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SUMMARY. Some recent work of tho author on ‘Unified Thoory of Lincar Eslimation’ is des-
cribed, Thoe goneral Qauss-Markeff (0ox) model (¥, XP,0?V) is considored, whore V = EI(Y~Xp)
(¥ —Xp)’) ia posaibly singular and X poesibly doficiont in rank. Aitken's proceduro of least squares is
not applicable whea V is singular. Tho object of tho papor is to lay down procedurce which are valid in
1) situations and which da not requiro prior oxamination of the ranks of ¥ and X. Two unified mathods
arosuggestord.  Ono is & numorical approach called the Invorse Partitioned Malrix (sex) methed. Another
is an analogus of tho least squares thoory, calied the Unified Least Squarcs {vLs) mothod,

It hes boon pointed out that siogulazity of V imposce somo restriction on tho parameter 8, which
bave o bo taken into account in constructing unbinsed ostimators.

In & series of papers (Rao, 1971, 1972a, 1972D, 1973), tho author developed two
approaches towards a unified treatment of tho General Gauss-Markoff (6om) lincar
model (¥, XB, o) where V, the dispersion matrix of ¥, may be singular and X may
be deficient in rank. Ono is called the Inverse Partition Matrix (try) method, which
depends on the ical evaluation of o g-i of a partitioned matrix (sco Rao,
1971, 1972b).  Another is an analoguo of least squares theory and is called unified
least square (uLs) method (sco Rao, 1971, 1973). It may be noted that Aitken’s
approach (which is called gencralized least squares) is applicablo only when ¥ is non-
singular. The objoct of the present paper is to bring out the salicnt featurcs of these
two methods and to point out somo interesting features of linear unbiased estimation
whon the disporsion matrix of the observations is singular.

2. CONDITION OF GONGISTENOY
Consider the triplet
¥, X8, o) e (20)
whore Y is the vector of random variables, E(¥) = X@ and D(¥) =%V, and ¢’
being unknown, Woe refer to tho sot-up (2.1) as tho General Gauss-Markoff (a0M)
model when no assumption is made nbont R(F) and R(X), where R() denotes tho
raok of the matrix argument.
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It may bo noted that the Causs-MarkofT model with restrictions on the para-
meter

(¥, XB,0%V), ¢ = IB. e (22)
can bo written sa tho aox model
(Fo X, 0°¥) . (23)
where
Yy . Xy, 4V O
"=(c)' "’='(n)"'=(o 0/ -

When V is singular in (2.1), thero are some natural restrictions on the random
veetor ¥ und possibly on the parameter vector B.  One such restriction on Y is
L'X=0LV=0=LY =0 with probability 1, .. (2.8)
which implies that Ye 4V : X), tho linear ifold g ted by the col of ¥V
and X. Further if ¥ is o matrix such that K’V = 0, then K'Y is a constant which
is known when Y is known. In such a caso
K'Y =R'Xp . (2.0)
is & naturul restriction on P unless K’X = 0, or in other words, the random vector
Y and the parameter f arc such that (Y—XB)e (V).

Let W be of order » and rank k. Then there exists & nx(s—k) matrix N
of rank n—#& or n—k—1 such that N}’ = 0 which jmplics
N'XB =0. e (27)
Tho restrictions N'Y = 0 and N'XP = 0 imply that ¥ and § aro contined to subspaces
which can be specificd when V and a sample observation on Y aro known.

3. UNDIASEDNESS OF A LINEAK ESTIMATOR
Let us consider the model (2.1) and find the condition fur & lincar function
L'Y to be unbiased for p'p.

E(LY)=LXp=pg e (3)
which must hold for all B such that N’Xp = 0. Then there exista a vector X such
that

L'X—p"=2NX or p = X'(L—NA).
Thus we have the following lemmus.

Lemmu 3.1: A necessary and sufficient condition that p'B admils a linear
unbiased ealimator is thal pe J(X").
Lemma 3.2: If L'Y is unbiased for p'B then it is necessary and sufficient that
there exisls a veclor A such that
X(L—=NA) = p. we {3.2)
Noto that when 17 is of [ull rank or when the observation ¥ iy unknown, the condi-
tion for unbiuscdness iy X'4 = p, which is usuully given in text books. Thia is
not Lruo in genernl ua (3.2) shows,
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Lemma 3.3: If L'Y ix an unbinsed extimator of p'B, then there cxintr a vector
M axch that X'M=pand 'Y = 'Y,

Lemmn 3.3 shows, however, that the entire elngs of unbiascd exdimntors of an
estimable function p'R can bo generated by 'Y whero M satisfies tho eondition
X'M = p. Thus to find the minimum variance unbiused estimator of p'@ we need
determine M snch that 3°FM is a minimum subject to the condition XM = p.

Note 1: Tho result of Lemma 3.2 is bnsed on the knowledge of the matrix
N, which can be computed if ¥ and a samplo observation on the random variable
Y aro known. However, if we want L'} to bo unbinsed for p'B irreapective of the sub-
spaco to which ¥ may belong, then the condition is XL = p. Fortunately, in view
of Lemma 3.3, the formulno woe develop for the sLur of p'B and for the eatimation
of o7 aro valid to whichever particular subspace ¥ may belong.

4. THE IpM METIIOD
The Inverso Partition Matrix (rem) method, needs tho computation of o
g-inverse of the partitioned matsix

v .\)- ¢, C
( = ( ) we (1)
X0 ¢, —C,

as tho basic step.  The inverse matrix (4.1) is like a Pandora Box which gives all that
isneeessary for drawing inferonce on the @ parameters.  We state the results in Theorem
4.1 which gives tho uso of the submatrices in (4.1).

Theorem 4.1 1 Lel Cy, Cy, C, C; be aa defined in (4.1) Then :

(i) The BLUE of an estimable funclion p'B s p'P where

B=C¥ or CY. v (42)

(i) V(p'P) = a*p'Cyp, cov (p’fi, l,‘ﬁ) =aip'Cyy. . {43)
(i5i) An unbiased estimalor of a3 is

A=Y'C Y=</, f=RY:N)=R(X). e (44)

Theorem 4.2: Let C,, €y, €y, C, be as defined in (3.1) and 10 = 1o be asel
of linear hypotheses to Le lested. Then

(i) the hypothesis is cousistent if

PDu=u o (1.5)

where w = P’ﬁ—u‘. D = PCP, and D~ is any g-inverse of D.

(ii) If (4.5) is satisfied and Y has an n-variate normal distribution rwcith mean
X°B and dispersion matriz oV, then
wh-u
TR
has a central F distribution on k and [ degrees of freedom where [ in as in (44) and
h=R(D).

Fe e (4.8)
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Proofs of Theorems 4.1 and 4.2 are given in dotail in Rao (1871, 1972b).

Nofe 1. In (4.1) we have not mado any assumption about the ranksof ¥V
and X. Thus tho 1pM method is applicable to tho most genoral situation where ¥
is possibly singular and X may be deficient in rank. The inverso in (4.1) will be &
regular inverso iff V and X are both of full rank. In all other situations tho partitioned
matrix on the left hand sido of (4.1) is singular and we need compute any g-inverse.
For definition of g-inverse and its properties tho reader is roferred to a recent book by
Rao and Mitra (1071). Suitable computer programs have been developed for obtain-
ing & g-inverse, (sco Golub and Kahan, 1905; Bhimasankaram and Rao, 1872, and
Shinozaki, Sibuya and Tanabe, 1972). The author (Rao, 1972b) has also given explicit
algebraio expressions for €y, C,, Cy, C,, which may also be useful in computing the
g-inverse (4.1). Thus we have provided a numerical solution to problems of inference
on parameters in the aod model through the 13 mothod. Further refinements have
to be sought only in puting a g-i through a comp prog;

Note 2: Theorem 4.2 lays down tho procedure for testing the lincar hypothesis
P’B =10, and consequently for obtaining simultancous confidenco intervals for the
linear parametrio function P'B. Tho test for consistency (4.5) ensures that the null
hypothesis docs not contradict the natural restrictions (2.6) on tho B paramoters
imposed by the singularity of V. If (4.5) is not satisfied tho null hypothesis of course
stands rejected.  If (4.5) is satisfied, then we proceed to the F test as in (4.6), which
examines that part of the null hypothesis which does not directly depend on the
restrictions (2.6). Large values of F indicate departure from the null hypothesia.

6. Toe ULS METHOD
When V is nonsingular, the current theory of Jeast squares as formulated by
Aitken (1034) lays down tho following procedure :
(i) Obtain |§ which miniriscs tho quadratio form
(Y—XByV-(Y—Xp) e (81)
and estimate p'@ by ' provided p'p is estimable.
(ii) The unknown parameter o? is estimated by
@ = (Y=XE)VIET—Xp) + £,
[ =RWV)—R(X) = R(V : X)—R(X).
Tho Aitken procedure is not available when V is singular.

Wo raiso the following question. Whother V is nonsingular or not, what is
the most gencral form of symmetrio matrix A1 such that the following hold.

(6.2)

(i) Tho DLUE of an estimablo function p'B is pf whero f is a stationary
point of
(Y—XBYMY—Xp) e (53)
ie., whore ita dorivative with respect to  vanishes.
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SOME RECENT RESULTS LN LINEAR ESTIMATION
(i) An unbiased oati o1 is obtained as

8 = (¥ —Xp) MY~ Xp)+f

(6.4)
=RV :X)=R(X)
which is the sanc as (4.4).

It is shown (Rao, 1073) that the most general form of M, whether V is non-
singular or not and whether X is deficient in rank or not is

M= (V4XUX)- v (8.6)
for any symmetric g-inverse, where U is any symmetric matrix such that
VY 2 X) = AHV+XUX') or R(V:X) = RV4XUX). v {6.08)
We note that U always exists such that (5.6) is satisfied. For instance U = k¥ is
ono choice. ‘The main results are stated in Theorem 5.1,

Theorem b.1: Let U be any symmelric malriz such that RV+FXUX') =
RV : X) and M = (V4 XUX’)~ be any g-inverse (symmelric or nof). Then :

()) The quadralic from

(Y—XB)'M(Y—XP) . (57)

kas slationary values. Ldﬁ be a stationary point. Then the BLUE of an eslimable
function p'p is p'P.

(ii) The same estimale of o* as in (4.4) is given by the formula

8 = (Y=XPYMY—-XB) +/

(5.8)
[ =R : X}—R(X}.
(iii) The variances and covariances of BLUE's are obtained as follows :
V') = ap (X' MXY— U)lp.
0'B) = il y—-U)i 9

cov (p'P, 'B) = P UN'MX)-—Uly
where (X'MX)~ is any g-inverse.
(iv) The dispersion malriz of a number of estimates P’é is 02D where
D = P[(X’MX)~—U)P. v (6.10)
Tests of significance can bo carried out s in Theorem (4.2) with D a3 computed

in (6.10) and & = P'f—0.
Note 3: Tho vLs theory leads us to difforentiate tho quadratio form
(Y= XBY(V+XUX') (Y—XP)
in all situations. Tho rest of tho method is nearly the same as in the current theory
of least aquares except that wo havo slightly different expressions for variances and
covariances of estimators. The results of Theorom 5.1 aro indepondent of the choico
of U subject only to the condition R(V+XUX') = R{V : X). This condition is always
satisfied if U = kI whero k is any nonzero scalar. It may be noted that Aitken’s
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proceduro is valid only for | V| = 0. The results of Theorem 5.1 hold good whether
V is nonsingular or not and X is deficient in rank or not and thus constitute a

unified theory of lonat squares.
We shall now oxamine whether it is possiblo to compute t’D-te which occurs
in the numerator of the F statistic (4.6) as tho difference, (R}—R%), whero

&Y = min (Y~ XB)'MEF—Xg) e (8.11)
[}
R}= min (Y—Xp) M(Y—Xp). o (8.12)
PR=tw0
a8 in tho usual theory of least squares.
Tho following theorem is of interest in thia conncetion.
Theorem 5.2: Let M =(V4XUX')~ and RU+XUX') = R(V: X), ﬁ is

of the value of B which minimises (5.11), B i the value of B which minimises (5.12) and
u= P B—rw. Then

B = BH(X'MX)-P{P(X'MX)-Plu e (513)
Ry= R = u'(P(X'MX)P]u. v (5.14)
Theo results (5.13) and (5.14) follow on standard lines as in the usual least squaros

theory.

Tho oxpression (5.14) is not the samo as

WD = w[PXDX)-P-PUP)n

for all testablo linear hypotheses (i.o., for all I* of the form X’Q) however U is chosen,
unless XUX’ = 0 == .#(X) C (I"). So the answer to the question raised is in
the negativo if L#(X) is not a subspace of v#(¥). In tho general case, Theorems 5.3
and 5.4 provido tho nnswer.

Theorem 6.3: Let 1"~ be any g-inverse of ¥, N be a malriz of maximum rank
such that N'V = 0, and

M= min (F—XpF-(¥~Xp) - (8

¢ N'.\-?'."N'r =X TAr—-xp) - (518)

&= L. (Y= XB)'P-(I'— Xp). e (6.16)
PQ=w

Then R}—R% = w'D-u and the F stolistic in {4.0) can be writlen

F= ﬁ;—”‘h? (317

Theorem 5.3 is proved in Rao and Mitra (1071).
We shall now consider n.n.d. matrices of the form F+XGGX'. I iseasyto
show that thero exists a matrix G such that R(V'+XGG'X) = R(I’ : X), and (I")
and J(XG) are virtually disjoint. For such a choico of G and any g-invorso.
M= (+XGG'X")™ e (518)
is also a g-inverso of ¥,
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SOME RECENT RESULTS IN LINEAR ESTIMATION
Given a testablo hypothesis P'g = 10, wo can wrile it in tho equivalent form

Qp=v e (5.19)
where @' = P'—KN'X and v == 10~KN'Y, and K is choson such that
(IP—KN'X)G =0. e (5:20)

K exists in view of the particular choico of G.
Theorem 5.4: Let M be as in (5.18) and Q'B = v le the hypdihesia as in
(5.10) equivalent lo Ip = 0. Furbher lel
I3 =min (Y—XBYMY-Xp), . (5.21)
3

= min (= XBYMY—X8). e (522
Op=v

Then Rf—RE =u'D-u, and the F slatistio (4.0) can be computed as in (5.17).
Thoorem 5.4 is proved by using Theorem 5.2 which gives an explicit oxpression
for the differenco (6.22)<{5.21), by observing
QX MX)Q-0'GG'Q = Q(X'MX)yQ
= M(XMX)y-P-I"GG'P. ... (6.23)
Indoed it ean bo shown that if M = (V+XGG'X')and G is such that
R(F4+ XUX') = R(V:X), then for the result of Theorem 5.4 to bo truo for all testablo
hypothescs it is nccessary and sufficient that /(1" and JA(XG) are virtually disjoint.
Theorems 5,2, 5.3 and 5.4 are moro of theoretical interest than of practical uso in com-
putations. Theorem 5.1 provides the basic results in the unified theory of least squares,

6. BEST LINEAR ESTDMATION (BLE)

Not much work js dono on BLE compared to that on BLUE. Refercnces to
eartier work on BLE can bo found in papers by Hoerl and Kennurd (1970, 1970b)
who introduced what aro called ridgo regression estimators, which do not satisfy tho
criterion of unbiascdncss. In this scction wo approach the problem of BLE in a direct
nanner.

Lot L'Y Lo an estimator of p'f.  The mean aquaro error of 'Y for given § is

E(L'Y—p'B)! = *L'VL+(X'L—p)pp'(X"L~p) . (81
which involves both tho unk by o! and @, and ea it stands is not &
practical criterion for minimising. Then we havo the following possibilities :

(i) Choose an upriori valuo of o~'B, say b, based on provious knowledge
und set-up the criterion as
S = L'VLH{X'L—p) W(X'L—p) . (6.2)

where 1V = bb'.

(i) IfP is considered to have an apriori distribution with E(pp’)=oI¥
whero I js known, then, on taking cxpectation of tho right hand side of (6.1) consi-
dering @ aa o random variable, tho criterion for minimising is of tho samo form us (0.2)
with a diffcrent definition of 1¥.
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For a givon ohoico of V', wo can minimise S to obtain L and compute the sLE
of p’d. Theorem 6.1 contains tho bosio result. Wo ghall donote the sLE of p'B,
in the senso of minimising (8.2) by BLE (w).
Theorem 6.1: The BLE (V) of p'P is p'B where

B = IWX'(V+XIWX')-Y .. (8.3)
Sfor any choice of the g-inverse.
ttained when L satisfies the ti

The minimum value of S is
(V4 XWX = XWip
0 that the optimum choico of L is {(F+4-XT¥".X') ' XTI'p giving the BLE (w}

LY = p'WX(V+XWX') Y = p'f

where P is as defined in (6.3).

It may be noted that there is no restriction on the parametrio function p'g
to bo estimated in tho caso of BLE (W), while p muat belong to #{X’}in the ¢ase of
BLUE.

It is of somo interest to compare the mean square errors of BLE (w) and BLUE
of estimable parametric functions. For this purpose we assume R(P4+XWX') =
R(V: X). Then from Theorem 6.1 it follows that the BLUE of p’B, when cstimable

is p'B, where

B =(XT-XyX'T-Y, T=V4XWX. . (6.4)
In fact, we have the interesting relationship

8 = GB, where G = WX'T-X. .. (6.5)
New let p = X'q in which case, the mean square error of p'ﬁ is

Elq’XB—¢'Np) = E(q’' XGR—q'Xp)* = ¢'Fq
where
F = XGDG'X'--X(G—-Npp G-I\’

D = E@—p)(i—p).

Then mean squares error of the BLUE of p'P is

E(g Xp-q'XpP = ¢ XDX'y.
It is easily shown that the matrix D—GDG’ is n.n.d, in which case XDX'—F is n.n.d.
for a certain rango of B dopending on 1. Thus if we have somo knowledgo of the
domain in which @ lies, wo may bo ablo to chooss IV in such a way that tho BLE (W)
is uniformly better than tho DLUE for any estimabla function. Further investigation
in this direction such as tho comparison of pLE (W) with ridge estimators of Hoerl
ond Kennard (1970a, 1970b) will bo usoful.
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7, BEST LINEAR MINIMUM BIAS ESTIMATION (MLIMBE)

Let us consider the 6oy model (Y, ¥B, 0%V).  If there is deficioncy in R(X),
then not all linear functions of @ aro unbiasedly estimable. ‘Then we raise the following
two questions.

{i) What is the minimum restriction to be put on B so that every lincar
parametrio function admits a LUE (lincur uhbiased estimator) and hence the vLuk ?

i) In what sense can wo find the best linear minimum  bing estimator
(oLimpe) of p'B if it docs not admit a Lk ?

The answer to the ficst question is contained in Theorem 7.1,

Theorem 7.1. Let R(X)=r < m, the number of componenls of B. The
ntinimum resiriclion on P cun be expressed in the following alternalive forms :

(i) RPp=c, R(IR)=m—~r, RIN'": R')=m.

(i) B = Bo+-y, where A is any matrix such that R(A) = R(X) = R(XA),

and v is arbitrary.

(iii) P = By+TX'8, where T is uny mairix such that R(XTX’) = R(X) and

§ ia arbitrary.

The first restriction is obvious and tho others can be deduced from the first.
All these restrictions imply that § is confined to a hyperplane of dimension r.

To answer the second question we procecd as follows. The biug in L'Y as an
estimator of p'B is (L'X—p’). We suy that L'Y is a linear minimum bias estimator
(x.nuu:) of p'@ if L is such that ||L'X —p ’ll, & suitably defined norm or sewi-norm of
the deviation L'X—p' in E,,, m-di 1 Eutlidean spaco, is a

Theorem 7.2: Lot the norm or somi-norm of vector win E,, be defined by |lu|| =
(W Mup where M is nnd. Then L'Y is a LIMBE of p'8 iff L salisfies the equution

XMX'L = XMp. . (1)
Tho proof consists in cquating the derivativo of
(L'X—=p')M(X'L—p) e {1.2)
with respect to L to tho null vector.

The LIMBE may not bo unique, in which caso we may chooso L such that
VLYY = ¢*L'VL is o minimum subject to the condition (7.1). The estimator L'Y
with such a choice of L is called pLinp.

Theorem 7.3: (a) Let

(v Xy )- (a. G, )
XX o “\g, ¢

Then the BLIMBE of p'@ is p'B where

B=Myey. . (1.3)
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() L (X)3yy be o Venorm M-lcust squares inverse of X' as defined in Rao
and Mitea (1971). Then the BLIMBE of p°'p is p’ﬁ where

B =[Nk Y. e (1.4)
The result (7.3) follows on the sume lines as in Rao (1971, 1072b) and (7.4) by
definition.

It may Lo noted that in Theorem 7.3, wo have not made uny assumption nbout
the runks of 1, M and X,
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