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1. Introduction

This paper has three objectives.

1. First, in the context of finite horizon plans, we comparc the
Cass-Samuelson [ 2, 4] results concerning the catenary turnpike theorern
for onme sector neoclassical optimal growth models with Goldman's
[ 3] results on rolling or continual revision of plans and show that the
former set of results imply the Jatter. We do not pursue the reverse
implication in this paper, although a'httle reflection will show that that
is true also.

2. Secondly. we cxtend Goldman's results to a class of utility
functions substantially broader than what he was concerned with and
show that most of this results remain valid. (sec page 8).

3. Lastly, we carry out the entire analysis in discrete time and
by invoking Bellman's principle of optimality we are able to provide
particularly simple proofs of all the propositions involved.

In the next séction we spell out the mode! and characterize the
optimal policy functions. Many of the results of this section arc well-
known. However. for the sake of completencss we collect the proofs
of these results in section 4. Section 3 counects up the catenary turn-
pike theorem with the results concerning rolling plans. While other-
wise selfcomplete, this section makes use of the results stated in section 2.
2 The Model and Some Preliminary Results

The growth model considered is of the simplest neoclassical variety.
Output is & function of capital and labour, where the production function
is linear and homogeneous. Formally stated.

Y= G+ (Ku -K)=F (K, L) @n
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where,

Y is the level of output in period t;

G is the level of consumption in period t;

K, is the capital stock at the beginning of period t;
(Kisg =Ky is the investment in period t;

L is the labour force in existence in period t.

Labour is assured to grow at a constant cxogeneously given rate
n. Thus,
Liys—Lo
Ly
From the assumption of linear homogeneity of F (K, L), we have
YW _G Ky, L K _gfK
L°L T T "L L
or, using (2:2),
wo=a+(1+nkka —k=1(k)

a=f(k)+k = (t+n)k. 2:3)

=n. 2-2)

or

where,
)'(=-E—".c|=%,k.=é, f(k.)=F(E—‘.l).
The following assumptions are made on [ (k) :
A(i) ('(k)>0, (k) <0.
A(ii) (k)= +oo as k=0; f'(k)-0ask— + oo,
A(iii) f (0)=0.
The welfare function of the society is assumed to take the form

3 () @4
1=

where,
u(c) s the stationary per period utility function, representing
utility as a function of per capita consumption;
< isa p ing di ing of future ulilities;
T is the length of the horizon.
The assumptions made with regard to preferences are
B(i) w (¢)>0, w'(c)<0
B(ii) u(c)» —co asc—0, u(c)—> +coasc—>+oo
B(iii) 1>«>0
B(iv) 1<T< +eoo.
The planner’s task is to choose | k. ky,...., ky | or equivalently
} ¢ ...y pt such that (2-4) is maximised subject to (2:3)
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for given values of the initial and terminal capital labour rations k, =k
and ky4q = K respectively. In what follows, we shall always assume
that k is attainablc from k. When k=0, the assumption will be
unnecessary.

It is clear that the optimum value of (2-4) will be a function of k
and k. For the T—period problem, let wr (k;k) be this optimum
value. Also, let the corresponding optimum palhs-of per capita consum-
ption and capital-labour ratio be {c.f} Ll y {kr } L, , where k1: =k
Then, from Bellman's principle of optimality, we have

wr (kik) = mx {u (100 + k=140l Fewry (ky: K} 29)
2

The value of ky solving (2:5) is K2 by definition.
The following two results are of fundamental importance.

Lemma 1 : wy (k; l;) is a strictly concave function of k,
forall T > 1.

Lemma 2 : The value of k, maximizing u (f(X)+k — (1+n)k)
+ o Wy-g (kg; K ) in ( 2:5) is unique.

From Lemma 2 it follows that there exists a unique, single-valued
optimal policy function g¥ (k; K) (say) such that kf = g (k; K,
which for any specified value of E, gives kT as a function of ‘i
Similarly, there exist optimal policy functions g7 (kT; k), t=2,..,
T—1 which give kT, as a function of kT for given values of k and k.
The principle of optimality implies that whereas g% (ki k) is the first
period optimum policy function for (2-5), gF (kI; k) is the first
period optimum policy function for the welfare function i wt-2 (¢ ),

with starting and ending stocks given by k} and k. Similar observa-

tions hold for gf (kI; k) and so on. It is obvious that the process
of capital accumulation takes place through a sequential application of
these functions.

Using (2:3), we can now define the related policy functions for
consumption. Thus, the existence of gf (k; k), t=12....T~1
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implies the existence of unique, single.- valued, optimal policy function
hf (K k), t=1.. .. T such thatc] = b7 (K%:K).
The following sequence of results may be easily established.
Lemma 3 : If the sequences {k'{ } T and {c";} (I, are
optimal, then for 1<t T~1
4w (eh . ooy i
!U'(C“;ﬂ) =1+f (kau) (26)
or cquivalently,
1+n)u (hT (KT; Kk , = ,
¢ ' 'r) ('r ’ (r LK) g '} (k1K) (2-6)
«n’ (hi 41 (81 (kiiK); k])
Conditions (2-6) and (2-6)' will, henceforth, be referred to as the
intertemporal optimality conditions.
Lemma 4 : gT (K%; k) and hY (kT; k) are strictly monotone in-
creasing functions of k7
Let k, be the minimum value of k, from which K is attainable if
planning starts in peried t < T, If k=0, k =0 also.

Lemma § : g, (k‘f;i) and KT (XkT; E) are continuous functions of
of kT for kT > ki where the inequality becomes
strict ifk > 0.
The modified golden rule capital-labour ratio k®, which occupies
a ceatral position in the literature on infinite horizon plans satisfies
the equation

T+f' k)= @n

We do not provid'e a proof of this result in this paper. It can. however,
be cstablished by using the optimality condition developed in Brock
and Gale [1].

Finally we note that the neo-classical growth model rules out un-
bounded accumulation of cepital. The result is a8 consequence of
assumption A (i).

-]

Lemma 6 : Given any ky, let { k, } o {a} oy satisfy (2:3).
Then, there exists a kK < + oo, such that if k < k,
k< l'(: for all t.

1+

«

3, Tumpike Theorems Verrus Rolling Plans
Goldman, in his treatment of rolling plans, recognized that with
the passage of time, the planner’s interest is naturally extended beyond
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the year “T”. More people come to exist at the beginning of period
2 than were existing at the beginning of period 1. {f nothing else,
simply to take account of the interests of these people, the planner may
wish to extend his horizon beyond the year “T". Goldman considers
a special case of this problem by introducing a planner, who at the
termination of each year within the horizon, adds another year to the
horizon, itself. Thus at the beginning of period 2, the planner’s welfare
function transforms into

T41
lEzcx"’ll((:.) @31

This process is assumed to be repeated in cach period. Therefore,
at the beginning of period, 6 the planner’s welfare function is
T+ Q-1
30 at-0u(c) (32)
1=6
Goldman starts with the case where, although the planner keeps
chaaging his welfare function every year, the terminal target he wishes
to achieve remains the same, Thus, Kryy =krez = .. =kpifa... =

k. In what follows, we shall always assume that k > 0.

At the beginning of cvery year, the planner is faced with a T-period
plan, the solution to which can be obtained by a sequential application

of the functions g5 (-), 85 (), - -, 87-1 (). However, it is only the function
87 () that is used in practice, since, at the beginning of any year the
planner i faced with a horizon which is exactly the horizon he faced
at the beginning of the previous year. Hence, in order to study the
nature of capital accumulation under this scheme, one merely has to

characterize the properties of g} (+) in detail. For the sake of notational
convenience, the capital-labour ratio at the beginning of any period
will be demoted by ky. Thus, at t =1, ky =X. Similarly, given k,

and k, the choice of next period’s capital-labour ratio via g} () will be
denoted k. Unless otherwise specified, we shall stick to this notation
for the remainder of the paper.

We may now state Goldman’s results. First, he proves that if
the terminal target ratio lies below the modified golden age k*, revision
of plans leads to a unique stationary statc in the limit for any (finite)
time horizon. Moreover, the value of the stationary state lies strictly
above the terminal target. If, on the other hand, the terminal target
is above k*, revision of planslcads to a stationary state below the terminal
target. Sccondly, an increase in the time horizon increases the value
of the stationary state to which the system converges in the first case



and reduces it in the second. Thirdly, if the planner decides to leave
a capital-labour ratio at the end of the horizon which is exactly equal
to the value of the initial capital-labour ratio at each stage, revision
of plans leads the system to k°. At this stage, it is worth noting that
apart from B (i) and D (ii), Goldman assumes

v (c) . . .
o) is a decreasing function of c.

(Bv) -

In what follows, we do not use (Bv). Precisely two results of Gold-
man fail to hold in the absence of (Bv). First, the uniqueness of the
stationary state cannot be established any longer, Secondly, in case
i=0, a pon-zero stationary state may cven cease to exist. Since,
however, kis rarely zero in a planning context, the non-existence of a
stationary state in this case may not be & serious problem.

Cass and Samuelson on the other hand, are concerned with the
once for all maximization of (2:4). Their results which we have referred
to above as the catenary turnpike th may be ized in two
propositions. First, the optimum path of k; displays a catenary beha-
viour with respect to the modified golden rule k®. In other words,
whatever may be the initial and terminal restrictions, the optimal path
arches towards k®. Secondly, as T increases, the optimal path gets
closer to k*.

The stage is now set to study interconnections. Consider, to start
with, X =k k< ke So longask, <k, one would usually expect
ky to be larger than ky. However, in specifying ky < k*, we are appealing
to one interesting feature of the turnipike theory. Suppose ky =k
In this case, provided the optimum path has a catenary behaviour,
ks > k; (=k) must hold, Thus, for each T the function g} (kj ; k)
may be expected to lie above the 45° ~line (See Figure I) in the ky ~k;
plane for ky < k. Theorem 1 establishes this result.

Theorem 1 : Let ky & K, ky < k*. Then k; > ky.
Proof : The proof proceeds by induction. Consider a 2 period
problem, where we maximize.
u(f(k)+k=(1+n)k)+aa (f (k) +k~(1+n) k).
Suppose, k; < k¢. The intertemporal optimality condition implies
U+ v (F ()t ke=(1+n)ks)
«u (f (k) +%-(1+n)k)

=141 (k) ()



VOLUME 25 NUMBERS 4-5 7
<k <Kk implies 141 (k)> LER,
L3

sinee 1+ (ko) =tn

But,
f )+ k= (T+m)k) > 1 (k) +lg=(1+0) &
since, ky ks <k
*u(f(k) +k =(L+n)ka QU (£(Kky) +hy=( 1+ n)k)
U (g +k=(L4n)k) 14a
w' (F(ky)+ka=(1+n)k) -
Hence, (3:3) gives a contradiction. Therefore, k3 > k.

Assume now hat the result holds for a T-period probelm. We
shall show that it must hold for a T -- i-period problem also. We
have

Wrar (ki k) =u(f(k) +ky = (15 0)kg)
+au (F(k) + ka=(1 +0)ky) + @ wr.y (kyi k).
Assume, k3 € k1. From our assumption, then, k3 > k;. using the

principle of optimality. From the intertemporal optimality
however,

() (f (k) -k =(14+n)ky)
wu’ (f (ka) +ka=(1+n) k)

=1+ (k) (¢4
It is easily shown that the left hand side of (3-4) is strictly less than _I_J'.'-_n

and the right hand side is strictly greater than l—':—n , whichisa contra-

diction,
Therefore, ks > kg ¥ T, where T is the time horizon involved.
Q.E.D.
For each T and k < k* the function g5( ky; k ), when plotted against
¥,, will behave as shown in Figure I Since, k> 0, and T is strictly
finite, - g5 (ky; k) will not exist at ky =0, as in that case, K is not attai-
nable from ky. Whenever 8] (ky: k) exists and ky < k, g7 (kg3 k) > ky,
which follows from Theorem 1. As shown in Figure I, g1 ( ky: k) lies
strictly above the 45%line for ky & k. Hence, any fixed point of
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the function gF ( ky; k), if it exists, must be larger than k. That such

fixed points must exist follows from the fact that g] (ky; k) is contimuous
(Lemma 5) and that it must eventually lie below the 45°-line

(Lemma 6). The fixed point, however, may not be anique.

The process of capital lation and its limiting p
can now be demonstrated. The arrows in Figure I ﬂlustrate uu path

of accomulation starting from some ky = k< k¢, when k<k® also. The
important point to note is that since g% ( ky; k) starts above the 45%line
and eventually lies below it, the accumulation process must lead to &

steady state. Moreover, fork < k*, the steady state must lic above k.
This shows that the first part of the catenary turnpike theorem implies
the fiest Goldman result summarized above. Analogous results are

easily established for the case where k > k°.
> k'4§° T
k -
2 8, (i) 3k)

Figure I
Next, we g0 on to study the effect of an increasing time hotizon.
In particular, suppose ky < kK<k® Let k',N o gf“(k,;?) and
k‘;:gf(k,;k). From Theorem 1 we knc.w:llmtk;“l >k as well
as k > ki Whatis the relationship between k;m and k: ? The

second part of catonary turnpike theorem tells us that k* > kr“ > k,r

since with increasing time horizon the optimum path moves doaer to k°,
In general, we may prove the following two results.
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Theorem 2 : In any T-period plan, along the optimal path,
K<k for t€T. il Ky kX

Proof : The intertemporal optimality conditions for any two
adjacent periods are

(40 () H = (1) - ety o
(T (k) TR (T2 kg = FFEAD 9

(o) u (k) + k= (1 +0)kea) _ L p 3.6)
e Ty T (k) =3 ke G0

Suppose, the theorem is false. Then, let ky,q be the first element

o exceed K. Then. from (3.5) since 1 - ' (kiey) <

u' {f (k)-Fhy = (1 4 0) Kyey) <0 (keag) T Ky = (170 Kied)
SA k) + k= (1 1) ke > (ke T =1+ 0) kg 3.7
But, k < ky4y. by assumption.
Thus, Kkisg € Koz from (3.7).
Repeating the same argument, {rom (3.6},

Ki+2 < ko3 and so on...
Consider now,
(Lt oy (et kea= 0D ko | gy (38)
« U (f (k) + ke =(1 £ n)k)
which is the optimality condition for the last period.
We have,
[ (kg-y) + kp-y < M (kp) + k7
and kg > k, since kr > k* and k < k*.
o lkpog) + kpog = (1 + )k < [ (kp) + kp = (1 40k
(L+ ) (f (kr) + kg~ (I+0kg) 1410
wu’ (f(ke) + kr=(1 + 0 k «

But, 1 + ' (ky) < l%‘, since kr > k. Therefore, (3.8) is contradicted.

QE.D.

Theorem 3 : Let k < k®. Then, there exists a unique i|>0, such that
KM ek} ifky <Ky andigt > k)
ifky> ky where k3 ' = g1 (ky; k), K} = g} (ke; B).
Proof : Note first of all that given any k, there exists a minimam
value of k; from which k is attaingble by pure accumulation of capital
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in T periods. Let ki be this value. If the initial stock is k
r f k) +k

1
ky = Tﬂ‘l,fmm (2:3)by puttingc; = 0. Clearly, for any ky,

roo o Ttk o
81(ky: k) cannot lie below% , or clse, k will not be attainable

+n

from k3. Ontheother hand, for the T + 1 = period problem, k is

attainable from k. allowing positive consumption in every period,

since we have one additonal period to work with in this case. Thus,
the optimal T + 1 — period programme exists for ky = ky. Moreover
_ f (k) +k
T+ 1 1
o (kik) < T orelie, ™ =0, which is ruled out
by Assumption B (ii). Appealing to the continuity of g+ (ky; k )
for k, close enough to k; (from the right), g (kyi k) must still
f(k)+ki
T+n

be less than On the other hand, for ky very close

. T — fky) + Kk
to ky (from theright ), gy (k3 ; k) must lie above - 'l-l-iﬁ-: B

Hence. for ky close to k. g"r“(lq H l_{) < gir (ky: E).

Consider now the zonc for which ky > k. In this zone it can be

casily shown that k,ﬂ‘ > k,T Assume the contrary. Consider the
first pariod intertemporal optimality conditions for the T and T + 1~
period problems respectively. We have
, T
(I +n)u (f(ky )+ky~(1+m)ks ) = 1+f (kI) 3-9)

w' (F(k2)+ Ko —(1+0) ki

(L m) (f (k) +lg = (1+0) kg )

=140k YY) (310
w (PG +1G " — g+ ) (a7 (310)
By assumption,
140 (Y 1+ (k)
Hence,
W (k) +k — (1+n)k ) >u’(r(k,)+|<‘-(1+n)k’2
T+ T+

V(R R —( ke u'(f(k,’)+k3—(1+n)k§)
(311
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But, f(ki)bky = (1+n)kg " > F(k )+ k= (1 + n) Ky
Therefore, u' ( F(ky )-+ky= (1 + 0 )kI** € u’ (F (k) +ks — (14 )k} )
L TH
Hence, W (F(ks ) +k3 " (1n)kl ™) u' (F(T ) 4K} = (1+0) 3 ).
or. F(k )tk = (12 )y (k) + k5 = (14n) k.
o, K<k
Carrving on in this fashion, it can be easily shown that K < k.
T+
However, it follows from Theorem | that g:r (i; f) >k for all T.
Thus, the monotonicity of ng( k;r i k) from Lemma 4 implies
g:' lk;'; K)k) k ior all T when ky >k, Thus, k:_:: <kisa
contradiction.

1 -
Thus, g;“ (ky k) starts below and eventually lies above

g:r( ke; k) when k < k", Appzaling to the continuity of the functions
established in Lemma 5, it follows. therefore, that there exists some

X 45°
Sf’l(kll;)
&1ty )

d
[
1 ]

A : £ )y
]

B ] Il T ) 1+

'/ | ! ]
[ B
] | v : :

A IL ! 1 H L e

K, ;1 g kT' k'Nl" i k* Lo
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By > by, such that g " (kg K) = g1 (kai K0 The last step in the
proof of the theorem will be to show that k; is unique.

T+1

Suppose, there exists k—, )k_1 such that g (k'; k) -
5.7 (E’ H F). Let the optimum T { | —period path starting from I{
be denoted by [k *" ] T*' . Using repeatedly the fact that the right
hand sides, and hence the left hand sides of (3-9) and (3-10) are equal,
we have kI** =k On the other hand, {k'*'}T*', the optimum
T + | —period path starting from ky also satisfies the condition

T+H = T+1

krss = k. However, the g (-) functions being strictly monotone

increasing, it follows then, ke’ = ke and kpog = Kyp s ooveveneren ,
T+1 _ k:ﬂ'. But k;f‘ _ g:d’ ‘E, ; i)m k;'l _ ‘:ol (-k—‘ . i).
T+l T+l

By assumption, however, k_{ > k. Hence, k, >k, , which is a
contradiction.
Q. E. D.

The behaviour of g:u (ky: k) vis-a-vis g: (ks _E) is illustrated
in Figure II. As the arrows indicated, the T + | — period revised plan
leads to a higher value of the stationary state as compared to the
T-period stationary state. A rigorous proof of this statement is contained
in Theor:m 4. Starting from a common initial capital-labour ratio
Ky det {K7"'} and {7}, n=1.2....be the paths arising out of
continual revision of a T + | —period and T-period plan respectively.

T+l O

Suppose k:"—»k and k:—-ok“un—-am‘ Then we

bave

Theorem 4 : Suppose the conditions of Theorem 3 are satisfied.
Moreover, let { k:"} . { k:} k™" and k™* be as defined above.

Then k' ** > k™.
Proof : Case (i). Letky > k;, where k; is as defined in Theorem 3.

Then, by Theorem 3 and Lemma 4, ki'' » k. Vn. Hence,
k""" > k™ > k. Applying Theorem 3 once again, the case where
'THIe

K™ =™ is ruled out.

Case (ii). Let k, < k. In this case, using Theorem I, there

exists N such that ki "' > k,,¥'n > N. The analysis of case (i) now
applies.
QE D,
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Analogous results can be shown to hold for the case k > K.

The connection between the results concerning the effect of increas-
ing time horizon on continual revision of plans and that on catenary
turnpike th is, therefore, again blished

Finally, Gold di the assymptotic propertics of revision

of plans when k= ky at every stage of the plan. That is to say, if at
each point of time the planner intends to bequeath to the future exactly
the capital labour ratio he started out with, then it is shown that the

capital-labour ratio converges to K in the limit. This result may
again be seen to be an implication of the catenary turnpike result. Take,

for example, the case k =kq < X", In this casc, the catenary turnpike
theorem tells us that ka > ky. On the other hand. Theorem 2 implies
kay<k®. Repeating the same ar . we expect the above mentioned
result of Goldman to be true. Theorem 5 proves the result.

Theorem S : Let kg < K. Ifk= ky at each stage of the plan
then the capital-labour ratio converges to the modified golden rule k*.
Proof : Let the path of accumulation be denoted by the scquence

{ k, ] e,k = g;'(k., :ka )V n. From Theorem 1 and Theorem

2, { kl} isa tone i ing of real numbers which is

uniformly bounded above by K" Hence. there exists k** such that

ko — K asn—s oo,

Suppose K<k’ By Theorem | and lemma §, there exists

9> 0suchtath | ko—k'* | < 0= Kkyoy = g1 (gt ko) >k which is
a contradiction.
Q. E. D.

Once again, analogous result can be proved when ky > k°.
4. Proofs of Lemmas ju Section 2
Proof of Lemma 1: Letk and k' (k# k) be two initial stocks giving
rise to optimum per capita consumption streams {c. } ;'_1 , {c: } (T -
and corresponding streams {k.}:;’ . { k"} L for the optimum
capital-laboar ratio. Choose I > 5> 0. We verify. first of all, that
5w + (1 =9) c: is feasible. From strict concavity of f (k ),

F 0o+ (T=n)K0) > af(k) + (1= F(K).
Thus,
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ok + (1=m)k + (nk +(1=n) ki )
~ (140 (nkisg +(1=1) Kiug )
> n(f0k) k= (1 Fm) k) + (=) (F(G) + ki
-(I+n)kl.ﬂ)
=t (1=n)cr (41)
since, {o ], and fo} T, are individually feasible.
But (41) shows {me, +(1=n)c } . is feasible.

From the definition of wy (lﬁ; k).

wr (nk + (1 = n)lf.i)= .%“H [u(m +(1=n)ch)).
But, u () is strictly concave. Hence,

we (k4 L=n) k% k) > »;§ & Tu () +(1=n) §um u(e)

- - =1 t=t

= mwr (ki k) + (1=n) we (K'; k).

Therefore, w (k; l;) is a strictly concave function of k.
QED.
Proof of Lemma 2 : The result is true if
w(E(k)+k=(1+0) k) + awp-g (yi k)

is a strictly concave function of ks, From Lemma 1, wr_; (k,;Tc)
is a strictly concave function of ki Also, differentiating
u(f(t) +k=(14n)Kky) twice with respect to ks, we have

(+aP e (F (K)+k-(1+n)ky) <0
Henoe, u (F(K) +k=(1+n)ks)+ wwp-y (ky; k)is a strictly con-
cave function of kj.

Q.ED

Proof of Lewmma 3 : I {k7}7., is optimal, then it must maxi-
mise u(c.{)+nn(c'{+ | ) among all programmes {k'{.}.f: | such
that KT =kand KVopm kiop Thus, ki, maximises

u (F (kD) +K5~(1+n) kT40) +«u (F(KD,,)

+K, = +0)kT, )

The maximum must be an intcrior one, or else, either c'{ =0, or
¢T,, =0, which is ruled out since u (¢ \—» — eo, as c——0. Therefore,
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=1+ (FOT) + KT =(1 4 n)kTy )
e (F(RT, )+ KT, = (1 +n)KT, )(1 +I(KT, ) =0
(14 0)u' (cfy

e,y T

+q)

Now, put=cT=pT(kT; k), K4y =gl (KTiK).
Q.E.D.
Proof of Lemma 4 : It is sufficient to prove the lemma for g} (-)
and h'{ (*). We first show g.:(kz: i) is strictly monotone increasing
in k‘t‘- Assume to start with, h] (KT: E) is strictly monotone increas-
ing in kT. We know that the optimum solution must satisfy

o om e Swro (BT (KK ) k)
(I+0) v (W(kTik)== _dk'{— @2
For an increase in k', by assumption h (K] ;1-() rises, and hence,
the left hand side of (4.2) falls. If g} (K%: k) is nonincreasing in kT,
the right hand side of (4.2) will be non-d ing in kY. by iy
of Ve_1 (). Hence, gt (k%:k) must be strictly increasing in KT

if bT(KT;k) is strictly increasing in kT also. Assume, therefore
hT (kT lE) is non-increasing in kY.  From (2.3),
RE (KT ) + (1 +n) 8] (k&) = F(KT) + k] (4.3)
With an increase in k], the right hand side of (4.3) goes up and thus,
T T -, . . . T T - .
if by (ky;k) is non-increasing, By (ky; k) must be strictly mono-
S |
tone increasing in ky .

We now show. hl,‘ (k‘: ; k) cannot have any non-increasing portion.
Assume the contrary, and let h‘; ( k’;;i) be  non-increasing for
l_q <k1,‘ < l-q. Consider k‘: such that k< k{ < k"; < ky. ond the

. . )T )T
corresponding  optimal palhs{ <, } l_‘and { k' } catt By assum-
ption cT(cf . However, w.(k‘; :E) >w (k}:i)and hence, there
must exist sgome t > 1 such lhatc:'“> c‘f“nnd cT(c‘;. On the
other hand, since g’.' ( k‘; H E) is strictly monotone increasing in k‘,',
k‘;' > kf for all 1 't € T. Consider now. the intertemporal optimality
condition for c‘.'. c‘.‘n. We have,
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(1+n)u-(c’.)=~n’(c’i”)(l+f'(qu)) )
Similarly, for c’.'.cr. + we have,
(L4+niu (e )= (4 ) (1 +F (K} 41)) )

Since, ¢f <oy, (14+n) 0 (ch)» (1+n)u (c}).
However. ¢} 41 > Cha a0d K} 44 > kT 4y imply
« (40) (14 P (K] 1) ) <0 (€1 49) (11 (K1 4 1))

Thus, (4-4). and (4.5) cannot hold together. Therefore, hy (kT k)

is strictly monotone increasing.
Q. E D.

Proof of Lemma § : It is sufficient to prove the lemma for t = |.
Let ky be the minimum k; from which k is attainable in T~period. If
one starts from ks, c.f =0 for all t, i. e.. all output has to be reinvested.
Hence, for ky = ki, the optimum path will not exist. However, it clearly

exists for ky > E. Assume now, that g’; ( ky: k)is discontinuous at
K =k> k. Consider two sequences {k-’-} and {k":} going 1o ky

from below and above respectively. Let 21 (K1 K)— g1 (K X)'
and g§ (R} ; k) — 8] (ki:k )" Both limits must exist, since g} ()
is monotone increasing and uniformly bounded above and below (see
Lemma 6). For similar reasons, let h (k3; k) —> b} (ky;k)
and hy (kY ;%) —> by (ki k)™, However, { £(k}) +k, } and
{f(k:')+k;’} must both converge to f (kg ) + ks, since £(k) is
continvous. Thus

by (ks k) + (1 + ) g (ke R) =f(k) + 1y

by (ki k) (1 +0) g (ks k) =F (i) +y -
By subtraction,
(b (ks k) =03 (ks X))+ (1 ) (gl (ki T
—gi(k:k) 7 ]=0 @-6)
By ption and aicity of g} (*)
(8% (ke : %) =g] (ki K)7) > 0 and monotonicity of b (-) implies
{h} (‘;1;;)"'?1‘1‘ (% :k) 1> 0. Hence, (4-6) is violated.
Therefore, g‘:(k,;i) is continuous for all ky > k.
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If k=0 is allowed, them ky = 0 and continuity of g§ (kyi0)at

k = 0 is easily shown by noting that g': (k4:0) =0 for ky = Oand
that

& (ki0) =

goes to zero as ky — 0.

f(ky) + kg =h(ky)
1 +n

Similar methods show that h: (+) is continuous also.
QE.D.
Proof of Lemma 6 : Define the path of pure capital accumulation

¥ by letting ¢, =0 in (2-3). Then,

(1+ﬂ)ini—i(=f(i|) ()]
The sequence { ;‘ } obviously bounds from above any feasible ac-
cumulation path {k,} . Assume, k, ¢ > k, ¥ t is possible. In parti-
wlar,lelussay.i.”=l?|+€.. €y>0Vt, and €,# 0. Then,
from (4-7),

(140) (k+ €)= T=1(k)
or, ok +(1+0)E, =1 (k) @8
But, by assumption, f (k) is & strictly concave function of k and
f'(k)— 0, ask —» oo, Hence, g K Dk, > K implies

ok +(1+0) €0> (k)
But, by assumption, k > K’ from some t= ' onwards. Thus, the path
of pure accumulation will eventually violate (4-8). Hemce, 3 k3

k<kve
Q.E.D.
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