Please use this identifier to cite or link to this item: http://hdl.handle.net/10263/7249
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDatta, Santanu-
dc.date.accessioned2022-01-28T05:24:11Z-
dc.date.available2022-01-28T05:24:11Z-
dc.date.issued2019-06-30-
dc.identifier.citation45p.en_US
dc.identifier.urihttp://hdl.handle.net/10263/7249-
dc.descriptionDissertation under the supervision of Prof. Kumar Sankar Rayen_US
dc.description.abstractFrom playing games to driving cars, deep learning has achieved great success in the recent past.In this dissertation, we apply deep learning to recognize sports videos. We have implemented state of the art VGG3D model on different challenging state of the art video datasets. In this paper , we communicate our findings.en_US
dc.language.isoenen_US
dc.publisherIndian Statistical Institute, Kolkataen_US
dc.relation.ispartofseriesDissertation;;2019:4-
dc.subjectAction recognitionen_US
dc.subjectDeep Learningen_US
dc.titleSports Video Action Recognitionen_US
dc.typeOtheren_US
Appears in Collections:Dissertations - M Tech (CS)

Files in This Item:
File Description SizeFormat 
Santanu Datta Thesis.pdf2.79 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.