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SuMMARY

In discriminant analysis, let ¢’ = (¢,,...,9,,) denote the vector of prior probabilities
associated with an observation coming from populations [T,, ..., [1,,, respectively. Present
approaches either consider ¢ fixed and known, and use the corresponding Bayes procedure,
or, if ¢ is unknown, assume that the g; are equal, and use the Bayes procedure based on that
assumption. In this paper, consideration is given to the idea of a prior distribution on g,
and procedures are developed which are optimal for the class ¢, of all priors on ¢ with speci-
fied first moment. In addition, a procedure is suggested which would incorporate an estimate
of the prior mean into the discrimination procedure.

Some key words : Classification: Discrimination; @-mini ; Mini ; Partial prior information.

1. INTRODUCTION

In the problem of classification, a vector of p measurements 2’ = (2, ..., ;) is taken on
an individual. It is desired to classify the individual into one of the populations IT,, ..., I1,,,
on the basis of these measurements, using a decision procedure that minimizes the expected
cost of misclassification. Let ¢’ = (gy, ..., ¢n), With

m-1
m=1- % qu
f=1

be the vector of @ priori probabilities associated with an observation coming from I1,, ..., I1,,,
respectively (Anderson, 1958, p. 142). Present approaches consider optimal solutions for
two situations: (i) g, ..., gy, are fixed and known, in which case the corresponding Bayes
procedure is optimel; and (if) ¢y, ..., g, ar€ unknown, in which case they are assumed to be
equal, and the corresponding admissible Bayes procedure used. In many situations, instead
of assuming that g is fixed, it is more reasonable to assume that ¢ has some prior density,
and that we are merely obtaining observations at one point in that prior. Also, discriminant
analysis often requires the use of a ‘training sample’ containing observations known to be
from T1,,..., 11, in order to estimate their respective densities p(z),...,p,,.(z). In many
cases, the proportion of observations from population II; in the training sample is an un-
biased estimate of the prior probability g,, and this information should be utilized in obtain-
ing an optimal discrimination procedure. The purpose of this paper is to incorporate the
ideas of a prior distribution on ¢ and estimates for a fixed value of ¢ into the discrimination
procedure.

Consideration of this problem was prompted by discussions of how to use epidemiological
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information collected from one hospital on patients who have undergone one of several
possible treatments for & particular disease. It is desirable to use this information to help
the physician choose for an incoming patient the treatment with the best prognosis for
recovery, with categorical outcomes of recovery, e.g. excellent, good, fair or poor. The
a priors probabilities {g,} associated with these categories mey reasonably be assumed to be
fixed for that particular hospital; however there is no reason to assume that the proportions
in these categories will be the same in other hospitals. In developing & procedure which can
be extended beyond that particular hospital to the general population, the assumption of a
prior distribution for {g,}, with observations obtained at one point in that prior, seems appro-
priate.

2. G,-MINTMAX PROCEDURES
2-1, Two populations
Suppose an individual s an observation from either population IT, or population II,.
The classification of an individual depends on the vector of measurements ' = (z,, )
and on the classification function ®'(z) = {®,(x), ®,(x)}. This classification function has
elements satisfying the conditions

0Pzl (i=12), @)+ Dyfz) =1,

for all 2, and assigns an observation z to population I, with probability ®,(x), and to popula-
tion II, with probability ®,(z).

Suppose that the populations IT, and IT, have distributions with density functions p,(z)
and p,(z) respectively. For convenience we only treat the case where the densities are
continuous. With usual modifications the results hold in other cases. Let ¢ be the prob-
ability that an individual comes from population I1, and {1~ g¢) the probability of coming
from population I, Let £(g) be the prior distribution of ¢ over [0, {] with mean value p.
Also let C(25) denote the cost of misclassifying an individual from population I1;as belonging
toll,.

From the definition of the classification function, for any function ®(z),

L) = I Dyf2) py(z)dzx

is the probability of misclassifying an individual from II, as belonging to I1,; and L,(®),
similarly defined, is the probability of misclassifying an individual from [T, as belonging to
I1;,. Thug the average loss from costs of misclassification as a function of ¢ and @ is given by

R(®,9) = gC(2[1) Ly(®) + (1 —g) C(1]2) Ly(®).
The expected risk £ (®, £) is then

j: R(O,q)dElg) = uO(2|1) L(®) + (1~ ) C(1]2) Ly(O). 1)

Thus, the expected risk, as a function of the prior distribution, depends only on the first
moment, 4. It is now necessary to find the Bayes solution for this prior, which will be called
the #-Bayes procedure.



G,-minimag procedures in discriminant analysis 405
TrEOREM 1. The classification function ©%(x) for which

1 pO@ ) py(a) > (1-4£)C(1j2) pyla),

9 (z) =
o) {0 otherwise, @

O (z) = 1~ D,(z)
minimizes R(0,£).

Proof. The proof is on the same lines as in the Neyman-Pearson lemma. Let ®%z) be any
other clessification function. Consider

R(O* )~ R(0%, £) = [{Oz)— OF(z)} (5C(2| 1) Py} — (1~ 1) C{1]2) pyfa)} e
~ [{0%(z) - O} @} 4C(2, 1) py(z)dx
J-J'{(D,‘(z)— OYUz)}1Ci2(1) py(z) dx. (3
The sum of the last two integrals in (3) is identically zero and

<0 i pCR[1)pz)—(1~4)Cl1,2)p,(2) > 0,

0/ __ %,
Oie) °l(x){>0 otherwise.

Hence it follows that R(®*, £) < R(®?, £ for any other elassification function ®°, Thus ¢*
is the u-Bayes procedure.

It can also be shown that ®*(z) is admissible in the class of all claasification functions in
the sonse that there i no other classification function ®%z) such that L (d?) < L(0%)
and L,(9%) < Ly(®*), with the strict inequality holding in at least one case.

It has been demonstrated that @* defined in (2} is & Bayes solution with respoct to any
prior £(q) with mean . Exaraination of (1) indicates that the expected risk R(®*,£) is
constant for any prior £ € Gy, where G, is the class of all priors with specified first moment 4.
It then follows that O* minimizes the maximum expected risk over the class G,,andsuchan
optimal procedare has previously boen designated G,-minimax, 2s developed by Robbins
(1964). Further discussions of the G,-minimax criterion are given by Blum & Rosenblatt
(1967), and DeRouen & Mitchell (1974).

2-2. Several populations
For the general case suppose there are m populations II,, ..., 1, with the ith population
having probability density p,(x) and prior probability ¢;. Assume that ¢ is a random vector
with prior distribution £(g) which is assumed to belong to & alass of distributions with fixed
mean veotor 4’ = (4, ..., #n)- Extending the definitions of §2-1, ®'(z) = (®,(z), ..., ,.(z)}
with the usual reatrictions on the ®,(z), is the clessification funetion and

Ly(®) = [Oz)pfa)ds (4j5=1,..,m)

is the probability of misclassifying an individual from population I1, a8 belonging to popula-
tion I1,. With the same notation for O(j]s) as before, the risk, or averags loss from oosts of
misolassification, aa a funotion of ¢ and @ is given by

RB(O,q)= & “x C(jl9) Ly @).
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The expeoted risk is given by
r0.9=Eul $ aizgo),
(23 W V2T
where .
b= _[‘I(dg(Q) =Eg) (i=1,.,m).

It can be shown a in the case of two populations that the classification function ®*(x)
defined for k= 1,...,m by Of(x) = 1if

g: I‘«C(kli)P((x)$ "Zl: #(CU“)Pf(I)
kel [EYESY

for all j=1,...,m, and j % k, with ®}(z) = 0 otherwise, minimizes the expected risk
R(®, ). Again, since R(*, £) is a function of only the first moments gy, ..., #, of the prior
distribution of g, it is clear that ®*(z) is the Bayes solution for the class G, of all prior
distributions £ with epecified first moments gy, ..., #,,; that is ®*(z) is the u-Bayes or G;-
minjmex solution.

Thus for the case of prior distributions of ¢, the optimal classification function is of the
same form as that for fixed prior probabilities, but with the g, ...,q,, replaced by the
first moments 4, ..., £, of the distribution of prior probabilities. Use of this procedure thus
does not require the knowledge of the prior distributions completely, but only the values of
the means gy, ..., . If the discriminant is estimated from a training sample and if this can
be considered to be a random sample from the appropriate population, then it is cleer that
the proportions of the different subpopulations in the training sample can be used as
unbiased estimates of these means.

The authors are grateful to the referee for his helpful comments.
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