Please use this identifier to cite or link to this item: http://hdl.handle.net/10263/7385
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMd Azad, Ansari-
dc.date.accessioned2023-07-17T12:04:28Z-
dc.date.available2023-07-17T12:04:28Z-
dc.date.issued2022-07-
dc.identifier.citation48p.en_US
dc.identifier.urihttp://hdl.handle.net/10263/7385-
dc.descriptionDissertation under the supervision of Dr. Rajat K Deen_US
dc.description.abstractAbstracten_US
dc.language.isoenen_US
dc.publisherIndian Statistical Institute, Kolkataen_US
dc.relation.ispartofseriesDissertation;2022-10-
dc.subjectResidual Neural Networken_US
dc.subjectWasserstein Auto-Encoderen_US
dc.titleWasserstein Auto-Encoder using Residual Neural Networken_US
dc.typeOtheren_US
Appears in Collections:Dissertations - M Tech (CS)

Files in This Item:
File Description SizeFormat 
Md Azad Ansari-dissertation-26 7 22 -10.pdfDissertation6.7 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.