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SUMMARY. The resuits of Fisher and Rao are extended to exponential families with
wore than one parameter ; the proof is new ovon whon apsciuli~ed to one parameter multi-
nomisle of Fishor and Ran. The results aro applicd to & bicsssny problom of Dorkaon,

The paper also dovel ps Bhatiacharys typo inequalities. s (formal) Bayesiaa proof of the
rosulta on second ordor efficiency and the notion of aaymptotie suficiency up to O{l/n),

1. INTRODUCTION

The word second order efficiency was introduced by Rao (1961) but, as
noted there, the concept as well as the first main result in this area, occurs
in Fisher (1925). Tn that famous paper, Fisher proposes

By = lim (nI—1,)

as a measure of second order efficiency to discriminate between differont
asymptotically - efficient estimators in a problem of estimation involving a
multinomial population; here I is Fisher’s information contained in a single
observation and I the information contained in T,. Fisher stated, without

any sort of proof, that the maximum likelihood estimator minimizes Ej,
ie., maximizes second order efficiency. He also calonlated the values
of this or rather un intuitively plausible approximation to it (in fact B, of
Rao (1961)) for the maximum likelilhood and minimum chi-square
estimators, There is a slight mistake in the caloulations; see Rao (1961)
for the corrections. For some clarification of Fisher's calowlations sce

1This work was tartod when hoth authors wero st tho Indian Statistical Inatitute. It
was finishod whilo the first author was at the Univemity of Illinois and tho socond autbor at tho
Univensity of Dar cs Salaum, Tho rowsarch of th first suthor was supportad in part by NSF
grant QP 28154 Amondmont Scotion 2. Tho jmper i dedicatd to the momory of the lato
Profomor P. C. Mahalonobis,
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Kendall (1946) and Nandi (1956). Some di ion of the relation among
Fisher’s criterion Ej,, the quontity he actually caloulated and the quantity
E, of Rao (1961) is contained in remark 6 after Theorem 1 and Secotion 6.
Rao (1961) has provided the motivation for measures like E; and E,.

Somewhat surprisingly second order efficiency remained neglected till
it was picked up by Rao (1961) who makes major progress by proving Fisher's
result. However the result actually proved differs in two ways from what
Fisher stated. First Rao introduces s more easily computed and a more useful

E, and dly he restricts attention to what he calls Fisher
consistent estimators with continuous second order derivatives. This result
will be referred to as the Fisher-Rao theorem. e shall call Fisher consistent
estimators with continuous sccond order derivatives, or rather o slightly wider
class, locally stable (II). The definitions of E, and local stability (II, 1IT)
are given in Section 2.

The Fisher-Rao theorem has one unpleasant feature—its decision theorotio
implications are far from clear. In fact this has been the main criticism against
its use to justify the use of maximum likelihood estimators. Rao (1963) has,
therefore, sought a direct comparison of the truncated mean squares. Let
W(a, 6) = min{(a—8)2, d} be the squared error loss truncated ot d > 0. (Actu-
ally Rao’s loss is slightly different; sce the remark after proposition 2.)
Suppose T, is an asymptotically efficient estimator with

E (T, 0) = - +o( %)

then 3 may be taken as a third measure of second order efficiency. Again
restricting to Fisher consistent estimators (with third order continuous deri-
vatives instead of second order) and applying n bias correction to the
estimators considered, he shows ¥ is minimized by the (corrected) maximum
likelihood estimator. The effect of the bias correction is to make the
estimators unbiased up to terms of 0(1/n); wo shall call this Rao’s theorem.

Thero are quite 8 number of papers on the expension of the variance
of the maximum likelihood estimator and some other estimators in a multi-
nomial set-up. A recent paper is by Robertson (1972).

Both these theorems pertain to the case of i dent rand 1
from a multinomial population with proportions depcndmg on an un]mown
parameter 6. Data which appears to contradict this sort of result in a parti-
cular bio-nssay problem, has been presented by Berkson (1955). Berkson's
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data ncemn to indicate that for moderate rample size his minimum logit-chi-
square estimator performs bettor than tho maximum likelihood estimator as
regards bins and mean square error. In this connection sce also Berkson and
Hodges (1061). A summary of tho results of Berkson is available in Ferguson
(1067). Sinco tho population which Berkson iders is not muiti

but belongs to the Korpman-Darmois exponential family it scemed to us
worth extending tho results of Rao (1961, 1963) to exponential familics to ses
what is renlly happening in Berkson’s problem.

Tho extension to exponential familics is carried out in Section 2. The
main ideo is simplo. It is shown that all locally stable efficient estimators
1' which are unbiased up to O(1/n) have same covariance up to of1/n?) with

Z,, 23, Zy W, (which are defined on pp. 331, 335). Moreover 8, even after bins
correction is easily shown to be a linear function of Z,, Z% and Z,I¥, up to
o{1/n). So up to o(1/n) we can write T, a3 & sum of two orthogonal compo-
nents the first of which is the bias corrected maximum likelihood estimator.
Rao’s theorem is an immediate consequence. Tho Fisher-Rao theorom follows
similarly. The expansiona given in Theorem 1 try to make clear the relation
between the two types of results from the present point of view. Morcover
it is shown that if 7', is an efficient 1s. (III) estimator then one can find
KO,) = 0,49(0,)/n such that E{IV(T,,0)) > EW(H(,), 0)+o(1/nt)¥o.
Extension to the multi-parameter caso is briefly indicated. An asymptotie
Bhattacharya lLound is developed and necessary and sufficient conditions
aro given for tho maximum likelihood estimator to attain it. Tho caloula-
tions in this scction, though similar to Rao’s are, we believe, somewhat
simpler and moro illuminating even when specialized to the multinomisl
case. Unlike Rao (1961, 1063), all the details necessary for rigour and
precision have been spelled out to make the results easily accessiblo to all
renders. We have not hesitated to present more then one derivation of &
result whenever it helps clarification,

In Section 3 theso results are applied to Berkson’s problem. It is shown
that if & correction is made to the maximum likelihood estimator so that its
bias is the samo as that of Berkson’s minimum logit-chi-square estimator up
to terms O(1/n), then the maximum likelihood estimator has & lower variance
up to the terms of O(1/a%).

In the next scction wo approach the problom from a Bayesian point of
view. Using tho results of Lindloy (1901) a heuristio argument, is givon to show
that these theoroms hold quite generully and not merely in the restricted set-up
considered in Section 2. We hopo to present later o rigorous justification of
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thig result using the expansions of Johnson (1970). It is pointed out that
Lindley’s commenta in the discussion following Rao (1962) are not justified.

Tho last part of the paper is devoted to miscellancous remarks about
accond order usymptotic sulficicncy, expansion for the asymptotic distribution
of & stable cstimator and related matters.

After this paper was prepared Pfanzagl (1973) has published a very in-
teresting paper on closcly related results. Tho techniques are quite differont.
The assumptions are not quito comparable. Pfanzagl considers only the abso-
lutely continuous ense but for this case his assumptions are much weaker than
ours. The results aro also not comparable. We uso different ecriteria and
our results are true up to terms of smller order than Pfanzagl'a! However
both our results and Pfanzagl's are q 3 of asymptotio sufficiency
of 8, und another statistio up to o{n-1); wo shall return to this problem
elsewhere. The definition of asymptotic sufficiency up to o(n-) is given in
the last section. Incidentally wo are unable to understand Pfanzagl's eriti-
cism (1973, .p 1000) of Rao’s results us unmotivated. Adequate motivation is
provided by (ii) and (jii) of our Theorem 1.

The techniques and results of Efron (1974), of which the authors came to
know at the final stage of revision, are much more relovant for our purpose.
For most of the paper Efron also considers multiparameter exponential fami-
lics, Efron also introduces the Bhattacharya bounds. It is interesting
to noto that Efron has provided & counter example to show E; # E, in general.
(Sce in this conncction our remarks in Section 5). T{ron’s main contribution
in this paper is the very useful and elegant notion of tho “curvature” of the
problem which in the exponential case happena to bo a geometrical curvature
of the parameter curve {§(0), 0e@)V”’, invariant under 1—1 smooth parame-
trie transformations. (For the definition of these symbols see Section 2.).
Efron shows its relevance for many conerote statistical problems including
that of second order efficiency.

2. SECOXD ORDER EFFICIEXCY FOR EXTONENTIAL FAMILIES

{xg} is & sequenco of i.i.d. random variables teking values in some measur-
uble space (S, A). Let R¥ bo the k-dimensional Euclidean spaco. For each
B = (B, .., B&) lying in some fixed open set ¥’ R¥, let 2;'a have probability
density f'(z, B) with respeet to some non-degencrate o-finite moasure x on
(8, 4). We assume this is an exponential family, ie.,

k
@) =@ exp | X ppia)
where the p;'s are real-valued measurable functions. Let py(z) = 1%2. We

1For exsmple Plunzagl’s Theorem 6 woubl fuil to direriminate in the class of vstiinatons
considered hor,
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11
A3SUME Py, P, ..., px are linearly independent in the renso .‘:l ¢py =0 ae.

=

B=C=¢;=..=¢c=0.

Let M(B) = E(pi] ) = [ pt=)f"(z, Bp. @1
o 2 log ¢/

Then &= T__;‘faﬂ;")_=cov(p,,p,|p). e (2.2)

Thus [g—;‘,] Gdo= 1,k

is the kxk dispersion matrix of Py ..., pr oud it is positive definite since p,,
Py Px .-, 870 lincarly independent. So for each @° ¢P’3 an open neighbour-
hood ¥ of £9 such that it is contained in V* and restricted to ¥ the map

85 nep)

Is one-one and onto an open set IV in B¢, We fix such a ¥ and such a ¥ and
denote the inverse of this map as

ng B(h)
from IV onto P. We now introduce an alternative parameterization {f(z, x);

nelV} for the family {f'(z, #); BeV} whero for nel¥, fiz, 7) = f'(z, B{m).
Writing c(r) = ¢'(B(r)), we get

k
Sz, ) = o) exp {E- Aimipta)}.

The statistical problem that we consider is one where my, ..., mg are known
functions m,(0), ..., mx(0) of a single unknown real parameter 6 lying in the para-
metric space @ and § has to be estimated on the basis of observations z,,...,Z,.

Our tion on tho functions 7 (f), ..., m(0) arc stated below.

L

Assumption 1 : @ is an open sel. For 6c©, n(0)sW and w((6) is thrice
continuously differentinbleon ©,i =1, ..., k. The rank of (7 (0), ..., m(0N) =
139-06(0).

Note that partial derivatives of all orders of f,, ..., fx with respect to
7y, ooy Mg €xint at all points of W, Henco by Assumption 1 g, ..., B are thrice
eontinuously differentiable functions of 4. Since (i) rank of (mj(6), ..., m(6))
is one, (if) P(r(0)) is an interior point of ¥ and (iii) 4 is non-degencrate it is easy



330 J. K. GHOSH AND K. SUBRAMANYAM

to 8 that the Fisher information 1(0) = E{*"o52}* = E{ 22085, rgop)s
is finite and positive, I'(6) salso exists. Here

3
L= {cmO)" oxp{n T ﬂ;(ﬂ(O))p;}.
e shall henceforth writs ¢(f) for c(rn({0)) and B(0) for B(x(6)).

Let p7 = (Zpi(a;)) fn. Sinco pr = (9}, ..., p3) s suficient, we consider
)

only estimators of the form T, = T,(p*) which depend on z,, ..., z, only
through p». By an estimator T, we shall actually mean a sequence of esti-
mators (7).

Consider the following conditions
(i) For each 0cO thore is an open neighbourhood ¥, of =(0) with compact

closure ¥, 8.t. ¥, C IV and the domain of definition of T', includes 7,. More-

aT T .
over, T.(p) = T('p) & n if psV, and — 0 T2, j=1,..,k exist and

are continuous on V,.
(ii) T (x(0)) = 6 ¥ 0¢0.

If T, satisfies theso conditions we shall say T’ is locally stablo of order
two which will be abbreviated as |.s. (II). If T, satisfies these conditions and
hes third order continuous derivatives, we shall say T, is ls. (III). IfT,
has only continuous first order derivatives but otherwise satisfies (i) and (ii)
it is 1a.(I).

Condition (i) is a stationarity and th requirement which is likely
to stabilize the large sample propertics of 7',. For example convergence to
an asymptotic distribution may bo expected to be, in general, more rapid
with condition (i) than without it. If T, sotisfies (i) then T', is consistent
iff it satisfies (ii). Note that tho neighbourhood V, may be different for dif-
ferent estimators,

We consider the likelihood equution

dlog L

=0

ie., d "’“ o) S z B0y =0 - (23)
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If pp = m(0,) then 0 = 6, is & solution. Since, moreover,

al 0 LA
e Ll b+ E Aimi0) = 16) o,

it follows by the implicit function theorew that in a suitable neighbourhood
¥, of n(0,) tho likelihood equation has a solution 8, = §(p*) which is a thrico
continuously differontiable function of p* under Assumption 1 and thrice con-
tinuously differentiablo under Assumption 1’. The maximum likelihood estima-
tor 8, is L, (ITT) if Assumption 1or 1 holds. We have defined 0, only locally
but if © has a compact closuro and n on © has a continuous extension on the
closure then it is not hard to combine the local definitions to get a global
definition on o suitable neighbourhood of the curve {x(0); 0c@}. &, can be
defined in any way one likes outsido the neighbourhood

Following Rao (1061) 7, is said to be efficient up to first order or asympto-
teally efficient or simply efficient if for some & and £ > 0, which may depend
on g,

|mZ,—a—pn} T, —6)] - 0 . (24)
in probability under 8, where Z, = % ‘%‘%—L. Hajeo (1970) has proved under

quite general conditions that 7, haa a certain locally asymptotically mini-
max property iff T, in efficient up to first order and g = I where [ is
Fisher's information.

Suppose T, is l.s, (I). Then
VR(T,—06) = /AT (p™) =T (x(0))

= VRE(P}—m{O)T+op(1) .o (28)
where TY = 9T(p) and op(1) is & term which tends to zero in probability.
o9y Ity
It follows from (2.5) that (2.4) holds for a 1.s.(I) estimator 7, iff
=0 and g = g7 e (2.8)

To evaluate § we proceed as in Rao (1901).
Since T (r(0)) = T(r(6)) = 6, we get on differentiating with respect to 6,
£TI(6) = 1 27

where = % i
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From (2.8) and (2.7),
f = pETI; = zp,'n;. . (28)
But Ck ot Ea = gy | Lo+ Eam]
_4d dlog fo(z;) \ _
= B(==a) =0
. drl . /¢
o Sy =—LREC g = g (TRELE ) ;)

where / = I(6) is Fisher's information.

From (2.8) and (2.9), we get #=1. Hence it follows from (2.9) that
& neeessary end sufficient condition for a s, (I) estimator to be efficient up to
first order ia

Tl=ﬂ;x71-voco. e (2.10)

Before defining second order efficiency let us state a simple lemma.

Let us fix 0c®. Let U = {p;|pi—m(6)] < 6,i=1,...,k} where §> 0
is chosen 60 that U (C . Let Iy and I oe denote the indicator fanctions of

U and its complement Ue. We shall also use Iy and I, t denote Ip(p®)

and J ”c(p").
Lemma 1: Py{pneUc} < Ap® v (2.11)
Eol{1 =7 | 2§ —m(0) | )] )] < Bont o (212)

Jor some 0 <p <1, 4 >0, B> 0, provided r,8 > 0.

Before proving the lomma wa nate that p depends on & and B depends on
i,j, r and & in addition to 0.

Proof: Let py =li;:’f Eolexp{tlpi—ni(0)—é)}]
Pa= ;r‘lg Eylexp{tpi—m(8)+é)}]

P = max (py, pig), p = mAX py.
1SICE
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Of course 0 < p << 1. Clearly,

1
P(preUc} £ ff’o(lp"'—m(o)l >

E
< 2‘:.'.;7;‘(0) by Chernoff’s (1952, p. 495) inequality

g 2kpn,
So (2.11)holds. Also,
E{|o0—ml0)"|j—m(0)][ 21 )
< Eo{| =m0} “TUE(| 73— 6) | IV LEST 1
by two applications of the Cauchy-Schwarz inequality. The first two terms
on the right hand side are bounded in » (in fact, go to zero). For
Ef[pt—m0)*} < Ef{lpi—m@)|*}  ifr> 14
SHE{|pt-m®)]) i 0<r < 1s.
So (2.12) now follows from (2.11).

We shall now describe Rao's first measure of second order efficiency for

o Ls. (II) estimetor T',, which is efficient up to first order. Fix ;. Wo shall

think of 0, as the true value of the parameter. Let ¥, be tho open neighbour-
o

hood of n(f,) which we may associate with T, by definition of local stability
(II) and
U = {p; |ps—m(6,| <8} C V,o i=1..,k

For any random varisble 2 let EU(Z) denote Ej (Z. Iy) where Iy = Iy(p®).
0
Lot
_adlg L
z, == . (213)

Rocall that, 1 = 1(d) = n.E () snd B, (2,) =0.
[]

The proof of the following auxiliary proposition is given in the appendix.
Woe use {T',} to indicato the seq of estimators T,.
2
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Proposition 1: Let T, bo Ls. (IT) and cfficient. Then

(i) ax0) = 11_!:1 EVn{Z,—(T,—0)]—X(T,—0,)} exists
() (T2 00 4 U) = lim (. EV(Z,~(T,~0,)1
_’\(Tu_oo)'—“A(oo)l"}q
exists.
(iii) Ey({Tn)s O A, Uy) = Eo(T,, 0, A, U,)
where Uy is a neighbourhood of n(0,) conlained in V,o, i=1,2

In view of (iii) we shall write B,({T,}, 0,, A) for E({T,}, 0, A, U). Let
E(T,}, 0,) = ir:f Ey({T.}, 0, A).

We can think of E, es a measure of how well a quadratic in 7', approximates

2z, U Z, were a function of T % 0, T, would be a sufficient statistic,

So E; measures, in a sense, how “nearly” sufficient T, is. Tho reason for taking
a quadratic in T, is noainly one of expediency. In Rao (1961) E,° is used

instead of EV but the calculations can be justificd only with £V, Sce in this
connection Rao (1963) where essentially the present approach is followed.
The intuitive justification for using EV is that we do not wish our measure to
be unduly affected by the tail of the distribution of the estimator. If we
are comparing two ls. (II) efficient estimators TV, T we may take
uCcrgn VS? for the caleulation of E, for both estimators, to remove tho

apparent arbitrariness of U and hence of the method of comparing T§" and T,

To define Rao’s other measure of second order efficiency we need the fol-
lowing proposition the proof of which is given in the appendix.

Proposition 2: Let T, be ls. (II) and efficicnt.
Then
(1) b(0,) = lim ={EV(T,)—0p} exist.
If morcover T, is L.s. (I1T) then tho following results hold.
(i) 5(0) is o continuously differentiable function on ©.
(i) If 7%= T,—b(T,)jn then
EYUT?) = Op+o(lfn).
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(iv) If Ty =T,+m(T,)/n whero m is continuously differentiabloin a
neighbourhood of 0y, then
. _ 1 $T, 00 1
BT = ot YT 00 (1)
where y({T}, 0;) does not depend on U.
" . 1
() Eq (V{5 O}~ EUT, 0 = o (F)
where T, is defined as in (iv) W¥(a, 0) = min {(a—0)?, d} is the squared error
loss truncated at &> 0.

Rao {1963) toakes EV(T,—0,)? as the risk function of T, but Proposition

2 ghows that it does not matter up to o(n-?) whether we take EV(T,—0,)% or

E, {I7(T,, 0,)} s our risk function. Following Rao we take y({T\}, 0,) as
L]

our sceond measure of second order efficiency of {T}.

Wo shall now introduce & few more notations and then state our main
result. Let

1 dllogL
Vo= o %+1(o,) . (214)
= 2180) 5 pi0000-+1000. . (205)
Clearly E',G(W,.) =0. Let
Jrs = Ean (Z§W3) e (2.16)

where 2, is defined earlier by (2.13). Note that () = jtor- As stated
before we shall often writo I for 1(0,). Let

— , (e fuX) l } = 2180 g 0ame0n (1)
Tho random variable

8, = {Z Wy—pn ) H{Z2—I[n)J 21 - (218)
will play an important rolo in what follows.

If ¥, is a sequenco of random variables such that EV{Yj} = ofa}) or
0(a?) we shall write Y,0g(e,) or Ogla,) accordingly. A rondom variable X'
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will bo called EV-orthogonal to another random variable ¥ if covarianco,
under 6,, of XIV and Y is zero; X and Y will bo said to bo EV-orthogonal up

to o(':l,-) if the covariance of XIV and Y is o(n—l,).
Recall from Proposition 1 that if T', is efficient and 1s, (II) then By (T,)
[
= 0.,+b(0,)/n+o(%). Under Assumption 1, 8, is efficient and Ls, (III) and
80 W6 may write
1
E,(0,) = o,+t>,,(o,,)/n+o(;l ) . (2.19)

We can now state our main result.
Theorem 1: Suppose Assumption 1 holds.
(i) Then

8,—00—2,JI = b(0)in+S,+1R, v {2.20)

where R, is 0g(n=1) and EV-orthogonal to 22 and 2,1V, up lo o(n-1),

. —Zz .
Or—8,—2Z, /1 = s TS+ Jpac+8,4-Fa o (2.21)

where RS is og(n=') and EV-orthogonal to Z,, 2%, Z, W, up to o(n~?).
(i) Let T, be efficient and ls. (II). Then
P,—0,—Z /1 = b{0)jn+S.+R, . (2.22)
where R, 18 Og(n~1) and EV-orthogonal to Z% and Z, 17, up lo o{n=*) and EY(R,)
= o(n-1). Also

Ey({T,}, 00) > Eol{8.), 00)¥0, €O. . (223)
Let T, be efficient and 1.6, (IIT)
Th—0, = (63 —0,)+R» . (229)
where By is 05(L.), E0-orthogonal to Z,, 23, 2, W, and hence to (800
up lo o(;l,-) and
YT 0 > YB3}, 00,0 w (2.28)

Moreover

E{(T.}, 00) = (T3, 00— 13, 2 4p) v (2.26)
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(ili) Let T, be efficient and La(111) and m(0) a continuously differentiable
functionon ©. Let Ty=T,+m(T,)n. Then3 a conlinuously differentiable
Junction g on © such that 8, =8, +g(8,)/n is better than T, up lo 0(7%) in
the sense that

fim n¥(E, (W(T,, 6))~E, (W(,, 6,}] > 0

where W(a, 0) = min{(a(0), d} is the squared error loss, truncated at & > 0.

We shall need a fow lemmas to prove this result.

Lemma 2: If Assumption 1 holds and T, is efficient and ls. (II) then

== % 4 2 Zipt-miON5— mOT40s( ) .. @20

where T's are the second order derivatives of T evaluated at x(8,). If moreover
T, s la. (ITT) then

Tp%)—0, = D2 453 B pr—mle}—m)T+

+5 5 T E@i-miaf-m)pi-mT P togn) ... (2.278)

where TWs are the third order derivatives of T al n(6,).
Proof : For pn¢ U, consider the Taylor expansion
T,(p")—0, = T(p")—T(x(0,))
= Z{p} =m0} 1)+ EZ(pF —m (o)) o7 —mfONT I+ R(p™) ... (2.28)

where 77’8 and Ts aro the first and second order derivatives and R is tho re-
mainder term. Note that

Ripry = e(pm) ZE(p}—m(GpP— 00T . {229)
where ¢(p)—> 0 a8 p—-n(0,) and |e(p)| < M on U for some suitable A, Fix
7> 0 and choose 0 < &, such that

Uy ={plp—ml0)] <4, i=1..0CVU

letp)] <n if peUy

and

Then E(RApn)) = E”'(R%)+- B0 R
<1 ZE, (17-ml - [pf-m)| 7]
+UZ z31'790(11’:‘—mlIP;"—"JII,,i)IT"I e (2:30)
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by (2.28). The second term in (2.30) is J[-O(p*?) by Lemma 1 which is ob-
viously valid with U, in place of U. The first term in (2.30) is 5-0(1/n?). Sinco
7 is arbitrary, it follows that EU(R?) = o(1/n?). This fact together with (2.10)
and (2.28) completes the proof.

Tho above proof is simple but details are given for completeness, In
following pages when we assert that a random variable is og(1/n), Og(1/n)
eto. we shall not usually give a proof. But in each case justification is casy
and involves an application of Lemma 1, aided perhaps by the Cauchy-Schwarz
inequality.

Unless otherwiso stated we shall take T, always as efficient and Ls, (II).
It is clear from Lemma 2, that

b(0,) = § ZZTHE(pi—n(0p))p;— (0. e (231)

If T, is also Ls. (IIT) then by Proposition 2 b is continuously differentiable,
Hence it can be shown that

WD) W0 gy 0D i)
bw") 1 -if")—ﬂs(ﬁ) .. (232)

applying (2.27) to (T,—0,). When T, is ls. (IIT) we define

T, = T,—b(T,)n. e (2.33)
Then, by Proposition 2,
EY(T3} = 0,40(1/n). .. {(234)
Wo shall now calculate the covariance of (Th—0,)Iy with Z,, Z, W,
and ZZ and show that theso covariances are tho same up to o(1/n?).

Lemma 3: If Assumption 1’ holds and T, is efficient and l.s. (IIT) then
o 1 1
BU(TAp™—00) Z,) = -+0 () . (235)

Proof : (2.34) follows from dircet calculations using (2.27a), (2.31),
(2.32) and Lemma 1.

Noto that wo can get (2.35) formally by diffcrentiating (2.34) with respect
to 0. The troublo in justifying this is that one has to show that on differen-
tiating the o(1/r) term in (2.34) one would get a term of order o{(l/n). The
calculations needed for this are no less cumbrous than thoe direct proof of
Lemma 3 given above,
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To caleulate the covariance with Z2 and Z, 1V, we shall need the follow-
ing results which are well known and easy to derive. The same formulas
occur in Rao (1961) but wo shall use them in a different way, Let (Yy;, Yy,
Yy, Y4) be iid. real vectors with zero expectations. Let ¥y =;‘.‘. Yu/n.
Then up to o(1/n?)

E(¥{) = 3[vor(Yy,)]}/n? e (2.36)
cov(YE, Yi¥5) = 2 cov(Y,;, Yy) . cov(Ty, Yy)in? . (237)

cov(¥1 ¥y, Fy¥) = {eov(¥y,, ¥yy) . cov (Y, Yy)
+oov(¥yy, Yo ) (Y, Yolin? o (2.39)
E{Y3Ts) = 3 var(Yy)).cov(¥yy, Yyt - (2.30)
E(VITS) = {var(Yy)var(¥p)+wleov( Yy, Yulind ... (240)
Lemms 4: Suppose Assumption 1 holds and T, is efficient and l.o.(1I).

Let

T3 = T 0= Zull. o 241
Then
J 1 2
Eor -1y = 2t o) - (242)
and
uld !
BTNZ i) = At 4 B (). (24

Proof :  EV{T(ZE—In}}

= Ea{; p> zru(p,»-n,(o,))(m—m(o,».(Xi—I/n))+a(;l.) by (2.27)

= E,o{% £ E1U(E) —m (O @}—m00) - (Z3—Ijm) |+ (;l:) by Lemma 1
= L 5370 com (28, 21 —mON 6 -0 +o{ 53

— 5 T cov, (B 11} 0, (B, Fi)Ho(53) b7 (237

. 1
= 7“ I cov,o(z..p«'(n,(oo)+°(;.)

) e (244)

=

= %.  covy (Zp P)"‘;ﬁ (g_i)l%-}-o(
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since differentiating both eides of (2.10) with respeet to 0 and putting 8 = 0,
we get

rum) = 5 (,9;/1)" = {ﬁ(f"_’ — o) Lo )
(]

As noted earlier I'(0), f; exists by Assumption 1.
Using (2.13), (2.14), (2.44) and (2.45) we get

EU{T (22 —In)} = "11 cov(Z,, W_)—% var(Z,,)+a($)

Sinee
—I'=J+p e (2.46)

This completes the proof of (2.42). Proceeding in the same way but using
(2.38) in place of (2.37), we get

EUTEZ W o—pnn)}
= 5 EETY cov, (2,17, (51 —m) 0] -3}

=Z I TV cov, (¥, p}}.cov(Z,, 2]}
1 .
= - ZET 00v, (W,, pl)(00)

= % 2 cov, (¥, 21} - {—”zg’“) _p__;(o,)l.’l'(oo)} . (247)

_var(W,) I'cov(W,Z), /1
al al? T \;’)

J 1
= #_Il_l_l‘usl’;'/‘n)_'_o(n_.)

by (2.46). This proves (2.43) and complotes the proof of the lemma.
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Lemma 5. Suppose Assumption 1 holds and T, is efficient and 1o(IIT).

La -
T =Ti~0—2,/1. v (2.48)

Then EU{T*(23—1|n)} and EV{T*(Z,W ,—p,/n)} are given by the right
hand #ides of (2.42) and (2.43) respectively.

Proof: Lemma § follows from Lemma 4 if we note that
§) Tr—T = b‘—:") +oz % by (2.27), (2.32) nnd (2.33)
(i) Zi~1jn=0g (3 ) by (230)
(i) EY(Z—1Ifn) = Ey (ZE-Ijn)to (,Tl-) by Lemma 1
(]
= 0(n-%)

(i¥) ZJIFy—piyln = og(%) by (2.40)

(¥) EUZWo—peyfn) = a(ﬂ_l,) s in (i),

Lemmas 4 and 5 are special cases of a more general result which expresses
the covariance of Ta*Iy and T, Iy with Z,.{Zay(p?—m(0,)} as the covariance
of {Zay(p]—m(6,)} with n-3IV,I—Z,I'}jI% here ay's are constants. The proofl
of this more general result is similar to the proof of Lemmas 4 and 5. Another
*'formal” proof is given in the third remark after Theorem 1,

We are now in s position to prove Theorem 1,
Proof of Theorem 1 (i) and (ii) : We first prove (2.20)

dlog L drl
0 =np1 —od%— 0'= Z+ (0,6 %[#‘9,

)

+ Oty d';jT“’l%ws( 3

= 2o+ ~0NWn—D4y 0,00 4oz ().
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Hence (8,—0,) = i (0 ~0°)l' * + @. 0)” } 5(%)
z,07,  J2A 1
Sty )- (2.49)

Since 8,—0, = Z,/I+0g{1/n) by Lemma 2.

We get from (2.49),

bo(0y) = py/I*+J.1 «. (2.50a)
bu(ly) _ 2.  (ZWa—pnin) | J(22—Iin) 1

e =T A oe( )

(6.—00)—

(2.50b)

_Zlﬂ_+s,,+og (;l‘-) - (281)

which is (2.20).

We next prove (2.22). This is the crucial step. Supposo 7, is efficient
and Ls. (IT). Then by Lemma 4, the covariance of T;*Iy and hence of

{T;- "“’o’} Iy with 22 and Z,V, does not depend on T,. (In fact to

prove this one nceds only (2.44) and (2.47) rather than the more explicit
formulas (2.42) and (2.43)). Hence we may write the regression equation

(7200 1y = 5y [ {2200 10] yan(zt-tim

+BuZa W i—pufn) 47, . (282)
where a,, £, do not depend on T,, 7, has zero covariance with Z% and Z,17,

up to o (:?) By Lemma 1 and Proposition 2(i) the first term on the RHS

of (2.52) is o( 'l-‘) We may thercfore lump this term and 7, and rowrite (2.62)

a8

{7201y = o B BB i), e (25

where 7, is orthogonal to 2t and Z,W, up to o (;li) . We may write (2.53)

Tyt Ze 2O _ o (23 )T e e (259
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where 3, = 9,/y and s0 9, is EU-orthogonnl to (Z:—1/n) and (Z, W ~pyin)
up to a(;l,). We can caleulate a,, 8, directly but it may bo illuminating
to get it in an indireot but somewhat ensier method. Since §, is efficient and
Ls.(IT) (in fact La.(ITT)) we get, on comparing (2.50b) and (2.54) that

ag=JpeB, f.= % e (2.55)
From (2.54) and (2.55) we get
T,—0, = blf)n+8,+R, e (2.56)
where R, is EV-orthogonal to Z%, Z, I, up to o(;l.).

Since
Ry =(Ty—0,)—S,—h(b)/n we (287)

it follows from Lemma 2, applied to T, that R, is 03(-;‘-). That EV(R,)

=0 (%) follows from (2.57) and the definition of b(6,) and §,. Thus R,
satisfies all the conditions atated in Theorem 1, completing the proof of (2.22).
For (2.23), recall that
EMT,}, 0y, A) = lim n2EV{Z ,~(T ,— O)] — A(T ,—0,)2—a1,(6,)[n}?
where a,(6,) is defined in Proposition 1. So

EA(7,0.%) = lim w5 {2,—(7,~0p— 20 1-Toezt—1m)’

sinee T,—0, = % +og (._:‘..)
by Lemma 2 and a,(6,) = —b(6,). I—A/I from definition of a, and b. Using
{2.54) and (2.55) we get now

ES{T,}, 8, ) = tim n2EU {IS,,+;—,(Z,’,—IIn) }' +1im ntEV {m. }'
ainco R, is EV-orthogonal, up to o (;i’_)' to S, and Z3. So, finally using (2.20),
E(T.), Op 2) = Exl{8.}, 00, A)+lim n*EV (I R}
and EA(T.). 0) > B0}, 00)
with equality it BU(RY) = o(’%) Thia completes the proof of (2.23).
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We now derive (2.21),
By (2.20), (2.32) and (2.33) we may write
M _ _ _J Q_L_ #1502y . H inZ, A
Bi-b—2.J1 = 53, {z, e ]+1a{z,u_-%—"—*l‘; }+R.

(2.68)

whore R= if'-}-‘_Z‘;'{Lb};wl.}.,lﬂn/ﬂ«+1ﬂn}+°£(n_m)
)

and so EV-orthogonal to 2} and Z,1¥, up to o(;l,-). By Lemma 3 the LHS
of (2.58) is EU-orthogonal to Z; up to o(n~?). By easy direct computation
the same result is true of the first two terms on the RHS of (2.68). Hence
R is also EV-orthogonal to Z, up to o(ni,). So R; has the properties es-
serted in Theorem 1 and (2.21) is nothing but (2.68) with some rearrangement
of terms. This completes the proof (2.21).

By Lemmas 3 and 5 (T30,)IV has same covariance up to o(n-?) with Z,,

Z,37, and ZZ us (0,—0,)19. So (2.24) can be deduced from (2.21) in the
same way as (2.22) was deduced from (2.20). It is easy to check that R,—R,

)

Also, as in (i), using (2.21) and (2.24),
YT, 00) = Y03}, O)+lim n2EV(R;) e (2.89)
proving (2.25).
We next prove (2.26). From (2.59)
PUT, 6) = Pl{0a), 61+ lim n2EU(R, ). .. (2.60)
Since R,—R? is 03(%) and R, = Og(;ll-). Clearly
2

1/1((9:), 0) = lim 2EU(8%) = 1‘1. {Il‘n—ﬂfl)'*"li' [‘2"'+l‘u} (2.81)

Also, from the proof of (2.23)

BA(T.),00 = lim wIEU(RY + lim mIEY {2, ,— ) fy —Y(Zi—Im)
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where y ia the limiting regression coeflicient of I}(Z,IV,—u,y/») on (Z22—1I|n)
snd is found to he g, /I% applying (2.36) and (2.39). So

E(T.}, 00) = lim nE (R4 (Lpa—s) e (2.62)
using (2.40).
So by (2.60), (2.61) and (2.62)

BT}, 0) = P'Y(T.). 00)—%. {TJ'H‘u}.
proving (2.28).
(iii) Let T, be efficient and Ls. (IIT). Let m and 7, be as in the state-
ment of Theorem 1 (iii). Let
8. = 8.~ {ou0.)— b0 —m(,)}in
where b(0,) is defined in Proposition 2.
Then as in the proof of J.emma 3 it can be shown that 0, and T'; have the same

: . 1
covariance with Z, up to o (F) Since
(84 —={b0(0)=b(0)—m(8)}fn—07) nd [T,+m(8)fn—Ts]
are og (—:l ) ,we can apply Lemma 4 to conclude that 6; and 7', have the same

covarinnce with Z,¥, and Z,2 up to o (;l,) It follows as in the proof of

(2.25) that Y((T5), 60) » ¥({0:), 0,) which leads to the desired conclusion
by Proposition 2. This completes the proof of Theorem 1.

Note that the main difference between (2.20) and (2.22) is that il_ is o(n™1)
whereas R, is only O(n-?). This is at the root of a result like (2.23). The main

differonce between ii_ and R? is that ﬁ: is EV-orthogonal to Z, up to o(n™%)

but ﬁ_ is not. A similor remork applics to R, and R;. The significance of
(2.24) for proving (2.25) should be self evident.

The expansions obtained above aro not affected by the singularity of the
disporsion matrix of Z,, Z,1,, Z2 up to o(n-?) but it is worth pointing out
that singularity up to o(n=*) obtains iff thore is a linear relation between Z,W,
and Z} up to o(n-1), which can be true iff there is a lincar relation between
Z, and IF,. If such a relation holds for all 0, in some open set then f, is esson-
tially & one-dimensional exponential family. For, the hypothesis of linear
rolation l)otwcon Z, and W, taken togethor with the linear independence of
2}, ..., p} implies

BUOVBLO) = 9(6)
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the solution of which can he written in the form f(0) = dif,(0)+¢; where
d;, ¢ are constants, Hence log fy = c(0)+4,(0)Zd;p}+Z} ¢ Of course if
Jy is an oge-dimensional exponentinl density then there is a linenr relation
between 2, and Iy,

Remarks (1) : Analogous results hold if there are two or more parameters
to be estimated. Suppose @ is & vector with two real coordinates (6%, 6%) and
T, = (T}, T?) is an efficient estimator. Let

O AT, ) =n {2 %‘ﬁ-’“{ —(T% — 6N, — (T2 63,

—EAU (T%—6}) (T’ -0}
Ouly, (T}, O = {%‘”;g"t ~ (A= Oy — (T2~ 03) L,

—Zyy (TA—08) (T4—05)).
where [Iy] is the 2x 2 information matrix. Then ignoring as before con-
tributions outside an open sct around w(0,), it can be shown that the difference
of the limiting dispersion matrix of ©(A,{T,}, 6,), Oy, {T,}, 0,) and that of
O,(A, 8., 0,), By(7,8,,0,) is positive semidefinito if T, is Ls.(IT) and efficient.
The proof is exactly similar to tho one-parameter case, A similar extension of
Rao’s theorem is also possible if one iders the expansion for the disy
matrix of T, and looks at the coefficient matrix of 1/nt, If one denotes this
coefficiont matsix by P({T7},0,) one can prove Y({T5), O)—y ({0}, ) is
positive semidefinite for Ls. (IIT) efficient eatimators,

2). Eyx{.), 00)_ 3 (Iita—jihy) = 0 iff there is & linear relation between
Z, and Wy, We havo seen carlicr that if this result holds for all y in some
open set, then f is tially a 1-di ional exf tial density.
¢«0u)r 00) =0
if there is o linear relation between Z, and W, and, morcover, p-+2u,; = 0.

(3). It may beilluminating to give a “formal” proof of the following
result

LEUT,Z M) = % B M) e (2.69)

where M| = Za(p}—m(0,)) and
=(W,—2Z )L

Now
1 . 1
5 BUUITIN) = o("—,)
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Hence differentiating this wo get formally,

EOI T)Z.M) = —% BV { (Tt}
+4 BUTDZa+o()
=t B (U T o(53)

1o
== EV(H M)

since H,+IT, = og(1/\/n).
As pointed out carlier, Lemmas 3 and 4 are special cases of (2.63).

(4) The smaller the mensures Ey and ¢ the better is tho estimator,
from the point of view of second order efficicncy. They are really measures
of deficiency as defined in & moro general contoxt by Hodges and Lehmann
(1970). Deficiency of {T,} relative to {8} is [ ({T), )= ¥ ({03}, OI/1.

(5) To facilitato compurison with Rao’s (1961, 1903) results for the multi-
nomial, let us denote by mys what Rao (1963) denotes as iy, We shall show
how to express my in terms of our py and vice versa. Let the multinomial
population consist of k+1 classes with probabilities m,(0), ..., 7g,,(6). Let

Uy =1 if first observation falls in tho {-th class
= 0 otherwise.
Hence Z,=x (Z'i)u wo=ghloem g g
1 =& Ve s 267 rd.
and iy, was defined as E (Z4}). Let ¥ =X :—:) U, Then, following
0
Rao (1963), my = E, (Z{ Y%). Clearly
(]
We=Y—(Z)'+1.
Using this we cun express myy in terms of uy and vice vorsa, For exsmplo,
fay = My =gy,

() Let us try to understand the caloulations of second order efficioncy by
Figher (1025). As Rao (1081, equation 5.14) has pointed out Fisher's
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measure E; = lim (nl —I,.l) can bo shown to equal the limit of the expeota-

tion of the conditional variance of nZ, given T,. Consider tho expansion

1 dtl
¥, = 54T, —0) = LIBL
%
_ 1dlog
where =g

and T, is an efficient Ls. (IT) estimator. This expansion is not correct to
O(1/n) but the missing term of O(1fn) is a function of 7', and its neglect does
not cause any error in the caloulation of conditional variance. Thus, a correct
expansion is

Z,=Y— Z-TW' ST O HT s — O 2t oplr™). oo (2.64)

Fisher now takes the conditional expectation using the joint asymptotic
normal distribution of the p}’s and replaces the condition "T',—0, = constant”
by*“Z, = constant”. Let us noto that these calculations lead to Rao's measure
E,. For, the “conditional expectation” of ¥,—Z, 17 /I is easily scen to be
of the form A,Z:+c/n since by (2.64) and Lemma 2 ¥Y,—Z, can be written
in the form Zau(p“‘—m)(p;'—n;). Also by (2.64)

2nJ
@ty = 22— Loy ZoVa s 2] optary
s0 that by Theorem 1,
% = —R,+os(n-1). . (265)

Evaluating A, and ¢ one finds, the “conditional variance™ of Z, is the
“expectation” of

ZW

{r —Znn /\.,z'-c/n} which equels

B0 [1'{-12 -3 —A,z“—c/u} ]

= Ei({T,}, 0o).
Thus the measure that Fisher caloulates is exactly the measure Ey of Rao.

Fisher scoms to beliove, wrongly as it turns out, that Y, is independont of
(T,—0,) or Z, up to second order terms. But it is true that the Y, is EU-ortho-
gonal to Z3 and Z,W, up to o(n-?). Thus

Fisher's measure = E, = lim EU(Y2)+Ey({f.). &)
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Fisher gets a wrong result for the mini hi-squaro method b he
substitutes tho varianco of

(pP=m(0p)*
Y=_z "’f(;’on m{0g)

for the variance of

=1y @ =m(TD .
Y, = -2- s T m(T,)

(7). Suppose that instead of the criterion E, one considers

Ey = inf lim stBY(Z,—(T,—0 M —(T\— 00 2=, , (O}t
Ay

where by 1,00) = lim wENZ, — (Ta—Op) (T, — 0,2
For E; we have the following result,

Suppose Assumption 1 holds and T, is efficient and Le.(II). Let & be
defined as in Theorem 1 (iii) with m = 0. Then

EX(T,, 60) > Ex(8,, 0,)-  (2.66)
The proof is similar to that of Theorem I(iii).

We conclude this section by developing what may be called an asymptotio
Bhattacharya bound for efficient cstimators,

Suppose 7, is an estimator such that

EU(T) = 6+0 (%) . (267)
then
E"(T %,%%) o(-nl—,) .o (2.08)

If 7', is efficient wo may expect
EO{(T,—0,—Z,J1).W,Jn} = o(1/n3) e (260)
For convenience let us say that 7', is regular if 7, is efficicnt and (2.67), (2.68)
and (2.69) hold. If T, is efficient and L.(III), then it can be shown easily using
Lemma, 3 that T, is regular, since

L A AT A o) . 270)
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If T, is regular then by (2.68), (2.69) and (2.70), BV{(T,—0,—Z,JINZ}
—1[n)} can bo shown to have the value given in lemma 3.  Using the rcgression
2

aiL 1
of T Iy on Z, and R A get

BUT, 00 > ot a5+ ) - @71

It is easy to show that 83 attains this bound iff there is s lincar relation
between Z, and 1¥;. The implication of this last relation has been discussed
earlier.

3. A PROBLEM OF BERKSON

Suppose the dose dy, § =1,..., k, is given to ny animals and .2y =1 or
0 according as the j-th animal dies or not j = 1, ..., my. It is assumed that the
probability of death at dose dy is =y where m lies on the logistic curve

1
ez, f) = ey - e (3.1)

To simplify calculations we assume the #y’s are all equal and 2 is known.
The parameter to be cstimated is a. Lot % = n;-...4n and p7 = FE 2ys
which are equal to one. Then the likelihood function is

L= 1 a2 gD
f=1

The likelihood equation is

0=dlogL

LAy
e = I op-m) . (32)

Let &, bo the maximum likelihood estimator.,

Let L; = log {m/(1—m)} = a+f di and I = log {p}/(1—p})}. Mini-
mizing Zagp](t—p!)(I?—L¢))* with respect to « one gets the minimum logit
chi-squaro estimator T',.T, is to be found from

Enpi(l—ph)lr—L?) = 0 . (33)

where Ly = T,+fd:.
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This is & special case of tho problem considered in Section 2. Hero
Assumption 1 holds and both T, and 2, are cfficient and La(III). The

P for these esti b , after some simplifications
Z, Zmf{l—m)(2m—1
8,—a— e = _’L’;'I)f_”‘—)_ Z2+ox(ln) . (34)

Tomap B = S@n-1)r—miZr
-2—11 s % Gr—mtos(ifn) .. (3.5)

where I = EP0; and Z, = Tl‘- dl—;f—l' . If we consider the corresponding esti-

mator &, and Tg which are corrected for bias upto 0(1/n), we get
—m)(2m—1)}* 1
EU@—ag)t = 54.%2_”"‘)1#"_’] +°(F) e (3.6)

—m)(2m—1
EO(T—ay = 4 EndlnEn— T

I(2m—1)t  Zmdl—m)(2m—1)* 1
+ 20l Pellond@nlF (%) @)

It follows from the theorem of Section 2 or can be checked dircotly that
1
BUT =)~ BV —agt = BT830 +o(3).

Here one has a complete sufficient statistio, namely Zp{, but T is
not a fonction of it. If one considers tho so-called Rao-Blackwellized
T, = E(T2|Zp}) then it is indistinguishable from &, up to Ox(1/n).

Our sccond order expansions scemed to agree quite well with the Monte-
Carlo values in a few examples of Berkson that we studied. In the examples
T, had lower bias a8 well a8 lower variance than &, but b'(x,) for 7', was also
smaller than the corresponding quantity by(a,) for &,. This last fact explains
why &3 performs better than T3, since

2’ 1
EO(T3—a = V(T —ag=blaa)in)'— 2t +o{ ).

Silverstone (1957) and Rao (1060) have dofended the use of the maximum

likelihood ecstimators from certain other points of viow,
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4. BAYESIAN APPROACH TO SECOND ORDER EFFICIENCY
In an important pioneering paper on Bayesian analysis, Lindley (1961)
has considered an expansion for the r posteriori risk and obtained from it an
expansion for a Bayes cstimator in powers of (1/n). In the discussion follow-
ing Rao (1962) ho sccks o Bayesian justification of Rao's (1062) results. Lindley

considers a loss function, dopending on observations, which is proportional
to

1 dlog 2
12.0) = (2,—— “3 d) . &)
and a uniform prior measuro, Actually his terminology is slightly different.
He considers tho product of prior and loss function and calls it o weight
function. Lindley shows that 8, is Bayes upto o(1/n) for this prior and loss
function. He claims that the loss function (4.1) is equivalent to the measure
"E, of Rao and that tho Bayes property of 0, explains its second order
efficiency., It scems to us that both these claims are unjustified.

Consider, for example, the special case of iid. N(6, 1) variables and note
here {4.1) reduces to (d—0)° Then, presumably, one would evaluate, say an
efficient estimator 7', by coleulating l"/",o(T,,—O0 2 if the loss function (4.1)

were used. This seecrns to have no relation with
Eu{(xn" )= (T n—00) = A(T',— O, —a,(0p)/n}

which one would have to consider for Rao’s measure. Moreover for the loss
function (4.1) the Bayes property of #, does not imply that for every efficient
estimator 7',

By (1,01 > Eof8,~00+0(53) + 00 . (42)

In fact it i3 easy to sce (4.2) is false. Noto that §, = ,, the ssmple mean and
50 if wo take 7, = 2,+-b(2,)/n where b(f,) and b'(6,) < 0 then (4.2) is violated.
If tho prior is the Lebesgue measure then the approximate Bayes property
for 8, becomes an exact onc in the sense J@—0%f(z,) ... fy(x,)]d0 is minimized
at d = §,. This result is known to bo et the root of minimaxity and admis-
sibility of 8, with respect to tho loss (4.1) but it cannot imply any uniformly
best property like (4.2).

The remarks regarding Lindley’s loss for tho special case considered above
are true for the gencral problem with slight modifieation but we shall not pur-
suo this matter further. Lot us now proceed to show that o Bayesian proof of
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results on sccond order efficiency is indeced possible though not on the lines
of Lindley outlined above. Our arrangements will be heuristic but we hope
to provide a rigorous account at a later date.

Wo first approach Rao's result. Let {z;} bo i.f.d. with density f,(z) and
tho loss function be (d—0)!. Let the prior have a density g(f) with respect
to the Lebesguo measure and suppose g(0) is twice continuously differentiable
and positive everywhere. Then the Bayes solution is, using Lindley (1961),

1L 1 q(o,,

__ 3/1"
B,=fut4 oL ) +o(1/n¥1%) . (43)
where i = d—"l;;—%"a .
Considering Bi=f,4 i’; ll:, ‘7;((5; - (44)

as an approximate Bayes estimator we noto that Ey(By,—0)* = Ey(B,—0)
+o(1/nY).

From (4.4)
Ep) = 0429 4 °“’) O L o1 . (45)
where Ey(8,) = 0+b,(6)n+o(1/n) . (4.0)
and EyB\—10,) = c(O)fn+o(1/n). . 47
We ¢(0) to be conti ly differentiable and consider
By =0, +¢(0,)n. e (48)
Then Ey(Bs—8,) = c{0)n-+o(1/n). v (4.9)

Clearly B, = B,+0(1/n). We show this implies that By, is Bayes upto O(1fn?)
in the sense of (4.14) below, Now,

Ey(B\—0) = Ey(0,—0)*+ (%»' +2¢(0)E,(0,—6)

+2E(8,—0)Br—8,—c(0)n)+o(1n3). e (4.10)
Similarly

By B30y = Ey—0p+- L0 L oioym,0,)-0)

+2E,(0,—0)(Br—0 ,—c(0)/n) +o(1[n%) e (411)
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But
Ey8,—0){(Ba—0,—c(0)n}— E(8,—0){(Br—0,—¢c(0)n)
= E{Z,/1)(B,— Bu)}+o(1/nt), e (4012)
= o(n?)
since B;—B; = O(n~%?) and 8§,—0—Z,/I = O(n-!) which is obtained by
differentiating the relation
E,(B,—B;) = o{l/n). e (413)
It follows now from (4.10), (4.11) and (4.12) that
E(Bi—0)t = E(B,—0)*4o(1[n?) = E(B,—0P+o(lfn?). ... {4.14)
We have arrived at a remarkabloe fact, From (2.18) of Lindley (1961)
we notice that up to O(Ifz) the posterior depends on 8,, Ly, L, and Ly;
in a sense, therefore, they are sufficient to O{1fa). (For the concept of
sufficiency to O(1/a) in o different sense sco the next section.) Nevertheless
(4.14) shows that for the loss function (d—0)? and all smooth priors B, is a Bayes
solution to the degree of accuracy specified in (4.14). Thus &, alono is not

sufficient to O(1/n) but this Bayes solution Bj is a function §, alone2 Inci-
dentally, the Bayes property (4.14) would hold for any T', = B,+o(1/n).

Consider now any efficient estimator T, such that

Ey(T,) = 0+b{0)n o (4.15)
Lo 7 7, MTEDT T, . w0
Then EyT,—B,) = 0(1/n).
Hence
By(T,—0)2—E,(B,—0) = E,(T;—07—E,\i—00+o(1fn?) .. (417)

where 7 and 82 are defined as in Scction 2. Thus using (4.14), (4.17) and the
definition of B,, we get

| E{Ta—0y%q(013(0) > [ Ey(82—0)'a(0)d0+0(1/n2). o (418)

Since (4.18) is true for all ¢, Rao’s result follows.

1Wo ahall show elsowhero that thia Bayes property of fa is n consequonco of asymptotic

3
sufficioncy up to o{n~) of §, and ‘%‘%’;—L/g.
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Wo now turn to the Rao-Fisher result. Consider o fixed A and a fixed
efficient estimator T,. Let a;(0) be such that

EfZ,—(T =0 —NT,—0P) = ay0)fnto(lfn). .. (4.10)
Let ay,(0) be defined similarly for 8.
Consider tho loss funotion
Id, 0) = {z_—(d—o)I—,\ TZ,::'—a‘(O)/n}' e (4.20)
and & prior q(0) satisfying the samo restrictions ns above, One can show as
Deforo an estimator of the form Bj = §,+4¢(f,)/n satisGes
E{U(B,, 0)} = E,{i(B,, 0)}+0(1/n*) .. {421)
where B, is the Bayes solution for tho loss function given in (4.20). Now it
is easy to show that
EfZ,—(0,—0)—X0,—0y—an(0)n)t = E{i(B;, O))+o(1/n?). ... (4.22)
and EoZ— 0= 01 =M.~ 0) = %0 oqipn) . (423)
Also
Ef2,—(T,—0)—X(T,—0)—a,(0)[n}t = E,{i(T,, O))+o(1/n?). ... (4.24)
Since g{0) is arbtrary, we get from (4.21), (4.22) and (4.24), that
E{{T.},0,2) > Ey{8,},0,) for all 0 . (4.25)
which gives the Rao-Fisher result.
To justify theso heuristic arguments ono would of course need various

restrictions on F, and 7, but one would expect that the restriotions would be
much milder than those considered in Section 2.

5. ASYMPTOTIO SUFFICIENCY AND OTHER TOPICS

Consider the same set-up as in the previous scotion. It will bo shown
elsewhere that under quite general conditions, 8,, L,, L, and L, are asympto-
tically sufficient up to o{lfn) in the following sense. For each n thero exist
joint densities g,, such that

(1) 0,,L, Ly, L,.ure sufficient for g,,, 060
@ fof |1 fted—00)] T dutz) = oltjm).

In & eimilar senso §, and L, are asymptotically sufficient up to o(s-).
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This fact can be used to give another justification of the results on second
order efficlency.

Another question of some importance is whether an expansion for
EY(T,—0)* can bo regarded as an oxpansion for the variance of the asymptotic
distribution of 7. Under certain conditions it can be shown that tho distri-
bution function of y/aI(Ty—0,) has an Edgeworth type expansion® in powers
of n~¥ and the expansion of EV(T5—0,)* can be identificd with the second
moment about mean of the expansion for the distribution function. Under
certain additionul conditions the density of 7’5 has an Edgeworth type expan-
sion. In this case Fishor's original measure E3, defined in Section 1, and Rao’s
E, coincide.

So far we have considered sccond order efficiency of T, mainly from the
point of view of estimation. Supposo we wish to consider the same problem
for testing of hypothesis. As in the problem of first order efficiency, one can
consider tests of the form :

If (T,—0,) > ¢, reject Hy(0 < 6;)
< ¢, accept H,,

Expanding the power function of this test locally around 6,, one could get a
measure of second order efficiency.

It is possible to follow Berkson and Hodges (1961) and obtain an expan-
sion for the minimax estimator for tho loss function (d—0)2I(6) as well as the
least favourable prior. Ono may also wish to know if §, is admissible among
all estimators of the form 8,+¢(8,)/» up to the second order term.

There are many so-called non-regular problems, with the carrier of f
depending on 0, where 8, is efficient. It may bo possible to have second order
regults for such problems also.

‘We hope to return to these problems later.

1

1 Thoe leading term in the expansion is the dietribution funotion of a standardized normnl
variate N(0, 1),
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Appendix
Proof of Proposition 1:
(i) By Lemma 2,
lim EVa{Z,—(T,— 0 —XT,—0p)}
= lim nEV{—EXTp} ~m)(p)' —m))— AZL[ I}
= lim nE,o(—EETU(p?—m)(p;'—n;)—AZ:/I’} (by Lemma 1)

_— . A
= —LLTIE (pl—m)p|—m)—

(i) By Lemma 2,
lim n2E9(Z — (T ,— O M — MT ,— OpY— u(0,)[n}?
= lim n?B%{-% ET"(P?—’H)(P}-”l)—’\zillz-“awo)/"}’
= lim n2E, {— STHp}—m)(p}~m;)

—AZEIP—a,(0)2)® (by Lemma 1)
which is casily scen to exist.
(iii) The required result follows since the limit obtained in tho proof
of (ii) does not depend on U.
Proof of Proposition 2 :
(i) By Lemma 2 and Lemma 1
b(0) = LLTYE, (pl—m)(pj—m).
(i) b is continuously dilerentiablo if T%'s aro since E,(p}—m)(p}—my)
is differontiablo.
(iii) Follows from Lemma 2 and an expension of §(7,) around b(G,),
which is possible since b is differentiable.

(v) That (T3}, 0) = limn? {EU(T;-o,)ﬂ—l}
nl
exists follows from an argument similar to the proof of Proposition 1 (ii).
However one needs an analogue of Lemma 3 in addition to Lemmas 1 and 2.
Details aro omitted.

(v) Wo can choose U, so small that

T, —0,F < d if preU,.
Then ( ’ !

\E, (T, 0)—E"NT,—0,¢| < dP, {preU$} = ofn~?) by Lomma 1. But
8y ) o

| BT~ 00— E"NT,—0,)%| = o{n~%) by (iv). This complotes tho proof.
1
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