Please use this identifier to cite or link to this item:
http://hdl.handle.net/10263/7386
Title: | Ontology-aware Learning from Electronic Health Records |
Authors: | Pal, Nidhi |
Keywords: | Ontology-aware Learning COVID Electronic Health Records |
Issue Date: | Jul-2022 |
Publisher: | Indian Statistical Institute, Kolkata |
Citation: | 31p. |
Series/Report no.: | Dissertation;2022-11 |
Abstract: | Advances in natural language processing (NLP) in recent times has shown a great promise in improving the patient profiles with the help of their clinical notes. In medical practices, preparing clinical details for patients often happen through longer forms, which are really difficult to maintain and process. Therefore, people use abbreviations (writing a medical term in a shorter form) to record clinical details. In clinical notes, abbreviations are used recklessly without mentioning their definitions. These abbreviations can have different expansions based on their medical context. For example, the abbreviation “ivf” may denote either “intravenous fluid” or “in vitro fertilization” based on their contexts. It is thus a challenging task for NLP systems to correctly disambiguate abbreviations in their clinical notes. We have used the Naive Bayes approach for correctly disambiguating medical concepts and abbreviations by using NLP models. We have proposed a measure to find whether a given medical abbreviation is related to COVID or non- COVID.We have trained our model on the COVID ontologies and general medical concepts and tested it on the dataset whichwe have compiled at our own.We have tried to determine the correct senses for an abbreviation based on the associated context. |
Description: | Dissertation under the supervision of Dr. Malay Bhattacharyya |
URI: | http://hdl.handle.net/10263/7386 |
Appears in Collections: | Dissertations - M Tech (CS) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Nidhi_Pal-Cs2032 -11.pdf | Dissertation | 972.35 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.