Once we decided to adopt User Story Lite for Nirmanik, we had to undertake the

following activities:

“Find User Stories”,

“Prepare each User Story for development”,

“Apply the Splitting User Stories Pattern”, and

“Accept the implementation of the User Story” [2].

Here is an elaboration on how these activities were undertaken.

Nirmanik::Find User Stories

The Find User Story activity card [2] is shown in Fig. 5-6(b).

The user stories to be taken up for development were identified, which would be

as follows:

i. Nirmanik::Track pre-sales leads

83



ii. Nirmanik::Assign prospective leads to sales executives

iii. Nirmanik::Facilitate sales executive’s activities to nurture the opportunity to-

wards closure

iv. Nirmanik::Build reports / dashboards to facilitate timely action by management

Nirmanik::Prepare a User Story

The Prepare User Story activity card [2] is shown in Fig. 5-5(b).

While proceeding to prepare the user stories for development, our primary focus

was on the first story in section 5.3.2, Nirmanik::Track pre-sales leads, as it was a

key part of the CRM pre-sales activities for Nirmanik and provided the basis for

the remaining three user stories as mentioned above. The user story developed for

Nirmanik::Track pre-sales leads is as follows:

User Story Nirmanik::Track pre-sales Leads

The Nirmanik stakeholders would like to identify the pre-sales Leads coming from various sources

and track them as they progress.

There should be a facility to capture Leads coming from various sources

Sources can be online portals, social/digital media, company website, calls etc.

Leads should be de-duplicated.

While the same Lead may come multiple times from different sources, only one instance

of the same should be tracked over the effective lifecycle of the Lead.

There should be a provision to indicate the progress or maturity of Leads.

Applicable values for Status field for progress: Guest / Prospective / Inactive / Cancelled.

For the lead indicating site visit date (timeslot) preference, the lead status would be

updated to Prospective Lead.

Acceptance criteria:

1. There should be provisions to ingest leads from multiple sources.

84



2. There shouldn’t be duplicate instances of leads over a lead’s effective lifecycle.

3. The Status field for the progress of leads should change appropriately as leads

are tracked and followed up for visit confirmation.

Nirmanik::Applying the Splitting User Stories Pattern

This involved splitting the larger user stories into smaller stories in alignment with

the INVEST criteria, especially the small and testable criteria [2]. The corresponding

pattern card, Splitting User Story, is shown in Fig. 5-7(a).

Fig. 5-3 shows how the first user story, Nirmanik::Track pre-sales leads, was split

into three smaller ones.

Figure 5-3: Splitting the first user story: Nirmanik::Track pre-sales leads.

Nirmanik::Accept a Story

This is about clearly depicting the acceptance criteria for the user stories. The fre-

quent communication between the developers and the product owner over delivering

the user story ensured better alignment and smoother acceptance. The Accept User

Story activity [2] is shown in Fig. 5-7(b).

With the adoption of User Story Lite practice, the requirements for the pro-

posed software solution to be built got clarified, a shared solution came to exist

within the team, requirements format was agreed and the internal algorithms were

85



well-articulated. Accordingly, the Requirements alpha [2] would advance from the

Conceived state, as shown in Fig. 5-4(a), to the Bounded and Coherent states, as

shown in Fig. 5-4(b) and Fig. 5-4(c) respectively.

Also, there was clarity now regarding the stakeholders funding this work. It was

decided to utilize a backlog stemming from the requirement set drawn up for planning

purposes, and to keep a regular communication channel open with the stakeholders

to ensure the relevance of the backlog, thus progressing the Work alpha [2] to the

Prepared state.

5.3.3 Alpha state cards for Requirements

We have shown the Essence alpha state cards for Requirements: Conceived, Re-

quirements: Bounded and Requirements: Coherent in Fig. 5-4(a), Fig. 5-4(b) and

Fig. 5-4(c) respectively.

(a) (b) (c)

Figure 5-4: Requirements alpha state card [2]: (a) Conceived. (b) Bounded. (c)
Coherent.

5.3.4 Applicable Essence cards for User Story Lite

We have shown the alpha card “User Story” in Fig. 5-5(a), the work product “Story

Card” in Fig. 5-6(a), the activity cards “Prepare User Story”, “Find User Story” and

86



“Accept User Story” in Fig. 5-5(b), Fig. 5-6(b) and Fig. 5-7(b) respectively, and the

pattern card “Splitting User Story” in Fig. 5-7(a).

(a) (b)

Figure 5-5: (a) User Story alpha card; (b) Prepare User Story activity card. Both
showing linkage with Essence elements.

(a) (b)

Figure 5-6: (a) Story Card work product. (b) Find User Story activity card.

5.3.5 The Value of the Kernel to the User Story Lite practice

A key accomplishment of essentializing the User Story Lite practice was to provide the

Nirmanik team with clarity regarding which alphas were being progressed. We helped

the Nirmanik team understand that the User Story Lite practice was instrumental in

helping them to achieve the following Essence kernel alpha states.

87



(a) (b)

Figure 5-7: (a) The Splitting User Story pattern card [2]. (b) Accept User Story
activity card.

• Requirements alpha: Bounded and Coherent state

• Work alpha: Prepared state

The three activities in User Story Lite [2] cover two kernel solution activity spaces,

“Understand the Requirements” and “Test the System”, shown as shaded in Fig. 5-8.

Figure 5-8: User Story Lite coverage of kernel solution activity spaces.

However, even with the adoption of the practices thus far, two kernel solution

activity spaces: “Shape the System” and “Implement the System”, remained yet to be

addressed, as signified by those two spaces positioned between the two aforementioned

shaded ones in Fig. 5-8. The next section describes how we would go about adopting

88



the Microservice practice to address design and implementation, which would cover

the two aforementioned kernel solution activity spaces, for Nirmanik.

5.4 Adoption of Microservice practice

The microservices architecture is about developing an application in terms of a col-

lection of services demonstrating properties like cohesiveness and loose coupling,

with each such service having complete ownership of its individual data, logic, and

behaviour[53]. Related functionalities are combined into a specific business capability

(termed as bounded context), with each microservice ideally implementing one such

capability [16]. It is important to identify the right kind of partition of the system into

microservices given the impact of the architecture on the system performance [20, 21].

In the Microservice practice, the microservices themselves can be viewed as sub-

alphas of the Software System kernel alpha [2]. We decided to use Microservices Lite, a

lighter version of the Microservice practice, for this endeavor. Individual components

within the Nirmanik::Lead Tracking subsystem were built as separate microservices

rather than as a monolith within Nirmanik. That approach ensured that there was

no tight coupling to external systems, thus enabling the exploration and evolution of

the new functionality in a de-risked manner.

Let us now understand the Microservices Lite (and Microservice) practice in

greater detail and describe how we went about adopting this practice for Nirmanik.

5.4.1 Microservices Lite practice - an overview

Microservices Lite begins by identifying the requirements by applying a suitable prac-

tice, say user stories. Then the microservices to implement the requirements would

need to be identified.

The primary alpha in the Microservices Lite practice is the Microservice alpha.

All work products and activities in this practice are related to this alpha. The Mi-

croservice alpha can be treated as a sub-alpha of the Software System alpha [2].

The corresponding alpha card is shown in Fig. 5-12. As a software system consists

89



of microservice sub-alphas, each microservice has a bearing on the progress of the

system [2].

The work products of Microservices Lite are as follows:

Design Model: Inspection of the software system is required to break it up into mi-

croservices leveraging criteria like low coupling and high cohesion. This work product

focuses on the interfaces between and the collaboration among microservices.

Microservice Design: Work product describing a microservice design from inter-

faces to behaviour.

Microservice Build and Deployment Script: A work product, an automated script

enabling each microservice to be deployed quickly, independent of others.

Microservice Test Case: A work product for measuring the behavior of a microser-

vice.

Fig. 5-9 represents the Essentialized model showing the Microservices Lite prac-

tice [2], the relationships between the elements (alpha, work products and activities)

in the practice, the activity flow and the relationships with kernel elements.

Figure 5-9: The Essentialized model showing the Microservices Lite practice [2].

Some select elements out of these will be covered in detail in the following section

which describes our adoption of the Microservices Lite practice for Nirmanik.

90



5.4.2 How we adopted Microservices Lite practice for Nir-

manik

Among the activities involved, a key one is about identifying Microservices, the Alphas

in the Microservices Lite practice.

For Nirmanik, the ingestion/consumption of leads from external sources (company

website, external property listing sites, social media, etc.) is independent of the

identification of duplicates amongst those leads, while lead tracking and follow-up is

an independent workflow altogether. These three demonstrate the essential attributes

of low coupling and high cohesion, thus making a good case for potential microservices.

Accordingly for Nirmanik::Lead Tracking subsystem, the microservices include one for

Ingesting Leads from external sources, one for de-duplication of Leads, and one for

Lead tracking and follow-up for visit confirmation.

As the initial efforts were focused on getting the design in place for the microser-

vice oriented architecture, the Design Model, and the Microservice Design work prod-

ucts would be the most relevant artifacts resulting from the said exercise. We would

accordingly consider the Design Model and the Microservice Design work products

and elaborate on those two in the context of Nirmanik, specifically taking the Nir-

manik::Lead Tracking Subsystem as an example.

Design Model

This describes the Software System alpha by listing the elements in the Software

System and showing their interactions [2]. Fig. 5-13(a) shows the Design Model work

product card [2].

Fig. 5-10 shows the design model created for the Nirmanik::Lead Tracking Sub-

system. The work product in question has progressed to the level of Collaborations

and Interfaces Defined, as it describes how the Nirmanik::Lead Tracking subsystem

microservices collaborate among themselves and interact with the external lead gen-

eration sources (like real estate portals).

The left-hand side of Fig. 5-10 shows the external sources of Leads. Most of them

91



Figure 5-10: Design Model for Nirmanik::Lead Tracking Subsystem.

would provide API interfaces. For those which don’t, suitable techniques need to

be employed to build interfaces to provide the details of the leads as appropriate.

These, collectively called iLeadEventProducer, are instrumental in emitting Lead

events. When an incidence of note takes place (say an interested customer searching

for a property listing) it would be transmitted via an event to the iLeadEventHandler

interface. The Nirmanik::Lead Tracking Subsystem would process that information

and leverage it to trigger the subsequent workflows.

The right-hand side of Fig. 5-10 shows that Nirmanik::Lead Tracking Subsystem

is designed using three microservices:

• Nirmanik::Ingesting Leads from External sources,

• Nirmanik::De-duplication of Leads, and,

• Nirmanik::Lead tracking and follow-up for visit confirmation.

Each lead would be collected through the iLeadEventHandler interface. This lead

ingestion process lends itself well to be treated as a microservice, shown as the Nir-

manik::Ingesting Leads from External sources microservice in Fig. 5-10. This ingestion

is accomplished via API, which can be push-based or pull-based. Pull API implies

92



some sort of batching mechanism. On the other hand, for leads that need to be

treated on a near real-time basis, push API would be preferred.

De-duplication of the leads ingested by the system is an important activity. An

individual interested in a given property might approach Nirmanik through multi-

ple channels (multiple third-party property listing sites, social media or even Nir-

manik’s own portal). This might result in duplicate entries for essentially one single

lead, resulting in potential redundancies and credit allocation problems later on. De-

duplication of leads is critical for pre-sales to increase the effectiveness and efficiency

of subsequent operations. Without it valuable resources might get wasted in pursuing

the same leads, the same prospect might receive multiple calls resulting in irritation

and possibly loss of sales, and reporting would become inaccurate.

A combination of key attributes of the prospect (e.g. mobile number and email

id) can be used to identify duplicate leads. Ways to handle this might be to reject all

duplicate leads outright or to treat the earliest lead to arrive as the parent lead and

consider subsequent duplicate leads as its children. The second approach can help

build intelligence on channel effectiveness in generating leads for Nirmanik.

The characteristics of this functionality also fulfill the key criteria for adopting

a microservices approach. This is shown as the Nirmanik::De-duplication of leads

microservice in Fig. 5-10.

Subsequently, the unique ingested leads are taken through a workflow as those

leads are called up, entailing changes in the Status field for progress associated with

leads based on the response (or lack of it) as detailed below.

The Status field for progress for the leads can assume, at this stage, one of the

following values as described below.

• Guest Lead: Any fresh lead who wants to visit but is yet to confirm a visit

date (time slot). It is expected that a telecaller would try calling the lead up a

certain number of times to fix the visit date (time slot) in order to convert the

lead to a Prospective Lead.

• Prospective Lead: Any fresh lead (or a Guest Lead) who shows a clear intent to

93



visit by providing a visit date (time slot).

• Inactive Lead: When the Lead does not respond to the telecaller. It is expected

that telecallers would try calling up the Inactive leads for a certain number of

times to fix up the visit date (timeslot) in order to convert them to Prospective

leads.

• Cancelled Lead: An Inactive Lead that remains unresponsive over three attempts

by the telecaller would have the status changed to Cancelled. A Cancelled Lead

would no longer be considered by the system. In case he approaches at a later

point in time he would be considered as a fresh lead and no past history would

be taken into account. A lead that responds to the telecaller but indicates

he is not interested in visiting in the foreseeable future is also categorized as

Cancelled.

For Prospective leads, the site visit date (timeslot) needs to be captured. The

next user story will be dealing with them.

This entire flow of activities has a good degree of cohesion and hence becomes a

good candidate for a single microservice, shown as the Nirmanik::Lead tracking and

follow-up for visit confirmation microservice in Fig. 5-10.

Each of the three microservices shows a high degree of cohesion internally but

low coupling with each other, satisfying the essential characteristics of microservices.

Each of these provides an iLeads interface to leads with a progressive amount of

refinement (or processing) to subsequent stages.

Microservice Design

This is a work product describing a microservice’s design, including the interfaces,

behaviour and internal design [2]. Fig. 5-13(b) shows the Microservice Design work

product card [2].

A key aspect of a microservice is its ability to communicate with other microser-

vices, which is realized by its interface or API. It needs to be ensured that the APIs

94



(i.e. the component interfaces) are loosely coupled, which would be instrumental for

independent deployment of microservices, again a key requirement in this paradigm.

While we have already covered a set of interfaces in the design model described

in the previous sub-section, there might also be interfaces that a microservice would

require for taking care of execution as explained below.

Figure 5-11: Microservice Design of Nirmanik:: Ingesting Leads from external sources.

Fig. 5-11 shows all the interfaces to the Nirmanik::Ingesting Leads from External

sources microservice, which are:

• iService - takes care of the execution,

• iLeads - handles the processed Leads, and,

• iLeadEventHandler - manages external Lead generating events.

Fig. 5-11 is a work product for the Microservices Lite practice, which in the

given context is drawn taking the Nirmanik::Ingesting Leads from External sources

microservice as an example from the Nirmanik::Lead Tracking Subsystem, which has

progressed to the level of Interfaces Specified.

As mentioned earlier, each of the remaining two microservices, Nirmanik::De-

duplication of Leads and Nirmanik::Lead tracking and follow-up for visit confirmation,

provides an iLeads interface to leads with a progressive amount of refinement (or

processing) to subsequent stages. Also, both these microservices will have an iService

interface to take care of the execution. We haven’t created separate diagrams to show

these two interfaces to those two microservices.

A key tenet to implementing distributed systems is to use business capabilities as

the design element, moving away from the data-centric design [46]. We would subse-

95



quently consider the adoption of a publish/subscribe workflow, keeping in mind that

adopting a message-oriented implementation is an effective way to keep the shared

interfaces between components up-to-date (with appropriate refactoring) and asyn-

chronous message-passing would aid in loose coupling, a desired trait of a microservice

architecture.

5.4.3 Applicable Essence cards for Microservices Lite

We have shown the “Microservice” alpha card in Fig. 5-12, the Design Model work

product card in Fig. 5-13(a) and the Microservice Design work product card in Fig. 5-

13(b) [2].

Figure 5-12: Microservice alpha card.

5.4.4 The Value of the Kernel to the Microservices Lite prac-

tice

Earlier in section 5.3.5 it was pointed out that two of the kernel solution activity

spaces, “Shape the System” and “Implement the System”, were still not addressed

after adopting the practices till that point.

We subsequently proceeded to adopt the Microservices Lite practice which ad-

dresses implementation guidance for Nirmanik, and is instrumental in covering two

96



(a) (b)

Figure 5-13: Work product card (a) Design Model. (b) Microservice Design.

kernel solution activity spaces, “Shape the System” and “Implement the System”,

shown as shaded in Fig. 5-14.

Figure 5-14: Microservices Lite coverage of kernel solution activity spaces.

The adoption of the Microservices Lite practice in addition to the User Story

Lite practice already adopted earlier would result in covering all four consecutive

kernel solution activity spaces: “Understand the Requirements”, “Shape the System”,

“Implement the System” and “Test the System”, as explained in greater details in

the next section.

97



5.5 Summary of chapter

We have crafted a view of the software project execution process in this chapter by

showcasing how we adopted the practices User Story Lite and Microservices Lite on

top of Essence kernel for the CRM automation journey of a real-estate organization,

building upon our previous work[3] of adopting Essence as the foundation leveraging

Scrum. Here we have identified four user stories for the applicable scope, out of which

the first one, tracking pre-sales lead, has been prioritized and addressed. Then we have

taken up the exercise of realizing the said user story via Microservice practice. Out

of the work products associated with the Microservice practice, we have prioritized

the Design Model and the Microservice Design work products and developed those

two in the context of the user story being considered, tracking pre-sales lead, as part

of our work here.

In this context, it might be worthwhile to touch upon some relevant considerations,

such as how we can ensure the verification of functional correctness at the user story

level and how the microservices identified in our solution are going to be implemented.

The microservice test cases work product deals with the verification of func-

tional correctness at the user story level, while the Microservice Build and Deploy-

ment Script work product is about realizing the design by using the implementation

specifics. We should consider these two work products and develop them if we de-

cide to broaden our scope of work and address the implementation and functional

correctness verification aspects in the future.

Another relevant question that may come up is how we can verify the performance

aspects of the proposed solution.

This is a non-functional requirement (NFR). While this is certainly important, as

far as the requirements aspect for the industry scenario in this thesis is concerned,

our primary focus has been on functional requirements, and hence this is not part of

the scope here. However, this can be a research possibility for us going forward.

Looking at Fig. 5-8 as well as Fig. 5-14, it can be observed that User Story Lite

and Microservices Lite practices together cover the four consecutive kernel solution

98



activity spaces: “Understand the Requirements”, “Shape the System”, “Implement

the System” and “Test the System”. This is depicted in Fig. 5-15 for ease of viewing.

Figure 5-15: Coverage of the composition of User Story Lite and Microservices Lite
of kernel solution activity spaces.

In other words, weaving the User Story Lite and the Microservices Lite practices

in the method composition allows us to address the software development lifecycle

spanning requirement analysis, design, development and testing.

Thus we have shown how established practices like Scrum, User Story and Mi-

croservices can be extended using Essence kernel as the unifying framework and how

those essentialized practices can be composed into a method tailored for a given orga-

nization. A key user story has been prioritized and addressed by leveraging the User

Story Lite practice. We have continued to focus on that user story by developing a

set of work products in Microservices Lite practice to provide an informed view.

While the exercise as described here has been carried out for an organization be-

longing to category C-I as mentioned before, this would be applicable for organizations

in category C-II as well.

The usefulness of the resulting method can be extended beyond the industry con-

sidered here as well as the domain, since that method would have wide applicability

by acting as a guidance for similar project implementation endeavors in other indus-

tries and domains. While the User Story and the Microservice practices are almost

ubiquitous in their own right, the exercise carried out here has enabled us to essen-

tialize these practices and compose them into a method, as guided by the Essence

99



framework.

This has the potential to be extended to an even wider scope, whereby it can act

as a blueprint for other industry/domain settings which would require a selection of

practices different from the ones used here. The principles of our work here can be

leveraged keeping Essence as the central framework, essentializing the new practices,

and composing them into a method that would help meet the objectives for the

industry/domain setting being considered.

Going forward, we would like to take up the second one out of the remaining user

stories, as it would involve detailing an involved process logic for a workflow to carry

out the assignment of leads intending to do site visits to the suitable Sales Executives,

subject to different constraints and rescheduling/change in preferences. This would

lend itself well to the usage of Petri Nets for modelling it, as we will show in the

upcoming chapter.

100



6
Construct a generalized Petri net model of key

CRM pre-sales real estate functionalities

Contents

6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Functionalities for assigning leads to appropriate Sales

Executives: life-cycle of leads . . . . . . . . . . . . . . . . 105

6.3 Functionalities for assigning leads to appropriate Sales

Executives: assignment workflow process description . . 108

6.4 Modelling considerations . . . . . . . . . . . . . . . . . . . 119

6.5 Petri net modelling of the assignment process workflow 122

6.6 Verification of our Petri net models . . . . . . . . . . . . 136

6.7 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . 150

Continuing with the automation of the CRM pre-sales functionalities, out of the

four user stories identified in section 5.3.2, the second one would be the focus of

this chapter which deals with the assignment process. We would detail out the un-

derlying functionalities of the allocation / de-allocation of Sales Executives in re-

sponse to a broad spectrum of lead requests by addressing a variety of combinations

arising out of scheduling/rescheduling of site visit requests from leads, the availabil-

ity/unavailability of Sales Executives on the said day of site visit and the applicable

constraints associated with the subsequent matching process. We would next decide

101



on a suitable approach to model the flow of the assignment process. With the workflow

being a recurring concept in many application domains, and processes tending to be a

key part of that, it follows that the adoption of a framework suitable for modeling and

analyzing workflow processes would be necessary [31]. Petri net would be our model

of choice given its usefulness in modelling, formal analysis and design of systems like

the one in the current scope, and its suitability to model workflows [32, 31, 33]. Also,

an important objective would be to carry out the validation of our modelled system

with regard to a specific set of properties. We’d leverage Petri net based behavioural

analysis techniques to verify the suitability of our modelling. This would enable us to

determine from a system designer capacity whether the desired functional properties

of the system are present or not [34].

For the key concepts of Petri net, section 2.3 may be referred to. As far as the

domain/industry is concerned, section 2.4 of this thesis provides an understanding of

the background.

This chapter would be organized into the following sections:

• Context

• Functionalities for assigning leads to appropriate Sales Executives: life-cycle of

leads

• Functionalities for assigning leads to appropriate Sales Executives: assignment

workflow process description

• Modelling considerations

• Petri net modelling of the assignment process workflow

• Verification of our Petri net models

• Summary of chapter

Let’s now set up the required context for discussing the functionalities relevant to

the assignment process.

102



6.1 Context

Let us look at the first of the four user stories identified in section 5.3.2 as follows to

help set up the context and outline the entry condition of the core functionalities in

scope for this chapter, which is the second of the four user stories.

The stakeholders would like to identify the pre-sales leads coming from various

sources and track them as they progress. There should be a facility to cap-

ture leads coming from various digital sources like online real estate portals,

social/digital media (possibly against campaigns), company website as well as

traditional avenues like direct inquiries via phone calls and so on. All such leads

should be de-duplicated, meaning that while the same lead may come multiple

times from different sources, only one instance of the same should be tracked

over the effective lifecycle of the lead.

Once the leads are aggregated over all incoming channels and then de-duplicated,

to carry out a validation of the intent of those leads before they are passed on

to a more intricate algorithmic layer to schedule site visits using the applicable

roster of Sales Executives, taking various parameters into account that would

be discussed later in detail.

Leads would have a status field for progress. The status of a lead who is getting

ingested into the system for the first time (Fresh Lead) would be one of the

following:

– Guest Lead: Any Fresh Lead who wants to visit but is yet to confirm a

visit date. It is expected that a telecaller would try calling up the lead a

certain number of times to fix the visit date in order to convert the lead

to a Prospective Lead. Until that happens however this Guest Lead would

continue to remain within the ambit of this (first) module only.

– Prospective Lead: Any Fresh Lead who shows a clear intent to visit right

away by providing a visit date.

103



The status of a Guest Lead can change to one of the following given its response

(or the lack of it):

– Prospective Lead: When the Guest Lead shows a clear intent to visit by

providing a visit date.

– Inactive Lead: When the Guest Lead does not respond to the tele caller.

This Inactive Lead would continue to remain within the ambit of this (first)

module only till there is a status change. The previous state (lead status)

would be retained so that it can be reverted to later on when the lead

responds.

– Cancelled Lead: Guest Leads that respond to the tele callers but indicate

they are not interested in visiting in the foreseeable future, as well as those

Inactive Leads that remain unresponsive over three consecutive attempts

by the tele callers would have the status changed to Cancelled. The Can-

celled Leads would no longer be considered by the system. In case they

approach at a later point in time they would be considered as Fresh Leads

and no past history would be taken into account.

It needs to be noted that a Prospective Lead would no longer remain in the scope

of the first module and would thus mark the entry condition into the second module,

Assigning leads to appropriate Sales Executives.

To cater to the site visit date requested by the Prospective Lead, a (provisional)

assignment process would be invoked for matching the request to an available Sales

Executive and finding a mutually acceptable time slot for the Requested Date. This

scenario will be covered in the next section as part of the workflow for the assignment

of leads to Sales Executives.

104



6.2 Functionalities for assigning leads to appropri-

ate Sales Executives: life-cycle of leads

We would now describe the assignment process for matching the site visit request

from a lead to an available Sales Executive to arrive at a mutually acceptable time

slot, constituting the key functionalities in scope for this chapter.

The invocation of the assignment process happens as the tele callers sift through

the de-duplicated leads to call them up, and each of the responding leads subsequently

gets allocated for the site visit to one out of a team of Sales Executives (depending

on availability) following the said assignment process.

We would first document the terminology used in the life-cycle of leads in this sec-

tion, and in the subsequent section detail the workflow for assigning the various types

of leads to the Sales Executives based on the situational factors at hand, depicting

the various scenarios for the assignment process and addressing each of those.

As described in section 6.1, the status of a lead who is getting ingested into the

system for the first time (Fresh Lead) would be one of the following:

• Guest Lead

• Prospective Lead

The status of a Guest Lead can change to one of the following depending on

whether it provides a response or not respectively (details in section 6.1):

• Prospective Lead

• Inactive Lead

• Cancelled Lead

It should be noted that whenever any lead changes to Inactive Lead, the previous

state (lead status) would be retained so that the lead status can be reverted back

to its previous state if the lead responds later on within three attempts. However, if

105



there is no response for three consecutive attempts, the lead is changed to Cancelled

Lead.

A Prospective Lead would mark the intersection of the lead lifecycle with the

entry into the second module, Assigning leads to appropriate Sales Executives, and

the status of a Prospective Lead can change to one of the following depending on its

response (or lack of it):

• Scheduled Lead: As the lead’s site visit requirement by requesting an appoint-

ment for a later date (the Requested Date) has been validated, a Sales Executive

has been assigned based on availability for a mutually agreed time slot on the

Requested Date (of visit).

• Inactive Lead: When the lead does not respond to the telecaller or wants to

reschedule but is unable to provide a visit date.

• Cancelled Lead

The status of a Scheduled Lead can change to one of the following depending on

its response (or lack of it):

• Visited Lead: When a Scheduled Lead has made a site visit with an assigned

Sales Executive. The said Sales Executive would now be deemed as the Original

Sales Executive for the said Visited Lead and will continue to remain tagged to

the said lead (unless the lead requests for a change of the Sales Executive or the

Sales Executive is no longer available permanently/ for the foreseeable future).

• Inactive Lead: When the lead fails to turn up for the scheduled site visit (no-

show) or wants to reschedule but can’t provide a visit date.

• Cancelled Lead

The status of a Visited Lead can change to the following:

• Active Lead: When a Visited Lead who has made a site visit earlier with a

particular Sales Executive, with the latter being deemed as the Original Sales

106



Executive for the said Visited Lead, asks for a revisit and a time slot is assigned

based on the lead’s required revisit date (which we’ll refer to as the Requested

Date). The Original Sales Executive continues to remain tagged with the lead.

• Inactive Lead: When the lead fails to respond.

• Cancelled Lead

The status of an Active Lead can change to one of the following:

• Visited Lead: When the Active Lead has made the site visit. The Original Sales

Executive continues to remain tagged with the lead.

• Inactive Lead: If the Active Lead misses the scheduled site visit (no-show) or

wants to reschedule but can’t provide a visit date.

• Cancelled Lead

Thus the status of a lead can toggle between a Visited Lead and an Active Lead

depending on whether it has expressed an intent to revisit the site or it has actually

carried out a revisit of the site, whichever action is applicable. The Original Sales

Executive continues to remain tagged with the lead unless the lead wants to change

that or the said Sales Executive is no longer available.

For a Visited Lead or an Active Lead, sale closure is the desired end state (business

outcome). However, for these two types of leads, it is also possible for the opportunity

not to progress any further.

The status of an Inactive Lead can change to one of the following, depending on

whether it does or doesn’t respond to telecallers:

• Guest Lead / Prospective Lead / Scheduled Lead / Visited Lead / Active Lead:

An Inactive Lead would revert to its retained previous state (lead status) of

Guest Lead / Prospective Lead / Scheduled Lead / Visited Lead / Active Lead,

if it responds within three attempts.

• Cancelled Lead: if it doesn’t respond within three attempts.

107



The sale closure is a desired progression beyond this; however, that part is con-

sidered out of scope since here we are concerned with the pre-sales aspect only.

The Cancelled Leads are no longer taken into consideration by the system.

6.3 Functionalities for assigning leads to appro-

priate Sales Executives: assignment workflow

process description

In this section, we will endeavor to describe the assignment of the various types of

leads (as they progress through their individual lifecycles) to the Sales Executives

(with or without constraints) taking into account the situational factors as applicable

(like rescheduling requests from the leads, unavailability of Sales Executives and so

on).

It is worth noticing that the assignment process is essentially a workflow. We tend

to encounter workflows often in many application domains and processes form a key

part of the same, hence it logically follows that we should aim to adopt a framework

suitable for modeling and analyzing workflow processes [31].

6.3.1 Provisional Assignment process for Prospective Leads

Whenever a Prospective Lead’s intent to schedule an appointment for a later date

(the Requested Date) is registered, a corresponding provisional assignment would be

attempted with an available Sales Executive for the Requested Date.

The Prospective Lead’s request would be considered against the availability as per

an ordered list of Sales Executives following the rules as described in section 6.3.8,

with the lead being the Prospective Lead and the date being the Requested Date.

The telecaller would verify with the Prospective Lead which of the time slots

available at that time for the Sales Executives would suit the Prospective Lead, by

traversing the list in an ordered fashion.

There would be the following possibilities:

108



I - An available time slot for a Sales Executive on the Requested Date is acceptable

to the Prospective Lead.

The Prospective Lead has progressed to a Scheduled Lead and a provisional

assignment for the same is recorded in the system, but the details of the Sales

Executive is not intimated to the Scheduled Lead then and there; however the

Scheduled Lead is made aware that a visit has been scheduled on the Requested

Date.

II - None of the available time slots for any of the Sales Executives end up being

acceptable to the Prospective Lead or there is no available time slot for any of

the Sales Executives on the Requested Date.

A callback would be arranged for the Prospective Lead at a later date as no

assignment could be made suiting the Prospective Lead’s preference for the

Requested Date.

6.3.2 Rescheduling for Scheduled Leads

When a Scheduled Lead asks for a reschedule of the date, it would be noted down as

the Change Date. A new matching would now be attempted for for the Scheduled

Lead against the availability as per an ordered list of Sales Executives, following the

rules as described in section 6.3.8, with the lead being the Scheduled Lead and the

date being the Change Date.

The telecaller would verify with the Scheduled Lead which of the slots available

at that time for the Sales Executives would suit the Scheduled Lead, by traversing

the list in an ordered fashion.

There would be the following possibilities:

I - An available time slot for a Sales Executive on the Change Date is acceptable

to the Scheduled Lead.

A provisional assignment for the same is recorded in the system, but the details

of the Sales Executive is not intimated to the Scheduled Lead then and there;

109



however, the Scheduled Lead is made aware that a visit has been scheduled on

the Change Date.

II - None of the available time slots for any of the Sales Executives end up being

acceptable to the Scheduled Lead or there is no available time slot for any of

the Sales Executives on the Change Date.

The telecaller would in this case (II) explore the availability of Sales Executives

on an Alternate Date (different from the Change Date). This can give rise to

the following possibilities:

III - An available time slot for a Sales Executive on an Alternate Date is found that

is acceptable to the lead and a new provisional assignment is carried out in the

system.

IV - None of the available time slots on the Alternate Dates for the Sales Executives

are acceptable to the lead or the Sales Executives have no available time slots

on any Alternate Date.

A callback would be arranged for the Scheduled Lead at a later date as no as-

signment could be made suiting the Scheduled Lead’s preference. The Scheduled

Lead would now become a Prospective Lead.

For the options above, the Scheduled Lead’s request would be considered against

the availability as per an ordered list of Sales Executives, following the rules as de-

scribed in section 6.3.8, with the lead being the Scheduled Lead and the date being

the Change Date or the Alternate Date as the case may be.

The previously assigned Sales Executive would be de-allocated for the originally

assigned date corresponding to the prior (provisional) match existing in the system

for the said Scheduled Lead, and would now become available for the corresponding

time slot.

Post assignments made as described in sections 6.3.1 and 6.3.2, when the Sched-

uled Lead has made the site visit, its status is progressed to Visited Lead and the

110



Sales Executive who facilitated the site visit would be tagged as the Original Sales

Executive for the said lead.

6.3.3 Assignment process for Visited Leads

Whenever the intent of a Visited Lead to re-visit the site on a future date (the

Requested Date) is registered, the corresponding search for a Sales Executive would

be attempted with a specific constraint, whereby the assignment would first try to

find the availability of the Sales Executive who was assigned as the Original Sales

Executive to the Visited Lead in order to come up with a mutually acceptable time-

slot.

There would be the following possibilities:

I - Availability of the Original Sales Executive for the Visited Lead can be found

for a mutually acceptable time slot on the Requested Date.

II - The Original Sales Executive is either unavailable on the Requested Date or

his available slots on the Requested Date are not acceptable to the lead, and

an Alternate Sales Executive is available for a time slot on the Requested Date

which is acceptable to the lead. A provisional assignment is made for the

Alternate Sales Executive accordingly.

III - The Original Sales Executive is unavailable on the Requested Date or his avail-

able slots on the Requested Date are not acceptable to the lead, and either

no Alternate Sales Executive is available on the Requested Date, or even if an

Alternate Sales Executive is available on the Requested Date the corresponding

time slot is not acceptable to the lead. Thus there is no possibility either way

of allocating a Sales Executive on the Requested Date.

The telecaller would in this case (III) explore the availability of Sales Executives

on an Alternate Date (different from the Requested Date). This can give rise

to the following possibilities:

111



IV - Availability for the Original Sales Executive on an Alternate Date is found for

a time slot that is acceptable to the lead and the new assignment is carried out

in the system.

V - There is no availability of the Original Sales Executive on the Alternate Date

or none of the time slots available on the Alternate Dates for the Original Sales

Executive are acceptable to the lead.

The tele caller would in this case (V) explore the availability of Alternate Sales

Executives on an Alternate Date which can give rise to the following two pos-

sibilities:

VI - One Alternate Date for an Alternate Sales Executive is found to have a time

slot that is acceptable to the lead and a new (provisional) assignment is carried

out in the system.

VII - None of the available time-slots on the Alternate Dates for the Alternate Sales

Executives are acceptable to the lead or Alternate Sales Executives have no

available time-slots on any Alternate Date.

In case none of the previous options work out, a callback will be arranged for the

Visited Lead at a later date.

For the options above involving the Alternate Sales Executive, the Visited Lead’s

request would be considered against the availability as per an ordered list of Sales

Executives excluding the Original Sales Executive, following the rules as described in

section 6.3.8, with the lead being the Visited Lead and the date being the Requested

Date or the Alternate Date as the case may be.

In case an assignment has successfully been worked out for the Visited Lead fol-

lowing the above steps, the lead status changes to Active Lead.

112



6.3.4 Requesting Original Sales Executive change while re-

questing re-visit for Visited Leads

Here the Visited Lead has requested change of the Original Sales Executive and also

asked for a re-visit, the date of the re-visit being termed the Requested Date. This

can result in the following possibilities:

I - An available time-slot for an Alternate Sales Executive on the Requested Date

is acceptable to the lead; the Alternate Sales Executive would be provisionally

allocated.

II - Either no Alternate Sales Executive is available on the Requested Date or the

available time slots of Alternate Sales Executives on the Requested Date are

not acceptable to the lead, thus resulting in no allocation of Alternate Sales

Executive for the Requested Date either way.

The tele caller would in this case (case II) explore the availability of Alternate

Sales Executives on an Alternate Date (for appropriate time slots). This now

gives rise to 2 more possibilities as below:

III - Availability of a time slot for an Alternate Sales Executive is found on an

Alternate Date that is acceptable to the lead and a new provisional assignment

is carried out in the system.

IV - None of the available time slots for the Alternate Sales Executives on Alternate

Date(s) are acceptable to the lead or Alternate Sales Executives don’t have any

availability on any Alternate Date.

For the options above, the Visited Lead’s request would be considered against the

availability as per an ordered list of Sales Executives excluding the Original Sales

Executive, following the rules as described in section 6.3.8, with the lead being the

Visited Lead and the date being the Requested Date or the Alternate Date as the

case may be.

For option IV (the request can’t be accommodated), a call back will be arranged

with the Visited Lead for a later date.

113



6.3.5 Rescheduling for Active Leads

When the Active Lead asks for a reschedule of the visit date, the tele caller would

note it down as the Change Date.

There would be the following possibilities:

I - The Original Sales Executive is available for a time slot on the Change Date

which is acceptable to the lead. The Original Sales Executive would be allocated

accordingly.

II - The Original Sales Executive is unavailable on the Change Date or his available

slots on the Requested Date are not acceptable to the lead, and an Alternate

Sales Executive is available for a time slot on the Change Date which is ac-

ceptable to the lead. The Alternate Sales Executive would be provisionally

allocated.

III - The Original Sales Executive is unavailable on the Change Date or his avail-

able slots on the Requested Date are not acceptable to the lead, and there is

no availability of any Alternate Sales Executive on the Change Date, or the

available time slots of the Alternate Sales Executives on the Change Date are

not acceptable to the lead. Thus there is no allocation of the Sales Executive

for the Change Date either way.

The tele caller would in this case (case III) explore the availability of Sales

Executives on an Alternate Date (different from the Change Date). This can

give rise to the following possibilities:

IV - A time slot on an Alternate Date for the Original Sales Executive is found that

is acceptable to the lead and the new assignment is carried out in the system.

V - None of the time slots available on the Alternate Dates for the Original Sales

Executive are acceptable to the lead or there is no availability of the Original

Sales Executive on an Alternate Date.

114



The tele caller would in this case (case V) explore the availability of Alternate

Sales Executives on an Alternate Date which can give rise to the following two

possibilities:

VI - One Alternate Date for an Alternate Sales Executive is found to have a time

slot that is acceptable to the lead and a new provisional assignment is carried

out in the system.

VII - None of the available time slots on the Alternate Dates for the Alternate Sales

Executives are acceptable to the lead or Alternate Sales Executives have no

availability on any Alternate Date.

The Original Sales Executive would be de-allocated for the originally assigned

date and would now become available for the corresponding time slot.

For the options above involving the Alternate Sales Executive, the Active Lead’s

request would be considered against the availability as per an ordered list of Sales

Executives excluding the Original Sales Executive, following the rules as described

in section 6.3.8, with the lead being the Active Lead and the date being the Change

Date or the Alternate Date as the case may be.

If rescheduling can’t be successfully carried out, a callback will be arranged for a

later date for the lead (who will now become a Visited Lead from an Active Lead)

since rescheduling is not possible as of now.

6.3.6 Requesting Original Sales Executive change for Active

Leads

When the Active Lead requests the change of Original Sales Executive while keeping

the original date of assignment (Original Date) intact, it can result in the following

possibilities:

I - An Alternate Sales Executive is available for a time slot on the Original Date

which is acceptable to the lead; the Alternate Sales Executive would be provi-

sionally allocated for the Original Date.

115



II - Either no Alternate Sales Executive is available on the Original Date or the

available time slots of Alternate Sales Executives on the Original Date are not

acceptable to the lead, thus resulting in no allocation of Alternate Sales Exec-

utive for the Original Date either way.

The tele caller would in this case (case II) explore the availability of Alternate

Sales Executives on an Alternate Date. This now gives rise to the following two

possibilities:

III - One time slot on an Alternate Date for an Alternate Sales Executive is found

that is acceptable to the lead and a new provisional assignment is carried out

in the system.

IV - None of the time slots on the Alternate Dates for the Alternate Sales Execu-

tives are acceptable to the lead or Alternate Sales Executives don’t have any

availability on any Alternate Date.

The Original Sales Executive would be de-allocated for the Original Date and

would now become available for the corresponding time slot.

For the options above, the Active Lead’s request would be considered against the

availability as per an ordered list of Sales Executives excluding the Original Sales

Executive, following the rules as described in section 6.3.8, with the lead being the

Active Lead and the date being the Original Date or the Alternate Date as the case

may be.

If the Original Sales Executive change request can’t be successfully carried out, a

callback will be arranged at a later date for the lead (who will now become a Visited

Lead from an Active Lead) since the Original Sales Executive change request is not

possible as of now.

116



6.3.7 Requesting Original Sales Executive as well as Date

change for Active Leads

Here the Active Lead has requested change of the Original Sales Executive and also

asked for a date reschedule (from the Original Date), the new date being termed the

Change Date. This can result in the following possibilities:

I - An available time slot for an Alternate Sales Executive on the Change Date

is acceptable to the lead; the Alternate Sales Executive would be provisionally

allocated.

II - Either no Alternate Sales Executive is available on the Change Date or the

available time slots of Alternate Sales Executives on the Change Date are not

acceptable to the lead, thus resulting in no allocation of Alternate Sales Exec-

utive for the Change Date either way.

The tele caller would in this case (case II) explore the availability of Alternate

Sales Executives on an Alternate Date (for appropriate time slots). This now

gives rise to 2 more possibilities as below:

III - Availability of a time slot for an Alternate Sales Executive is found on an

Alternate Date that is acceptable to the lead and a new provisional assignment

is carried out in the system.

IV - None of the available time slots for the Alternate Sales Executives on Alternate

Date(s) are acceptable to the lead or Alternate Sales Executives don’t have any

availability on any Alternate Date.

The Original Sales Executive would be de-allocated for the Original Date and

would now become available for the corresponding time slot as the request is success-

fully accommodated.

For the options above, the Active Lead’s request would be considered against the

availability as per an ordered list of Sales Executives excluding the Original Sales

Executive, following the rules as described in section 6.3.8, with the lead being the

117



Active Lead and the date being the Change Date or the Alternate Date as the case

may be.

If the request can’t be accommodated, a callback will be arranged for the lead

(who will now become a Visited Lead from an Active Lead) for a later date.

6.3.8 The rules of ordering of Sales Executives to be consid-

ered for the concerned lead for the date in question

The concerned lead’s request need to be considered against the availability as per an

ordered list of Sales Executives for the date in question, and the basis of ordering for

the Sales Executives would be:

1. The Sales Executives who do not happen to be the Original Sales Executive

for any lead (Visited Lead / Active Lead) having a site visit scheduled on the

date in question would be higher in the pecking order, with the one having the

highest number of time-slots available on the date in question at the top of the

list.

2. The Sales Executive who is the Original Sales Executive for the highest number

of leads having a site visit scheduled on the date in question would appear at

the bottom of the pecking order.

3. Amongst the Sales Executives who happen to be the Original Sales Executive

for the same number of leads having site visits scheduled on the date in question,

those with a higher number of time slots available on the date in question would

appear higher in the pecking order.

A key aspect of the functionalities described for this module has to do with the life-

cycle of leads, with the entry condition to this module being marked by a Prospective

Lead which can subsequently progress to an Active Lead or a Visited Lead. As men-

tioned, the status of a lead can toggle between a Visited Lead and an Active Lead

depending on its expressed intent to revisit the site or actually carrying out the re-

visit of the site, whichever action is applicable. For a Visited Lead or an Active Lead,

118



sale closure is the desired end state (business outcome) which also signals an exit

condition for this module. However, for these two types of leads, it is also possible for

the opportunity not to progress any further, which would result in those becoming

Cancelled Leads. The Cancelled Leads, as discussed before, are no longer taken into

consideration by the system. This state can be reached from any other state of a lead

as applicable in the scope of this module and marks the other exit condition for this

module.

Now that we have detailed the functionalities for the module Assigning leads to

appropriate Sales Executives, our next endeavour would be to carry out the modelling

exercise for the assignment process and subsequently verify the suitability of the same.

6.4 Modelling considerations

Let’s start our modelling endeavour by creating a Statechart diagram to model the

life cycle of the leads that we have discussed previously in section 6.2. The Statechart

diagram models the behavior of an object during its lifetime by specifying the sequence

of states attained by that object as it responds to events, along with its responses

themselves respectively, over its lifecycle [59, 60, 61]. Hence a Statechart diagram

would be a good candidate to capture the lead life cycle. The corresponding model

is shown in Fig. 6-1.

In the current context, the key modelling consideration is centred around address-

ing the flow of the assignment process that forms the core of the CRM pre-sales

functionalities in scope. The modelling should be able to take into account the dy-

namic interplay involving the assignment of Sales Executives, the request from the

leads (depending on their states) to change the date of visit or the Original Sales Ex-

ecutive (for a Visited / Active Lead) as well as the assignment conflict/unavailability

of Sales Executives and so on. The inherent abstraction of the assignment process

is essentially a workflow, which happens to be a recurring concept in many appli-

cation domains. Since processes usually form a key part of that, it follows that we

should aim to adopt a framework suitable for modeling and analyzing workflow pro-

119



Figure 6-1: Statechart Diagram for the life cycle of the leads.

cesses [62, 63, 64].

While we’d decide on which framework to adopt in section 6.4.2 and subsequently

carry out the modelling exercise utilizing that framework in section 6.5, let us first

specify the verification criteria to determine the suitability of the model that we

intend to construct by listing down the desired properties that the model should

demonstrate.

6.4.1 Desired properties of the model being constructed

Our model should ideally be able to exhibit the following properties.

1. Reach a specific state: A key aspect of designing a system is ascertaining if it

can reach a specific state, which essentially implies if it is capable of exhibiting

a particular behavior. This would eventually lead us to affirm if the modelled

system would be able to exhibit the desired properties per agreed specifications.

2. Prevent overflow: The modelled system should ensure that overflows don’t exist.

For example, if we consider an allocation node in a manpower allocation facility,

given its capacity is finite, it is necessary to make sure that its representation by

the corresponding property in the modelling adopted is such that this capacity

120



does not get exceeded by the operations [65].

Also, the nodes with overflow possibilities are potential bottlenecks, and to

prevent any such possibility we need to ensure that there are no such instances

in the models created.

3. Prevent deadlock: The modelled system should ensure that there is no deadlock

in the system. If a sequence leading to a particular state can never be realized

then it is redundant and should be eliminated. It follows that such an occurrence

needs to be identified as it is likely to signify an error in the model or an

inconsistency in the system being modelled.

4. Fairness: This property is related to being able to perform actions in the order

of their announcements. In certain fairness considerations, the performability of

a waiting action is not influenced by other actions, whereas in others a waiting

action can either fall down the pecking order if other competing actions get the

nod earlier or, at worst, fail to perform. The latter case is equivalent to the

case of an announced action turning out to be non-performable when it should

be executed with respect to its waiting period.

6.4.2 Suitability of Petri net as our modelling tool

Petri net has been a powerful construct with widespread usage across application

domains, facilitating workflow modelling, with Petri net based analysis techniques

being used for analysing those [66, 31, 67, 68]. The classical Petri net, invented

by Carl Adam Petri in the sixties [32], has subsequently been utilized in a variety of

application domains to model and analyze various processes. By analyzing a Petri net

model, useful information about the underlying system can be obtained, for instance

in terms of whether bottlenecks/deadlocks may exist. Crucially, it can be used to

suggest changes without the need to run tests on the actual system [65]. The usage

of Petri net to model workflows has been quite widespread, and a Petri net based

framework would be suitable for workflow modeling in light of the following reasons:

121



1. formal semantics: the semantics of the Petri net are formally defined.

2. expressiveness: all the primitives needed to model a workflow process are sup-

ported.

3. properties: As allowed by the mathematical foundation.

4. analysis: Many analysis techniques are available thus facilitating the usage

of Petri nets for workflow modeling and allowing us to prove properties like

deadlock.

5. vendor independent: It’s a tool-independent framework for modeling and ana-

lyzing processes [66, 67, 68, 69].

Taking all of the above into consideration, we have decided to use Petri net as the

modelling approach for capturing the dynamics of the assignment process.

6.5 Petri net modelling of the assignment process

workflow

In the preceding section (section 6.4) we have discussed the motivation behind the

modelling approach that we’d like to adopt for modelling the functionalities in scope,

especially the assignment process mentioned in section 6.3 In this section we’d be

using Petri net, the framework of our choice, to model the flow of the assignment

process that will allow us to formalize the main concepts, and in the following section

carry out the verification of the suitability of the models created.

6.5.1 Creating generalized Petri net models for the process

flows

Analysis of each of the flows described in sections 6.3.1 to 6.3.7 shows a pattern

involving the interplay of two fundamental flows: one involving the selection of dates

and the other dealing with slot selection. It therefore makes sense to model these two

122



fundamental flows in their nuanced details, as the combination of those two using

their specific variants as applicable would embody the respective flows as described

in sections 6.3.1 to 6.3.7.

The first of the two fundamental flows that we have identified deals with the

selection of dates. We’d refer to this as Block I of the generalized flow. There are two

variants of the flow for the selection of dates.

The first is the DateSelector, an example of which can be found as a constituent

of the flow of section 6.3.1. The purpose of the flow for selection of dates here is to

evaluate if the date being considered (Requested Date) falls within the range of dates

opened up / made available for allocation. If it does, subsequently the flow for dealing

with slots would be invoked for that particular date (Requested Date). Regardless of

whether the execution of this flow with the Requested Date does or does not result in

a Sales Executive assignment, there is no further iteration here with any other date.

The second and final variant of the flow for selection of dates is the DateIterator,

an example of which can be found as a constituent of the flow of section 6.3.2. The flow

for selection of dates here initially evaluates if the date being considered (Requested

Date) falls within the range of dates opened up / made available for allocation, and

if it does, invokes the flow for dealing with slots subsequently for that particular

date (Requested Date). However, in case the flow for dealing with slots subsequently

doesn’t result in a Sales Executive assignment, there would be iterations of the flow

for the selection of dates taking place whereby instances of dates (Alternate Dates)

would get passed serially as input to the flow for the selection of dates with the

subsequent invocation of the flow for dealing with slots, until either an assignment

is achieved in the latter or all possible iterations are exhausted with no resultant

assignment.

The second fundamental flow deals with the selection of slots. We’d refer to this

as Block II of the generalized flow. There are two variants of this flow as well.

The first is the SlotAllocator, an example of which can be found as a constituent of

the flow of section 6.3.1. It is utilized for the sole purpose of creating a new assignment

of Sales Executive for the date being considered (Requested Date), if possible, and

123



there is no need for un-assigning a previous allocation since no such prior assignment

exists in the system for the lead in question.

The second and final variant of the flow for dealing with slots is the SlotUpdater,

an example of which can be found as a constituent of the flow of section 6.3.2. It

consists of two elements - one to deal with the new assignment of Sales Executive for

the date being considered (Requested Date) which is nothing but the SlotAllocator

which we discussed earlier, and another needed for un-assigning a previous allocation

since we do have a prior assignment existing in the system for the lead in question

that needs to be un-assigned, which is effectively a SlotDeallocator.

Let’s now summarize these variants of the two generalized flows more succinctly

so that we can use them to categorize the flows in the previous section into a matrix.

• Flow for selection of dates: Here we’d come across two variants - DateSelector

and DateIterator. The former i.e. DateSelector is utilized to evaluate if the date

being considered falls within the range of dates opened up / made available for

allocation. The latter i.e. DateIterator is utilized for similar purposes but in

an iterative mode where instances of dates are passed serially as input to it

with the subsequent invocation of the flow for dealing with slots, until either an

assignment is achieved in the latter or all possible iterations are exhausted with

no resultant assignment. Hence in order to model the flow for selection of dates

we would model the DateSelector using Petri net modelling and point out the

distinctions for the DateIterator.

• Flow for dealing with slots: There are two variants to be found here - SlotAl-

locator and SlotUpdater. The latter i.e. SlotUpdater essentially consists of a

SlotAllocator (for a new assignment) and a SlotDeallocator (for un-assigning a

previous allocation). Thus SlotAllocator is essentially a subset of SlotUpdater

where the SlotDeallocator doesn’t get triggered. Hence in order to model the

flow for dealing with slots it would suffice to depict the SlotUpdater using Petri

net modelling.

From our above understanding, we can now categorize the flows in sections 6.3.1

124



to 6.3.7 into a matrix using two dimensions for classification, one for Date Selection

(indicating the DateSelector or the DateIterator as applicable) and the other for Slot

Selection (indicating the SlotAllocator or the SlotUpdater as the case may be), as

shown in Table 6.1.

Table 6.1: Categorization of flows described in sections 6.3.1 to 6.3.7 according to the
composition of the respective variants of the date selection flow and the slot selection
flow as applicable.

SlotAllocator SlotUpdater
DateSelector 6.3.1
DateIterator 6.3.3, 6.3.4 6.3.2, 6.3.5, 6.3.6, 6.3.7

In line with our reasoning established in the preceding paragraphs, the generalized

Petri net modelling of the overall flow would consist of modelling the following two

building blocks:

1. Block I: here we will model the flow for the selection of dates by considering

the DateSelector, and point out the distinctions of the DateIterator (the other

variant) with the DateSelector to arrive at a generalized Petri net model of this

block.

2. Block II: here we will model the flow for selection of slots by focusing on the

SlotUpdater to arrive at a generalized Petri net model of this block. As already

explained the other variant, SlotAllocator, is essentially a subset of SlotUpdater.

Let us now construct the Petri net models for these building blocks.

6.5.2 Petri net modelling of Block I (flow for selection of

dates)

Here we’d construct a generalized Petri net model for Block I, the flow for finding out

if a date requested by a lead is within the range of dates considered by the system

for allocation. As mentioned, this block consists of two variations, DateSelector and

DateIterator, as shown in Fig. 6-2 and Fig. 6-3 respectively.

125



Figure 6-2: Petri net diagram of Block I first variant - DateSelector

Figure 6-3: Petri net diagram of Block I second variant - DateIterator

Let us define the legends we’d be using to explain the modelling of this block.

Legends:

DateSelector:

Lrd - Lead requesting to schedule an appointment for Requested Date rd;

EAdt - Evaluate Allocation possibility of the given date from the date

range dt;

mdt - Instances of dates in the range opened up / made available for allo-

cation;

126



ARdt - Accept or Reject date dt (evaluate whether the instance dt matches

rd);

Rdt - Reject date dt since it doesn’t match with rd;

Adt - Accept date dt since it matches with rd;

RRdt - Return Rejected date instances;

Lcb - Lead to be called back at a later date;

ES - Evaluate Suitability of Sales Executives;

DateIterator:

odLrd - Lead requesting to schedule an appointment for date rd, with possi-

ble presence of an Original Date od (in case the request is for rescheduling);

SEj
od - Possible un-allocation of the previous assignment of jth Sales Ex-

ecutive for the said lead on Original Date od;

ES1 - Evaluate Suitability of Sales Executives starting with the 1st Sales

Executive in the allocation list;

Let’s first consider the first variant, the DateSelector, as shown in Fig. 6-2.

Transition T11 Rule (Synchronized):

Input Place: The place EAdt provides a collection of mdt tokens corresponding

to the mdt instances of dates in the range opened up / made available for

allocation. Presence of a token in the place Lrd indicates the request of the lead

L to schedule an appointment for the Requested Date rd. When tokens are

present, these input places of T11 are synchronized for the firing of transition

T11.

Result: Out ofmdt tokens available in the place EAdt, one token is taken, leaving

(mdt–1) tokens available in the place EAdt. As the token from Lrd is taken, Lrd

no longer has any token present. One token is deposited in the place ARdt.

127



Transitions T12 and T13 Rules (Conflict):

Input Place: Presence of a token in the place ARdt enables the two transitions

T12 and T13 but only one can fire at a time.

Result (Transition T12 Rule): If the date token taken from EAdt does not match

with the date rd requested by the lead L , the transition T12 gets fired, depositing

a token each in the place Rdt (Rejected Dates) as well as the place Lrd, which

can potentially re-enable the firing of the transition T11. The circular firing

sequence T12 → Lrd → T11 → ARdt → T12 can iterate consecutively for n times

(say) (with 0 ≤ n ≤ mdt), resulting in T12 being fired for n times, leaving

(mdt–n) tokens available in the place EAdt, n tokens being deposited in the

place Rdt and one token in Lrd.

Result (Transition T13 Rule): If the date token taken from EAdt matches with

the one requested by the lead L, the transition T13 gets fired and a token is

deposited in the place Adt (Accepted Dates) and a token is deposited in the

place EAdt. After the firing sequence T12 → Lrd → T11 → ARdt → T12 iterating

consecutively for n times, (n < mdt), resulting in T12 being fired for n times,

T11 is fired leaving (mdt–n− 1) tokens available in the place EAdt and no token

in Lrd, followed by T13, leaving ((mdt–n− 1) + 1) i.e. (mdt–n) tokens available

in the place EAdt (as a token is returned to EAdt) and one token in Adt.

Transition T14 Rule:

Input Place: Presence of a token in the place Adt, indicating the date requested

by the lead L matches with one of the dates in the range opened up so far, thus

enabling the transition T14.

Result: As the token from Adt is taken, Adt no longer has any token present. A

token each is concurrently deposited in two places, ES and RRdt.

The presence of a token in the place ES would initiate slot selection which is

in the scope of Block II.

128



Transition T16 Rule (Synchronized):

Input Places: The place Rdt has n tokens (0 ≤ n ≤ mdt). Presence of a token in

the place RRdt would enable the transition T16 when n > 0 for Rdt. With tokens

present, these input places of T16 are synchronized for the firing of transition

T16.

Result: The token from RRdt is taken leaving no token there.

With n tokens available in the place Rdt, 1 ≤ n ≤ mdt, one is taken leaving

(n− 1) tokens remaining in Rdt. A token is deposited in the place EAdt which

now has a collection of (mdt−n+1) tokens. The place RRdt will have the token

deposited back while the place Rdt has (n − 1) tokens, enabling the transition

T16 to be fired once again (provided n > 1).

This circular firing sequence will continue for n times till there is no token left

in Rdt i.e. all n tokens are removed from it. The place EAdt will now have a

collection of ((mdt − n) + n) tokens i.e. mdt tokens. The place RRdt will have

one token.

Sink Transition T15 Rule (Synchronized):

Input Places: The place RRdt, populated with one token, and the absence of a

token (inhibitor) in Rdt will enable the sink transition T15.

Result: It will take the token from RRdt, making it empty. This will also mark

the termination/completion of the flow for date selection.

Transition T17 Rule (Synchronized):

Input Places: When none of themdt dates match the date for the lead, it implies

that the transition T12 has fired for mdt times (n = mdt), leaving the place EAdt

without any token (and the place Rdt with mdt tokens). The inhibitor edge from

this input place and the presence of a token in the input place Lrd would enable

the transition T17 to fire.

129



Result: The token from the input place Lrd is removed. A token is deposited

in the place indicating that a callback needs to be arranged for the lead L at a

later date. A token is deposited in the place RRdt.

Now let us consider the second variant, the DateIterator, as shown in Fig. 6-3.

While there is a significant similarity with the first variation (the DateSelector),

the key distinction here is that different dates (Alternate Dates) are considered itera-

tively as dt by the DateIterator when the previous iteration with the Requested Date

or an Alternate Date hasn’t resulted in an assignment for a Sales Executive.

The specific differences that the DateIterator has with the DateSelector are as

follows.

Transition T11 Rule (Synchronized):

Input Place: As is the case for Transition T11 with the DateSelector, the place

EAdt would be populated with a collection of mdt tokens corresponding to the

mdt instances of dates in the range opened up / made available for allocation.

However, the other input place is now indicated by odLrd with the prefix od

added to Lrd and shown as greyed out (indicating it’s optional) in Fig. 6-3. As

is the case with the DateSelector, the suffix rd indicates the request of the lead

L to schedule an appointment for date rd. However, the distinction here is the

presence of the optional (greyed out) prefix od, indicating the possibility of an

Original Date od being present in case this happens to be a reschedule of date.

Result: Similar to the Result for Transition T11 for the DateSelector.

Transition T17 Rule (Synchronized):

Input Place: Similar to the Input Place for Transition T17 for the DateSelector.

Result: While other things remain similar with the Result for the Transition

T17 for the DateSelector, the distinction here is the addition of the optional

(greyed out) presence of the place SEj
od. A token may be deposited there in

case there exists a prior assignment involving Original Sales Executive SEj on

130



the Original Date od which now needs to be un-assigned based on the current

request. Since this may or may not happen depending on the case, the place

SEj
od is shown as greyed out.

In addition the DateIterator has inputs from transitions T 1
23 . . . T

i
23 . . . T

n
23 from

Block II into the place RRdt, one of which would fire in case one of the Sales Executives

SE1 . . . SEi . . . SEn has been finally assigned. It is also possible that none of those

eventually fires, in case no assignment is possible for any Sales Executive.

A key feature of the DateIterator is its execution in an iterative manner, initiated

by the Transition T n26 from Block II since it deposits a token in the place odLrd indi-

cating the request of the lead L to iterate the process of scheduling an appointment as

the preceding iteration with the Requested Date or the Alternate Date hasn’t resulted

in an assignment and a new iteration should be attempted now with a new Alternate

Date - each such date being passed as rd.

6.5.3 Petri net modelling of Block II (flow for selection of

slots)

Here we’d construct a generalized Petri net model for Block II, the flow for finding

out a suitable (date-time) slot amongst all the Sales Executives available to fulfill the

lead’s requirement, once it is validated that the date requested by the lead is within

the range of dates considered by the system for allocation (which is handled by Block

I). Thus an underlying assumption in this section is that a particular date dt (which

can either be the Requested Date or Change Date or Alternate Date as the case may

be, but not the Original Date) is being considered.

As mentioned, there are two variants, SlotAllocator and SlotUpdater, to model

the flow of this functionality, and Fig. 6-4 combines the essential features of those

two which we’d describe subsequently, keeping in mind that a particular date dt is to

be considered.

It is to be noted here that we have not explicitly shown ESi+1 or Lcb as the output

of transition T i26 in Fig. 6-4, since a token would get inserted into ESi+1 or Lcb only

131



Figure 6-4: Petri net diagram of Block II - SlotAllocator and SlotUpdater

for certain specific scenarios as described under Transition T i26 Rule (Synchronized)

later in this section. However when we would construct the reachability tree, we

introduced those (i.e. ESi+1 or Lcb) as the output of transition T i26, for the sake of

completeness of the markings and the traversal in the reachability tree.

Let us define the legends we’d be using to explain the modelling of this block.

Legends:

SlotAllocator and SlotUpdater:

ESi - Evaluate Suitability of ith Sales Executive;

SEi
sd - Collection of assignable slots sd prepared for ith Sales Executive

(for the date considered dt);

mi
sd - instances of slots (collection of sd) available to be assigned for ith

Sales Executive for date dt;

ARsd - Accept or Reject slot sd;

Rsd - Reject slot sd;

RRsd - Return Rejected slot instances;

RRdt - Return Rejected date instances;

132



L
ip/o
sd (for SlotAllocator) - Matching of ith Sales Executive (SEi) for the lead

for slot sd for the first time (with no previous allocation to be unassigned),

indicating a provisional matching;

L
ip/o
sd (for SlotUpdater) - Matching of ith Sales Executive (SEi) for the

lead for slot sd, which is either L
ip
sd indicating SEi is an Alternate Sales

Executive (a provisional matching) where i ̸= j, or else it is Ljosd indicating

the matching is for the Original Sales Executive (SEj) where i = j;

N.B. The following, as mentioned in the previous para, are not shown in

Fig. 6-4 but indicated in the reachability tree:

ESi+1 - Evaluate Suitability of (i+ 1)th Sales Executive;

Lcb - The lead needs to be called back later since the assignment of a Sales

Executive hasn’t been possible;

SlotUpdater only:

SEj
od - Possible un-allocation of the previous assignment of jth Sales Ex-

ecutive for the said lead on Original Date od;

The allocation process for a lead is initiated by trying out the assignment process

with the 1st Sales Executive in the pecking order of Sales Executives, indicated by

SE1, and in case it doesn’t work out then the assignment process would be tried

with the next Sales Executive, and so on. However, for elaboration purposes, we

would generalize by considering the assignment process with the ith Sales Executive,

indicated by SEi, where i = 1 . . . n (n being the maximum count of Sales Executives

possible).

Transition T i21 Rule (Synchronized):

Input Places: The place SEi
sd is populated with a collection of mi

sd tokens,

representing the respective instances of available slots for the accepted date dt

for the ith Sales Executive. When a token is present in the place ESi, the input

133



places of transition T i21 are synchronized to initiate the firing of the transition

T i21.

Result: The place SEi
dt has one token removed and has (mi

sd – 1) tokens now,

and the place ESi no longer has a token. A token is inserted in the place ARsd.

Transitions T i22 and T i23 Rules (Conflict):

Input Place: Presence of a token in the place ARsd enables the two transitions

T i22 and T i23 but only one can fire at a time.

Result (Transition T i22) Rule: In case the slot is rejected (when the slot doesn’t

match with the one requested by the lead), the transition T i22 gets fired. The

token is removed from the place ARsd. A token each is deposited concurrently

in the place Rsd (Rejected slots) and the place ESi.

The circular firing sequence T i21 → ARsd → T i22 → ESi → T i21 can iterate

consecutively (say n times; n ≤ msd) resulting in (msd–n) tokens remaining

available in the place SEi
sd and n tokens deposited in the place Rsd. The place

ESi would have a token.

Result (Transition T i23) Rule: If the slot is accepted (the slot now matches

with the one requested by the lead), the transition T i23 gets fired. A token

is inserted in the place RRsd. This would initiate the return of the Rejected

slots. Concurrently a token is deposited in the place L
ip/o
sd , implying that a slot

sd for the lead L has now been assigned to the ith Sales Executive, and it is

either assigned to the Original Sales Executive which would be indicated by the

matching Liosd or an Alternate Sales Executive which would be indicated by a

provisional matching L
ip
sd.

A token may be deposited in the place SEj
od in case there exists a prior assign-

ment involving Original Sales Executive SEj on the Original Date od which

now needs to be un-assigned based on the current request. Since this may or

may not happen depending on the case, the place SEj
od is shown as greyed out.

134



A token may or may not be deposited in the place RRdt. RRdt is greyed out

for that reason.

When SlotAllocator is involved, the place RRdt won’t feature in the generalized

PN model; however, in the case of SlotUpdater, it will. SlotAllocator is appli-

cable for sections 6.3.1, 6.3.3 and 6.3.4; and for those cases the transition T i23

has no connection to RRdt.

Transition T i24 Rule (Synchronized):

Input Place: The place Rsd has n tokens (0 ≤ n ≤ msd). The presence of a

token in the place RRsd would enable the transition T i24 when n is non-zero for

Rsd. With tokens present, these input places are synchronized for the firing of

transition T i24.

Result: The token from the place RRsd is removed. The place Rsd has one token

removed, and now has (n − 1) tokens. A token is inserted in the place SEi
sd

which now has a collection of (mi
sd − n + 1) tokens. A token is deposited in

the place RRsd, which along with the presence of token(s) in Rsd would enable

the firing of the transition T i24 repetitively till there is no token left in Rsd i.e.

all n tokens are removed from it. The place SEi
sd will now have a collection of

(mi
sd − n+ n) tokens i.e. mi

sd tokens. The place RRsd will have one token.

Transition T i26 Rule (Synchronized):

Input Place: As long as there is a token in SEi
sd, the transition T

i
26 can not fire.

When none of the mi
sd slots match with the one requested by the lead, the place

SEi
sd is without any token. The presence of a token in the place ESi, along

with the inhibitor edge from SEi
sd in the above mentioned condition, would

synchronize the input places of T i26 to be fired.

Result: The token from the place ESi is removed. A token is deposited in the

place RRsd.

One output of T i26 has an open-ended arrow, to denote the following scenario.

A token would get deposited in the place ESi+1, signifying that the ith Sales

135



Executive’s slots are not matching the lead’s requirement and the i+ 1th Sales

Executive’s slots are to be explored next, as long as i ≤ n − 1, where n is the

maximum of Sales Executives available. However, if SEi happens to be the last

Sales Executive in the pecking order (i.e. i = n, where n is the maximum of

Sales Executives available), then

either it leads to the next iteration of Block I if this Block II Petri net represents

a SlotUpdater, by having a token deposited in the input place for the lead in

Block I

or

it leads to a callback for the lead, if this Block II Petri net represents a SlotAl-

locator.

Sink Transition T i25 Rule (Synchronized):

Input Place: The place RRsd, populated with one token, and the absence of a

token in Rsd (inhibitor) will enable the sink transition T i25.

Result: It will take the token from RRsd, making it empty.

6.6 Verification of our Petri net models

Let us now carry out the verification exercise for our Petri net models by evaluating

whether they exhibit the desired properties listed in section 6.4.1. We would be

adopting the behavioural approach for our Petri net analysis for this verification

exercise. Specifically, we’d focus on the following behavioural properties:

1. Reachability:

This property directly corresponds to the criterion Reach a specific state in

section 6.4.1.

Reachability is a fundamental basis for studying the dynamic properties of a

system. We need to exhaustively enumerate all the possible reachable markings

136



by firing the enabled transitions one by one, starting with an initial marking and

reach a new state (marking) after each firing, resulting in a tree representation

of the markings in the process. The firing of an enabled transition will change

the token distribution (marking) in the net according to the transition rules

associated with it. A sequence of firings will result in a sequence of markings

thus allowing us to arrive at the reachability tree.

The analysis of the reachability trees can help build up a repository of useful

information (e.g. specification of the set of reachable markings) [65]. If we are

to ascertain whether the modelled system can reach a specific state Mi, which

essentially signifies the demonstration of a functional behavior that is desired,

we need to figure out a sequence of transitions that will get fired to transform

an initial marking M0 to Mi. The sequence of firings represents the required

functional behavior.

It is worth noting that systems in real life can attain a given state by exhibiting

different variants of functional behavior. The equivalence of this in a Petri

net model is manifested by the possibility of having different transition firing

sequences (which in essence represents the required functional behavior), each

of which can transform a marking M0 to the required marking Mi [34].

We would be creating the reachability tree for the Petri net models for both

Block I and Block II which would allow us to find the sequence of firings of

transitions which would result in transforming the marking M0 to the marking

Mi.

2. Boundeness:

This Petri net property aids in identifying the overflow possibilities in the mod-

elled system [34], and it directly corresponds to the criterion Prevent overflow

in section 6.4.1.

Considering the corresponding analogy of the allocation node in a manpower

allocation facility in section 6.4.1, its representation as a bounded place will

guarantee that this capacity will not be exceeded by associated operations [65].

137



This needs to be ensured in the models that we will create by having them

exhibit the Boundeness property.

Also, unbounded places are potential bottlenecks. We need to verify that there

are no such instances in the models created, thus preventing the possibility of

any potential bottleneck.

3. Liveness:

Liveness, a Petri net property tied to the concept of deadlocks and deadlock-

freeness [65], directly corresponds to the criterion Prevent deadlock in sec-

tion 6.4.1.

A transition that cannot fire is a redundant transition and should such a transi-

tion exist in a net model, it warrants identification as it is likely to be indicative

of a modelling error or an inconsistency in the system being modelled. A tran-

sition is dead in a marking if no sequence of transition firings exists to enable

it [65], and we have to make sure that there is no redundant transition or dead

transition in our model.

A transition is potentially fireable if there exists some firing sequence that en-

ables it, and we have to ensure that every transition in our model is potentially

fireable.

4. Fairness:

Fairness is a Petri net property that directly corresponds to the criterion Fair-

ness in section 6.4.1.

Related problems are studied in the Petri net model where actions correspond to

the firings of transitions. An action is announced if a transition becomes firable,

and it is performed if this transition fires. Fairness in Petri nets means firing

of transitions in the order of their enabling. Therefore, fairness is a property of

firing sequences: some of them satisfy fairness conditions while others do not

and have to be excluded.

138



6.6.1 Verification of Petri net modelling - Block I

Here are the properties exhibited by adopting the behavioural approach for our Petri

net analysis of Block I.

• Reachability:

We construct the reachability tree in Fig. 6-5 as we consider the DateSelector

for Block I. As we have a truly finite tree in this case, it also follows that here the

terms reachability tree and coverability tree are synonymous. Also, the Petri

net in Fig. 6-5 is a finite capacity net.

Let us now highlight the following markings shown in Fig. 6-5 which depict

significant events attained (by firing of certain sequential events as described)

in the Petri net that we have modelled.

The marking M ′′
2 , indicating the acceptance at the first iteration itself, is

reached by the sequential firing of T11 and T13 from M0, represented by

σ2 = T11T12.

The marking M ′′′′
4 , indicating the eventual acceptance after at least one

cycle of rejection, is reached from M0 by the sequential firing of T11, T12,

followed by T11 → T12 iterating consecutively for n times, n = 0..(mdt−2),

and then T13.

The marking M ′′′
5 , indicating eventual rejection, is reached fromM0 by the

sequential firing of T11 → T12 iterating consecutively formdt times, followed

by T17. As the reachability tree has to show the intervening conflicts, this

consecutive iteration of T11 → T12 for mdt times is depicted in Fig. 6-5 by

the sequential firing of T11 → T12 once, followed by T11 → T12 iterating

consecutively for n times, n = 0..(mdt − 2), followed by T11 → T12 firing

once, and then T11 → T12 iterating consecutively for (mdt − n− 2) times.

While Fig. 6-5 shows the reachability tree for Block I by considering the Date-

Selector, the reachability tree for the DateIterator would be very similar.

139



Figure 6-5: Reachability tree for Block I (DateSelector)

• Boundedness:

A PN is called k-bounded with respect to an initial marking M0, if each place

in the net gets at most k tokens for all markings belonging to the reachability

set R(M0), where k is a finite positive integer.

The DateSelector is mdt-bounded, and so is the DateIterator.

• Liveness:

As far as liveness is concerned, we would start by defining the degrees of liveness

of individual transitions first and then subsequently the degrees of liveness of

the entire Petri net.

140



For the DateSelector associated with Block I, we have the following observations.

Transition T11 is L1-Live, since it will fire once at a minimum and up to mdt

times at a maximum (which is a finite number).

Transition T12 can have multiple firing possibilities:

1. it can never execute when the first token itself taken from ARdt is accepted

and hence transition T13 is fired.

2. It can fire for a maximum of mdt times, which however is still a finite

number.

Transition T12 is L1-Live.

Transition T12 is not L2-Live since its firing count has an upper bound of mdt

which is a finite number.

Transition T13 can have two firing possibilities:

1. it may never execute, when all the tokens taken from ARdt are rejected,

with transition T12 being fired mdt times.

2. It can be fired once.

Transition T13 is L1-Live.

Transition T14, like transition T13, can have two firing possibilities:

1. it may never execute.

2. It can be fired once.

Transition T14 is L1-Live.

Transition T16 has a similar case to T12. It may never execute, or can fire for a

maximum of mdt times, which however is a finite number.

Transition T16 is L1-Live.

141



Transition T16 is not L2-Live since its firing count has an upper bound of mdt

which is a finite number.

Transition T15 will be fired once.

Transition T15 is L1-Live.

Transition T17 can have two firing possibilities:

1. it may never execute.

2. It can be fired once.

Transition T17 is L1-Live.

Firing of transition T13 before T12 is fired even once will rule out the firing of

transition T16.

Hence the Petri net represented by Block I is not Live.

However, the Petri net represented by Block I is strictly L1-Live since it is

L1-Live but not L2-Live (all the transitions are L1-Live but none are L2-Live).

The Liveness considerations for the DateIterator would be very similar.

• Fairness:

We’d consider two basic fairness concepts:

1. Bounded fairness (B-fairness)

2. Unconditional (global) fairness

Bounded fairness (B-fairness):

Two transitions t1 and t2 are said to be in a bounded-fair (B-fair) relation if

the maximum number of times that either one can fire while the other is not

firing is bounded.

A PN, (N, m0) is said to be a B-fair net if every pair of transitions in the PN

are in a B-fair relation.

142



For both DateSelector and DateIterator, any two transitions are in a B-fair

relation since the maximum number of times that either one can fire while the

other is not firing is always bounded.

Both DateSelector and DateIterator would be a B-fair net since every pair of

transitions in each of them is in a B-fair relation.

Unconditional (global) fairness:

A firing sequence σ is said to be unconditionally (globally) fair if it is finite or

every transition in the net appears infinitely often in σ.

Each firing sequence σ in both DateSelector and DateIterator is unconditionally

(globally) fair since it is finite.

A PN, (N, m0) is said to be an unconditionally (globally) fair net if every firing

sequence σ from m ∈ R(m0) is unconditionally fair.

The DateSelector and DateIterator both would qualify to be an unconditionally

(globally) fair net since every firing sequence σ for each of them is uncondition-

ally fair.

6.6.2 Verification of Petri net modelling - Block II

Here are the properties exhibited by adopting the behavioural approach for our Petri

net analysis of Block II.

• Reachability:

We construct the reachability tree in Fig. 6-6 focusing on the SlotUpdater for

Block II. Since we have a truly finite tree in this case, it also follows that here

the terms reachability tree and coverability tree are synonymous. Also, the

Petri net in Fig. 6-6 is a finite capacity net.

As mentioned earlier, we would be introducing ESi+1 or Lcb as the output of

transition T i26 in the reachability tree we are about to construct even though

it’s not shown in Fig. 6-4, for the sake of completeness of the reachability tree.

143



Let us now highlight the following markings shown in Fig. 6-6 which depict

significant events attained (by firing of certain sequential events as described)

in the Petri net that we have modelled.

The marking M ′
2, indicating the acceptance at the first iteration itself, is

reached by the sequential firing of T i21 and T i23 from M0, represented by

σ2 = T i21T
i
23.

The marking M ′′′′
4 , indicating the eventual acceptance after at least one

cycle of rejection, is reached from M0 by the sequential firing of T i21 →

T i22 once, followed by T i21 → T i22 iterating consecutively for n times, n =

0..(msd − 2), and then T i21 followed by T i23.

The marking M ′′′
5 , indicating eventual rejection, is reached fromM0 by the

sequential firing of T i21 → T i22 iterating consecutively formsd times followed

by T i26. As the reachability tree has to show the intervening conflicts, this

consecutive iteration of T i21 → T i22 for msd times is depicted in Fig. 6-6 by

the sequential firing of T i21 → T i22 once, followed by T i21 → T i22 iterating

consecutively for n times, n = 0..(msd − 2), followed by T11 → T12 firing

once, and then T i21 → T i22 iterating consecutively for (msd − n− 2) times.

While Fig. 6-6 shows the reachability tree for Block II by considering the Slo-

tUpdater, the reachability tree for the SlotAllocator would be very similar, with

the places SEj
od and RRdt being omitted from the markings.

• Boundedness:

A PN is called k-bounded with respect to an initial marking M0, if each place

in the net gets at most k tokens for all markings belonging to the reachability

set R(M0), where k is a finite positive integer.

The Petri net in Block II is msd-bounded, where msd is the maximum value

(upper bound) that can be assumed by mi
sd. When a Sales Executive’s slots for

a fresh day are initialized, then there are msd slots available assuming the Sales

Executive is fully available on that day.

144



Figure 6-6: Reachability tree for Block II (SlotUpdater)

• Liveness:

As before, we would first define the degrees of liveness of individual transitions

followed by the degrees of liveness of the entire Petri net.

For the Petri net in Block II, we have the following observations.

Transition T i21 will fire at least once, and it can fire for a maximum of mi
sd times,

which however is a finite number.

Transition T i21 is L1-Live.

Transition T i22 can have multiple firing possibilities:

145



1. it may never execute, when the first token itself taken from ARsd is ac-

cepted and hence transition T i23 is fired.

2. It can fire for a maximum of mi
sd times, which however is a finite number.

Transition T i22 is L1-Live.

Transition T i23 can have multiple firing possibilities:

1. it may never execute.

2. It can fire once.

Transition T i23 is L1-Live.

Transition T i24 will fire at least once, and it can fire for a maximum of mi
sd times,

which however is a finite number.

Transition T i24 is L1-Live.

Transition T i25 is L1-Live, since it will fire only once.

Transition T i26 can have multiple firing possibilities:

1. it may never execute.

2. It can fire once.

Transition T i26 is L1-Live.

The firing of transition T i23 before T i22 is fired even once will rule out the firing

of transition T i22 as well as transition T i24.

Hence the Petri net represented by Block II is not Live.

However, the Petri net represented by Block II is strictly L1-Live since it is

L1-Live but not L2-Live (all the transitions are L1-Live but none are L2-Live).

• Fairness:

We’d consider two basic fairness concepts:

146



1. Bounded fairness (B-fairness)

2. Unconditional (global) fairness

Bounded fairness (B-fairness):

Two transitions t1 and t2 are said to be in a bounded-fair (B-fair) relation if

the maximum number of times that either one can fire while the other is not

firing is bounded.

A PN, (N, m0) is said to be a B-fair net if every pair of transitions in the PN

are in a B-fair relation.

For the Petri net in Block II, any two transitions are in a B-fair relation since

the maximum number of times that either one can fire while the other is not

firing is always bounded.

The Petri net in Block II would be a B-fair net since every pair of transitions

in each of them is in a B-fair relation.

Unconditional (global) fairness:

A firing sequence σ is said to be unconditionally (globally) fair if it is finite or

every transition in the net appears infinitely often in σ.

Each firing sequence σ in the Petri net in Block II is unconditionally (globally)

fair since it is finite.

A PN, (N, m0) is said to be an unconditionally (globally) fair net if every firing

sequence σ from m ∈ R(m0) is unconditionally fair.

The Petri net in Block II would be an unconditionally (globally) fair net since

every firing sequence σ therein is unconditionally fair.

6.6.3 Additional behavioural properties exhibited by the Petri

net models for Block I and Block II

The following properties are exhibited by the Petri net models based on the be-

havioural analysis in addition to the ones described in the preceding sections.

147



• Synchronic Distance:

Synchronic Distance measures the degree of mutual dependence between two

transitions in a PN.

For both DateSelector and DateIterator in Block I, the Synchronic Distance can

at most be mdt i.e. the max number of days opened up for allocation.

For Block II, the Synchronic Distance can be msd, where msd is the maximum

value (upper bound) that can be assumed by mi
sd. When a Sales Executive’s

slots for a fresh day are initialized, then there are msd slots available assuming

the Sales Executive is fully available on that day.

• Consistency:

A PN is Consistent with respect to an initial marking m0 if and only if the

coverability tree has a directed circuit (not necessarily elementary) containing

all the transitions at least once. It is Partially Consistent if such a directed

circuit contains only some of the transitions.

The DateSelector in Block I is Partially Consistent since the coverability tree

for that contains a directed circuit with only some of the transitions. When

it is accepted, the token doesn’t come back to Lrd, implying the circuit is not

completed. However, when the token does come back to Lrd, it implies that

acceptance never occurred, and hence the circuit contains only some of the

transitions (since the transitions for acceptance like T13 and T14 will not exe-

cute).

The same considerations apply to the DateIterator in Block I.

Block II is Partially Consistent since the coverability tree for that contains a

directed circuit with only some of the transitions. When it is accepted, the token

doesn’t come back to ESi, implying the circuit is not completed. However, when

the token does come back to ESi, it implies that acceptance never occurred,

and hence the circuit contains only some of the transitions (with the transition

for acceptance excluded).

148



6.6.4 Summary of the verification exercise conducted on the

Petri net models for Block I and Block II

Carrying out the behavioural analysis for the Petri net models for Block I as well as

Block II earlier in this section has helped us verify that the set of properties stated in

section 6.4.1 are indeed exhibited by the generalized Petri net models that we have

constructed.

The following observations summarize the verification of our Petri net models with

respect to the said set of properties by conducting the behavioural analysis:

1. Reachability:

We have created the reachability trees for the Petri net models for both Block

I and Block II, allowing us to find the sequence of firings of transitions which

would result in transforming a markingM0 toMi, whereMi represents a desired

specific state and M0 the initial state, in either of those two nets.

2. Boundeness:

Since there are finite markings and at each marking the number of tokens in

each place can assume a value from the range 0 . . .mdt, the Petri net model for

Block I is mdt-bounded.

Similarly, the Petri net in Block II is msd-bounded, where msd is the maximum

value (upper bound) that can be assumed by mi
sd. When a Sales Executive’s

slots for a fresh day are initialized, then there are msd slots available assuming

the Sales Executive is fully available on that day.

In a real-life environment, the boundedness or safeness of a Petri net indicates

the absence of overflows in the modelled system. This has been ensured in the

models that we have created.

Also, unbounded places are potential bottlenecks. There are no such instances

in the models created and hence we don’t have a potential bottleneck.

149



3. Liveness: A transition that cannot fire needs to be identified since it may repre-

sent an error in the model or an inconsistency in the system being modelled [65].

We have seen that there is no redundant transition or dead transition in our

model.

A transition is potentially fireable if there exists some firing sequence that en-

ables it. Every transition in our model is potentially fireable.

The Petri net models for both Block I and Block II are strictly L1-Live, and

hence would be deadlock-free.

4. Fairness:

The Petri net models for both Block I and Block II qualify to be B-fair nets as

well as unconditionally (globally) fair nets as established earlier. The fairness

gives the said Petri nets more computational power as there is no need to modify

those nets by excluding non-conforming firing sequences since no such sequence

exists for those nets [70].

6.7 Summary of chapter

The focus in our current chapter has been on Assigning leads to appropriate Sales

Executives. This is a workflow process dealing with a number of situational variables

arising out of scheduling/rescheduling of site visit requests from leads who themselves

would belong to different categories, and the availability/unavailability of Sales Exec-

utives on the said day of the site visit along with applicable constraints (like retaining

the Sales Executive as far as practicable when the lead has already made a prior site

visit or avoiding that situation altogether when the prospect has made an explicit

request to assign an alternate Sales Executive).

We have decided to use Petri nets to model the same given the widespread ap-

plicability of Petri net in modelling related application domains and workflows. The

assignment process is first detailed out and subsequently the building blocks associ-

ated with the constituent flows are modelled using Petri net. The resulting generalized

150



Petri net models have system properties that can be directly linked to certain desir-

able performance criteria of systems such as reachability, liveness, boundedness and

fairness, as borne out by the behavioural analysis conducted on them to obtain a

verification of the suitability of our modelling.

A key objective has been to arrive at generalized Petri net models for the overall

assignment process thereby facilitating the design process. However, the value of the

Petri net based modelling exercise undertaken in terms of clarifying and improving

our design understanding that is key to successful implementation applies not only

to the business scenarios in scope for this chapter (i.e. real estate CRM), but it can

also extend to other industry domains where similar Petri net based modelling and

analysis can be conducted.

We can build upon this even further in our subsequent endeavours by considering

each individual scenario of the assignment and creating a specific Petri net model

by leveraging the generalized models already built. The process would entail the

selection of the relevant constituent flows from the overall generalized Petri net mod-

els as applicable for the scenario being considered, followed by the composition of

the selected flows to realize the intended Petri net model which is specific to the

said scenario. This can prove to be quite valuable in lending greater clarity during

implementation.

What we would like to do subsequently is to focus on those processes which would

ensure the prerequisites of the assignment process have been met, and which would

also carry out the post-processing requirements of the assignment process. It is im-

portant to plan out the operational aspects when the automation would be put into

action, which is why we would be considering the go-live as well as steady state

aspects of those processes as we would look into the operational aspects related to

leads and Sales Executives as we delve into those processes into the next chapter.

We would detail the functionalities and model those using Petri net, complete with

the verification of those models with respect to a set of desired properties that such

models should exhibit.

151



152



7
Petri net modelling of certain key operational

aspects regarding leads and Sales Executives in real

estate CRM

Contents

7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2 System Initialization . . . . . . . . . . . . . . . . . . . . . 158

7.3 Steady State Operation . . . . . . . . . . . . . . . . . . . . 158

7.4 Modelling considerations: Desired properties for the

model to exhibit . . . . . . . . . . . . . . . . . . . . . . . . 170

7.5 Petri net modelling of functionalities in scope . . . . . . 171

7.6 Verification of our Petri net models . . . . . . . . . . . . 179

7.7 Summary of chapter . . . . . . . . . . . . . . . . . . . . . . 185

The focus of this chapter will be on those processes which carry out the pre-

processing as well as the post-processing activities of the assignment process which we

have described in chapter 6. The key outcome of those processes would be the priority

setting of leads (indicative of their maturity potential) and the queue adjustment of

SEs (indicative of their availability at that point in time).

One entity of utmost importance to any real estate company would be the leads.

Priority is an important attribute to be considered for every lead. It is a measure

153



of lead’s seriousness in proceeding with the deal, impacted by factors like turning up

duly for planned visits or failing to do so (skipping visits). A lead expressing a clear

intent of a site visit by providing a date for the first time would be accorded a default

priority.

As part of system initialization (go-live), the availability of Sales Executives (SE)

over a predefined date range needs to be provisioned via the initiation of slots. A slot

is a time slice of a day indicating the availability of an SE to facilitate a site visit.

The allocation availability of an SE is indicated by his queue value, with a higher

value indicating greater availability. When a request from a lead is run through the

assignment process for the first time, those SEs are considered first for allocation

whose queue values are the highest. The queue adjustment for SEs would happen

based on various events taking place.

There would be two variants of processes running every day. One would be a real-

time variant that can be triggered any time in the day to carry out the post-processing

requirements of the assignment process executed real-time to cater to first time site

visit requests as mentioned above as well as subsequent requests (like date reschedule)

from the leads. There would also be a batch variant that would run at the beginning

of the day, processing the events that happened offline and got subsequently ingested

the day before related to the site visits. Execution of both would result in priority

setting of leads and corresponding queue adjustment of SEs, described in detail in

the upcoming sections.

From an operational aspect, it requires a clear understanding of how these pro-

cesses as part of the overall automated system should be initiated during go-live

and executed during steady state in order to facilitate the assignment process. This

constitutes our focus area in this chapter.

We would subsequently carry out the modelling of those functionalities using Petri

net and then verify the suitability of those models by leveraging Petri net based be-

havioural analysis techniques. This would allow us to assess from a system designer’s

standpoint the designed system’s ability to demonstrate the desired functional prop-

erties [34].

154



For the key concepts of Petri net, section 2.3 may be referred to. As far as the

domain/industry is concerned, section 2.4 of this thesis provides an understanding of

the background.

The remaining part of this chapter would consist of the following sections:

• Background

• System Initialization

• Steady State Operation

• Modelling considerations

• Petri net modelling of functionalities in scope

• Verification of our Petri net models

• Summary of chapter

7.1 Background

As leads i.e. potential customers interested in the properties of a real estate company

reach out to the company using various means, telecallers would sift through the list

of those leads and call up the promising ones.

A lead getting ingested into the system for the first time would provide a desired

date of visit either right away or after one or more interactions with telecallers and

considered a fresh lead with lead status ”FRESH” and priority 1 (default).

The lead would next be allocated, following the assignment procedure, to one out

of a team of SEs for site visit depending on availability. The SE would meet the said

lead at the appointed time to conduct site visit. When the visit actually occurs or

gets skipped (both offline events), the corresponding information would be ingested

by the system later that day and processed the next day in batch mode.

The SE facilitating the visit would become the Original Sales Executive (OS) for

the said lead. This connection between OS and the lead would be useful given the

155



usual comfort experienced by a person from the continued association with a service

provider. Hence the system will try to ensure the OS retention for the lead for future

visit requests unless the lead explicitly asks for OS change. The priority of the lead

would be incremented upon visit completion. When this lead asks for a revisit, the

priority would be incremented.

It is of course a possibility that the lead fails to turn up or skips the said visit

(again an offline event which would be processed similarly to the visited event). He

might also ask for a reschedule (visit at a later date) and/or ask for a change of the OS

(provided he has made at least one visit previously), all of which would be real-time

events and processed in a real-time manner as well. In all such cases the priority of

the lead would be decremented by 1.

In case the system fails to accommodate the lead’s request due to lack of capac-

ity and arranges for a call-back at a later date, the priority of the lead would be

incremented by 1. However, this effect needs to be considered along with that of the

originating request. To illustrate this, when a lead asks for a reschedule that can’t be

accommodated by the system and a call-back is arranged, the net effect on the lead

priority is nil as the incrementing and decrementing effects would cancel each other

out.

Priority count can have a minimum value of 1 while it can go up to a maxi-

mum value of ψ, ψ being a positive integer capped to a specific value by the system

administrator.

The load distribution for SEs via adjustment of their queue values would play an

important role in tandem with the priority setting of leads that we described just now,

as these two processes together would be responsible for setting up the assignment

process to run in the intended manner. As we will see, the assignment process will

also in turn trigger the priority setting of the leads as well as the queue adjustment

of the SEs as part of its post-processing.

The queue setting of SEs would be done via initialization of the global queue value

for each SE with the highest queue value possible (h), along with the initialization

of all slots per day (msl) for each SE for the next p days (p, a system parameter,

156



signifying the system’s capacity for accepting future visit requests) and setting the

daily queue value for each day for each SE over the said date range to the respective

global queue value, as part of go-live.

Subsequently, those daily queue values for the SE will get adjusted as fresh leads

are assigned to that SE for the first time, and also based on subsequent real-time

requests from those leads as already described. Queue value adjustment will also

happen when the corresponding visit related events are processed in a batch mode as

described earlier. Those events which are related to leads for whom the SE happens

to be the OS will also result in the modification of the global queue value for the SE.

While the global queue value for an SE can get updated at any time depending

on the events happening as described, it can never be negative and can’t exceed the

maximum queue value. Also, the daily queue value for an SE would be less than

or equal to the global queue value for that SE, the difference attributable to cases

involving allocation to fresh lead(s) for slot(s) on the concerned day, but it can never

be negative.

Post go-live, at the start of each subsequent day dt, the slots would be initialized

in batch mode for each SE SEi for the p-th day from the run date dt i.e. (dt + p).

The corresponding daily queue value for that day (dt + p) would be set to the SE’s

applicable global queue value. As mentioned, the global queue value for the SE would

continue to be adjusted depending upon the specific set of events that happen to leads

who have the SE as their OS.

Post visit, subsequent interactions would lead to either a progressive showing of

intent from the lead eventually culminating in a sale of property (booking) or decline

of interest leading to a lost opportunity. Both bookings and declines would be offline

events which would take the concerned leads out of the purview of our current system,

since handling of the sale of property will be done via the sales/post-sales process

which is beyond our current scope.

In the subsequent sections, we will detail how the aforementioned processes should

operate during system initiation (go-live) and the steady state to ensure the assign-

ment process runs smoothly, taking into account the different events taking place over

157



the applicable day range.

7.2 System Initialization

In this section, we are going to describe the process execution during the system

initialization, to make sure the assignment process is properly set up.

7.2.1 Slot Initialization with queue setting (Go-Live)

This would be run as a batch process.

When the system is made operational for the first time i.e. on its go-live date

(dtgl), it will initialize all the slots for all the SEs for p days, starting from the day

after the go-live date (i.e. dtgl + 1), since that is the earliest date any SE can carry

out a site visit keeping a day’s gap between the first date a booking can be made

(dtgl).

Each SEi’s global queue value hgi for the said period would be initialized with h,

and the daily queue value hdti for each day dt over the said period would be set to the

respective global queue value hgi , which is equal to h.

The corresponding routine InitSlotSetQGL (Algorithm 1) takes as input parame-

ters dtgl, p, h and msl, initializes the global queue (hgi ) for SEi to h and invokes the

routine, InitSlotSetQDaily, for that SE’s slot initialization and daily queue setting for

each day from (dtgl + 1) to (dtgl + p), passing each available SE id SEi and h.

The routine InitSlotSetQDaily, described in Algorithm 2, takes as input SEi, date

dt, queue value hg and msl, initializes all msl slots for SEi on dt and sets daily queue

value for SEi for date dt (h
dt
i ) to h

g.

7.3 Steady State Operation

In this section, we will endeavour to describe how the system is operated at steady

state, in terms of carrying out the operational aspects of those processes that are key

to ensuring the proper execution of the assignment process.

158



Algorithm 1 InitSlotSetQGL: Algorithm for SE’s slot initialization with queue set-
ting during go live

Require: dtgl, p, h, msl

1: for (dt = (dtgl + p) to (dtgl + 1)) do
2: NumAvlblSE ← FetchSECount(dt)
3: for (i = NumAvlblSE to 1) do
4: SEi ← FetchSEID(dt, i)
5: SetGlobalQV alSE(SEi, h)
6: InitSlotSetQDaily(SEi, dt, h,msl)
7: end for
8: end for

Algorithm 2 InitSlotSetQDaily: Algorithm for a specific SE’s slot initialization with
queue setting for a given day

Require: SEi, dt, h
g,msl

1: SetDailyQV alSE(SEi, dt, h
g)

2: for (sl = msl to 1) do
3: SetSlot(SEi, dt, sl)
4: end for

On the day the system has gone live (dtgl), post slot initialization for the next

p days as part of the go-live operation discussed in section 7.2.1, the steady state

operation taking place that day (dtgl) would be the processing of lead requests in

real-time and assignments to be created in the system for visits scheduled from date

(dtgl + 1) onwards till (dtgl + p) or call-backs (in case assignment couldn’t be made).

These would result in priority setting of the leads and the corresponding adjustment

of queues (daily and possibly global) of the SE-s involved in real-time, which would

be explained in sections 7.3.2 and 7.3.3.

On the morning of the next day (dtgl+1) the initialization of all slots for each SEi

for the p-th day from the run-date (dtgl+p+1) will take place with the corresponding

daily queue for that day (h
dtgl+p+1
i ) being set to the applicable global queue value (hgi ).

This process, described in section 7.3.1, will take place every day going forward.

Subsequently, the steady state operation taking place that day (dtgl+1) would be

the processing of lead requests in real-time as already described in a preceding para.

That day, site visits take place for the first time based on the assignments created

on the previous day (dtgl), and accordingly the visit records as well as the visit skipped

159



records would be ingested by the system that day at a later point of time. However,

the processing of those records would happen only the next day, (dtgl+2), in a batch

mode.

It would be followed by a batch process which would start executing from day

(dtgl + 2) onwards on a daily basis. It processes the ingested visit records for the

previous day, resulting in priority setting of the leads in batch mode (explained in

section 7.3.2) and the subsequent adjustment of queues of the SE-s in batch mode

(explained in section 7.3.3).

The same set of operations that took place on day (dtgl + 2) would get repeated

every day onwards.

Let us now discuss these in greater detail.

7.3.1 Slot Initialization with queue setting (Steady State)

This runs as a batch process at the start of any given day later than dtgl, say the

system date dtsys, where dtsys > dtgl.

It should be noted that on dtsys the system would already have captured the

availability of all SEs per day per slot from dtsys till date (dtsys + p− 1) by virtue of

the operations carried out till the previous day i.e. (dtsys − 1).

As part of the daily run executed as a batch process in the day beginning for dtsys,

the system would additionally capture the availability of each SEi for all slots for date

(dtsys+p) setting the corresponding daily queue value h
dtsys+p
i to the respective global

queue value hgi applicable at that time.

The corresponding routine, InitSlotSetQSS, shown in Algorithm 3, takes as input

system date dtsys, p and msl, calculates date dt as (dtsys + p), and for each SEi

available for date dt fetch the corresponding global queue value hgi and invoke the

InitSlotSetQDaily routine within a loop.

160



Algorithm 3 InitSlotSetQSS: Algorithm for SE’s slot initialization with queue set-
ting during steady state

Require: dtsys, p,msl

1: dt← dtsys + p
2: NumAvlblSE ← FetchSECount(dt)
3: for (i = NumAvlblSE to 1) do
4: SEi ← FetchSEID(dt, i)
5: hgi ← FetchGlobalQV alSE(SEi)
6: InitSlotSetQDaily(SEi, dt, h

g
i ,msl)

7: end for

7.3.2 Priority setting of leads

The priority setting of leads is accomplished via a mix of real-time and batch modes

of operations, as explained below.

Priority setting of leads on a real-time basis

When a lead has expressed his intent to visit by providing a date and is being con-

sidered by the system for the first time (a fresh lead), a date of visit is assigned and

its priority count is set to 1, its initial state. This is the priority initialization for a

lead. The corresponding event would be InitV R.

A fresh lead will continue to retain its status until a visit happens. However, before

undertaking the first visit, if he asks for a reschedule and a callback is generated, he

will be treated like a lead who intends to visit for the first time but is yet to provide

a visit date, and eventually if he does provide a visit date he will again be regarded

as a fresh lead and start to be considered by the system for assignment.

Subsequently, the lead’s priority setting would continue to happen based on real-

time events as explained below.

If a lead makes a reschedule request and the system can accommodate it, its

priority count will be decreased by 1. The corresponding event is RR.

If a lead makes an OS change request and the system can accommodate it, its

priority count will be decreased by 1. The corresponding event is OSCR.

If a lead makes a reschedule as well as OS change request and the system can

accommodate, its priority count will be decreased by 1. The corresponding event is

161



ROSCR.

The priority can never go below 1 while it is in the scope of this system.

For any of the above requests, if due to lack of capacity the system fails to accom-

modate and thus assigns a call-back at a later date to work out a visit time slot for

the lead, the corresponding event (RR / OSCR / ROSCR) would be accompanied

by the event CB, in that particular order. The effect of these two events needs to be

considered together and the priority count of the lead would remain unchanged.

For this reason, we use an event array to capture the real-time lead events. The

count of elements in the event array eventl[] for each lead Leadl can be either 1 when

the system can accommodate the request, or 2 when call-back is involved.

When a lead who has visited earlier (not a fresh lead) makes another visit request,

the corresponding event is V R and the priority is incremented by 1.

The priority setting of leads in response to these real-time events is carried out in

the routine for processing lead requests in real-time, ProcLeadReqRealTime, shown

in Algorithm 4, which also does the queue adjustment of SE. Carried out as a post-

processing routine of the assignment process, it takes Leadl, eventl[], SEc, dtc, slc,

dtsys, p as input parameters, where eventl[] is the event array for Leadl, and SEc,

dtc, slc being the current SE, date and slot being assigned respectively in response

to the event(s). The latter 3 would be null in case of callback.

Let us now consider the operational aspects of how the site visit requests of the

leads are captured. Capturing the subsequent requests related to those site visit

requests, like the reschedule request and/or the OS change request, will follow a

similar pattern in operational terms.

Starting from the day it becomes operational (i.e. the go-live date dtgl), the

system would begin to capture site visit requests for the leads on a real-time basis.

As a rule, the earliest day a visit request can be accommodated is the day after the

date of request. The latest day a visit request can be accommodated is p days after

the request date.

Let us illustrate the above mechanism by taking two examples below.

The visit dates being captured on the go-live date (dtgl) can range from the next

162



day (dtgl + 1) till date (dtgl + p).

On any later day, say system date dtsys (dtsys > dtgl), the system would keep on

capturing throughout the day the intended site visit requirements for leads, which

can range from (dtsys + 1) till (dtsys + p).

Priority setting of leads via batch mode

When a lead visits as planned, the event is V isited and its priority increases by 1.

The SE facilitating the visit becomes the OS for the lead. If a lead fails to visit as

planned, the event is Skipped and its priority decreases by 1. These visit records

are ingested at a later point that day by the system, and get processed the next day

beginning in batch mode.

This would be accomplished by the ProcVisitRecBatch routine shown in Algo-

rithm 5 that takes dtsys as input and processes the ingested visit records for the

previous day and sets the priority for each lead associated with each of those records

according to the event that took place.

7.3.3 Queue adjustment for SEs

We have previously explained in sections 7.2.1 and 7.3.1 the slot initialization process

for SEs with queue initialization during go-live and steady state respectively, the

corresponding routines being Algorithm 1 and Algorithm 3.

Those queue values will get adjusted when leads are assigned to the said SE in

real-time, when other real-time events take place, and when the corresponding visit

related events (V isited and Skipped) are processed in batch mode.

This queue adjustment process facilitating the load balancing of SEs would run

both in real-time and batch mode, as explained below. It should be noted that daily

queue value hdti for each dt for SEi should satisfy: 0 ≤ hdti ≤ hgi , h
g
i denoting the

global queue value of SEi.

When the global queue value for an SE changes, the corresponding incremental

change needs to be applied to all the daily queue values for that SE for the next p

163



Algorithm 4 ProcLeadReqRealTime: Algorithm for processing lead requests in real-
time, carrying out priority setting of lead and Q adjustment of SE

Require: Leadl, eventl[], SEc, dtc, slc, dtsys, p
1: stsl ← FetchStatusLead(Leadl)
2: if (eventl[1] ̸= InitV R) then
3: AssignRecel ← FetchAssignRec(Leadl)
4: SEe ← AssignRecel .SE
5: dte ← AssignRecel .dt
6: pre ← AssignRecel .pr
7: sle ← AssignRecel .sl
8: hgl ← AssignRecel .h

g

9: if (stsl = FRESH) then
10: AdjQSEProc(SEe, dte, 1, pre,++)
11: else if (eventl[1] = V R) then
12: AdjQSEProc(SEe, dtsys + 1, p, pre,++)
13: prc ← min(pre + 1, hgl )
14: if (eventl[].count = 2) then
15: prc ← min(pre + 1, hgl )
16: end if
17: else
18: AdjQSEProc(SEe, dte, p, pre,++)
19: end if
20: end if
21: if (eventl[].count = 1) then
22: if (stsl = FRESH) then
23: prc ← 1
24: AdjQSEProc(SEc, dtc, 1, prc,−−)
25: else
26: if (eventl[1] ̸= V R) then
27: prc ← max(pre − 1, 1)
28: end if
29: if (eventl[1]ϵ{RR, V R}) then
30: AdjQSEProc(SEc, dtsys + 1, p, prc,−−)
31: else
32: AdjQSEProc(SEc, dtc, 1, prc,−−)
33: end if
34: end if
35: SetAssignRec(Leadl, prc, SEc, dtc, slc)
36: else
37: if ((stsl ̸= FRESH) & (eventl[1]ϵ{RR, V R})) then
38: SetAssignRec(Leadl, prc, SEc, null, null)
39: else
40: SetAssignRec(Leadl, prc, null, null, null)
41: end if
42: end if

164



days.

When the daily queue value for an SE changes for a day, the effect applies to that

day only, lessening or increasing the ability of the SE to attend to fresh leads on that

day.

Queue adjustment for SE in batch mode

We have explained previously in sections 7.2.1 and 7.3.1 how the slots for SEs are

initialized during go-live and steady state respectively, with corresponding queue set-

tings. Let us now describe how those queues get adjusted in batch mode.

The global queue value hgi of SEi would get adjusted according to the number of

leads for whom the SE happens to be the OS. Points to be considered are the relative

impact of each such lead on the capacity to be provisioned and if any distinction is

necessary between such leads.

The relative impact of each such lead would be considered by clustering all leads

of the same priority in one group. Thus SEi can have up to ψ different priority groups

for each day dt. The reason for creating such different groups is to acknowledge the

distinction between two leads with different priorities, as a higher priority indicates

increasing engagement on the lead’s part and hence a higher probability of a revisit.

The leads within the same priority group would form a homogeneous group demon-

strating the same characteristics as far as provisioning capacity to cater to them is

concerned, which will change when a different priority group is considered.

When the number of such leads reaches a certain threshold it results in a queue

shift by 1 for SEi. This threshold value needs tuning to arrive at an optimum value.

The following equation shows the representation of fpr, a function f mapping the

number of leads npr belonging to the priority group pr having SEi as the OS, with

respect to the threshold value tpr for that priority group pr.

fpr = 1, if
npr

log(ψ + 1− pr) + 1
>= tpr,

= 0, otherwise.

(7.1)

165



Thus each specific priority group pr would have an associated t (threshold) value

tpr which would be a tunable parameter. Within each such priority group with value

pr, when the corresponding lead count npr accumulates up to the value tpr, the SE’s

queue value would be impacted (incremented or decremented as the case may be) by

1 and the corresponding lead count npr would be reset to 0.

When the visit records are processed and the queue adjustment happens for all

the leads for whom the SE is the OS, there could be the possibility of shifts happening

within the priority groups.

Let us consider the following scenario for illustration. A lead Leadl has SEi as

his OS. If the lead’s priority shifts from pre (earlier priority) to prc (current priority)

while SEi continues to remain the OS, the effective capacity for SEi should increase

for priority group pre since some capacity for that priority group has been released

now with Leadl leaving that group, while the effective capacity for priority group prc

should decrease as some capacity for that priority group would need to be allocated

now with Leadl entering that group. This is indicated by decrementing the value of

prchdti for priority group prc by 1 while incrementing the value of prehdti for priority

group pre by 1.

If in the process the prehdti value for the priority group pre of SEi on date dt

reaches tpre (i.e. the t threshold value for priority group pre), the corresponding hdti

value would get incremented and prehdti is reset to 0.

An increment and a decrement within the same priority group prc of SEi on date

dt will cancel each other out and prchdti will remain unchanged.

When the global queue value hgi of SEi changes, the corresponding incremental

effect would also apply on hdti i.e. the daily queue values for SEi for all dt in the date

range starting from the system date till p days later.

When the SE’s queue value hdti for date dt becomes 0, it is taken off the queue

(No-Queue i.e. NQ), implying it has no further allocation capacity.

All the above would be accomplished by the routine for processing visit records

batch process, ProcVisitRecBatch, as shown in Algorithm 5 that takes dtsys as input

and processes the ingested visit records for the previous day and invokes the SE queue

166



adjustment process, AdjQSEProc.

The ProcVisitRecBatch routine wraps it up by invoking the routine SetAssignRec

setting the recent most assignment for Lead with his current priority prc. For skipped

event for a fresh lead this will pass nulls for SE, date and slot, whereas for all other

cases, SEc (the OS) would be passed along with null-s for date and slot.

Algorithm 5 ProcVisitRecBatch : Algorithm for processing visit records batch pro-
cess, carrying out lead priority setting and SE queue adjustment

Require: dtsys
1: dt← dtsys − 1
2: NumRec← FetchV isitCount(dt)
3: for (i = NumRec to 1) do
4: V isitRec← FetchV isitRecords(dt, i)
5: Lead← V isitRec.Lead
6: SE ← V isitRec.SE
7: pre ← FetchPriorityLead(Lead)
8: sts← FetchStatusLead(Lead)
9: if (V isitRec.event = V isited) then
10: prc ← min(pre + 1, ψ)
11: if (sts ̸= FRESH) then
12: AdjQSEProc(SE, dt+ 2, p, pre,++)
13: end if
14: AdjQSEProc(SE, dt+ 2, p, prc,−−)
15: SetAssignRec(Lead, prc, SE, null, null)
16: else
17: prc ← max(pre − 1, 1)
18: if (sts ̸= FRESH) then
19: AdjQSEProc(SE, dt+ 2, p, prc,−−)
20: AdjQSEProc(SE, dt+ 2, p, pre,++)
21: SetAssignRec(Lead, prc, SE, null, null)
22: else
23: SetAssignRec(Lead, prc, null, null, null)
24: end if
25: end if
26: end for

Queue adjustment for SE on a real-time basis

When a lead is freshly ingested into the system requesting a visit date, it has a priority

of 1. In order to allocate it to an available SE, the assignment process is run which

167



will match it against the SEs available. As this routine is invoked as part of the

post-processing of assignment process, the SE’s corresponding daily queue value hdti is

reduced by 1 on a real-time basis for dt when the requested visit is to take place, the

corresponding event being InitV R.

When there is a reschedule request (”RR” event) for a lead Leadl, there would be

different outcomes depending on whether Leadl is a fresh lead or not.

If Leadl is a fresh lead, then it has its earlier priority value pre set to 1. For the

earlier SE, SEe, the queue value for the earlier date dte, h
dte
i , would get increased by

1.

If the RR request can’t be accommodated by the system, indicated by the presence

of CB, then the priority remains unchanged. There is no current SE allocation.

If the RR request can be accommodated by the system, then ideally the priority

should be decremented by 1. But since it would become 0 in that case, which would

not be a fair reflection on the load bearing capacity for the SE to whom it would be

assigned currently i.e. SEc, the priority would be kept unchanged at pre (which is 1)

only. Also for SEc, the queue value for the current date dtc, h
dtc
i , would get decreased

by 1.

Let us now consider the case of a lead that is not a fresh lead. If Leadl is not a

fresh lead, it implies that it already has an OS, the earlier SE SEe.

In case the request can be accommodated by the system, the priority of the lead

would change from pre to prc (it would be decremented by 1). The earlier date dte

and slot sle would now be changed to the current date dtc and slot slc. The queue

adjustment would happen for the SE SEc who would continue to remain the current

SE (OS) for the lead in the following manner. Its effective capacity would decrease

for the priority group prc where Leadl would belong now, and the effective capacity

would increase for the priority group pre where Leadl belonged earlier.

In case the request can’t be accommodated by the system, indicated by the pres-

ence of CB, the priority of the lead would remain unchanged at pre, and there would

be no queue adjustment since the SE SEe would continue to remain the OS for the

lead.

168



When there is an ”OSCR” event for a lead Leadl, implying a request for the OS

change, the queue adjustment would happen for the SE SEe who was the earlier OS

for the lead, whose effective capacity would increase for the priority group pre where

Leadl belonged earlier. In case the request can be accommodated by the system, the

priority of the lead would change from pre to prc (it would be decremented by 1). The

queue adjustment would now happen for the SE SEc who has become the current

OS for the lead, whose effective capacity would decrease for the priority group prc

where Leadl would belong now. This is an instance of shifts happening across priority

groups for multiple SE-s.

In case the system is unable to accommodate the ”OSCR” request, indicated by

the presence of CB, Leadl’s priority remains unchanged (pre). Since no SE could

be assigned here, the net effect here would be the queue adjustment (increment) for

SEe.

The implications would be quite similar for the ”ROSCR” event, where the addi-

tional factor to consider would be the change in date request (reschedule request) in

addition to the OS change request.

When a lead who has visited earlier (not a fresh lead) makes another visit request,

the corresponding event would be V R. If the system can accommodate then the

priority of the lead would change from pre to prc (incremented by 1), but cannot

exceed ψ. The earlier date dte and slot sle (which were null) would now be changed

to the current date dtc and slot slc.

However, if the system is unable to accommodate that (event CB in addition),

the priority of the lead would change from pre to prc (incremented by 2), but cannot

exceed ψ. The earlier date dte and slot sle (which were null) would now be changed

to the current date dtc and slot slc which would remain null.

For both cases with V R, the queue adjustment would happen for the SE SEc who

would continue to remain the current SE (OS) for the lead. Its effective capacity

would decrease for the priority group prc where Leadl would belong now, while that

would increase for the priority group pre where Leadl belonged to earlier.

These effects are provided by the AdjQSEProc routine which is invoked from

169



within the ProcLeadReqRealTime routine as shown in Algorithm 4.

The ProcLeadReqRealTime routine is carried out as a post-processing requirement

of the assignment process and takes Leadl, eventl[], SEc, dtc, slc, dtsys, p as input

parameters, where eventl[] is the array of events containing 1 or 2 elements for Leadl

as already described, with SEc, dtc and slc being the current SE, date and slot being

assigned in response to the event(s). The latter 3 would be null in case of call-back.

The ProcLeadReqRealTime routine wraps it up by invoking the routine SetAs-

signRec, setting the recent most assignment for Leadl with his current priority prc

and the assigned SE SEc along with the date dtc and slot slc of the assignment when

the system is able to accommodate it. In case of a call-back, when the lead is a fresh

lead then this will pass nulls for SE, date and slot, whereas for the non-fresh leads,

SEc (the OS) would be passed along with null-s for date and slot.

Our next course of action would be to decide on a suitable approach to model the

above functionalities as discussed.

7.4 Modelling considerations: Desired properties

for the model to exhibit

Modern system development considers modelling and analysis as essential to manage

the complexity and mitigate risks upfront in designing and operating such a system.

Also, given the criticality of ascertaining the correctness of the models, we need to

specify the desired properties that the model should demonstrate.

Before carrying out the modelling of the flows as previously described, let us

specify the properties that our model should be able to exhibit as follows.

1. Reach a specific state: This signifies if the system exhibits a specific behavior,

thereby affirming the modelled system’s adherence to agreed properties.

2. Prevent overflow: Overflow should be prevented by avoiding nodes with overflow

possibilities in the model as they imply bottlenecks.

170



3. Prevent deadlock: Deadlock prevention is clearly important.

4. Fairness: This relates to the ability to perform actions according to the order

by which they are announced.

We would now carry out the modelling of certain key functionalities namely the

processes dealing with slot initialization with queue, the priority setting of leads and

the queue adjustment of SEs in the next section.

7.5 Petri net modelling of functionalities in scope

In sections 7.2 and 7.3 we have discussed the functionalities in scope of this chapter,

and we intend to model the focus areas of slot initialization with queue, priority

setting of leads and queue adjustment of SEs, in this section. Petri net would be

our model of choice given its usefulness in modelling, formal analysis and design of

systems like the one in scope.

7.5.1 Petri net modelling of slot initialization with queue set-

ting

The Petri net modelling of the flow for slot initialization with queue setting, that

aspect of the Steady State Operation which initiates allocation of fresh slots for all

SEs for date dt along with highest priority queue formation during the daily run, is

shown in fig. 7-1 for any SE SEi.

Let us define the legends we’d be using to explain the modelling of the slot ini-

tialization process using fig. 7-1.

Legends:

ISdt : Initiate Slot allocation for accepted date dt;

SP i : Slot Preparation for ith SE;

Csl : Collection of slots;

171



msl : Instances of slots which can be assigned to an SE for a given day (daily

capacity);

SEi
sd : Collection of assignable slots sd prepared for ith SE (for date dt);

KTsl : Keep Track of available slots;

IRsl : Initiate Return of available slots;

RAsl : Return Available slots

Figure 7-1: Petri net modelling of Slot Initialization with Queue - for one SE.

When allocation for slots for date dt needs to be initiated, a token would be there

in ISdt. A token in ISdt results in the transition T11 getting fired. The token from

the input place ISdt is taken, leaving it with no token. A token is deposited in the

place SP i. This sets the stage for the slots to be prepared for the ith SE.

The place Csl provides a collection of msl tokens, where each token represents one

specific instance out of themsl slots that can be allocated for the given SE SEi on date

dt. When there’s a token in SP i as well, these input places of T i12 are synchronized

for the firing of transition T i12.

A token is added to SEi
sd and KTsl. The token which was taken from the place

SP i is inserted back, enabling the firing of transition T i12 once again.

This continues iteratively till there is no token left in Csl. Both the places SEi
sd

and KT sl are populated with msl tokens.

The place SEi
sd eventually shows a transition to Qi

h, implying the initiation of

slots for SEi on date dt using the slot initialization process happens with the highest

queue allocation.

172



When there is no token left in Csl (inhibitor), it will initiate the firing of transition

T i13 as there is a token present in SP i.

The place IRsl is populated with a token. The place SP i has no token left.

The presence of a token in the place IRsl initiates the transition T i14.

The place RAsl is populated with a token. The place IRsl has no token left.

There is a token in RAsl and there are msl tokens in KTsl. With presence of

tokens, these input places of T i15 are synchronized for the firing of transition T i15.

The token from RAsl is taken leaving no token there. Out ofmsl tokens available in

the place KTsl, one is taken leaving (msl – 1) tokens remaining. A token is deposited

in the place Csl. The place RAsl will have the token deposited back while the place

KTsl has (msl - 1) tokens, enabling the transition T i15 to be fired once again.

This circular firing sequence will continue for msl times till there is no token left in

KTsl i.e. all msl tokens are removed from it. The place Csl will now have a collection

of msl tokens deposited in it.

The place RAsl will have one token.

The presence of a token in RAsl and the absence of any token in KTsl results in

the transition T i16 getting fired.

The token from the input place RAsl is taken, leaving it with no token.

The presence of msl tokens in the place SEi
sd and absence of a token in the place

Qi
h initiates the transition T i17.

The place Qi
h is populated with a token. The place SEi

sd is re-populated with msl

tokens.

7.5.2 Petri net modelling of priority setting of leads

The Petri net modelling of the priority setting for a lead is shown in fig. 7-2.

Any reschedule request (RR)/OS change request (OSCR)/reschedule and OS

change request (ROSCR) would result in a token to be deposited on a real-time

basis to the place – –. A not fresh lead’s repeat visit request (V R), as well as the

system’s inability to accommodate any of the aforementioned requests resulting in a

173



Figure 7-2: Petri net diagram of priority setting for a lead.

call-back (CB) at a later date, would result in a token being deposited on a real-time

basis to the place ++.

The information of visits happening or being skipped in the previous day will be

ingested by the system at a later point, which will be processed in batch mode at

the beginning of the day after the slot initialization process execution, each of which

results in a token being inserted in the place ++ or the place – – respectively.

Let us define the legends we’d be using to explain the modelling of priority setting

of leads using fig. 7-2.

Legends:

++ / – – : Increment / decrement priority of the lead;

P l
1 / P l

i / P
l
ψ : Priority value 1 / i / ψ assumed by lead l;

RR/OSCR/ROSCR : reschedule request /OS change request /reschedule and

OS change request;

V R : visit request;

CB : Callback arranged for a later date for the lead;

Visited : previous day lead visited information;

Skipped : previous day lead skipped visit information;

At the outset, we need to keep in mind that for the lead l being considered here,

only one of the places from P l
1 to P l

ψ can be occupied at a given time since that lead

would have a unique priority at any point in time.

174



If we consider the lead as a fresh lead who has indicated intent to visit a site for

the first time by providing a date, the priority of the lead would be 1. This is the

default case and hence a token is shown as present in the place P l
1 in fig. 7-2.

Priority setting of leads - increment

Let us first address the priority increment part.

Here a token would be present in the place ++, which can be due to the batch

feed of the Visited event of lead l on the previous day (dt − 1), or a callback (CB)

(for a later date) arranged for the lead on that day (date dt), or a Visit Request (V R)

event for a not fresh lead on that day (date dt).

Assuming the priority of the lead is 1, which is the default case when a fresh lead

indicating intent to visit the site by providing a date is considered for the first time

by the system, a token would be present in the place P l
1.

With the presence of a token each, these two input places would be synchronized

to fire the transition T+
31 to deposit a token into the place P l

2. The places ++ and P l
1

both would now become token-less.

This implies that the priority of the lead l has been incremented from 1 to 2.

Let us now consider the priority increment for a lead with priority 2. Going by

our assumption that the value of ψ is capped to 3 for this particular implementation,

we can treat the generalized variable i to be 2 for the specific system being considered

here. This implies that a token is already present in the place P l
i , which is equivalent

to P l
2.

When a token is inserted in the place ++, both these input places ++ and P l
i

would be synchronized to fire the transition T+
32 to deposit a token into the place P l

ψ,

since ψ = 3 for the system we are considering. The places ++ and P l
i both would

now become token-less.

This implies that the priority of the lead l has been incremented from 1 to 2.

There is a special case with priority increment when the priority of the lead is ψ,

whereby a token is present in the place P l
ψ. With the presence of a token in the place

++, these two input places would be synchronized to fire the transition T+
3ψ, with the

175



places ++ and P l
ψ both becoming token-less. The firing would result in depositing

a token into the place P l
ψ. So effectively the place ++ becomes token-less, while the

place P l
ψ would retain its token.

This implies that the priority of the lead l can not increase beyond ψ, which is the

maximum value that a lead’s priority can assume. As already stated, our assumption

is that the value of ψ is capped at 3 here.

Priority setting of leads - decrement

Let us now address the priority decrement part.

Here a token would be present in the place – –, which can be due to the batch

processing of the Skipped event of lead l on the previous day (dt− 1), or RR / OSCR

/ ROSCR request coming from the lead on date dt in real-time.

As already stated, the value of ψ is capped to 3 for this particular implementation,

and we can thus treat the generalized variable i to be 2 for the specific system being

considered here.

Assuming the priority of the lead is 2, a token would be present in the place P l
i .

With presence of tokens, these two input places – – and P l
i would be synchronized

to fire the transition T−
2i to deposit a token into the place P l

1. The places – – and P l
i

both would now become token-less. This implies that the priority of the lead l has

been decremented from 2 to 1.

The decrementing of priority of another lead from ψ (effectively 3) to i (effectively

2) can be represented similarly.

There is a special case with priority decrement when the priority of the lead is 1,

whereby a token is present in the place P l
1. With presence of a token in the place

– –, these two input places would be synchronized to fire the transition T−
21, with the

places – – and P l
1 both becoming token-less. The firing would result in depositing a

token into the place P l
1. So effectively the place – – becomes token-less, while the

place P l
1 would retain its token.

This implies that the priority of the lead l can not decrease below 1, which is the

minimum value that a lead’s priority can assume.

176



7.5.3 Petri net modelling of queue adjustment for SE

The Petri net modelling of queue adjustment for SEs is shown in fig. 7-3.

Figure 7-3: Petri net diagram for queue adjustment for SEs.

Let us define the legends we’d be using to explain the modelling of queue adjust-

ment for SEs using fig. 7-3.

Legends:

++ / – – : Increment / decrement queue value for SE;

Qi
1 / Qi

h / Qi
j : Queue value at 1 / h / j for SE SEi;

NQi : No queue for SE SEi;

At the outset, we need to keep in mind that for the SE SEi being considered here,

only one of the places from Qi
1 to Qi

h can have a token at a given time since that SE

would have a unique queue value at any point of time.

If we consider the SE as a new hire who has been inducted into the system for the

first time, or we are considering the slot initialization of the SE for a given day, the

queue value of the SE would be h for the day being considered. Accordingly a token

is shown as present in the place Qi
h in fig. 7-3.

Subsequently, there would be leads assigned to the SE, leading to adjustment

(decrementing) of his queue value, since his capacity would now be reduced. The

corresponding events of V isited (triggered via batch ingestion) will result in a further

adjustment of his queue value, as the SE will now become the OS for these leads who

themselves would have different priority values.

177



There would also be instances of the SE’s queue value getting incremented, trig-

gered via events like Skipped leading to a reduction of priority for concerned leads

for which the SE continues to remain the OS.

For ease of understanding, we’ll consider leads for a given priority pr here, with

the corresponding t-value being considered as tpr.

Queue adjustment for SEs - decrement

Let us first address the decrement part of queue adjustment for SEs.

Assuming the queue value of the lead is h, the default case as explained, a token

would be present in the place Qi
h.

A token would be deposited in the place – – for each lead with the specific priority

being considered, based on applicable events like a Visited event of a lead happening

on the previous day (dt− 1) which is obtained via the batch feed on the morning of

day dt, or a V R coming from a fresh lead on date dt based on assignment process

happening in real-time.

When the token count for the place – – reaches tpr (implying the count of ap-

plicable leads with the specific priority reaches tpr), these two input places, Qi
h and

– –, would be synchronized to fire the transition T−
4h to deposit a token into the place

Qi
j, j = h− 1. The places – – and Qi

h both would now become token-less.

This implies that the queue value of SEi has been decremented from h to j, j =

h− 1.

We can continue representing in this way, till we consider the special case where a

token is present in the place Qi
1 and tpr tokens in the place – –. These two input places

would be synchronized to fire the transition T−
41, which would result in depositing a

token into the place NQi, with the places – – and Qi
1 both becoming token-less.

This implies that the SE SEi has now been taken off the queue (No Queue - NQ).

Queue adjustment for SEs - increment

The increment part of queue adjustment for SEs would be similar to section 7.5.3 but

in a reverse way.

178



Let us consider the SE SEi who is off the queue. This would imply presence of

a token in NQi. The queue increment will happen when there are events leading

to tpr tokens being deposited in the place ++. These two input places would be

synchronized to fire the transition T+
5N , which would result in depositing a token into

the place Qi
1, with the places ++ and NQi both becoming token-less. Thus SEi will

now move to a state where it will be able to accept requests, with its queue value

becoming 1.

There’s a special case involving tokens from both the places – – and++. A decrement

or increment operation only gets enabled when the token count for the respective place

(– – or ++) reaches tpr, and nothing happens as long as the respective count remains

less than tpr. Since the decrement and increment operations by their nature cancel

each other out, it is represented by the sink transition T+−
s which can be triggered

by presence of a token in both the places – – and ++. The firing would result in the

two places ++ and – – both becoming token-less.

7.6 Verification of our Petri net models

We would be adopting the behavioural approach for our Petri net analysis here to

determine if the set of properties stated in section 7.4 are exhibited with respect to

the following behavioural properties:

1. Reachability: This property directly corresponds to Reach a specific state in

section 7.4.

To determine if the modelled system can reach a specific state Mi, in essence

exhibiting a desired functional behavior, a sequence of transitions needs to be

produced that upon firing will transform an initial marking M0 to Mi. The

sequence of firings represents the required functional behavior.

We would be creating the reachability tree for the Petri net models which would

allow us to find the sequence of firings of transitions which would result in

transforming the marking M0 to the marking Mi.

179



2. Boundedness: This Petri net property aids in identifying the overflow possibil-

ities in the modelled system [34], and it directly corresponds to Prevent overflow

in section 7.4. A bounded place will guarantee that the capacity associated will

not get exceeded by related operations [65], which needs to be ensured in the

models that we will create by having them exhibit the Boundedness property.

A Petri net is called k-bounded with respect to an initial marking M0, if each

place in the net gets at most k tokens for all markings belonging to the reach-

ability set R(M0), where k is a finite positive integer.

Also unbounded places are potential bottlenecks. We need to verify that there

are no such instances in the models created.

3. Liveness: Liveness, a Petri net property tied to the concept of deadlocks and

deadlock-freeness [65], directly corresponds to Prevent deadlock in section 7.4.

A transition is dead in a marking if no sequence of transition firings exist to

enable it [65], and we have to make sure that there is no redundant transition

or dead transition in our model since it possibly indicates a modelling error or

an inconsistency in the system being modelled.

A transition is potentially fireable if there exists some firing sequence that en-

ables it, and we have to ensure that every transition in our model is potentially

fireable.

For each Petri net model, we would first define the degrees of liveness of indi-

vidual transitions followed by the degrees of liveness of the entire Petri net.

4. Fairness: Fairness is a Petri net property that directly corresponds to Fairness

in section 7.4.

Related problems are studied in the Petri net model where actions correspond to

the firings of transitions. An action is announced if a transition becomes firable,

and it is performed if this transition fires. Fairness in Petri nets means firing

of transitions in the order of their enabling. Therefore, fairness is a property of

firing sequences.

180



We’d consider two basic fairness concepts:

Bounded Fairness (B- Fairness):

Two transitions t1 and t2 are said to be in a Bounded-fair (B-Fair) relation if

the maximum number of times that either one can fire while the other is not

firing is bounded.

A Petri net (N, m0) is said to be a B-Fair net if every pair of transitions in it

is in a B-Fair relation.

Unconditional (Global) Fairness:

A firing sequence σ is said to be unconditionally (Globally) Fair if it is finite or

every transition in the net appears infinitely often in σ.

A Petri net (N, m0) is said to be an unconditionally (Globally) Fair net if every

firing sequence σ from m ∈ R(m0) is unconditionally fair.

7.6.1 Verification of Petri net modelling of slot initialization

with queue setting

Here are the properties exhibited by adopting the behavioural approach for analyzing

our Petri net models.

1. Reachability: We have constructed the Reachability Tree for the Petri net

model for the slot initialization with queue setting process as shown in Table 7.1.

2. Boundedness: Our Petri net model is msl-bounded.

3. Liveness: Transitions T11, T
i
13, T

i
14, T

i
16 and T

i
17 are L1-Live, since each of them

will fire only once. Transition T i12 and T i15 will each fire for msl times, which

however is a finite number. Hence both are L1-Live.

Our model is strictly L1-Live since it is L1-Live but not L2-Live (as all transi-

tions are L1-Live but none are L2-Live).

4. Fairness:

181



Bounded Fairness (B- Fairness):

In our model, any two transitions are in a Bounded-fair (B-Fair) relation since

the maximum number of times that either one can fire while the other is not

firing is always bounded. Hence our model would be a B-Fair net since every

pair of transitions in each of them is in a B-Fair relation.

Unconditional (Global) Fairness:

Each firing sequence σ here is unconditionally (Globally) Fair since it is finite.

Our Petri net model is an unconditionally (Globally) Fair net since every firing

sequence σ therein is unconditionally fair.

Table 7.1: Reachability Tree for fig. 7-1.

T M ISdt Csl SP i SEi
sd KTsl IRsl RAsl Qi

h

——————————————————————————————————
M0 1 msl 0 0 0 0 0 0

T11 M1 0 msl 1 0 0 0 0 0

T i12
#

M2 0 0 1 msl msl 0 0 0
T i13 M3 0 0 0 msl msl 1 0 0
T i14 M4 0 0 0 msl msl 0 1 0

T i15
#

M5 0 msl 0 msl 0 0 1 0
T i16 M6 0 msl 0 msl 0 0 0 0
T i17 M7 0 msl 0 msl 0 0 0 1
# indicates repetition of msl times

7.6.2 Verification of Petri net modelling of priority setting

of leads

Here are the properties exhibited by adopting the behavioural approach for analyzing

our Petri net models.

1. Reachability: The Reachability Trees for the Petri net model for priority

setting of leads for the decrement and increment modes are shown in Tables 7.2

and 7.3 respectively.

182



Assumption: Given ψ is capped to 3 here, we can treat the generalized variable

i to be 2 in this case.

2. Boundedness: The Petri net model is 1-bounded for both decrement and

increment modes.

3. Liveness: In our model each transition can fire only once, if at all, thus being

L1-Live. Hence the Petri net model is strictly L1-Live since it is L1-Live but

not L2-Live (as all the transitions are L1-Live but none are L2-Live).

4. Fairness:

Bounded Fairness (B- Fairness):

Our model is a B-Fair net since each pair of transitions in it is in a B-Fair

relation.

Unconditional (Global) Fairness:

Our model is an unconditionally (Globally) Fair net since every firing sequence

σ therein is unconditionally fair.

Table 7.2: Reachability Tree for fig. 7-2: decrement operation.

T M −− PLl1 PLli PLlψ
—————————————————————–

M1 1 0 1 0
T−
2i M2 0 1 0 0

—————————————————————–
M3 1 1 0 0

T−
21 M4 0 1 0 0

—————————————————————–
M5 1 0 0 1

T−
2ψ M6 0 0 1 0

—————————————————————–

7.6.3 Verification of Petri net modelling of queue adjustment

of SEs

Here are the properties exhibited by adopting the behavioural approach for analyzing

our Petri net models.

183



Table 7.3: Reachability Tree for fig. 7-2: increment operation.

T M ++ PLl1 PLli PLlψ
—————————————————————

M1 1 1 0 0
T+
31 M2 0 0 1 0

—————————————————————
M3 1 0 1 0

T+
3i M4 0 0 0 1

—————————————————————
M5 1 0 0 1

T+
3ψ M6 0 0 0 1

—————————————————————

1. Reachability: The Reachability Tree for our model for decrement and incre-

ment modes can be constructed like the previous section.

2. Boundedness: The Petri net model is tpr-bounded.

3. Liveness: In our model each transition can fire only once, if at all, thus being

L1-Live. Hence the model is strictly L1-Live since they are L1-Live but not

L2-Live (as all the transitions are L1-Live but none are L2-Live).

4. Fairness:

Bounded Fairness (B- Fairness):

Our model is a B-Fair net since every pair of transitions therein is in a B-Fair

relation.

Unconditional (Global) Fairness:

Our model is an unconditionally (Globally) Fair net since every firing sequence

σ therein is unconditionally fair.

7.6.4 Summary of the verification exercise conducted on the

Petri net models

The behavioural analysis for the Petri net models earlier in this section has helped

us to verify that the properties stated in section 7.4 are indeed exhibited by our Petri

net models.

184



The following observations summarize the verification of our Petri net models with

respect to the said set of properties by conducting the behavioural analysis:

1. Reachability: We have created the reachability trees for the Petri net models

which allow us to find the sequence of firings of transitions that would result

in transforming a marking M0 to Mi, Mi representing the specific state, for the

model.

As we have a truly finite tree for each of the models considered, it also follows

that the terms reachability tree and coverability tree are synonymous. Also,

each of the Petri nets is a finite capacity net.

2. Boundedness: In a real-life environment, the boundedness or safeness of a

Petri net indicates the absence of overflow in the modelled system. This has

been ensured in the models that we have created.

Also unbounded places are potential bottlenecks. There are no such instances

in the models created and hence we don’t have a potential bottleneck.

3. Liveness: We have seen that there is no redundant transition or dead transition

in our models, thus ruling out related errors in the model or inconsistency in

the system being modelled [65].

Every transition in our models is potentially fireable.

The Petri net models we have constructed are all strictly L1-Live, and hence

would be deadlock-free.

4. Fairness: We have shown that each of our Petri net models qualifies to be a

B-Fair net as well as an unconditionally (Globally) Fair net.

7.7 Summary of chapter

The area of focus in this chapter has been on those processes which act as prerequisites

for the core CRM pre-sales assignment process of leads based on their requests to

185



appropriate SEs to function, and which are also necessary for the post-processing

activities of the assignment process. The processes in scope are the slot initialization

process with queue setting, priority setting of leads, and adjustment of queues for SEs.

There are two aspects to consider, go-live and steady state operations. Accordingly,

we have described the relevant functionalities and modelled the key areas using Petri

net. We have verified the correctness of the modelling by carrying out the behavioural

analysis of models to show their adherence to the desired set of properties.

We believe this will help inform our design understanding and also provide greater

clarity during the implementation and run-time of the functionalities for the business

domain described in this chapter. It can also be extended to similar areas in other

industry domains by carrying out Petri net based modelling exercises similar to ours.

In terms of future directions, we would like to incorporate at a later point in

time the functionality whereby the availability of SEs per day per slot till a future

date would be refreshed at the start of every day, accounting for any leave/leave

cancellation/termination as well as new appointment of SEs based on the information

available as of that day.

186



8
Conclusion

In this concluding chapter, we take a look back at the previous chapters and summa-

rize the various aspects explored in the thesis as we conclude. The primary focus of

this research has been on leveraging frameworks like Essence and Petri net to auto-

mate CRM pre-sales in real estate, exploiting various software engineering methods,

practices and tools. Lastly, we talk about the potential directions for future research.

Usage of software is ubiquitous across the globe, and while stories of success

abound, they have been dotted with so many instances of failure too. Practitioners

in Software Engineering are guided more by their own experience which is usually

limited and hence the proceedings happen mostly by trial-and-error. The world of

Software Engineering has seen continuous churns, with so many different approaches

making their mark over time. An inevitable fallout of this has been the inclination to

discard the methods hitherto in use entirely in an attempt to embrace the new, and

then keep on repeating this cycle. This is where Essence, a “language and kernel“

of Software Engineering resulting from the efforts of the SEMAT initiative to deal

with the problem of immature practice in software engineering is so appealing. It has

evolved as a method- and practice-independent approach and we have leveraged that

to create reusable assets by building up methods consisting of practices that we have

essentialized in the process.

Chapter 1 has served as the thesis introduction.

Chapter 2 has provided a foundational understanding of the relevant areas in

software engineering frameworks and methods like Essence, Scrum and Petri net, and

187



the industry domains like CRM and real estate, thus laying the groundwork for the

readers to have adequate context for the later chapters of the thesis.

In chapter 3 we have developed a framework to address the microservices lifecycle

using Domain Driven Design (DDD), introduced alphas to extend the SEMAT Kernel

and added the Work Products and Activities associated with those alphas. This is

industry agnostic and can be used anywhere.

We have subsequently taken up the industry area of our interest, real estate CRM

(pre-sales), from chapter 4 onwards. We have created an agile approach for carry-

ing out automation of functionalities in the said industry segment using Scrum and

Essence in chapter 4.

Next in chapter 5 we have created a full-fledged Software Engineering method

with the adoption of the User Story and the microservices practice within the Essence

framework leveraging Scrum for our industry scenario. This provides a comprehensive

view of the software endeavor by creating a method adopting a set of practices using

Essence as the common ground. While this is carried out for a specific industry, it can

be extended to other industries as well, utilizing Essence as the unifying framework.

We have continued with the industry context of the automation of CRM pre-sales

for real estate in chapter 6 and focused on the assignment process, a workflow that

deals with the dynamics of scheduling/rescheduling of site visit requests from leads in

the backdrop of the availability/unavailability of Sales Executives on the said day of

the site visit along with applicable constraints. We have constructed generalized Petri

net models of the assignment process and verified that they conform to the desired

set of criteria to be demonstrated by such systems.

Chapter 7 wraps this up by focusing on the operational aspects of the auto-

mated system with emphasis on the processes necessary for the pre-processing and

post-processing of the assignment process. We would consider the initiation of the

automated system on its go-live date as well as its execution in steady state as we

describe the underlying functionalities, model those using Petri net, and carry out

their verification using behavioural analysis.

It is to be noted that the value of the Petri net based modelling exercise undertaken

188



in terms of clarifying and improving our design understanding that is key to successful

implementation applies not only to the business scenarios in scope here (i.e. real estate

CRM), but it can also extend to other industry domains where similar Petri net based

modelling and analysis can be conducted.

It might be a worthwhile exercise to construct additional variations of our Essence

based exercise to arrive at a new method. We can select practices other than what we

have taken for the relevant areas (like use case for requirements), essentialize them,

and compose them under the unifying framework of Essence to create a new method.

We may choose a different industry segment to carry out this exercise.

As far as the Petri net based modelling that we have carried out, we can build

upon this even further by considering each individual scenario of the assignment and

creating a specific Petri net model by leveraging the generalized models already built.

This can prove to be quite valuable in lending greater clarity during implementation.

We might also consider looking into the functionalities of other industry scenarios

involving workflows for example and extend our Petri net based exercise in those

areas.

189



190



Bibliography

[1] “Essence – kernel and language for software engineering methods version
1.2,” OMG specifications, Object Management Group, October 2018. [Online].
Available: https://www.omg.org/spec/Essence/1.2/PDF

[2] I. Jacobson, H. B. Lawson, P.-W. Ng, P. E. MacMahon, and M. Goedicke, The
Essentials of Modern Software Engineering: Free the Practices from the Method
Prisons! in collaboration with Morgan & Claypool Publishers: ACM Books
series ♯25, 2019.

[3] P. Ray and P. Pal, “An agile approach to automate real estate crm (pre-sales)
using scrum and essence,” in Conference on Software Engineering Research &
Practice (SERP), 2021, (In Press).

[4] P.-W. Ng, “Integrating software engineering theory and practice using essence:
A case study,” Science of Computer Programming, vol. 101, pp. 66–78, April
2015.

[5] F. P. Brooks (Jr.), The Mythical Man-Month: Essays on Software Engineering,
2nd ed. Addison-Wesley, 1995.

[6] T. C. Lethbridge, J. Dı́az-Herrera, R. J. L. Jr, and J. B. Thompson, “Improving
software practice through education: Challenges and future trends,” in Future
of Software Engineering (FOSE 2007), International Conference on Software
Engineering. 2007, USA, May 2007, pp. 12–28.

[7] I. Jacobson, B. Meyer, and R. Soley, “The semat initia-
tive: A call for action,” Dr. Dobb’s, InformationWeek, December
2009. [Online]. Available: https://www.drdobbs.com/architecture-and-design/
the-semat-initiative-a-call-for-action/222001342

[8] I. Jacobson, P.-W. Ng, P. E. McMahon, I. Spence, and S. Lidman, “The essence of
software engineering: The semat kernel,” Communications of the ACM, vol. 55,
pp. 42–49, 2012.

191

https://www.omg.org/spec/Essence/1.2/PDF
https://www.drdobbs.com/architecture-and-design/the-semat-initiative-a-call-for-action/222001342
https://www.drdobbs.com/architecture-and-design/the-semat-initiative-a-call-for-action/222001342


[9] ——, The Essence of Software Engineering: Applying the SEMAT Kernel.
Addison-Wesley Professional, 2013.

[10] P. Johnson, M. Ekstedt, and I. Jacobson, “Where’s the theory for software en-
gineering?” IEEE Software, vol. 29, pp. 94–96, 2012.

[11] “Essence – kernel and language for software engineering methods ver
1.1 with change bars,” OMG specifications, Object Management Group,
October 2018. [Online]. Available: http://semat.org/documents/20181/57862/
formal-15-12-02.pdf/e7ba1188-c477-4585-b18a-06937f0e62f3

[12] E. W. Dijkstra, A discipline of programming. Englewood Cliffs, N.J.: Prentice-
Hall, Inc., 1976.

[13] ——, “On the role of scientific thought,” in Selected Writings on Computing: A
personal Perspective, D. Derickson, Ed. New York: Springer-Verlag, 1982, pp.
60–62.

[14] S. Liu, “A systematic mapping study on semat and its methods,” Master’s thesis,
Waseda University, Japan, 2018.

[15] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, “Identifying microservices
using functional decomposition.” in Dependable Software Engineering. Theories,
Tools, and Applications. SETTA 2018., ser. Lecture Notes in Computer Science,
X. Feng, M. Müller-Olm, and Z. Yang, Eds., vol. 10998. Springer, Cham, 2018,
pp. 50–65.

[16] J. Lewis and M. Fowler. (2014) Microservices. [Online]. Available: https:
//martinfowler.com/articles/microservices.html

[17] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, 2004.

[18] V. Vernon, Implementing Domain-Driven Design. Addison-Wesley Professional,
2013.

[19] R. H. Steinegger, P. Giessler, B. Hippchen, and S. Abeck, “Overview of a domain-
driven design approach to build microservice-based applications,” in SOFTENG
2017, M. Kajko-Mattsson and P. Ellingsen, Eds., Venice, Italy, April 2017, pp.
79–87.

[20] D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,” International
Journal of Open Information Technologies, vol. 2, no. 9, pp. 24–27, 2014.

[21] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl, and
S. Schulte, “Performance engineering for microservices: Research challenges and
directions,” in ICPE ’17 Companion: Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering Companion, April 2017,
p. 223 – 226.

192

http://semat.org/documents/20181/57862/formal-15-12-02.pdf/e7ba1188-c477-4585-b18a-06937f0e62f3
http://semat.org/documents/20181/57862/formal-15-12-02.pdf/e7ba1188-c477-4585-b18a-06937f0e62f3
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html


[22] R. C. Martin, Agile Software Development, Principles, Patterns, and Practices.
Pearson, 2003.

[23] S. Hassan, N. Ali, and R. Bahsoon, “Microservice ambients: An architectural
meta-modelling approach for microservice granularity,” in 2017 IEEE Interna-
tional Conference on Software Architecture (ICSA), 2017, pp. 1–10.

[24] M. E. Conway, “How do committees invent,” Datamation, vol. April, pp. 28–31,
1968.

[25] E. Landre, H. Wesenberg, and H. Rønneberg, “Architectural improvement by use
of strategic level domain-driven design,” in OOPSLA ’06. New York, United
States: Association for Computing Machinery, 01 2006, pp. 809–814.

[26] O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer, Software Architecture: A Com-
prehensive Framework and Guide for Practitioners. Springer-Verlag Berlin Hei-
delberg, 2011.

[27] A. Cockburn. (2005) The pattern: Ports and adapters (alternatively
hexagonal architecture). Last Accessed: September, 2020. [Online]. Available:
https://alistair.cockburn.us/hexagonal-architecture/

[28] B. Hippchen, P. Giessler, R. Steinegger, M. Schneider, and S. Abeck, “Design-
ing microservice-based applications by using a domain-driven design approach,”
International Journal on Advances in Software (1942-2628), vol. 10, pp. 432 –
445, 12 2017.

[29] J. Palermo. (2008) The onion architecture. Last Accessed: Septem-
ber, 2020. [Online]. Available: https://jeffreypalermo.com/2008/07/
the-onion-architecture-part-1/

[30] B. Bruegge and A. H. Dutoitt, Object-Oriented Software Engineering Using
UML, Patterns, and Java. Prentice Hall Pressl, August 2009.

[31] W. M. P. van der Aalst, K. Van Hee, and G. Houben, “Modelling and analysing
workflow using a petri-net based approach,” in Proceedings of the second Work-
shop on Computer-Supported Cooperative Work, Petri nets and related for-
malisms. of, 1994, pp. 31–50.

[32] C. A. Petri, “Kommunikation mit Automaten,” PhD, University of Bonn, West
Germany, 1962.

[33] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[34] R. Zurawski and M. Zhou, “Petri net and industrial application: A tutorial,”
Industrial Electronics, IEEE Transactions on, vol. 41, pp. 567 – 583, 01 1995.

193

https://alistair.cockburn.us/hexagonal-architecture/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/


[35] “CRM (Customer Relationship Management),” Website, Salesforce. [Online].
Available: https://www.salesforce.com/in/crm/

[36] “Analysts discuss technology trends and their impact on customer experience at
the gartner customer experience & technologies summit in sydney, june 17-18.”
[Online]. Available: https://www.gartner.com/en/newsroom/press-releases/
2019-06-17

[37] “Customer relationship management,” Insights, Bain and Com-
pany, April 2018. [Online]. Available: www.bain.com/insights/
management-tools-customer-relationship-management

[38] R. Shaw, Computer Aided Marketing and Selling. 313 Washington Street New-
ton, MA, United States: Butterworth-Heinemann, 1991.

[39] M. Apgar, “What every leader should know about real estate,” Article,
Harvard Business Review, November 2009. [Online]. Available: https:
//hbr.org/2009/11/what-every-leader-should-know-about-real-estate

[40] ——, “Managing real estate to build value,” Article, Harvard Business
Review, November-December 1995. [Online]. Available: https://hbr.org/1995/
11/managing-real-estate-to-build-value

[41] “10 ways business process automation is changing real estate,” Blog, Kreyon
Systems, August 2016. [Online]. Available: https://www.kreyonsystems.com/
Blog/10-ways-business-process-automation-is-changing-real-estate/

[42] J. F. Smart, BDD in Action: Behavior-driven development for the whole software
lifecycle. Manning Publications, May 2014.

[43] M. Wynne, A. Hellesoy, and S. Tooke, The Cucumber Book: Behaviour-Driven
Development for Testers and Developers (Pragmatic Programmers), 2nd ed.
Pragmatic Bookshelf, 2017.

[44] S. Millett and N. Tune, Patterns, Principles, and Practices of Domain-Driven
Design. Wiley, May 2015.

[45] B. Hippchen, M. Schneider, I. Landerer, P. Giessler, and S. Abeck, “Methodology
for splitting business capabilities into a microservice architecture: Design and
maintenance using a domain-driven approach,” in SOFTENG 2019, L. Lavazza,
Ed. Valencia, Spain: Pearson Curran Associates, Inc., 24-28 March 2019, p.
53–61.

[46] S. Newman, Building Microservices. O’Reilly Media, Inc., February 2015.

[47] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,” Com-
puter, vol. 39, 2006.

194

https://www.salesforce.com/in/crm/
https://www.gartner.com/en/newsroom/press-releases/2019-06-17
https://www.gartner.com/en/newsroom/press-releases/2019-06-17
www.bain.com/insights/management-tools-customer-relationship-management
www.bain.com/insights/management-tools-customer-relationship-management
https://hbr.org/2009/11/what-every-leader-should-know-about-real-estate
https://hbr.org/2009/11/what-every-leader-should-know-about-real-estate
https://hbr.org/1995/11/managing-real-estate-to-build-value
https://hbr.org/1995/11/managing-real-estate-to-build-value
https://www.kreyonsystems.com/Blog/10-ways-business-process-automation-is-changing-real-estate/
https://www.kreyonsystems.com/Blog/10-ways-business-process-automation-is-changing-real-estate/


[48] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Ar-
chitecture: Practice and Promise, ser. Object Technology Series. The Addison-
Wesly, April 2003.

[49] I. Jacobson, G. Booch, and J. Rumbaugh, Unified Software Development Process,
1st ed., ser. Object Technology Series. The Addison-Wesly, 1999.

[50] G. Fairbanks, Just Enough Software Architecture: A risk-driven approach, 1st ed.
Marshall & Brainerd, August 2010.

[51] K. Beck, Test Driven Development: By Example, 1st ed. Addison-Wesley Pro-
fessional., November 2002.

[52] V. Vernon, Domain-Driven Design Distilled. Addison-Wesley Professional, 2016.

[53] P. Ray and P. Pal, “Extending the semat kernel for the practice of design-
ing and implementing microservice-based applications using domain driven de-
sign,” in IEEE 32nd Conference on Software Engineering Education and Training
(CSEE&T), 2020, Munich, Germany, November 2020.

[54] ——, “An essence based framework using a domain driven design approach to
address microservices lifecycle from identification to implementation,” in Con-
ference on Scientific Computing (CSC), 2021, (In Press).

[55] J. Sutherland. (2020, October 7) Better scrum with essence. Blog. scruminc.
[Online]. Available: https://www.scruminc.com/better-scrum-with-essence/

[56] N. Kock, J. Verville, A. Danesh-Pajou, and D. DeLuca, “Communication flow
orientation in business process modeling and its effect on redesign success: Re-
sults from a field study,” Decision Support Systems, vol. 46, pp. 562–575, 2009.

[57] I. Jacobson. (2018) Alpha State Card Games — Agile Software Development.
Ivar Jacobson International. [Online]. Available: https://www.ivarjacobson.
com/alphastatecards

[58] M. Cohn, User Stories Applied for Agile Software Development. Addison-Wesley,
2009.

[59] D. Harel, “Statecharts: a visual formalism for complex systems,” Science of
Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[60] G. Booch, J. Rumbaugh, and I. Jacobson, “Unified modeling language user guide,
the (2nd edition) (addison-wesley object technology series),” J. Database Manag.,
vol. 10, 01 1999.

[61] J. A. Saldhana, “Uml diagrams to object petri net models: An approach for
modeling and analysis,” 2000.

[62] T. M. Koulopoulos, The workflow imperative: Building real world business solu-
tions. John Wiley & Sons, Inc., 1997.

195

https://www.scruminc.com/better-scrum-with-essence/
https://www.ivarjacobson.com/alphastatecards
https://www.ivarjacobson.com/alphastatecards


[63] K. Hales and M. Lavery, Workflow management software: the business opportu-
nity. Ovum, 1991.

[64] J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost, P. W. Group et al.,
“The process interchange format and framework,” The knowledge engineering
review, vol. 13, no. 1, pp. 91–120, 1998.

[65] M. Zhou, K. McDermott, P. Patel, and T. Tang, “Construction of petri net
based mathematical models of an fms cell,” in Conference Proceedings 1991 IEEE
International Conference on Systems, Man, and Cybernetics, 1991, pp. 367–372
vol.1.

[66] W. Aalst, “The application of petri nets to workflow management,” Journal of
Circuits, Systems, and Computers, vol. 8, pp. 21–66, 02 1998.

[67] G. Bracchi and B. Pernici, “Trends in office modeling,” in Proceedings of the
IFIP TC 8 working conference on office systems on Office Systems, 1986, pp.
77–97.

[68] M. D. Zisman, Representation, specification and automation of office procedures.
University of Pennsylvania, 1977.

[69] C. A. Ellis and G. J. Nutt, “Modeling and enactment of workflow systems,” in
Application and Theory of Petri Nets 1993, M. Ajmone Marsan, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 1–16.

[70] H.-D. Burkhard, “On fairness in petri nets,” Rostocker Mathematisches Kollo-
quium, pp. 85–96, 1982.

196



197


	Introduction
	Problem statement
	Research questions
	Objectives
	General objectives
	Specific objectives

	Scope
	Structure of the thesis

	Preliminaries and Background
	SEMAT and Essence
	The SEMAT initiative
	SEMAT in the industry and academia
	SEMAT Essence Kernel
	SEMAT Essence Language
	Integrating specific theories and practices using Essence

	Microservices and Domain Driven Design (DDD) - An Architectural Overview and Activities involved
	Petri net
	Customer Relationship Management (CRM)
	CRM functionalities prevalent in real estate industry


	An Essence based framework using a Domain Driven Design approach to address Microservices lifecycle from identification to implementation
	Alphas for Microservices practice using DDD
	Alpha: Features
	Alpha: Microservice
	Alpha: Domain Model

	Work Products and Activities for Microservices practice using DDD
	Work Products and Activities for the Feature alpha
	Work Products and Activities for the Microservice alpha
	Work Products and Activities for the Domain Model alpha

	Summary of chapter

	An agile approach to automate Real Estate CRM (pre-sales) using Scrum and Essence
	Business Process Modelling for in-scope CRM pre-sales functionalities
	Background
	Broad Scope
	Functionalities to be Modelled
	Process Modelling

	Adoption of Essence and Scrum
	The Kernel Alpha states of the development endeavor undertaken by the Nirmanik Team
	Adoption of Scrum within the Essence framework

	Summary of chapter

	Extending Essence to adopt User Story and Microservice practices leveraging Scrum to automate pre-sales function of real estate CRM
	Context
	Considerations for composing practices into method using Essence
	Adoption of User Story practice
	User Story Lite practice - an overview
	How we adopted User Story Lite practice for Nirmanik
	Alpha state cards for Requirements
	Applicable Essence cards for User Story Lite
	The Value of the Kernel to the User Story Lite practice

	Adoption of Microservice practice
	Microservices Lite practice - an overview
	How we adopted Microservices Lite practice for Nirmanik
	Applicable Essence cards for Microservices Lite
	The Value of the Kernel to the Microservices Lite practice

	Summary of chapter

	Construct a generalized Petri net model of key CRM pre-sales real estate functionalities
	Context
	Functionalities for assigning leads to appropriate Sales Executives: life-cycle of leads
	Functionalities for assigning leads to appropriate Sales Executives: assignment workflow process description
	Provisional Assignment process for Prospective Leads
	Rescheduling for Scheduled Leads
	Assignment process for Visited Leads
	Requesting Original Sales Executive change while requesting re-visit for Visited Leads
	Rescheduling for Active Leads
	Requesting Original Sales Executive change for Active Leads
	Requesting Original Sales Executive as well as Date change for Active Leads
	The rules of ordering of Sales Executives to be considered for the concerned lead for the date in question

	Modelling considerations
	Desired properties of the model being constructed
	Suitability of Petri net as our modelling tool

	Petri net modelling of the assignment process workflow
	Creating generalized Petri net models for the process flows
	Petri net modelling of Block I (flow for selection of dates)
	Petri net modelling of Block II (flow for selection of slots)

	Verification of our Petri net models
	Verification of Petri net modelling - Block I
	Verification of Petri net modelling - Block II
	Additional behavioural properties exhibited by the Petri net models for Block I and Block II
	Summary of the verification exercise conducted on the Petri net models for Block I and Block II

	Summary of chapter

	Petri net modelling of certain key operational aspects regarding leads and Sales Executives in real estate CRM
	Background
	System Initialization
	Slot Initialization with queue setting (Go-Live)

	Steady State Operation
	Slot Initialization with queue setting (Steady State)
	Priority setting of leads
	Queue adjustment for SEs

	Modelling considerations: Desired properties for the model to exhibit
	Petri net modelling of functionalities in scope
	Petri net modelling of slot initialization with queue setting
	Petri net modelling of priority setting of leads
	Petri net modelling of queue adjustment for SE

	Verification of our Petri net models
	Verification of Petri net modelling of slot initialization with queue setting
	Verification of Petri net modelling of priority setting of leads
	Verification of Petri net modelling of queue adjustment of SEs
	Summary of the verification exercise conducted on the Petri net models

	Summary of chapter

	Conclusion

