Please use this identifier to cite or link to this item: http://hdl.handle.net/10263/7475
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMandal, Anup-
dc.date.accessioned2024-11-13T10:41:14Z-
dc.date.available2024-11-13T10:41:14Z-
dc.date.issued2024-06-
dc.identifier.citation54p.en_US
dc.identifier.urihttp://hdl.handle.net/10263/7475-
dc.descriptionDissertation under the supervision of Dr. Swagatam Dasen_US
dc.description.abstractDeepSmote uses the SMOTE technique in the latent space of an Autoencoder- Decoder model to produce high fidelity images for imbalanced data. But it is be limited by 2 essential artillery: over-fitting the data and a lack of continuity of the latent space thus giving bad results. To overcome this, a number of regularized autoencoders have been proposed. Furthermore, the latent space was oversampled using a variety of approaches. Finally, a new method is a weighted calibration to the latent space of minority classes and has proven to be pretty accurate compared to other tested methods.en_US
dc.language.isoenen_US
dc.publisherIndian Statistical Institute, Kolkataen_US
dc.relation.ispartofseriesMTech(CS) Dissertation;22-04-
dc.subjectCalibrationen_US
dc.subjectClass Imbalanceen_US
dc.subjectRegularized Auto-Encodersen_US
dc.subjectLatent Spaceen_US
dc.titleHandling Class Imbalance Using Regularized Auto-Encoders with Weighted Calibrationen_US
dc.typeOtheren_US
Appears in Collections:Dissertations - M Tech (CS)

Files in This Item:
File Description SizeFormat 
Anup_CS2204-Mtech2024.pdf2.33 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.