ON THE CATEGORY OF ERGODIC MEASURES

BY
K. R. PARTHASARATHY

Introduction

If (X, 8, u) is a finite measure space and G the group of all one-to-one
mensure-preserving transformations, then two interesting topologies can be
assigned to G which make it a topological group. In certain dynamical
problems it is of interest to know whether a particular transformation is
ergodic or not. Even though this problem has not been solved till now, the
existence of a large class of ergodic transformations has heen shown by the
determination of their category in G. In particular, when the measure space
is nonatomic, Halmos [1] proved that the set of weakly mixing transformations
is a dense G; in G under the weak topology. Similar results were proved hy
Oxtoby and Ulam [2]. Rokhlin [3] proved that under the same weak topology
in G, the set of strongly mixing transformations is a set of the first category.

In problems of information-theoretic interest, we have a measurable space
(X, §) and a one-to-one both ways measurable map T of X onto itself. Here,
it is of interest to know whether there are a lot of ergodic measures in the
space of invariant measures. In order to study this problem, we take X to
be a topological space, § the Borel o-field, and T a homeomorphism of X onto
itself. Then several topologies can be assigned to the space of invariant
probobility measures. Taking X to be a complete and separable metric
space and assigning the weak topology to the space of invariant probability
measures, we show that the set of ergodic measures is 8 G;. When X is a
countable product of complete and separable metrie spaces and T is the shift
transformation, we show that the ergodic measures form a dense Gy under
the same topology. Examples are given to show that the ergodic measures
need not be dense in the general case. In the case of the shift transformation
we have proved that the set of strongly mixing measures is a set of the first
category.

1. Preliminaries

Let (X, 8) be any measurable space, and 7 a one-to-one both ways meas-
urable map of X onto itself. Whenever the space X is a topological space,
we take 8 to be the Borel o-field, and T a homeomorphism of .X' onto itself.
By a mensure, we always mean a probability measure. We denote by 0,
M, und M, the space of all invariant, ergodic, and strongly mixing measures,
respectively. For these definitions we refer to [1].

A point 2 ¢ X will be called periodic if for some integer k, T'z = 2. A
measure ¢ M is periodic if for some integer k, w(A n T*4) = u(4) for ali
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sets A ¢5. We shall denote by @ and @, the class of all invariant periodic
measures and the class of oll ergodic periodic measures, respectively.

When X is a topological space, we assign the weak topology 1o R by means
of the following convergence: A net [uo} in M converges o p if and only if
I Sdpe — f £ dp for every hounded continuous function defined on X. When
X is o scparable metrie space, the weak topology of M hecomes separable
and metric. If further X is complete, then M is also complete [4). Sets
of the type

[:p(G) > wolG)) —a,, i=1,2,--- V&),

[:a(C) < mol(C) +aiy, =1,2, .- k), a, 20,
where Gy, Gy, -+ -, Gy ure open sels in X, €y, Ce\, -+, Cy are closed sets in
X, pois any fixed measure in M, and u denotes any general invariant measure,
form a neighbourhood system in M at .

Another important fact which we shall make use of is the following resuit
due to Vuradarajan {3]:

Treonem 1.1, If X is a separable melric space, then there exists an equiva-
lent melric d such that the space Us(X) of functions untformly conty with
respect Lo d s separable tn the uniform lopology.

2. Topological nature of ergodic measures in a separable
metric space

In this seetion we shall prove the following theorem.

TreoreM 2.1, [f X is a separable melric space and T is a homemnorphism o)
X onlo ilself, then M, is a G in M under the weak lopology.

Proof. 1t is clear that the class of all Borel sets $ with the property
S = TS fonm ag-field 3. Let C(X) he the spuce of ail real-valued bounded
continuous functions defined on X. For any fixed measure u and any
J ¢ C(X), we denote by E,(f]3) the conditional expectation of f(z) given
the o-field 3. It is easy to see that g is ergodic if and only if, for every
J ¢ C(X), the following equation holds:

1) Vifu) = f[E.(fI M du - (ff d,‘)’ =0.

1t is enough if condition (2.1) is satisfied for every bounded uniformly con-
tinuous function. This is because of the fact that any hounded continuous
f is o pointwise limit of a uniformly bounded sequence ol uniformly con-
tinuous functions and the conditional dominated convergence theorem is
applicable (ef. Doob [, p. 23). By making use of Theorem 1.1, we can take
the space U(X) of hounded uniformly continuous functions to be separable
in the uniform topology. We take u dense sequence fi(2), fi(x), -+ in U(X).
Thus in order that an invariant measure 4 be ergodie, it is necesaary and suf-
ficient that
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(22) V(fe.n) =0, k=1,2---.
Let

. + . ™'9T !
@) Vg = [[MEE AT, ([,
From the mean ergodic theorem it follows that
(24) Vife,n) = limpee Valfa, u) = lim infase Va(fa, n).
For each fixed k and n, Va(fs, u) is a continuous functional in M under the
weak topology. From (2.2), (2.3), and (2.4), it follows that
(23) D = NEa NI NI U S (02 Vilfi, 0) < V1)

The continuity of Va(fi, ) implies that the set [u:V.(fe,p) < 1/r] is
open in the weak topology. This together with (2.3) implies that M, isa G, .
3. Measures invariont under the shift transformation in a
product space

Let (M, N) be a separable metric space, and let (X, §) be the bilateral
product of a countable number of copics of (M, 8). X can be written as

X=II2M:, M =M (i=,=1,0,1,-),
and
s=[[*=8:;, S=8 (F=2-, =10, 1,---).

Any point x ¢ X can be represented by

= (", 20,%0,0, ), reM,.
We introduce the shift. operator T' by means of the following definition:
Tr=p=( o dir ) Yi=%im (i=---,=1,01--)

T is ohviously & one-to-one both ways measuruble map of X into itself. In
the space M of measures invariant under T we introduce a topology 3 by
means of the following convergence: A sequence of measures u, ¢ ) con-
vorges to u if and only if p,(4) — u(4) a8n — = for each tinite-dimensional
measurable subset A.

TueoReM 3.1, Under the topology 3 in DN the set M, is everywhere dense tn M.

Proof. Let u be any measure in 9, and 4, the restriction of » to the
o-field
e'n = H:(-"?tll-)ﬁ)-—l s‘ ’
and v, , the product measure given by

R o Co R
P = r—n fn

which is defined on [[}=2.. € = 8. Then v, is defined on 8§ and is invariant
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under the transformation 7°"* which is also one-to-one and both ways meas-
urable. It is easy to verify that », is ergodic under T***, Now we write
for any set 4 ¢ 8,

v(TA) + 5(T14) + - + wfA) + - + n(T"4)
(31)  pa(4) = prew) .

From the invariance of v, under T***, the invariance of s, under T follows
immediately. Let now A be any set in § which is invariant under T, i.e.,
A =TA. Then p,(A) = v(4). Since 4 = T***'4 and », is ergodic
under T*'*, it follows that p,(4) = 0 or 1, i.e., ua(A) is ergodic under T
and hence belongs to M, . We shall now prove that . converges to u under
the topology 3. Let

e =TS, k=12 ...,

be the o-field which is the (2t + 1)-fold product of S. @, can be considered
as a sub-o-field of 8. From the construction of »,, it is clear that », agrees

with u on €.. Let now 4 ¢®,. Then T4, T4, ..., T" ™4
belong to €,. Thus
(3.2) n(T'A) = u(A) for —n+kgrSn—-k

We have from (3.1) and (3.2)

() =ty | = | AL bl TA) | g Sk

Thus u,{A) — n(A) as n — o« for every A ¢ € . Since this is true for each
fixed k, po — p in the topology 3. This completes the proof.
The following theorem is an immediate corollary of Theorems 2.1 and 3.1.

Tueorem 32, If X =i Mi, Mi=M (i=---, =1,0,1,+-)
where M 13 a complete and separable melric space and T 18 the shift transforma-
tion tn X, then DN, 18 a dense Gy in AN under the weak topology, and hence M — M,
18 of the firsl calegory.

Proof. ‘This is an immediate corollary of Theorems 2.1, 3.1, and the facts
that 9 is a complete and separable metric space under the weak topology
and couvergence under J implies weak convergence.

Remarks. A disposition towards the method adopted in proving Theorem
3.1 may already be found in the works of I. P. Tsaregradsky [7| and A. Fein-
stein [8] in & different context. A result less general than Theorem 3.1 has
been proved recently by M. Nisio [9].

If in Theorem 3.2, M is a compact metric space, then the space of all totally
finite invariant signed measures becomes a locally convex topological vector
space under the wenk topology, and 0? becomes a compact convex set with
N, as the set of extreme points. From Theorem 3.2, it follows that 3, is a
dense G; in M. This is one of the many examples which show that in the
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8(Fy, F1,G,¢,1,8,n)
(33) =Nkaln(F) 2 &u(F) 2 6m(@nT6) Sr+3,
rs F’(Fn) + 1),
where u denotes any general invariant probability measure. Since P; ‘and

Fy are closed and G is open, by the remarks made in Section 1, the set (3.3) is
closed under the weak topology. Let

(34) &(F\, F1,06,¢) =UogrsiUscscn Ui 6(F1, Fr, G, 6,1, 8, 1),
It is not difficult to verify that

8(F1, Fy,G,6) = Upgrs Uoacun [:n(Fy) 2 &, u(Fs) 2 ¢,

lim 8upia (G N T'G) S 7 + 8,7 S 4R + 4.
Let G. he & sequence of open sets descending to Fy. Since, for & strongly
mixing measure, lime.a 2(Gn T'G) = 4(G), it is clear that ali strongly
mixing measures with the property u(F)) 2 ¢, u(Fy) 2 ¢ belong to the set
(3.6) Uouir, 8(F1, Fa,Ga,£).

We shall now show that the set (3.8) is of the first category. From (33),
(3.4), and (3.8), it is clear that the set (3.6) is a countable union of the
closed sets &(Fy, Fy, G, &, 1,8, n). It is enough to show that these closed
sets are nowhere dense or their complements are everywhere dense.

Let Py be the set of all periodic measures of period k and P} = Uiy, P; .
Since by Theorem 3.3 periodic ergodic measures are dense in M., it follows
that the set of periodic invariant measures @ is dense in 9. Thus P? is
everywhere dense in 2. We shall complete the proof by showing that
(37) PXC M~ &(F\,F:,G 6 r,8,n).

The inclusion relation (3.7) is satisfied if

P C M~ [wu(F) 2 &, u(F) 2 6, 0(@nT0) S 744,
r S W(F) + ).
Let now py be any periodic measure of period k. If either one of the inequali-
ties u(F\) 2 ¢, u(F1) 2 ¢ is violated, then we are through. Otherwise,
ince F, and Fy are disjoint, we have
eSuF)S1—¢ w(@nT'G) = w(@)

Since 0 < 8 < /2, it is enough to prove that
(39) u(G) 2 wi(F1) + 3v/2.

Bince 0 < e < 4§, ¢S um(F) S1—¢GCGDF,and the function
z—2"2e(l —e¢)

(3.5)

(38)
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inesSzS1—¢0<e<§ wohave

w(G) ~ 4(F1) & mo(F)) = wi(F) 2 €(1 = &) > ¢ = 3n/2.
Thus we have proved (3.9).
Iet now S(Fy, Fy, ¢) denote the class of all strongly mixing measures
with the property
wF) 2 e, w(F) 2 e
We have proved that S(#,, Fy, ¢) is of the first category. Now we take a
dense sequence of points and consider all closed spheres of rational radii
with centers at these points. We denole this class of aets by @, Then @ is
a countable clase. It is clear that the set of all nondegenerate strongly
mixing neasures is the same ss
u U S(F L Fp ).

7). Pyea 0<e<) 8
7317 y=¢ ¢ retions!

Since the set of degenerate strongly mixing measures is of the first cxtegory
and any other strougly mixing measure is uonatomic, we have completed the
pruof.

4. Remarks and examples

We shall now give some examples to show that Theorem 3.2 need not he
true in general.

t1) let X, be a compact group with at least one periodic clement, and
let the trandormation To be the translation of X by a periodic element.
Then the ergodic probability measres form a closed st under the weak
topology.

121 Let (X,, Ts) be as shove, and let (X,, T)) be the pdict space
with the shift trandormation. Let X = Xo X X, and T = 7o X T, be de-
fined in the obvious manner. If X| ix a complete separuble nictric space,
then the st of ergodic measures is neither closed nor dense.

But in the above examples it is easily scen that there does not exist a dense
orbit.  However, in the example discused hy Oxtoby.' there exists a dense
orhit, and nevertheless the ergodic mensures form u closed wet. Thus it
would be very interesting to get a characterisation of all those humcomor-
phixms of a complete separable metric spuce for which the denxity theorem
n true,

Now we shall make some remarks concemning Theorem 34. The first
categoby theorem holds good us moon as X is a complete aeparable metrie
space and the clam @, of periodic ergodic measures is dense in D, . Thus
ariwes the problem of obtaining neceseary and sufficient conditions on the
homeomorphiaem T ao that the periodic measures muy be dense. This is
true, for example, in the case when the system (X, T) ia L-stable [10]. We
shall now grt a necessary condition in the following:

V). C. Oxtony, Stpanof forws om the lores, Proc. Amer. Math. Noc., vol. 4 (1483),
pp. 063-087.
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Tueore 4.1. If X is @ complele separable meiric space and the periodic
ergodic measures are dense tn the sel of ergodic measures under the weak topology,
then the complement of the closure of periodic poinls has measure zero for every
invariani measure.

In order to prove this th we ire the foll

q

Lesmu 4.1, Ij'Xuacompldeupamblcmdncspaoemduuaﬂmodw
nwamremlhpenodl anUmemdaapmMneXnu:hlhalT' = 79 and
u(ze) = w(Tz) = -+ = u(T""'z) = 1/k.

Proof. 1t is clear from the results of Krylov-Bogolioubov and Oxtoby
[10} that an ergodic messure is either purely atomic or purely nonatomic.
If it is purely atomic, we are through. In the nonatomic case the measure
space becomes a8 Lebesgue space, and from two lemmas proved in (1] (ef.
pages 70 and 71) we arrive at & contradiction without any difficulty. This
completes the proof of the lemma.

Turning to the proof of Theorem 4.1, we suppose that P is the set of all
periodic points, B its closure, snd G = X — P, Then G is an open subset
of X. We shall now show that, for every ergodic measure , x(G) = 0.
Then an application of the results of Krylov-Bogolioubov and Oxtoby will
complete the proof.

Let, if possible, u(G) > 0 for some ergodic measure u. Since by hypothesis
@, is dense in M, , there exists & sequence p. ¢ @, such that u, converges
weakly to 4. Since G is open, lim infu.e ua(G) 2 #(G) > 0. Thus there
exists an n such that 4,(G) > 0. By Lemma 4.1 there exists a point x
such that 7"z, = z (a, being the period of u,) and ps(z0) = 1/a.. From
the fact that ua(G) > 0, it immediately follows that

(xo(z0) + xa(T20) + +++ + xo( T '2))/30 > 0,

where x, ia the characteristic function of G. Thus for some r, Tz ¢G.
Since Tz, is & periodic point, we arrive at a contradiction. This completes
the proof.

The converse of Theorem 4.1 ia still an open problem. It is true, for ex-
ample, in the case when the systom (X, T) is L-stable.

The author wishes to thank R. Rangarao, 8. Varadhan, and the referee for
their valuable suggestions and criticigms.
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