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SuMmARY
This paper introduces the notion of affine (u,. ..., u,)-resolvability and explores the
interrelations between: (a) affine (g, ..., u,)-resolvebility, (b} variance-balance, and (c)

the relation b = »+1{—1, where b is the number of blocks. It is seen that. while {a) and (b}
imply (¢). and (b} and (c) imply (a). the relation (a) and (¢) imply (b) is not in general true.
A necessary and sufficient condition under which (a) and (¢) imply (b) has been derived
and certain nonexistence results follow. The last section states an open problem in this
connexion and indicates the link with a problem in factorial designs.

Some key words: Affine; Orthogonal main effect design: Proportional array. Resolvability: Variance-
balsnced block design.

1. INTRODUCTION AND PRELIMINARIES

A binary variance-balanced block design with parameters v,b,r; (i=1,....v) and
ky (j=1,....b) is given by a vx b incidence matrix ¥ satisfying

C=R-NK'N =p{l,—v"'J,).

where R =diag(r,,...,r,), K =diag(k,,....k), p=(n=b)/(v=1), n=Lr. I, is the
identity matrix of order v, J, is a vx v matrix with all elements unity, and N' is the
transpose of N. A block design is said to be (u,.....s,)-resolvable if the blocks can be
separated into { 2 2setsof m,,....m, 2 1 blocks such that the set consisting of m, blocks
contains every treatment g, 2 1 times ({ = 1, ..., {). Clearly a (#,. ..., g;)-resol vable dexign
is equireplicated, that isr, = ... =r,.

The importance of variance-balance and resolvability in the context of experimental
planning is well known: the former yields optimal designs apart from ensuring simplicity
in the analysis and the latter is helpful, among other respects, in the recovery of
interblock information. Also practical situations sometimes demand designs with
varying block sizes (Pearce, 1964) or resolvable designs with unequal replication
numbers between sets of blacks; for a practical example, see Kageyama (1976). These
considerations indicate the importance of {,, ..., g,)-resolvable variance-balanced block
designs with possibly varying block sizes and having g,..... g, possibly not all equal.

Generalizing the results of Raghavarao (1962: 1971, p.61), Kageyama (1973) and
Hughes & Piper (1976), Kageyama (1984) established that for a (g, .... g,)-resolvable
variance-balanced block design with p <r=p +...+pu, the inequality b2 o+1—1
holds. Kageyama (1984) alao obtained the following.
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TuroreM I'l. Ina (u,...., #t,)-resolvable variance-balanced block design withb = v+1—1,

except when p, = ... =p, =1 block sizes of blocks belonging lo the same sel are always
equal.
Whether the above holds for the case u, = ... = y, = 1 as well, is an open problem and

has been considered in the last section of the present paper.

2. CONNEXION BETWEEN AFFINE RESOLVABILITY, VARIANCE-BALANCE AND THE
RELATION b =v+I—1

The following result is due to Shrikhande & Raghavarao (1963).
THEOREM 2-1. For a u-resolvable incomplete block design involving b blocks in t sela and v

treatments with constant block size, any lwo of the following imply the third: (a) affine u-
resolvabilily, (b) variance-bal (€)b=v+t—-1.

It is interesting to examine how far this result can be extended to (u;. ... #,)-resolvable
block designs. Through this ion, a ion will be restricted to only those
{4y -+ #y)-resolvable block designs which have a constant block size within each set. In
view of Theorem 1-1, this is justified at least when (4, ....p,) % (1...., 1). The constant
block size within the {th set may be denoted by & for = 1.....1

Definition 2:1. A (a1, ..., i)-resolvable block design with a constant block size in each
set will be said to be affine (p,,.... u,)-resolvable if:
(i) for I =1,....L every two distinct blocks from the Ith set intersect in the same
number, say gy. of treatments:
(ii) for! % I' = 1,...,4, every block from the Ith set intersects every block of the I'th set
in the same number, say g, of treatments.

Withm,. & (! =1,...,!) defined as above, it is evident from elementary considerations
that for affine (y,, ..., ,)-resolvable block designs

qulmy— V) = kMg —1), qeme=kPp (£I=1...0. 21)
The following two theorems present generalizations of some of the ideas of Theorem
21 in the context of (g, ..., #t;)-resolvable designs.
THEOREM 22. 4 (u,...., u,)-resolvable variance-balanced block design with paramelers v,
b=vHi—1=Zm, r=2pu, k¥ (I=1,....0) musl be affine (u,,..., u,)-resolvable with
qu = (ko) [1=(b—r)/{miv—1)})

provided m; 2 2,
qr=kikt (=11

Proof. Denote by s, the intersection number of jth and j'th blocks (j % j' =1,....8).
When b = v+t—1, as in the proof of Theorem 3 of Kageyama (1984). one can obtain,
after some calculation,

N'N=v kK +{r—p) K—(r—p)v™" diag(p; ' k3 Ju,s oot 2,

where
b=y k) = (k] Uy KO 10

L, = (1,..., 1) being of size my x |, Jg, = 1, 1o, (1 = 1....,1). Comparing the off-diagonal
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elements of the above, one obtains that:
(i) if the jth and j'th blocks belong to the same ith set {{ = 1,...,¢), then

ay = kP2 fu—(r—p) bt lupr) = (k2 /0) [V = (b—r/{p(v—1)}) (22)
provided m; > 2;
(it} if the jth and j'th blocks belong to different sets, say to the Ith and I'th sets, then

& =k kp/v. (2-3)
From (2-2) and (2-3), the required result follows. a
Note in particular that, if jt; = ... =y, = 1, then r =, and the right-hand side of

(2-2) vanishes, i.e. one geta ¢, =0 for i =1,...,L

THEOREM 2:3. An incomplete block affine (u,, ..., u,)-resolvable variance-balanced design
must have b =v+1—1.

Proof Forl=1,..,1,let N,denote the portion of the incidence matrix. N, arising from
the ith set of blocks, that is N = (N,: .... N,). Then with 1, =(1,....1) of size vx 1,
defining

N N, .. N 1,
B, 0 .. 0 0
Ne=| 0 kI, .. 0 0
o 0 .. k0

T “my

of size (v+1) x (b+ 1), we obtain from the proof of Theorem 1 of Kageyama (1984) that

v+i=rank (N*) <b+1, (2:4)

using the fact that the design under consideration is a (g, ..., #,)-resolvable variance-
balanced block design.

Next, the additional information regarding affine resolvability will be used to establish
the linear independence of the columns of N*. Under affine (g, ..., st,)-resclvability,
clearly

NNy = (k=g Lo+ qudmy NiNp=qulp Ly (¥ U'=1,..10. (2:5)
Now for any vector £ =(&),....6 07 of size (b+1)x1, where & is of size
mx1 (I=1,..,1),

N*f=0 (2'6)
implies
il N,&,+61,=0, 27)
LE&E=0 (=10 (28)
Premultiplying (27) by N; and applying (2'5) and (28), one obtains on simplification
(kF—gn &, +0kF1,, =0 (=1, (2:9)

whence, premultiplying both sides by 1,, and applying (2:8) again, one gets § = 0. Hence
if we note that, for an incomplete blook design &} > gy, equation (29) yields
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& =0 (I=1,...,1). Thus (2:6) implies { = 0, s0 that the columns of N* are linearly
independent. Therefore, rank (N*) = b+ ] and the required result followa from (2-4). This
completes the proof. a

Note that an example of an affine (u.....4.1)-rerolvable variance-balanced block
design can be constructed by a juxtaposition of a complete block and some affine
p-resolvable balanced incomplete block design.

Theorems 2-2 and 2-3 extend respectively the two implications '(b), (c) imply (a)" and
‘(a). (b) imply {c)' contained in Theorem 2:1. Thus, Theorem 2:1 can be partially
extended to (u,, ..., g,)-resolvable block designs. The result ‘(a), (c) imply (b)’ of Theorem
21 cannot, however, be extended in general, i.e. an incomplete block affine (u,.....4,)-
resolvable design with b = v+{—1 is not necessarily variance-balanced. This point is
illustrated by the following example.

Example 2'1. Consider an affine (2,2, 1.1)-resolvable incomplete block design with
v=9b=12r=86 kt =k? =6, k% = ki =3,1=4 given by the following incidence
matrix. Clearly here b = v+t—1, but it can be checked that the design is not variance-
balanced: see also Corollary 2:2 below. In fact

011 100 100
101 010 010
110 001 001
011 010 001
101 001 100
110 100 010
011 001 010
101 100 001
116 010 100]

In view of the above example, it ig interesting to examine the possible existence
of necessary and sufficient conditions under which an incomplete block (u,,....4,)-
resolvable design with b =v+{—1 becomes variance-balanced. This is given by the
following with the notation defined above.

THEOREM 2:4. An incomplete block affine (u,, ..., p,)-resolvable design satisfying
b = v+{—1 is variance-balanced if and only if

(m—D/(m—=1) = (r=/w=1) (=1,..0. (210

Proof. First consider necessity. Suppose the design is variance-balanced. Then by (2-1)
and Theorem 2-2,

W L= b—n{mlo=1)}] = k(= Dim—1y =gy (I=1,...0).
from which, noting that b = v+¢—1 and applying the obvious relations
me=ktm (=1,..0, 1)

— -

- - O O ©
cC oo -

—_
o o o

one gets (2:10).
For sufficiency, note that, under (2:10), by (2-1) and (2:11),

W=kr—0/(v=1), qu=Fkrktv (I£I=1,..1) (212)



On variance-balanced designs 169

With 1, as in the proof of Theorem 2:3. define P as a (v—1)xv matrix such that
(v~11,: P') is orthogonal, so that PP' = /,_, and PP = I,—v"'J,. If one evaluates the
determinant
K NP
PN «f,_,
in two ways and equates the corresponding expressions, then one gets

IKNIPCP | =" K—r" ' N'(l,—v" ) N, (213)
the matrix C being as in (1-1). Clearly

NS N=NLI,N=kk,

where k= (kt 1,,.....&% 1.}, Hence, because the design is affine {,. ..., g,)-resolvable
end by (2:5) and (2'12). it follows, after some simplification, that

K—r ' N(l,—v " J)N = diag(W,..... W,),

where, forl=1,....¢,

W= {kF—r ' (k¥ —qu)} Iy +r7 07! kl‘z—q“)-]m,» 2:14)
One obtains after some calculation with (213) and (2-14) that
|PCP| = {(or=b)/(v—1)}""! (215)

Since PP =I,—v"'J, CJ, =0 and the design is binary,
tr(PCP') = tr (CP'P) = tr(C) = or—b.

Hence by (2:15), | PCP’| = {tr (PCP")}/(v—1)}*" " which implies that the eigenvalues of
PCP are all equal, in fact each being equal to (vr—b)/(v—1). Now. from the definition of
P, it is immediate that C = [(vr—b)/(v—1)]{,~ v~ ' J,). s0 that the design is variance-
balanced. Thus, the proof is completed. O

From Theorem 2:2 and the necessity of Theorem 2+4. the following corollary is
immediate.

COROLLARY 2'1. A necessary condilion for the exislence of an incomplete block (p,. ... p,)-

resolvable variance-balanced design with paramelers v, b=v+i—1=Zm,. r=ZLpy,

P (L=1,...,1) is that (2:10) holds for each l, in which case (r—1) (my—V)/{v—1) = g~ 1
musi be inlegral for each .

The above corollary may be used to prove nonexistence results. In particular. under
{2:10), (g;—1)/(m~1) is constant over [ and hence y, =1 for some ! implies
#y = ... =y, = 1. Thus one has established the following.

CoROLLARY 2-2. An incomplete block (i, ..., ,)-resolvable variance-balanced design with
parameters v, b=v+i—1, r=Zpu, k¥ ({=1.....1) and having p, =1, p. > 1 for some
Ll =1,..,1is nonexisten.

The conclusion of Example 21 follows also from Corollary 2:2.

In the setting of Corollary 2:1, if u, = ... = g, > 2, then, under (2:10), m; = ... = m,.
Consequently, by (2:11), k¥t =... =4k}, i.e. the design must then be a balanced
incomplete block design. Thus, Theorem 4 of Kageyama (1984) follows as a corollary.
The following example of an incomplete block affine 1-resolvable variance-balanced
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design with unequal block sizes and b =v+{—1, howewer shows that the last

observation cannot be extended to the situation g, = ... =g, =T

1000 10 10 10 10
0100 10 01 10 01
0010 10 10 01 01
0001 10 01 01 10

N= C = 4(13—§Jy).
1000 01 01 01 01 (s =)
0100 01 10 01 10
0010 01 01 10 10
0001 01 10 10 01

Some further nonexistence results follow from Theorem 2-2 as stated below.

M

COROLLARY 2-3. There does not exist a {p,.....u)r variance-bal d block
design with paramelers v, b=v+i—1, r=Zu, k¥ {{=1....1) provided one of the
Jollowing holds:

(i} there is a block size, k. say. of blocks belonging lo the same lth set such that

k22 fo) (1= (b= n)f{ufv— 1}
18 not inlegral;
(ii) there are two block sizes k!, kY. say. of blocks belonging to different sels such that k? kf
is not divisible by v.

3. AN OPEN PROBLEM

This section considers the problem of examining whether Theorem 11 is valid when
#y, =...=p,= |, that is for l-resolvable block designs. Note that for a 1-resolvable
design { = r. Furthermore, it is clear that a |-resolvable variance-balanced block design
with b=v4r—1 is binary and even if there are some complete blocks, the design
obtained by deleting these complete blocks will again be & 1-resolvable variance-
balanced block design with the same property. Therefore, without loss of generality,
attention will be restricted to incomplete block designs, so that each set involves at least
two blocks. and the following problem will be considered.

Problem 31. Does there exist an incomplete block [-resoivable variance-balanced
design with b = v+1—1, having unequal block sizes within a set?

By establishing a correspondence between incomplete block 1-resolvable variance-
balanced designs with b = v+ r— 1 and saturated proportional frequency plans for main
effects, the above problem can be expressed in an equivalent form in the context of
fractional factorial plans.

Definition 3-1. A proportional array A, with v assemblies, r constraints, m,, ..., m,
symbols and strength 2, is an r x v matrix with entries in the {th row coming from the set
{1,...,m;} such that

Wl =D (=1 amije =1 me 1 SI<IO <),

where v{}! is the number of times the ordered pair (jy. j)’ occurs as a column vector in
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the two-rowed submatrix of A given by its ith and /*th rows, and ¥{? is the number of
times the symbal j oceurs in the ith row of 4.

Hereafter, a proportional array of strength 2, as defined above, will be denoted by
Pafv.ri my, ... .m,]. It is well known {Addelman, 1963; Raghavarao. 1971, Ch. 15) that
interpreting the columns as level combinations. a pa{v.r; m,,....m,] yields an or-
thogonal main effect fraction of an m, x ... x m, factorial in v rune. Such a fraction will be
said to be saturated if it admits no error degrees of freedom, i.e. v—1 =Z (m,—1).

THEOREM 3'). Lel r.my,....m,, v be given positive inlegers such that

my+...+tm,=b=v+r—1.

Then a )-resolvable vari bal d block design in v treatments and r sels of blocks with
Myea...m, blocks in the r sels exists if and only if a Pa[v.ri m, ... m,| exists.

Proof. For the necessity, let the stated variance-balanced block design exist. For
j=1l...mil=1,..r denote by ky the size of the jth block in the /th set and write
ky = (kyy, ... Kmy)s k= (k). ... k). Then, as in the proof of Theorem 2-2,

NN=v 'k +(r—p)K—(r—p)v™! diag (k, K)..... kK, &).

Hence, if we define ¢(jl. jT') as the intersection number between the jth block of the Ith
set and the j'th block of the f'thset (j=1....mz )=V ;. I+ l=1,..r).

BUL Y = v bk 31
Form now an r x v array placing in its ({, {)th cell the symbo} j if the treatment i occurs in
the jth block of the lthset (I = 1,...,r:i = 1,....»). By (3-1), the array so formed will be a
PA[e.rimy,...,m,).

Convessely, given a PA[v,7; my,...,m,], form a 1-resolvable block design in r sets
of blocks, there being m, blocks in the ith set, putting the treatment i in the jth block
of the Ith set if the symbol j occurs in the (l.i)th cell of the proportional array
=1 r;i=1,...,v). This l-resolvable design clearly has b=Zm=v+r—1. It
remains to show that the design is variance-balanced. This will be proved following the
line of the sufficiency part of Theorem 2-4.

For the design constructed as above define k,. k as in the proof of the necessity part,
write K, = diag(k,.....kny). denote, as usual, the portion of the incidence matrix,
N, erising from the Ith set by ¥, ((=1,... 1) and observe that (2:13) holds. Since
N'J,N = kk', and, by construction,

NN =K, NiN=v 'kl (+l=1..1,
it follows that

N(I,—v ' )N =diag (K, —v" "k k.. K, =07V b E),

and hence, after some simplification, the determinant in the right-hand side of (2:13)
reduces to {(r—1)/r}*~'| K|, on making use of the fact that Zm; = v+r—1. Thus (2:13)
yields
[PCP| = (r—1F"" = {(or~b)/(w—~1)}""",
since b = y+r—1, and the rest follows as in Theorem 2-4. Thus, the proof is completed.
0
In view of this theorem, the open problem posed in the beginning of this section may
be stated equivalently as follows.
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Problem 3-2. Does there exiat a saturated proportional frequency plan for main effects
with unequal replication numbers for the levels of at least one factor?

Since proportional frequency plans for main effects are in fact orthogonal main effect
plans, there is yet another formulation of the problem as follows.

Problem 3-3. Does there exist & saturated orthogonal main effect plan with unequal
replication numbers for the levels of at least one factor?

It should be clarified that ‘orthogonality’ in the last problem is in the sense of
Addelman (1963): note that there is another definition of orthogonality (Yamamoto,
Shirakura & Kuwada, 1975). which is not being followed here. Trivially. if v is a prime,
then &, kyp/v cannot be an integer. since incomplete block designs are being considered,
and by (31) nonexistence follows. Also, the. exiasting methods of construction of
proportional frequency plans involve the technique of collapsing of levels (Addelman,
1963) and cannot lead to a plan as stated in Problem 3-2. Therefore, in order to find out
an example, if it exists, satisfying the conditions of Problem 3-2. or equivalently the
other problems, one should look for a method for the construction of proportional
frequency plans without applying the collapsing technique of Addelman. Our conjecture
is, however, that there does not exist & variance-balanced block design as envisaged in
Problem 31, or, equivalently, a fractional factorial plan as in Problems 3-2 and 3-3.
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