Please use this identifier to cite or link to this item: http://hdl.handle.net/10263/5138
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRay, Shubhra Sankar-
dc.contributor.authorBandyopadhyay, Sanghamitra-
dc.contributor.authorPal, Sankar K-
dc.date.accessioned2013-01-16T06:08:23Z-
dc.date.available2013-01-16T06:08:23Z-
dc.date.issued2012-
dc.identifier.citationIEEE Transactions on Biomedical Engineering, v. 59, no. 4, p. 1162-1168en_US
dc.identifier.urihttp://hdl.handle.net/10263/5138-
dc.language.isoenen_US
dc.subjectAmino acid sequenceen_US
dc.subjectComputer simulationen_US
dc.subjectGene expression profilingen_US
dc.subjectMolecular sequence dataen_US
dc.subjectStructure-activity relationshipen_US
dc.subjectSaccharomyces cerevisiae proteinsen_US
dc.subjectSignal transductionen_US
dc.titleA weighted power framework for integrating multi-source information : gene function prediction in yeasten_US
dc.typeArticleen_US
Appears in Collections:Computer Science

Files in This Item:
File Description SizeFormat 
ITOBE- 59- 4-2012-p 1162-1168.pdf2.17 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.