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SUMMARY. Boundod longth (soquential) confidonco intorvals for tho regromion coefliciont
{in & simple lincar regrosion model) based on & class of robust rank slatistics are considered horo. and their
various saymptotio proportios aro studicd. In this contoxt, soversl strong convergenco resuits on somo

simplo and weighted empirical procosscs as well as on a class of rank order processos sro celoblished.  Com-
porison with sn altornativo procedure basod on the loast aquarcs cstimetors is aleo mado.

1, INTRODUCTION

Consider tho simplo lincar regression model X;= f,+pfcite, i=1,2,...,
where ¢; are known regression constants and the ¢; are indopondent and identically
distributed random variables (iidr.v.) with an absolutely i {(unknown)
cumulative distribution function (c.d.f.) F(x), defined on tho real line (-0, c0). Wo
want to provide a robust eonfidenco intorval (of confidence coefficient 1 —a, 0 < a < 1)
for tho regression coefficiont 8, such that tho longth of this confidenco interval is bounded
above by 2d, for some specifiod d > 0. Tho proposed procedure rosts on tho use of &

class of regression rank statistics (duo to Hajok, 1962; 1968) for the dorivation of robust
confidenco intorvals for £ (cf. Son, 1969, Scction 4), as extonded hero to the sequential
caso along tho linos of Chow and Robbins (1963).

Soveral results, needed for this soquontial extension, aro derived hero. First

an elogant.result of Jureckovd (1069) on tho weak convergence of a class of rank order
processes to somo appropriate linear processes is strongthened hero to alinost suro
(a.8.) convergenco. Wo noed, howover, moro stringent regularity conditions on tho
¢ and tho scoro-functions underlying the rank statistios. This result along with a
martingalo {or semi-martingalo) property of tho regression rank statistics, given in
Saction 3, guarantecs tho “asymptotio (as d— 0) consisteney™ and “officiency” (sco Chow
and Robbins, (1965)) of the proposed soquential proceduro. Furthor, this enables ono
to study its asymptotic rolative efficioncy (ARE) with respect to the procedwre by Gleser
(1965) and Albort (1966), which nro Lased on tho least squarcs cstimators, In this
contoxt, soveral well-known rank atatistics are considered and tho nllied ARs results
are boriofly presonted. In partioular, for tho so-onlled normal scores statistio, it is
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shown that the ARe is bounded Lelow by 1, uniformly in a bored class of (Fj. It
may bo remarked at this point that a bounded length confidonce intorval for tho loon-
tion paramoter in the ono samplo situation wns conidored in Son and Ghosh (1071).
Though in tochniques and in dofinition of tho scoro functions, thore is some similarity,
tho basio results aro quite differont.

2. NOTATIONS, ASSUMPTIONS AND TIIE MALN TIEOREM
In accordance with the model of Seotion 1, consider a sequenco (X, X,, ...}
of indopendont random variables for which

Fifz) = P(X, 7} = Fle=fo=pen, $=1,2,..., . (20)

where £, is & nuisanco paramotor. Wo intond to doternuno n confidenco interval
I.={8:B,.<p <Py} (wnero B, . and By, avo statistios) such that

P{Bel,} = 1—a, tho presigned confidonco coofficient, o (2.2)
0 < By, »—Bu,» < 24, for somo predotormined &{ > 0). ... (2.3)

Since F is not known, no fixed-sample size procedure sounds valid for all F, It is
therofore desirod to detormine soquentially a stopping variablo N(a positive integer)
and tho corrosponding (B,,_", ﬂ,.N), such that (2.2) and (2.3) hold. Our proposed
proceduro is based on tho following class of regression rank statistics.

In asamplo X, = (X, ..., X,) of gizo n{ > 1), lot R = li u{X;— X} [#here
021
u(t) is 1 or 0 according as ¢ » or < 0] bo tho rank of Xy, 1 { ¥ < n. Let

= (6B Cu 1 < § < 7 Whoro &, = 071 Boyond CF = S (=G oo (24)
1 1
Then, as in Hajek (1962, 1068), o regression rank statistio is defined as

To=T(X) = £ ol JRuftnt 1), . 25)

u, fanetion’

whore tho “scores” J (if(n+1)), 1 i g n, aro g tod by a
{f9): 0 <n <1} in the following manner. Wo lot J(u) = J,,(’ﬁ). for
=n <u i, 1 i n, and dofine

J.(;ﬁ) as oqual to J(#) or BJ(U), 1 €1 m, e (2.8)
whoro U, € ... & U,, aro tho n orderod random variables in a samplo of sizo n from

tho rectangular (0, 1) distribution. The mcoro-function J{x) is defined as ¥~'u) :
0 < u <1, whore W(z) is an absolutoly continuous o.d.f, aatisfying tho condition that

o Hm P 3 K, lim gOP-()(1—u) > K, . (20
wlo wpr
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whore (z) = (d/dz)¥(z) and 0 < K < c0. As in (2.5) and (2.0) of Sco and Ghosh
(1971), (2.7) implios that

[J()] & Ko[—log u(l—w)), |J'(u)| & Kefu()=)], 0 <t <1; 0 < Ky<,
and thero exists a positive {, such that

M= | oxpltz)d¥(z) <o forall 0 <& lp (29

Note that, by definition, J(u) is 1 in u:0 <u < 1. Theso assumptions are more

restrictivo than thosoin Hajok (1062, 1968) and Jureckova (10069), whove only the weak
convergonco results ave studied.  Sinco we are not meroly interested in strong con-
vergonce of our atopping variablo but also in ‘convergsnce in moan' type results (seo
Theorem 2.3), tho abovo conditions are needod. It mny be noted !hn@ (2.7} bolda
for the entire olass of normal, logistic, double-exp jal, t

and many othor e.d.f’s. In fact, if wo use J(u) = ufi.e., ‘l’rcccngulor od.f] or J(u)
as the inverse of the standard normal c.d.f., we obtain respoctively the Wilcoxon
and the normal scores; the corresponding T, aro termed the Wilcoxon and the normnal
acores linear (regression) rank stalistics.

The following ptions are mado regarding ¢, = (¢, ..., ¢,). Tho first
assumption is dus to Hajek (1068).
(i) max |eg| = O{n-l), e (2.10)
1666
(i) iminf #1023 K,> 0, e (211)
)

(iii) dofino Q(z) = (n+1—2)CTH{z—n)CL,,, for n {2 n+), 5 =0,1,..,
where we let % = 0. Assumo that Q{z) is 1 in z and
lim Q(na,)/Q{n) = &{s) whenover lim a, = a, o (232)
- LY

#(a) boing strictly monotono (incroasing) with s{1) = 1. The condition (2.10) is again
moro stringont than the classical Noother-condition (cf. Hajeck, (1062; 1068)), but is
satisfied in the majority of practionl situations. (2.11) is less restrictive than the
parallol condition : lim #-1C% = K, > 0 assumed by Glesar (1065) and Albert (1066)
~—pa

in connoction with tho loast squares theory. For oxamplo, if ¢ = a+ih, A> 0,
i=1,2,..,(2.10) and (2.11) hold but Gleser's condition docs not hold. Also, in this
caso, Q(n) = nht(n3—1)/12, so that s(a) = ad.

Finally, we assume that Fe(¥), whore S(¥) 18 the clnss of all absolutely
continuous F for which the donsity function f(x) and its first derivative f'(z) are
bounded for almost all z{a-a-z) and further

lim f(z)J'[F(z)] aro fnito. e (213)
~rxe

From (2.1), it follows that under },: g = 0, implying that X,, ..., X, nro
idd.ry., T(X,) has a complotoly spocifiod distribution genorated by tho st oqually
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likoly roalizations of (R,,, ..., R,,) over tho pormutations of (1, ..., n). Henco, there
oxints n known constant T (depending on ¢,), and an a, (known) such that
P—T® K T(X,) K TV| H)} = l1—a — l—ansno). .. (2.14)
[For amall n, @, may not bo equal to &). If wo let
L] ' =11 - »
e &) =g ) - e
then from the classical Wald-Wolfowitz-Nocthor-Hajek pormutational central limit
theorem (viz., Huijek and éidn’k. 1967, p. 160), wo have
lim (T4} = 74 . (208)
L1

A=

whero ®{r,) = 1—¢ and ®{z) is the atandard normal o.d.f.
1t follows from Son (1069, Sootion 6) that T(X,—a.c,)is § ing: —w <a <o,
Henco, if wo let
B =supla: (X, ~a.6,) > T, By 0 = inffu: T(X,—a.c)) < =TH} ... (217)
it follows a8 in Sen (1969, Section 4) that
Pl n & B < Bo.n |18} = 1—a(— 1~a 08 n—o0). e (218)

Wo aro now in a position to define our mequential proceduro. For every
d > 0, let N(d), the stopping variablo, bo tho smallest positive integer J» 1o [an initial
samplo size (3 3)] for which Bp, xy—PL ¥y € 2d. Thon our proposed confidence
interval for £ i8 Ty, = {#: By, moy < A < By, xyap} And is basod on tho stopping vari-
ablo N(d). Wo justify the proposed procedure on tho ground of its robustness (for
outliers or gross errors ote.). Its asymptotic propertics, considered in the following
theorem, nre sketched in the aame fashion s in Chow and Robbins (1085).

Theorom 2.1: Under the assumplions made above N(d) is a non-increasing
Junction of d(>0), it is finite a.8., EN(d) < 00 for all d > 0, ‘h_r'no N(d) = a.s., and
lim EN(d) = co. Furlher,
=0

im N(d)[Q-! ({d)) = 1 a.s,, e (219)

0
fim P{flelyq)) = 1—a for oll FeAY), . (2.20)

=0
lim [EN()/Q- (4d)) = 1, e (221)

d=0
elcre Wd) = QAT JMBFNE, BIF) = [ @nJ[F@BFE, . (222)
At = } JYuYlu—pt and p = } J{upu. o {(2.23)

° o

Tho proof of tho theorom is poatponed to Seotion 4; cortain other results needed
in this contoxt anil having importance of their own aro dorived in tho next seotion,
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3. ASYMPTOTIQ RENAVIOUR DF 8OMF EMPIRICAL PROCESSES

Tt has beon shown by Juretkova (1069) that under //y: = 0, for nll roal
and finite b, denoting I¥(X,, b) = T(X,)~T(X,~b c3)—bB(F), for every C > 0

sup | W(X,,5)|>0 s 5 o0 v (31)
b: pi<o
our primary concorn is not only to strengthon this statement to almost sura convor-
genco but also to specify the ordor of convergonco as well, oxtonding the range of b
to |b]  Cllog n)r, k > 1,0 < C <0 Wodefine now
o) = — % wfoibe— X)), Sifr:b) = T ol ulebbet—Xah e (32)
n4ly 1
for —00 < 2 < 0 and —o0 << b < 0. Thon, by (2.5) and (3.2), we have

TX,—be}) = | Iz Sk . Y

Tt will bo conveniont for us to study first tho asymptotic behaviour of tho two processes
in (3.2). This will be useful in proving (3.1) with a apecifie order of convergence.

Let {¥, Y,,...} be a soquence of i.i.d.rv, having thoe roctangular (0, 1) distri-
bution. For every ¢:0 <t < 1, dofine

i ) = FFH()+di)—t 1 i <my 0 <b <o o (34)
Tt follows that for overy i:1 i< nand b:—o0 < b <o,

() 0 <tddy(t;0) K Tit4+dy(t;b)is T int:0 <t <, . (35)
(ii)  d.(t; b) and ey havo the samo sign, e (36)
(i) gt b) = 2 l’f- d,ilt, b) = BHO(m)) ¥ FeHAY). we (39)

Considor then the two stochastic processes

G B) = E ey wlttdyulls b)— Yo — B 8y duglts B), —00< 5 @0, 0<E < 1 e (3.8)
1 1

L0 = (1 E ulthdnlt D-T), —0 <b<@ 0KIKL . B9)
Simple computations yield that
C..(‘;b)=,7'-l7l chedailt ) = bf(F-(1))4-02.0(n-1); e (3.10)

G5 b) = SUF )~ L0 by = SUF-H )= bf(F - I00W1): L (31
L by = e+ PU(F10;0), 0KICT —0<b <o o (312)
3



SANKIYA : TIIE INDIAN JOURNAL OF STATISTICS : Semies A

Thoorem 3.1: For cvery h(>> 0), there exist two posilive consianis K,, K,
and n® (all of rwhich may depend on h) such that for n > 0% k»> 1 and 0 <3 < 1[4,

P{ sup sup |G B)—G3it; 0)] > Kyn~* (logn}t} < KA, e (3.03)
0<I<t 3es?

Plaup sup | Lt D—L2t 0)] > Kyn-t(log nt} & Kynoh, w38
0<I<l pes®

whera I3 = {b: |b] & Cllog ), 0 < O < ).
Proof: We start with the proof of (3.13). Lot a, = C{log n}t, 7, = [n "],
and 9y, = rafr,, for r=10,%1,..., +r,, where 0 <3 <8 < :— and [u] donotes

the integral part of u{ > 0). Then, 7,,l..-71,'_=0(n-“ (log n}t), for oll r=
—F s fa—1.  We complote the proof in soveral stopa,

Step 1: Wao first show that
sup |G ) —G0) | < max [ GUE; 7 )—C0 0)| +Oln~tillog n}t). ... (3.16)
bery —ra&rGr,

To prove (3.15), wo note that L{LC)=0, so that O} b)—0(t;0) =
SR B)—=SUF); 0)—8a(t;8). But, for del7r,u; tran,a)s

alult+dodt; 90— Yo~u(t=Y)]  eifuli+d,dt; b)—Yi)—ut—¥1)

< oafult+dofli Mgy, )= Y)—ult =T} 1 E < m; e (316)
&ult; 7r,0) < L8 ) K £l Tran)i
Culls Trasw)—Ealls Do) = O(n™" \log n}t), e (309)

for sl r= —r,, ...,7,—1, 0 <t <1, Honce, for be[tr,m Wrss,als
10351036 0| < max 6305 11,—0L5 O 40~ "Gog ), e (319
and (3.16) follows directly from (3.18).

Nefine now s, = [n”w'], on =208, 8=0,1,...,8,. Also, lot
SP={ireny»0 f=1, ., 0}, SPm{en<0 =10}

U= o extlEntdude: b= Yo —ufaps.atduliarsi D= Y1)

VZ’. = kf‘l"’ 24 (7R . A { S b))—(fl,.'i'd-n(fl,-; ).
Noto that U} > 0 and ¥k 3 0 fo- all delj and 8= 0, ..., 2,
Step 2: We whall show that
I o oz . g . 1) (N
sup, 107 0) 0244, 0) < ;‘n‘n‘x'_w.(e.,.. 5)—G6ai O]+ o::n_m:_l ot max (43
.. (3.19)
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To prove (3.19), wo noto that by somo simple nlgobraio manipulations, for

el brpnals E ol D= YO ~fhut b, D)

(h=Uf < & chluthauts B Y0 -4, 5)

<z ‘:l[“(f:ﬂ.u“"ln(ful.-i B =Y =(Erss,ntduilrsn,as DN+ V".)n‘*‘ 0:2-
Thus, for bely and Le[éy,n Ea41,n]s

[GXt, 8)—6G3; 0} = l'g culult+dalt; 8)— Y)—[t+dugh b)l}l

€ max
J=u,041

B bl D)= Y018yt Ll ] |
FPRAU = max 103ty )=ty O)| + Vit Ui
for s =0,1, ..., 8,—1, which imply (3.19)
Combining now steps 1 and 2, ono gots
Step 33

sup eup 1635 0)-0350) | € JJax max 1G2lbs 03 Ur,0)—Gils, 0 0}
0<1<1 181<e, n I116ry

4 max  max V(') ot max  max TP +0(n™" ‘(log n)t).
0Kty —PaSrar, 0Krkr, ~faréry., 7

. (3.20)

Returning now to the proof of (3.13), it follows that wo aro only to show that for overy

A > 0, thoe oxist X, X, and n* (doponding on &), such that tho first thros terms on

the right hand sido of (3.20) are bounded above by Kyn~? (log #)* with probability
> 1=K for all n > n°,

Considor any fixed 7 (say 3 0) and any fised &. Then, G3(é4,ns 70—

Olfe,ni 0) = ‘Zl (Z,~E2,), whore, Z,; = ofulfs,attudlbsn; Vom)—Y)—fr =YD,

i=1,2,..,n are indepondent and Z,, oon assumo the values 0 and |cn,| respoc-

tivoly with probability 1—|d, (&, a: #r,)| 80 [dplés,0i 7r,a)| vespoctively. Henco,
for evory ¢ > 0, and A >0,

7| E;l (Z.—BZ,) > 7} < oxp{ =h[s+ é':l Ez,)) '7_1] Eloxp (b Z,0))

= oxpl—g+ L ) L 1+ o300 |6kl 1~ 1) o 1)1}
= Xai0: B), (any) e (3.20)
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Hone, 10g X, B) = —Hg-+C.(6ns e+ £ Togl1-HOXPIAI G 1=1) 1d0de i, )
< —hlg+Ludbn i 1+ .?. (oxplh |3 | 1= 1) | dudba,us Wrad| = —hla+ Eulfrn: '/r..)]+h2“.l
lenel 18ailEoai e, a}| +% L '}:Jl (ca® | dudéi,ai m,.)lenlc:d(wbm 0 < 0 < 1), This can
be rowrtton as —hg4 - 8 £ (@106 e le™ 1], which upon aboosing =
gu= K (log )t h = B, = u", whoro 0 <3< < % £31,0 <K, <,
simplifies to
1og Xulgur B) = —Kin"™* (log n)‘[HO(u'““"")] e (322)

uniformly in 6=10,1,...,4, and |r} 7, Thus, for n odequately largo, wo have,
uniformly in r and .

Pl0Es, o Wrw)—Crlfani 0) > Kin? (log )t} < exp} _K,n""(log w0 Fo{1)),
- 3.23)

and a similar bound is easily obtained for the left hand tail. Thus, for large n,
0o, Ir| <ra

Py Gy i Wr,0) = Cotlr, s 0) 1> KynH{log n}t) < 2 expf — K" {log nyTLFo1)]).
o (3.24)

Also, it follows obviously that
Vo= 0tn™") uniformly in [7] < e 09K 4y - (325)
By aimilur tochniquoes as in (3.21), wo got aftor pulting 4 = a* that for fixed rand s,
PUY, o> 0.) < oxpl—Kin" log nP0 40t Hogmy )l .o (3.26)
From (3.24)—(3.26), wo obtain (by use of the Bunforroni inequality) that for largo n,
tho left hand sido of (3.20) is bounded abovo by K,n—*(log n)* with probability groater

than or equal to

1=2(s,+1)2r, expf—Kyn" " (log n}i{1+o{1)} . (327)
sinco o, = ["i"’]. o= 2 and 0 <& < 3, X, can always bo 8o soloctod that for

n 3 1%, (3.27) fa bounded from bolow by l—4 oxp{—h{log m)*} > 1—4n-A 8s k> 1.
This complotes tho proof of (3.13)

To prova (3.14), wo firat obsorve that by tho samo tochniquo as in abovo
CuBR L0 O—LY 0) < Lkt L - (3.28)
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whore
£y = max mox | Ly, 7r,a)—~Liffr,03 0))
0Gekr, I71G7,
Ry= mwax [L}{Ery1,05 0)—Lylfs,ni O)}
0o,y
Iy= max max | ¥,
0%rGry - Ir]r,
and Wi = (et bt dui B Tr,ad— Yot d,dbani Trar =YL
Step 1': Yo firat show that for a given & > 0, K, Ky am{ n* can bo 80 choson
that P}, > Kyn~4 (log n)t} & Kyn— for 5 > n®. To do s0, we uso (3.9) and obtain
that for overy g, > 0, A, >0

log P{L}(¢s,u5 Tie,n)—Li(fa,3 0) > 7.}
< —=(n+1ph g +{ T + I Yog Efoxp [h.(ulés,atdulbrns tr,)— Y—ulés— Y1)
e s

= ~(n+ 1A got I llog L+~ 1,600 7r,0)]
ssf?

+ T logllm{l—¢ N —doffo,u; T, - (3:20)
i
On using the inequality that for |x| < 1, log (1 £ |#]) € £ |#], and on taking
h_=n-", 7a = Kin—4 (log n)¥, (0< <8 < :-), we got for adequately large n that,
log P{LX¢s,: lr,n)—Lilés,ai 0) > Kyn (log n}}

< —Kkp' ™ 0g n)t+n"‘{ ‘i:l Aol i Te.a))

+00 7 & 1ot 1]}

= =R (log nit 4n~ [ 0(nlog )]
$+0(™").0tnk(log n}¥), by (2.10), (3.4) and (3.7). e (330)

Sinco & < &, if we lot 8, <%, tho right hand sido of (3.30) is

—K,n‘_H‘ (log n}[14Ofn-1#* {log n)')-rO(n-“'—‘,)]. . (3.31)

and honoo, for n sufficlently large,

PULE0 3 ) —L2lEa1 0) > Kin~* (log )t} oxp{—Kipn' ™™ (log )2}, 0 < Kj < oo,
. (332)
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sud tho samo bound holda for the loft hand tail.  Hence, by tho Bonforroni inogquality,
for largo n,

P max max |LEs,ai 7r,a)—LiEsai 0)| > Kyn* (log n)t}
0hris, |r]6ry

< trantVloxp{—Kin' ™ log nit} - (333
Lindfork p 1 andn > n,
whero A(>> 0) is any fixed number,

Step 2:  Wo noxt show that for any fixed i{ > 0), thovo exist a K, > 0 and
an n°, such that for n 3> n*, P{I3, { Ky~ (log n}} > 1—n~A. Since L((fy41,0; 0)

—L£0,0; 0) == (n )"t ‘_f-'llu(é,.,,.—}’.)—u(f,_.—}',)l inyolves i.id. (0, 1) valuod

random variablos, procceding as in (3.21)—(3.24) and using the Bonforroni inequality
we obtain

P{ max  Li(feyy a1 0)—L3Es,ns 0) > Kin? (log n}tt
0krke,-1

[y oy
g t.oxpf—K (log n)¥{(14+0(n )]
< n-h for any fixed & > 0 by propor choice ot Ky, gince &£ > 1), ... 3.34)
Step 3: Wo show that for every A > 0, thore exist a K> 0 and an n°,
such that for n 3 »*, P{I}, < K,n— (log n)t} 3> 1—4n=>. To do so, we note that on
proceeding as bofore
PIW0,|> Ko~ (log ) < 2expl—Kan™ ! (log {1400 )L, ... (3.35)

uniformly in |r| < r,and 0 € 8 < s, As boforo, on using tho Bonferroni incquality,
wo gob

P ) 0] W
{‘,:1::':- Iﬂ:’. | W[ > Kyn*{log n)}

154,

< 4ryf0.+) oxp {—K;n (log n)t{14-0{1)})

< 4nb, for any. fixed B > 0),ask > 1. e (3360
(3 14) then follows from stops 1,2,3 Q.E.D.

Thoorom3.1 will bo utilized to prove the following Lnsio rosult which
strengthons (3.1) to a.s. convergonco

. ’l.'lfoorom 32: Under the assumplions of Section 2, for cvery o> 0), there
exist positive constants (9, ) and o samplc size n,, such that for f# = 0 and all n > n,

P aup [ WX, B)] > &V nd (log npttt) < e nee,
Ilence, |:|"<p-|| WX, 0) |50 aa, as n— .
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Proof : Noto that if wo lot J-(,% ) = EJ(T,), 1 € i & n[ef. (2.6)], we have

'z: c,,,[J o) - +,)]|< max ey ":zl [ (it 1) = JGifin 4+ 1)}
= O(n-1) , O(ni~*) = O(n~%), . (3.87)

by (2.10) and Thoorem 3.8 of Puri and Sen (1071)({viz , pp. 408-413)). Honce, for our
purpose, it eufficos to work with J, (# =J(#),
R = .E. WX —bes—[Xj—bey)), 1 i< m, —0 <b < 0, wo havo

1 &8 & n If wodefine

TX)~T(X—be}) = | JUH (2, OSa: 0)— T Iz OHSHe: )

= I,,(8)+1,4(b), .. (3.38)

where
L6y = T JU {3 OMIS3; 01— b, - (330)
1) = [ ULH (e O~ I (a3 BjdS3Lai b). - (340)

We first show that for overy's > 0, thore exist positive K, K, and n®, such that for
npn’, P sup |1,4(8)| € Kyn? (log n}¥+3} > 1—=Kyn~s. Tn (2.1), without any loss
of gonumhty, we may lot f, = 0 and assume that 0 < F(0) < 1. Seloct 23’ and
9 guch that

Fth) = 1—F(2®) = 4Kn=4+ (log n)¥, v {341
whero K, is tho samo as in (3.14). Then for » sufficiently large, say for n > n,.  Wo
bave 2 < 0 < 2, and

£ K
I48) = I + I + I + I {J1H {; O} —J[H (i bY}dSH(=, b)

= l..l(b:+1'.'2(b)+1£’2(b)+l$.‘2(b), say. w (342)

Sineo, by (3.2), | S3(z; b)| € {{n+") max |cx|},(2;8), wo obtain by some standard
1Sign

computations that
o
"-’2(5)|<(ﬂ+‘)'l:§2( Jexil J | H (; O (= W[ (2; 3, 0,)] |dH (=, b),

(3.43)

whoro I (z; b, 0,) = 0 (2; ;0)4+(1—0M (2;}), 0 < 0, < 1. On using (3.12) and
(3.14), we obtain for n > n* and any fixod o > 0),

P{ _-m<|]:<° t:ll]s 1 (2 b)— 1 (23 0) | > ¢iVn-b-0 (log n)¥} < cPni~e, ... (3.44)
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whero ¢ and ¢® are auitablo positive conatants Hence, on using (3.44), (2.9) and
(2.10), we obtain that for all bel},

F)
113(0)] € [¢"n~? (log n)t) f {H.(z; b, 0,01 =M (z; b, 0. )]} all (2, b), ... (345)
L]

with probability > '—cln-r. Let us dofine Fofs;3)=(n+1)1 & Flz+bel), so
that F,(z;0) = (nf(n+1)F(z). Note that by (2.10){2.13) -

sup | F,(z; 5)—F,(z; 0)] = O(n-}{log n}t). . (340)
LN

Sinco M {z;0) = (n41)? i u(z—X;) involves average of i.i.d. (bounded valued) r.v.'s,
‘=1
uring the results of Hooffding (1903}, we obtain that for large n,
PYH A0 ; 00—F (#95 0)| > Kn=¥4~41{log n)¥} & Kyn~, v (347)

where K, and K, aro the same as in (3.14}  Using then (3.12), (3.14), (3.41), it follows
that for all z § 210,

1—H (x;0) > (1/3)[1—H (z; B)], & bel}, e (3.48)

with probability > 1—c{®n~s. Agnin, by using the samo results of Hoeffding (1963),
wo havo P{|LYF(0); 0)—+v/nF(0)| > K,Viogn} € Kyn~t, for evory o > 0), and
honco, by (3.12), (3.14) and the fact that F(0) > 0, wo obtain that for all x 3 0, o
-0,

Hz;) > FO)—Kp~ (log mH1+0074)] 3 00> 0, % beli ... (3.49)

with probability » 1—¢{®a-s. From the dofinition of H(z; b, 0.} oand (3.48)-(3.49),
it follows that for all 0  z 249,

H (38, 011—H.(z:5,0,)] > Cli—H (=i b)), e (350)

(where C > 0), with probability > 1—c® n=2, From (3.45) and (3.60), for Iarge
n, with probability > 1~cbn-e,

)
3up| I40)] < On* (o m}t) {sup T {1 —H.(z;8) 1M fz: 1)}
bery i ©
< Ofw~*{log mt){ sup [ Q=H s b dH g5 »)
)y -
= oo g o1 =)

= O{n~* (log n)l‘){l+%+...+%} = Otn (log m*9). .. (331)

1"



OXN BOUNDED LENGTH CONFIDENCE INTERVAL
It followa similmly that for lurge n, with probability > 1—c®n-9, sup 113®)| =
O(n~ (log n)t+1). Again

B0 < {n+1) mox el '{” 19U )| 1.)+"{:"| JU s NI 4z B}

= IY)(b); +I{Y(b)y, vay. . (3.52)

On using (2.9), (2.10) (3.41), (3.47) and (3.48), wo obtain that for largo n, with probabi-
lity > 1—c{®n~1,

sup | I80)] < O(n'){ p I f-log n(1—u) du}
sy (7408

<oYK (—og(1—u)] du}
]-Oln'l-'(log ny)
= O(nd) . O(n—1-3 (log n)t#1) = O(n~* (log n)t+1). . (3.53)
Also, IS0}y = O(ut) J’ U (e O (a3 01+ 00w f Uz O} Al b)—
H,(x;0)). By (3.53), the first term is O(n—4(log n)k+1); vuth probability 3 1—cPn~
for largo n (note that it does not depend on bel}}, while integrating by parts and using
the samo technique as in the earlier cases, it follows that for largo n the socond term is
also O(n—%log n}t+!) for all belIy, with probability > 1—ci¥s~%, Thus, as n— co,
sup I4(d) = O(n—%(log n)*#') with probability > 1—¢i®a~. ... (3.64)
wry

Similarly, it follows that for large », with probability » 1—c®n=?, sup|I{}(b)|
(UM

= O(n—¥(log n)*¥1). Consoquently, for largo n,
sup| 7 ,4(b)| = O(n-¥(log n)k+), with probability > 1—c{n=2. ... (3.55)
[ M

Noxt wo show that for every & > 0, sup|l, (b)—LB(F}] € c{'n—* (log n)t+ with
(1M

yrobability > 1—c{Pn=2, whoro ¢!’ and c{®) are positive constants, and » is taken to bo
Iarge. In (3.39), wo now writo I,y(0) = JU)8)-+1%\?), whore

1) = [ JOFEMISiz 0)— 82z b)), e (3.50)

180) = J U@ - FEMISE 0~ Sim b, . (350
By (2.10), (3.2) and {3.57), we have
wupl 6] = e E T (X 0= XD~ X)~u(lety— X}
’ <«mnx|e,,|xsup1 JOH O 123 O))— J[F(Camaz)] Y1),

(|ll.(C’n |(Iog u)" 0)—~11 (Cn~)log n)k; )|} e (3.68)
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whero C( > 0) s finite.  On using tho woll-known reault that

P(_twp_ WA O—F@)| > O/ K Ot e @80)

where €,, Cy are finits (positive) conatants, and that in the neighbourhood of 0 (where
0 < F(0) < 1), |J'(F(x))| is bounded [by (2.0)], and further that F(Cn-t(log n)¥)
—F(~Cn~1%log n)t) = O{n~'{log a}¥), wo obtain from (3.58) that

:.\l,gl W) < [0(s2)Y O{n-¥{log w)Y O(n))[O(n-¥{log n)]

= O{n-4log n)1¥18), with probability » 1—cn~). ... (3.60)
Further, on donoting by ¢} = max {em|, wo have
1Gikn

Xt |bl<a
%) = J e J(FE)RISz; 0)—S(z; b))
Xyt ]b]oy
= | (8= b= 5z W TF(MF(R), . (3.61)

Xay—1bleq

where X, = min X; and X;,, = max X;. Hence, by (2.22) and (3.81),
1Gign 16ikn

Xenrt [Bley
I90)-bBF) = ;m " [S34z: b} 83l O)~ YR (FKF ()
Xa, [
Xar—1b1c; -
=L T YETREMRR)- - (3.69)
kel P |5|‘:
Now, P{F(X,y, > ea™ 1) = [1—ca~ V3 < O(n~Y), for every (fixed) o > 0), and simi-
Tarly, P(1—F(X,.)) » en~V3) < O{n~¥). Honco, by (2.13) for largo n, tho last term
on the right hand side of (3.02) is bounded (for all 3¢I3) above by O(s~1%{log n)t¥1), with
probability > 1—¢f*{n=9), Also, by (2.0), {3.11) and (3.13), thoe fivst term on tho right
hand aido of (3.62) ia bounded (for all bel2) above by
XartCa9(log njt
AR n=¥(log {14+ 0(s M}k ~ [ {Fl} —F(2)dF(x)
Xy—Onriaflog m)t
< O{n~*log m)t){—log F(Xyy—Cn~1log nP)—logll— F(Xyuy-+Cn-12 (log ml,
. (3.63)

with probability > 1—c®n~1), whore ¢ 3> 0. In tho samo way sa in after (3.62), it
can bo shown that F(X,,—Cn-¥log n)¥) > const (n~%) with probability > 1—¢fPn-7,
whero # {3 some fixod positive numbor, and a similar statement holds for 1~F(X,+
Cn=l(log n)t)). Henco, with probability > 1—eiPu-¢, for largo » the right hand sido
of (3.03) is Lounded above by

On¥(log n}*) . Oflog n) = O{n~4(log ). e (360)
The proof of the theorom ia thon comploted by (3.55), (3.62), {3.03), (3.64) and tho
dofinition of W(X4, &), givon at the beginning of this section, Q.3-D.
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Lot &, denoto tho o-field genorated by R, = (8, ..., R,,); noto that &,
is 1 in n. Also, lot Ty = C,T, and assume that I/, : # = 0 holds. Then, Thoorem
3.3 holds; tho result is of fundarontal uso in proving tbo “uniform continuity in
probability” (to be oxplained in Scotion 6) of T(X,) with respoct to 07t

Thoorom 3.3: If J (u)=EJ(U,), (—)n <uin, 1 Lign, then
under Hy : f = 0, {T,, F,} Jorms a martingals sequence.

Tho proof of the theorom is givon in Son and Ghosh (1972), and honee, is omitted.

Noto that the above martingale proparty does not nocessarily hold when we
let J (iftn+1)) = J(if(n4+1)), 1 ¢ & »[unless J(u) =5:0 <u < 1] Also, whon
f # 0, so that givon the ranks of X, ..., X, X,,, docs not havo a constant probabi-
lity (1/(n+1)) of having the rank i(l i  a41), tho above martingale proporty
doos not hold, in genoral.

4. TOE PROOF OF THE MAIN THEOREM
Tho proof is accomplished in soveral stops. First, wo prove tho following
loemma,
Lemma 4.1: For s{ > 0),  posilive constants K, KM and a sample size
Ny, Such that forn > n,,

P{(CPu,n—B)— 8T af BF)] > KiM(log n)} < KiFin-s, . (40

P{(C,Be, s— B+ A7os BUF)) <— K (log n)f} < KiPn. v (42)

Proof :  Wo shall only consider tho proof of (4.1) as tho proof of (4.2) follows

on tho samo lino. By virtue of tho translation-invarianco of tho estimates fy, , ond

81, wo may, without any loss of gonorality, assumo that #=0. Thon, by (2.7),
wo have
PCBy, o~ ATy BIF) > KiPlog n)
= P{T(X,—C;'[Ar,,s/ BF)+ K{log n)te,) > —TH| # = 0}
= Pyl ly=Ty > —TH~Tp}, e (43)

whero wo writo 7, = T(X,~bye), by = Arye BF) and ¥, = T(X,—[bo+KM(log n)?]
c}). By Thoorem 3.2, with probability 3 1—c{®(n~9), fot lnrge n,

— P —F, = —KW(log n}B(F)4-O(n~*(log n)*), &> 0. . (44)
Also, using tho fact that im T = —Ar,, and writing S,(2; b)) = li.‘ cpiF (x—b,
—po nl
cy)y wo obtain by some standard computations that
f J(F@)AS [z, by) = —b,B(F)+0(n~112) = TP Om~1s), v (4.5)
icnco, 1 suflices to show that for large n, w.th probability > 1—c®(n-s),

1 J JUFGMS (a3 b~ | < KiPllog mn. o ()
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‘Tho left hand side of (4.6) can be writien as

1T, U1~ JU2, GBS, b+ T JU s B b= 255 )
< 1 ORI bS8

+1 ] 1824e3 b= 8,603 BN T3 )] B, 423 ). -
Tt can bo shown by using Thoorom 2 of Hooffding (1063) that for largo n sup| S3(z; &)
—8,(2; )] = Of(log n)), with probability » 1—e®n=s). Also, j- | J'[H x5 b))

|dH (z; 30} & (n+1)? ‘2.21 K(i{n4-1~i)fin+1)3)"? = Oflog n) [by (2.0)). Henco, the
socond torm on the right hand side of (4.7) is O({log #)%) with probability » 1—cP(n"9),
for large . Finally, procisoly on the same line as in (3.42)—(3.65), it follows that
for Iargo n, tho first torm on the right hand sido of (4.7) is also Of(log n}¥*), with pro-
bability > 1—c™n~¢). Honce tho proof is complete.

A direct consoquence of Thoorem 3.2 and Lemma 4.1 is the following.
Lemma 4.2: For every s { > 0), thers exial positive constanis (K, K(F) and
a sample size n,, such thatl for n 3 n,,
P{|Ou{r.a—Br, 241,/ B(F) | > Ki'n~*(lognf) Q Kifn~t. ... (48)

Also, we havo the following lomma whose proof follows along the lnes of
Son (1069, Soction 3).

Lommn 4.3: For every real z{—00 < 2z < o0),
tim PIO By, = BB A1y < 2} = (2n)i0 | esp(—y )t .. (9)
—- —

Finally, for tho “uniform continuity in probability” (for definition, soe
Anscombe (1952)) of (Bu__) with respect to {1}, we have the following :

Lemma 4.4: Forevery positivesand y, there exists a §(< 0), such that as n— 0
’— (40
P { i I 1C4By, w—Bv, 01 > v} < {1.10)

and a similar satement holds for {81, ).

Proof: By Thoorom 3.2, Lommn 4.1 (where we lot ¢ = 144, A > 0), and
{2.17), wo have, with probability > 1—K(n-%), X boing & constant deponding on b,
for all [n'—n| < &n,
CulBy, w—Bu, ) = Cotbu, w—AI0uIOL]—Culfy, «—B)
= —{CuJC I BIFNIT(X v— B we)—T(Xp—peu)+ o)}
HUBFNWTIX — o, v —TX, —fe,) +ol1)]
= —[4/B{F)Jfr (1 —ColCLlH{CWICNT(X s —FEL)
—T(Xu—fe )| B(F)=T{X—fe, )1 —C,IO Y BIF)+o().
(R}
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ON BOUNDED LEXGTIT CONFIDENCE INTERVAL
By (2.12), v aulp< , 11=C,{C,.] <&, whero 8(>>0) deponds on 4, and can bo mado arbi-
—nI<tn

trorily small whon ¢ is mado so. Also, the asymptotic normality of T(X,—fe,);d
(with zero mean and unit varianco) implies that | 7(X,—pf¢,)| is bounded, in probabi-
lity, as n—3c0. Henco, it suffites to show that as n -0

P{ I.'s_l:)l)dn|T(.\',—ﬂc.)—1‘(.\',.—ﬂc,.)| >n<e . (4.12)
Sineo | T(X,—fe,)—T(X,—fen)| & Cu—CCur | | Ta} 4 C* | To—T3} , whoro T}
is dofined in Scotion 4), it is sufficient to show that

I’,_,(I e o =T >9C) < o (4.13)

and in viow of tho martingalo property of T3, seo Theorom 3.3, from the Kolmogorov
inoquality (cf. Lodvo (1903), p. 386) for martingales, we get,

P l-o(h,f:'& ‘.IT:'—T:l > 10, € (00 2E(T 8 (3= Tokiom)
= (4C)CE, umA S s1om— Ci-panpdi-tom 1
Tho rest of tho proof follows from (2.12) and tho fact that 43 = A340(1), for largo n.

We now return to tho proof of Theorom 2.1, By (2.17), Lemma, 4.2 and tho
dofinition of N(d), it follows that for all d > 0, N(d) is finito a.8. and is | in d. Wo
also noto that

[ENW)] = £ nPiN@) =n)= T P|N(d)> ). - (214)
=0 0

Honed, in order to show that E[N(d)] < o, it suffices to show that for large n,
P{N(d) > n} = O(n~1-%), whore 5 > 0. e (4.15)
By dofinition, tho loft hand sido of (4.15) is oqual to
PiBy,r—Bex > 24 for all k € n} < P{By,.—Br,s > 24)
="P(C.(Bu, —B1, ) > 2Csy = O(w %), ... (119)

(whero we can lot 8 > 1), as by (4.8), C,(Bv, \—BL, ) = 247,/ B(F) +O(n~¥log n)*),

whoreas by (2.11), 24C, > 2dCpat%. Henco, for overy d > 0, E[N(d)] < co. Using

tho fact that By, ,—Bz, » > 0 0.8, for each n, wo have lim N(d) = co and finally by
0

tho monotono convergonco theorem ‘lilz)o E[N(d)).=c0.

Now (2.19) follows diroctly from (4.8), (2.12) and (2.22); (2.20) also follows
from Thoorem 1 of Anscombo (1062) after using our Lommas 4.3 and 4.4. To prove
{2.21), wo lot for onch d{ > 0),

]
D) = @AM+~ o Y ) - WID
[] Leing tho largo integor containod in z, and write,
E[N(d))/@-"{d)} = [@ AN Iy F Sy + SPN(E) = »)),
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where tho summutions E,, 2, and I, oxtond over n < n(d), ny{d) € n  ny{d) and
5 > ny{d), respoctively. Sinco Q(o)is T, ‘li'm wd) = o and (2.19) holds, for overy
€ > 0, thero oxiste & d{ > 0) such that for all 0 < d  d,, Pln(d) < Nid) € nfd)}
> P{|N(d)/@-Ad))~1] <e} » 1—7, whore 4{ > 0) is {proassigned) small numbor.
Honeo, for d  d,,
{Q A Em PIN() = ) € (1—e)PIN(d) <ny(d)} K 71—e). ... (4.18)
{Q AN En PIN() = 1) = {@ (AN} ny{d)+1)PIN(D) > nfd)+E,P(N (D) > n}),
. (4.19)
whoro by (4.15)(4.10), wo obtain by letting & > 1, (n,{d)--1) P{N(d) > ndd)} <
Kyln(d)]*¥* and Z,P{N(d) > n} = O([n,{d)]**), both of which convergo to zoro as
d—0. Finally,
HQUAIEMPING) = m)—1] < PV = 1} < e47. . (420)

The proof of {2.21) now follows from (4.18)-(4.20).

Remark ;  Using (£.12), tho clnssical Wald-Wolfowtz-Noother-Hajok theorom

(of. Hajek and Sidak, 1967, p. 160) on tho asymptotic normality of T'(f) for fixed
but largo n, and (2.19), it readily follows from Thoorem 1 (p. 601) of Anscombo (1952)
that Txe)(8) has asymptotically (a3 d— 0) a normal distribution with zero mean and
varianco A2 dofinod in (2.23). Also, on using Theorem 3.2, it follows that for ovory
belniay, Twia{f+5)1-bB(F) has asymptotically tho same normal distribution. Theso
results givo simplo proofa of tho asymptotio normality of regression rank statistics
based on random sample sizes both in the null (b = 0) and tho non-null (b # 0) situa-
tions. By wsing Theorem 2 of Mogyorodi (1965), the rosulls irivially oxtend to any
stopping variable Ny, indoxed by a sequonce {r} and a soquence of positivo integers
N
defined on the samo probability space as of the Xi.

{ne)}, such that n,—s00 and =£2 A, as r~» oo, whoro A is positivo random variable

6. ASYMPTOTIG RELATIVE EFFICIENCY
For any two procedures 4 and B for dotormining (soquentially) bounded longth
confidonco intervals for #(with the samo bound 2d), lot P4(d) and Pg{d) ba the covorage
probabilitics and N 4(d) and Np(d) tho slopping varinbles corresponding to the res-
pectivo procedures, ‘Thon, tho ARE of thoe proceduro A with respoot to tho proceduro
B is givon by

4,0 = lim [ENKDEN )], e (5.0)
a0
provided lim Py(d) = lim Pg(d) and cithor of the limits oxists.
a—0 pae)

Glosor (1065) considered the caso when #1032 = C > 0 mn— 00, Howovor,
ono can easily oxtend his rosults whon (2.10) and (2.11) hold.  Tnus, if @ donotes his
proceduro, Theorom 2.1 also holds with tho chango that #{d) has to bo replaced by
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vg(d) = o2r}./d%, o1 boing tho variance of the distribution of Fi (z) in (2.1). Writing
R for tho proposed proceduro and using (2.21), wo have now,

en,a = lim (Q-1(vcld))/Q-(d)}. - (62)
d—0

By dofinition, vg{d)/d) = 0*BYF)/4? is indcpendent of d. Writo ¢ = s(¢®). Then,
¢" = £7(e) is monotonic in 8 with ¢* = | whene = 1. Writs g = v} (d)s"(d), whoro
vy (d) = Q- Yveld)), v*(d) = Q-'(Md)). Both v%(d) and v*(d) tend to o0 a8 d-> 0. Thus,
assuming m J(d) exists,

1) = ¢ = vold)ud) = im (ld)id)
= lim {Qa" @RV - (63)

Using (2.12) and proving by contradiction, we have,
11310 ¢(d) = e*=4"Y(e) = 5~V 0*B%(F)/A2). e (8.4)

Tho oxpiession o2B%F)[A? is tho Pitman-cfficiency of a goneral rank order test with
rospect to Studoent's ¢ test. In the particular caso, when J(u) = ¢-(x), ¢ being tho
distribution function (d.f.) of a standard normal variable, (normal score) it is well-known
(sco 0.g. Puri and Sen, 1971, p, 118) that o*B(F)[A% > 1for all d.f. F with a density
f and a finite second momont, equality being attained when and only when F is normal
(0,0%) d.f. TFrom monotonicity, it follows now from (5.4) that in this caso ¢* > 1,
oquality being attained if and only if F is normal. Also, when J(u) = u (Wilcoxon

acoro), ¢° = r’(l’.’a*( _f: f’(z)alz)’) > & (0.864) (cf. Hijek and Sidak (1807, p. 280}).
In the caso of equispaced regression lino, # = a-i,§ = 1, 2, ..., C§ = n(n3—1)/12,
= {l?o-’(if’(z)dz)’}”’. For normal F, this roduces to {0.955)V3 2= 985, whilo
tho infimum is givon by (0,864)'" == .053.

In tho spocial caso whon ¢; is either 0 of 1, # is tho difference in tho location
pnarameters of the two distributions F(z—a') and F(z—a'—f). This is the classical

two-samplo problem. If at tho n-th stage, m, of tho ¢ are 1 and rest zero, Cf =
m,(n—m,)/4 < nf4, for all n > 1. Looking at the definition of C3, (2.19) and (2.21),

wo may observe that an optimum choico of m,, is [%— n]. tho integral part of % n,

¥

Thus, smong all designs for obtaining a b ded longth dence interval for 8, in
his problom, and optimum design {which minimizes EX(d) for small d) consists in

taking ovory altexnato obsorvation for tho two distributions, Hore, »-’C}—»% and
tho AnE reducos to 2B F)[A? various bounds for which havo beon discussed earticr,
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