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Suiary

‘The concept of efficiency in estimation is linked with closeness of approxi-
mation to the derivative of log likelihood, which plays an important role in
statistical inference in large samples. Various ordm ol‘ elﬁctcncy are defined
depending on degrees of cl and prop: £ ying thesc
criteria died. Such feffici appeartobe D iate
than the one related to asymptotic variance of an cstimate for judging the
performance of &n estimate, when used as a substitute for the whole sample
in drawing infé about unk 1t is found that, under
some conditions, the maximum likelihood estimate has some optimum
properties which distinguish it from all other large sample estimates.

1. INTRODUCTION

It is nearly four decades since Sir Ronald Fisher introduced the concept of likelihood
which, as a function of unknown parameters givea the sample, plays a fundamental
role i in statistical ml'erenoe He bad also studied and established optimum properties
of b d by imizing likelihood, in the light of criteria of consistency
and efficiency in large samples, and of sufficiency and amount of information in the
case of small samples (Fisher, 1922, 1925). There has been, however, some controversy
regarding the superiority of maximum likelihood (m.L) estimates over others. For
instance, it as been said that the method of m.L. is just one out of an infinity of estima-
tion procedures yielding what are called B.A.N. (best asymptotically normal) estimates
having the same optimum asymptotic properties as m.l. estimates (Neyman, 1949;
Haldane, 1951), and that further criteria are necessary for establishing the superiority,
if any, of m.]. estimates. It has also been thought that the existence of superefficient
estimates, i.e. with asymptotic variances smaller than those of m.). estimates, invali-
dates the concept of efficiency on which the use of m.). estimates is advoonted
(LeCam, 1953).

The anomalies lppamnuy arosc in judging an estimate from narrow concepts,
such as asymptotic variance and concentration, deﬁned ina m(nclcd manner round
the true value, which are not by themse} ll-conditioned indi of the useful-
ness of an estimate in statistical inference. For instance, if T, is an estimate of §, the

ligyit of
Pr(Ty=0]<Mn; )

a8 >0 is defined as limiting concentration, whereas the natural thing to do is to
examine the probability of concentration in a fixed interval round the true valuc as
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n-+co and not in intervals tending to zero. Recent investigations at the Indian
Statistical Institute on criteria for estimation and limiting properties of estimates,
from the wider point of view of statistical inference, have led to some definite results
regarding m.l. estimates, which I would like to present at this meeting.

The main line of i igation has been to enquire how good a given estimate is
as a substitute for the whole sample in drawing infe about un}
(Rao 1960a, 1961). This approach is implicit in Flsher’s work (Flsher. 1922 1925}
and is also stated by Barnard (1949) in his fund ! paper on stati
Such an approach is considered by some statisticians as of limited value because it
is general and not intended to answer specific jons in making decisions from
observed data (Berkson, 1960). On the contmry in many practicsl situations, the
object of reduction of data in the form of an estimate is only to facilitate answering
a variety of questions of immediate interest, Further, it would be more economical
to preserve for future use an estimate instead of the whole sample; and this could be
done satisf: ily only if the esti is a good substitute for the sample. Another
line of work initiated by Bahadur (1960) has been to study the concentration of an
estimate in fixed intervals round the true value of a parameter, as the sample size
increases. Jt may be observed from the approach adopted by Bahadur, or as explicitly
demonstrated in the present paper, that concentration is equivalen( to certain other
properties of an estimate used as a substitute for the whole sample in tests of signifi-
cance. Thus the upproach developed in the earher papers (Rao, 1960a, 1961) seems

to provide a k for d g the problem of estimation.
The criteria for judging the performance of an estimate compared with that of
the whole sample are obtained by a suitable reformulation of consi and efficiency

introduced by Fisher (1922, 1925). This is done in section 2 and the properties of
estimates satisfying these criteria are examined in sections 3, 4 and 5.
While thanking the Royal Statistical Society for giving me an opportunity to read

a paper at one of its ings, I must apologize for choosing a subject which may
appear somewhat classical. But I hope this small attempt intended to state in precise
terms what can be claimed about m.L esti , in large samples, will at least throw

some light on current controversies,

2. CRITERIA OF CONSISTENCY AND EFFICIENCY

2.1, Consistency

1t will help us in our discussion if we state in precise terms the criteria of consistency
and efficiency, especially as there is some misund ding in the interpretations of
the original definitions given by Fisher (1922, 1925). Although the concept of con-
sistancy as discussed in this section is not y for the develop of the paper
it has been included for the sake of completeness, to demonstrate how this criterion
fits in with the general approach to the problem of estimation indicated in the
introduction.

Let 2™ be the space of infinite sequences of observations and S, the Kolmogoroff
o-field of meagurable sets. Further {P,} represents a family of probability measures
defined over S, and indexed by a parameter 8 varying in a set {f). Let T,(X,)bea
real valued statistic defined on 2™, the space of the first n observations, X,. The
family of probability measures induced by T,,, which may be regarded as a function on
X%, is {P,T51). Two probability measures p,v are said to be orthogonal (s Ly} if
there exist disjoint sets A and B such that u(A4) = W(B) = 1, p(B) = {A) = 0.
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Definition 2.1. Let PyT;1-» g weakly, Then T, is said to be consistent for the family
{Pa}, if gl sy whenever PyL Py,

When the limiling measures gy and py do not exist an alternative definition of
consistency may be gwen
Definition 2.2, The statistic 7, is said to be consistent for the family {P,} if for any
given «> 0, there exists an nq(() such that for each n>ne) disjoint sets 4, and B,
can be found in 2* with the property

BI;{A)21-¢ PTMA)Se

BT NBISe PyT;U(B)21-¢
whenever Pyl Py

Tt is easy to show that the definition 2.1 implies the definition 2.2 when i1y and p,
exist.

Orthogonality of measures P, and P, implies that complete discrimination is
possible between these two members of the family as the sample size is increased
mdeﬁmlely The criterion of consistency states that the same could be achieved by

idering only the esti (as a stati in the place of the whole sample at each
stage.

There are two definitions of consistency current in literature, one of which knowa
as probability consistency (P.C.) requires that T, 8 weakly or strongly, in which
case it is casy to see that the definitions 2.1 and 2.2 are satisfied. According to our
wider concept, T, would be consistent even if T,, » g(6), a single valued function of 6,
md Dot manly 10 8. The author has shown (Rao, 1960a) that a few examples of

of m.l. est ded in literature relate to an estimate lcndmg to
a function of the parameter instead of the parameter with respect to which maximiza-
tion of likelihood is sought.

Another definition suitable for seq of independent and identically distributed
observations is called Fisher consistency (F.C.). If § S, denotes the empirical distribu-
tion function based on n observatioas, Fisher { )956) considers a statistic T, = f(S,)
where fis a functional defined over the space of all distribution functions. Then T.
is said to be F.C. if f(Fs}= 8 where F, is the true distribution function. If the
functional fis weakly continuous, F.C. implies P.C.

2.2. Efficiency

While consistency ensures that an estimate achieves perfect discrimination between
alternative distributions as n— oo, efficiency is concerned with differences in discrimina-
tion provided by an estimate and the whole sample as n-co. For simplicity, let us
consider the case where probability densities exist and only one unknown parameter
is involved. For a given 9, let P(X,, 6) denote the probability density of the sample
poiat X, in 2™ and P(T,, 6), that for the statistic T,. The best discriminator (discrimi-
nant runcuon) between alternative distributions wuh indices 8 and ¢ is the likelihood
Jatio P(X,, 6)/P(X,,4), while that based on T, alone is P(T;,, )/P(T,, ¢). Now Ts
‘is equivalent to the whole sample if

30 P00
oo il L) @

which is realized if T, is sufficient for the unknown parameter,
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In large samples it is perhaps relevant to consider alternatives close to one another.
In such a case, if the first derivative P'(X,, ) of P(X, §) with respect to @ exists, the
discriminator may be written as P’(X,,, §)/P(X,, 8). The corresponding expression for
T, is P'(T,, 9)/P(T,, §) and the difference
P 8)_P(T,.0)

- 2.2

PXd) P, 0) @d
plays a key role in studying the performance of T,. The statistic T, is equivalent in
some sense to the whole sample, when n is large, if

n=d(f,n)—~0 in probability,

where « is chosen so that n®P'(X,, 6)/P(X,, 0) does not itself converge to zero in
probability. Usually « = —$} serves the purpose.

Definition 2.3, A statistic T, is said to be efficient (to the first order) if, for a suitable
choice of «, such that the statistic n®P'(X,, 6)/P(X,, §) does not converge to zero,
n®d(6,n) -0 in probability.

There may be 2 very wide class of statistics satisfying the criterion of first-order
efficiency, in which case a further criterion may be necessary for restricting the choice
of statistics. This should depend on the rapidity of convergence of n*d(8,n) or the
asymptotic behaviour of d(8,n) itself, Since E{d(f,n)} =0, V{d(0,n)} may provide
a satisfactory measure.

Definition 2.4. The second-order efficiency of T, is

lim ¥(d(8,n)} = lim {(X,)-I(T)},

where /(X,) and I(T,) stand for the amounts of information (in Fisher's sense)
contained in the sample and in the statistic respectively.

Second-order efficiency, as given in definition 2.4, examines the amount of
information lost in using a statistic instead of the whole sample. This aspect was first
examined by Fisher (1925) when he conjectured that m.!. estimates have the least
limiting loss.

The criteria of efficiency given in definitions 2.3 and 2.4 are extremely difficult to
verify in practice. They are, therefore, replaced by simpler definitions 2.5 and 2.6,
which are formulated so as to incorporate the essential features of definitions 2.3
and 2.4 and to be equivalent to them under some restrictive conditions on the
probability densities.

Definition 2.5. The statistic T, is said to be efficient (first order) if

d(8,n)=

P'(X,, . -
n‘[’—’PL(X:%—ﬂ(J)(T,—d) -0 in probability, 23)
where §(6) is a function of 6 only.

Note that if (2.3) holds, T,, is automatically consistent, because it tends to 8 in
probability. If we replace S(6)(T,,—6) by a(8)+p(0)T,, we have a more general
situation, but this is not of direct interest in the context of the present investigation,
Definition 2.6, The second-order efficiency is the minimum asymptotic variance of

g - TBOT,~ X O T, 7, @9

when minimized with respect to A.
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In the rest of the paper we shall use first- and second-order efficiencies only in the
sense of definitions 2.5 and 2.6 respectively.

2.3, Second-order Efficiency of m.l. Estimates
It has been shown by Rao (1961) that, under some regularity conditions, the
first-order efficiency in the sense of definition 2.5 ensures that as n-+co
IT,) KX
PR i 2.9
where I(X,) and I(T,) are the amounts of information contained in the sample and
in the statistic respectively. There may be an infinity of estimation procedures for
which (2.5) is true, in which case the second-order efficiency will be of use in restricting
the choice to a subset.

1t is of some interest to examine the conditions under which definitions 2.4 and 2.6
of second-order efficiency arc equivalent. In such a case the results already proved
regarding second-order efficiency of estimates have direct significance as statements
concerning the actual amount of information lost.

Now, for a multinomial distribution, it has been shown by Rao (1961) that m.l
is the only method with an opumum second-order efficiency under the following
conditions of which the first one is purely a restriction on the chOIOC ol‘ a parameler

(i) The under id is a of the
distribution function;

(i The cell probabilities represented by my(8),...,m(6) admit continuous
derivatives up 10 the second order;

(iii) The estimating equation

SO, myfr) =0, @8
where my,...,n, are observed frequencies in the k classes, is comsistent, i.c.,
Sf{8,m(0), ..., m(0)} = 0 and has continuous derivatives up to the second order in 8,
as well as in ng/n considered as variables. A similar result may be proved in the case
of continuous distributions but this would involve some further conditions,

In the light of the above result it may be of i mteresl to examine the differences in
the d-order eff of some of estimation suggested as
alternatives to m.1.

Some of these methods and £,, the d-order efficiency computed on the basis
of definition 2.6, are given in Table 1, where

budmtia  phtide=2enps
K ; i 3 )

2
A-i}:( J ——+2,.,.
Bra™ 2;"}("/I";)' (";I";)'- fo gy
and m; and #} are the first and second derivatives of w(6).
Although all the six methods considered in Table I provide first-order efficient
estimates, they are clearly distinguishable by their second-order efficicncies. Both

1 and A are non-negative which shows that m.1. is the best and minimum Hellinger's
distance is better than the others. The modification made in the minimum chi-square
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method by substituting the sample freq in the d i for computational
simplicity seems to bring in additional loss of information,
TasLE 1
Second-order efficiencies of different methods of estimation applicable to a
multinomial distribution
Method of estimation Formula Ey
max. likelihood Znlogm N
min. chi-square X Gurmt pta
Ll
min, modified chi-squarct ):‘""%" Ty
(]
. "201
min. discrepancyt b3 ra pte+1*A
min, Kullback-Leibler separator Zmilog (widn) pth
min. Hellinger's distance I flm p+%

t The actual formulac are siightly different from those given in Table 1, but the changes
made do not affect the large sample properties of the estimates,

2.4, First-order Efficiency and Asymplotic Variance

The concept of efficiency has been generally linked with the attainment of the least
asymptotic variance for a i ] It is also believed that, without any
restriction on the class of estimates as functions of observations, the asymptotic
variance of (T, — 8) Jn cannot be less tha 1/i, the reciprocal of information, provided
only T, is consistent and asymptotically normally distributed. Unfortunately, the last
result is not true as shown by Hodges in an example quoted by LeCam (1953).
Kallianpur and Rao (1955) have given some sufficient conditions for the existence of
a Jower bound. The main restrictions imposed on T, are:

(i) T, =f(S,) where fis a functional defined over the space of distribution
functions, and

(ii) T, is F.C. and f'is Frechet differentiable.

It can be shown (the proof is omitted as it is straightforward), under the same
conditions, that the attainment of the lower bound 1/i implies that the statistic under
comsideration has first-order efficiency. It is of some interest to examine whether this
result could be established withdrawing some of the severe restrictions imposed on T,

But the concept of first-order efficiency is applicable to a wider class of estimates
which may not have any lower bound to their variance, In fact it need not bear any
relationship to asymptotic variance, and estimates with a lower asymptotic variance
may be less efficient in the present sease in certain situations. To give an obvious
example, consider the statistic T,, based on a sample of # observations from a normal
distribution with variance unity and unknown mean 8. Let

£ (%20,
ax, (2[<ad),

@n
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where £ and x,, are the mean and median respectively. Obviously T, is
for the mean of the normal distribution and its asymplollc vamnee is Jodn/n when
6 = 0and 1/n otherwise. The asymptotic variance of T, is the same as that of # when
84 0 and can be made smaller than that of % at & =0 by choosing « arbitrarily
small. Now 7,,, being stochastically equivalent to the median when 8 = 0, s, obviously,
not a more satisfactory estimate than % from any point of view. Indeed one can
construct, by an extension of Hodges’s method suggested by LeCam (1953), T, so
as to be asymplotically equivalent 1o the median for a countable set of values of #
and possessing a smaller asymp(ouc variance at these points, That would be making
the position worse. What in effect first-order efficiency demands is not that the
asymptotic variance of an estimate is a mini but its p lation with
the derivative of log likelihood be unity. For 7,, constructed in (2.7), the asymptotic
correlation is J(2/1r) at 8 = 0 and unity elscwhm whereas for %, it is unity for all 8,
If the deficiency in an estimate is measured by | —r*, where r is the asymptotic correla-
tion, then the deficiency in T,, defined in (2.7) is about 0-363 at 6 = D,

2.5. Assumptions and Notations

In the rest of the paper we shall consider only sequences of independent and
identically distributed variables with probability density p(x, §) with respect to a
o-finite measure v, and distribution function F(x). The probability density of »
observations is denoted by P(X,, 8) with respect to v,, and that of T, with respect
10 a o-finite measure u by P(T,, 8). The following assumptions are referred to in the
various propositions proved.
Assumption 1. The derivative of p(x, 6) exists and { = E(dlogp/d8)* is finite.
Assumption 2. If E, is any Lebesgue measurable set in 2%,

4. oo, [k,
“J‘ PT,, Bydu = J‘ dP(T,,,ﬂ)

It may be noted that, as 2 consequence ol’assumpuon 1, the statistic
Z, = {P'(X,, O)/B(X,, O)}\n
is asymptotically normally distributed with mean zero and variance i Further
E(Z,)=0,V(Z,)=ifor each n.
If we define
Y, = {P'(T,, O)/P(T,, O}fn,
the information contained in 7, is
V(Y \n) = nir.
If T, has first-order efficiency in the sense of definition 2.5, it has been shown by Rao
(1961) that both (T,, - 6) Jn and Y, are normally distributed in the Limit.

3. Erncient ESTIMATES AND TESTS OF SIGNIFICANCE
In this section, we establish some optimum properties of tests of significance based
on first-order efficient estimates. Since optimum tests provide a basis for interval
eslimation, a justification of the choice of efficient estimates in two important methodo-
logical problems is provided. The main results arc given in Theorems 1 and 2,
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Lemma 3.1, Let r,(6) be the power function of a test of the hypothesis Hy:0 = 8,
(a specified value), at a given level of significance a. If ry(8,) is the derivative of
ro(0) at 8, then, under Assumptions 1 and 2,

fim (1 r (0} < (Jifm e @31

where a is the « per cent point of the standard normal distribution.
For any n it is known (Rao and Poti, 1946) that the test based on the critical

region
wy = {Xy: P(X,, 8)/P(X,, 0)3 a, J(n),

where a, is chosen such that the size of w,, is o, has & maximum stope for the power
function at §,. Hence

,;(o.)<'|' PX,, B do, = Jnj Z,P(X. 0) by,
. “y
Dividing by Jn and taking limits as n-» o, we have that

B ri(0ofin <t | LTS

- J' @) ZeARHIZ = (i e, (32)
>avi

Lemma 3.2. 1f T, has first-order efficicacy and Assumptions | and 2 are satisfied,
then ip— 1.

The proof is given by Rao (1961). We shall now prove Theorem 1, which shows
that a test based on an efficient estimate has maximum local power asymptotically,
Theorem 1. Let T, be a first-order efficient estimate and P'(T,, §) > A, P(T,,. 6p),
a test of the hypothesis Hy: 8 = §, at a given level of significance a. If r,(6) is the
power function of this test then, under Assumptions 1 and 2,
lim ri(8)jJn = (Jifm)t e, (33)
LT ]
the upper bound derived in Lemma 3.1,
Following the notation of section 2.5, let
wom{Xy:Z,>¢c,) and wp={X,:Y,2b,) (39
be two critical regions of the same size «. Since i—ip = E(Z,—Y,) and iz 1, as 2
result of Lemma 3.2,
lim f (Z,— Y 2 P(X,, 0)dv, =0.
o Ju,
Hence lim J. Z,P(X,,0)dv, = lim J. Y, P(X,,8)dv,. 3.5)
n Ju, e Ju,

But 'f Y, P(T,, o,m;j Y, P(X,, 0) v,
wr v
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because Y, 3 b, is the locally powerful test based on 7, Hence

tim [ ¥, 7T, 8= lim ri@Hi
dm ). o,

» lim J' Y. P(X,, 8)dv, = lm |Z,P(X,, 6)do,
iyl N e

= (dfm)t e, (€]

using (3.2). The result (3.3) of Theorem ! follows from (3.1) and (3.6).

It is important to consider the property of the lest based on T, in the form
(To— 09 Jn> A, which is usually uscd, and not as considered in Theorem | using the
log derivative of the density function of T,. Theorem 2 shows that the same local
property is true of such a test.

Theorem 2. Let the assumptions on the probability density p(x, 8) and T,, be as
in Theorem 1. If the test criterion is U, = (T,— 0y Jn> A where A is chosen such
that the limiting level of significance is a, then r},(6,)/Jn bas the same limit as in
Theorem 1.

By definition ra(0)/n = J.v >AI" (X, 09 dogjyn

- J‘ Z,P(X,, 8o an
T2

Since | Z,—BU,| >0 in probability because of the first-order efficiency of T,, the
joint asymptotic distribution of Z, and U, exists and is, in fact, degenerate. If
F(Z, U) represents this asymptotic distribution, (3.7) tends to

[ zren-[  ar@-| e,
U>a z> 8 Z>avi
since AfB is to be chosen so that Pr(Z> AJf) = «, which proves the required result.
The foregoing analysis suggests the following definition of limiting efficiency of
a test.
Definition. Let r,(6) be the power function of a test of the hypothesis H; 6 = 6, at
a fixed level of significance a. The limiting efficiency of a test is then

{ tm ricoani) 60 69

or its square, where /(6,) is the upper bound derived in lemma 3.1,

An explicit cvaluation of the limiting efficiency is provided by Lemma 3.3.

Lemma 3.3, Let the test criterion be U, = (T,,— ) Jn> A and let the joint limiting
distribution of Z, and U, be bivariate normal with correlation coefcient p. Then
unger the assumptions of Theorem 2, the limiting efficiency of the test is p.

For a first-order efficient estimate the asymptotic correlation between the estimate
and Z,, is unity, in which case the efficiency of any other estimate may be measured
by its asymptotic correlation with Z,. Lemma 3.3 shows that this measure is directly
related to the asymptotic slope of the power function of the test based on the estimate.
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To prove Lemma 3.3, we have that

tim Lmz_p(x_,o.)a_-.[”‘zmz,w

-[,, e -[ e, 69
O»i U>a

where nU is the regression of Z on U, so that v = pogfoy,. The last expression in
(3.9), after simplification, reduces 10

(diptfmete,

and dividing by the upper bound (3.1) we obtain the efficiency of the test as p.

Sundrum (1954) observed that in examining linkage in inheritance of two factors,
the test based on the m.L. estimate of the recombination fraction (linkage parameter)
is locally less powerful than an alternative large sample test. This cannot, obviously,
be true in view of what has been established in Theorem 2, since the m.L. estimate in
this particular situation bas first-order cfficiency. The alternative test is based on a
statistic which happens to be efficiens when linkage does not exist, i.c. for a particular
value of the linkage parameter. Hence it is expected to have the same local property
as the test based on the m.l csumm for this pamculu value of the parameter.
Sundrum’s result is, therefc ially as he claims to provide a
justification for a statement attributed to Fisher (1950, pp. 314-315) that good tests
may be based on inefficient estimators. The particular inefficient estimator referred
to by Fisher happens to be efficient at the point specified by the null hypothesis, and
it provides a test as good as the m.L estimate, bul not better. The results of section 4
of this paper will show that cfficiency in an interval of Lhe unknown parameter ensures
some other desirable properties.

4. STRONGER FIRST-ORDER EFFICIENCY AND TESTS OF SIGNIFICANCE

The limiting properties proved in Theorems | and 2 state that, compared to
any other given test, the power of a one-sided test based on a first-order efficient
estimate is not less (and is perhaps better) in a neighbourhood of 6, for each suffi-
ciently large n, but the neighbourhood may depead on a. It would, indeed, be better
if it could be claimed of any test that its power cannot be less than that of any other
given test in a specified interval of 8 for all sufficiently large n. 1t appears that such
a statement can be made if the test is based on an estimate that bears a relation to Z,
stronger than that implied by first-order efficiency.

Lemma d.1. Let w, be a critical region of size a,, in 2™ for testing the hypothesis,
H, -8 = 8, and B,(8) the second kind of error. If a,, is bounded away from unity,
then

p(x, 0)
Px, B)

If (8, 6) = — oo, there is nothing to prove. Let u(0, 0y be finite and define
w, = R, —w,. Then

i, 108,13 . 0o Forgh oy = (6,0 @D

[ Aromd =1 Bn[ P04
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PRI R W L

e frm{ -] e,

Heace Lim n~tlogf, > (6, 6), .

since, by the mean ergodic theorem (Doob, 1953, p. 469), the second expression in
{4.2) tends to zero.

Lemma 4.2. For the likelihood ratio test P(X,, 6)2 A, P(X,, 9.,) such that the
size of the critical region a, >, 0<a<l,

lim n1ogB,(6) = (6, B) (4.3)

where u(8, 8,) is as defined in Lemma 4.1,
By definition

Bu= [ PO, oy 53, P(Ru, 600, = l1 -,
R

. P(X,, 0
Sinee n"log{P(xm 00)] (6,8

ia probability, we have, as observed by Basu (1953),

Ay = exp{n(8, 6g) +oln)},
provided u(6, 6,) is finite. Hence
lim n"logﬂns lim n"llog(l —a)+ hm n"log,\, w6, 6). 449
nw
If (8, 8,) = —oo, then n-‘logA_ can be made less than —k for any given positive k
by choosing # sufficiently large. Hence the limit of the right-hand side of (4.4) is
< —k. Since k is arbitrary,

Bm nlogf, < —oo.
fwes

On oornbim'ng (4.4) with (4.1) of Lemma 4.1, the required result is obtained.

It is stated by Chernoff (1956) that the result of Lemma 4.2, which is mdependen(
of the limit of «,, is contained in an unpublished paper by Stein. The author is not
aware of the conditions imposed by Stein, but it is interesting that the result néeds
0o assumption whatsoever to be made on the likelihood ratios.

Corotlary. 1f B, and (8, 8;) are as defined in Lemma 4.1 and

w6, 8g) = — (6~ 6% i(0) +o{(8— 6"
tgn im ' ,“:m \ ! loxﬁn.).£9)> _@ @5

Bahadur (1960) proved the same incquality whea 8, is replaced by the probability
of conceatration of a consistent estimate in the neighbourhood of the true value 8.
We shall in fact show insection § that the probability of concentration of a tonsistent
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estimate round the true value is related to the power of a test based on the estimate
in & simple way.
The inequality (4.1) is, however, quite general, and if

%-»k(%) 8 00,

where 3(6, 8,) is a non-negative function such that 8(, 6,)-»0 as 8-+ §,, then

.. ntlogB.(6)
lim Nm ——r 2> k(%),
i 50,00
which is a general form of the type of inequality given in (4.5).

Lemma 4.3, Besides Assumptions 1 and 2, let (i) the moment generating function
of z(6,) = p’(x, B,)/p(x, 8,) exist for each true value of the parameter § in the neigh-
bourhood of 8, and (ii)

J.z(oa)p(x.ﬁ)dol-(9—00)1(0°)+o(0—0‘,) as 00,
J'za(o,,)p(x,a)du,=i(0,)+o(l) © 66,

and jf(eop(x.ma,

be bounded as a function of 4 in the neighbourhood of 8,

Then for the test Z,(8,) > A (fixed)

o Wi logBa(6) _ K(8)
lim lim ———— =——",
0+ n>® (9_ 00)’ 2
where B,(6) is the second kind of error.

Lemma 4.3 shows that for the test Z,(65)3> A, which is known to be locally most
powerful on one side, the stronger résult (4.6), which ensures its superiority over any
other test in a neighbourhood of 6, as n—+co, is true under the additional conditions
(i) and (ii).

Under the conditions (i) and (if) it is easy to show that

4.6

108 G(6, 6,) = log | exp{—(8— bp) 2(8)}plx, B) iy

~log [1 -Q‘zﬂx(o,m«o-m] )
Therefore .
lm (9~ 09 log exp(—(O- )OO =~ )

80,
Cousider J'exp(—(o—00(Z.(€.>-A)Jnlr.(x,0do,
= exp(N0- GG, 0. (48)
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By TchebychefT's inequality, (4.8) is not less than

f P(X,, B)doy = Bo(6)
Zaid) <A
provided (8- 6,)»0, and therefore
g < 0 10g 0,8
ad [ il L gl O} “9)

totsne (-0 27
using (4.7). Combining (4.9) with (4.5), we obtain the result (4.6).
Corollary, 1f the test is of the form |Z,(6,)]> ), and £,(8) = Pr{{Z,(6)]| <A|6),
then, under the conditions assumed in Lemma 4.3,

nlog£,(6) _ _i(By) .10
R = S ®19
where 0 can approach 8, from either side.
It is casy 1o sce that f.(’)(ﬂ.(ﬂ) of Lemma 4.3. Hence (4.9) is true with ,(6)
replaced by §,(8). Similarly it can be proved that

tim 10860 _ i) @i

R (e~
Hence (4.10) follows.
Lemma 44. Let x be a random variable such that E(x) =0 and 0< E(x") <c0.
Also let $(1) = E(e'¥) << for all 1 with || < 8> 0. If £ is the mean of # independent
observations on x, then

Pr(|%]> ¢ = exp [~ dneq{1 + 8 (Y E(xT), “n)
where lim lim §,(¢) = 0.

=>ins+m
‘This lemma is due to Bahadur (1960}, who uses the earlier work of Cramer (1938)
and Chernoff (1952).
What we need for pn:vvmg l‘unher resulls is the inequality (4.14) given below,
which may be deduced i deatly or by applying (4.12) to the random variable
Pl V)IP(X. 6). Inour notation,

logPr(Z in|> Q) = - ,)(I+8.(«)),

lim r‘logPr(lZ.Nn|>()=—W 413
which implies that, considering Z,,/i instead of Z,,, for sufficiently large n,
logPr(1Z,/li Jn}| > ) <exp{~ jnei(B)}, (.14

where ¢’ <¢,

As observed carlier, the property proved in Lemma 4.3 is expected to be true of
a test based on an estimate T, provided there is a strong stochastic relationship
between T, and Z,, which may be called stronger first-order efficiency of an estimate,
This is stated in Theorem 3 which establishes the corresponding result for a fest based
on an estimate.
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Theorem 3. Let T, be an estimate such that for a given ¢, either

Pr(T, - 0-Z,(OHiVn}|> (| T,~ B; )<p3 (4.15)
or Pr(T,—6-Z,(0)/liyn}]|> dZu( D/l Jn}]; )< 3,

where p, <1 and is independent of @ for some interval of  enclosing 6, Then for
the test (T, - 8,) Jn 3 A of the hypothesis H, : § = 6,

- ntlogh, __i(6)
BT (e i @19
By definition B =Pr((T,—8)Jn<]; 6]

=P T_-o<7)‘,-,-(a-o.); o].

Let us define the events

A= (X, | T,=0-Z,(B)/(iyn}] < | Tu—B);

B (X2 |Zu )] <h= AW (1 =€) for h=(9—0)>0;

C= (X, |Ty— 8 <h—A\n).
It is easy to sce that events A and B together imply C. Hence

Pr(C)> Pr(48)
or 1-Pr(C)<1=Pr(AB)<1-Pr(4)+1-Pr(B)
<pr+exp(-nri(B)(1- ), @1

for large n, where ¢ > ¢, using the result (4.14) for 1 —Pr(B). Keeping « fixed we can
decrease A such that the second term in (4.17) dominates over p2. Hence for suffi-
ciently small &

T nlog{1 ~Pr(C)}< lim n~loglp?-+exp{~ni(8)(1~Y9)
- _H1-cPig)
SAUX

Dividing by 4 and taking limits as 40,
— — log{l—Pr(C)} —i(f)(1-cP
lim lim —————=———=,
AbOn—+r nht 2
Sinoe ¢ is arbitrary, .
7= w— log{1-Pr(C)} —i(6)
lim lim ———=¢——. 4.18
As0n+ nit 2 @18
Further, since B, €1—Pr(C), the result (4.18) remains true with B, in the place
1-Pr(C). Noy using (4.5), the result (4.16) of Theorem 3 is established.
Corollary. For the two-sided test|T,— 6] Jn3 A,

. P log B (09
lim lim 2 —28Fs 270
ttroo -0 2
The proof is on the same lines as that of the corollary of the Theorpm 2.
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5. STRONGER FemsT-ORDER EFRICIENCY AND LoiimNG CONCENTRATION
1n this section, we shall consider the problem of limiting concentration as developed
by Babadur (1960). As observed carlier, the main result is a consequence of Lemma 4.1
which provides a lower bound to the second kind of error. The same bound holds
for the probability of devialion of an estimate from the true vaiue by a given amount,
under a mild restriction on the estimate. The connexion between the second kind of
error which plays a fundamental role in the Neyman Pearson theory of testing of
h and the probability of deviation in an estimate has been exploited by
Bimbaum (1961) in pmvmg some optimum properties of m.l. estimates in small
samples. The atiempt has not been completely successful in the sensc that no general
statements could be made about m.l. estimates, which shows that the small sample
problem may have to be viewed from an entirely different angle free from the concept
of long-run frequency of errors in the estimate (Barnard, 1949).
Lemma $.1. Let T, be a statistic such that Pr(T, > 8; 6) is bounded away from
unily as n-» o for each § < 8,, then for A>0

lim #1108 Pr (T — 6 < h; 6 sl By 61
10 (B 8y B) = = HY1(8+ off¥), then
lim lim At Pe(T, = Oy < = B> ~X02, 62
A+On—+

Consider the test T, » 6,—h of tbe null hypothesis, Hy: 0 = 6,—h. The second
kind of error when 6, is the true value is Pr(T, < 6,— h; 8,). Hence an application of
Lemma 4.1 gives the result (5.1). Equation (5.2) follows from (5.1) by considering the
expansion of u(8y, §,—4).

Lemma 5.2, due Lo Bahadur (1960), follows from the results of Lemma 5.1, The
conditions imposed by Bahadur are, however, slightly differcnt.

Lemma 5.2. 11 T, is a statistic such that onc or both of Pr(T, > 0; ), 8< 8, and
Pr (T, 8; 6), 8> 0, are bounded away [rom unity as n o, then

lim lim LP'(UJ_) @ 3

K=0nowm

Let Pr(T, > 0; 6) (6 < 8,) be bounded away from unity. Then (5.3) follows from
(5.2) by observing that
PrTa- 61> )3 Pe(T, - by < ).
The same result can be established if Pr(T,<6; 8) is bounded away from unity

for 6> 8,
Theorem 4. Let T, be such that for given «, when §, obtains
Pr( T~ 8= Z (Bftin}| 3 €| T B} < p» (5.4
or Pr{| T~ 8= Z, (Bl )| > €| 2,01l )} < ™, (5.9

where p< 1, may depend on &, and «. If the conditions of Lemma 5.2 are true, then

logPr((Ta—0|>h) 6y
] 69
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The proof of Theorem 4 is analogous to and somewhat simpler than that of
Theorem 3. Theorem 4 establishes an important property of estimates strongly
related to the derivative of log likelihood. It says that when the stronger relation
holds the m.l. estimate has a maximum concentration round the true value.

6. CONCLUDING REMARKS ON EFFICIENCY

It is observed that the derivative of log likelihood as a function of the observations
and the unknown parameter, denoted in the paper by Z,(6)|n, plays a fundlmenul
role in probl of when
on discrimination between aliernative values of the parameter clou to cach other
(Rao and Poti, 1946; Wald, 1942). We enquire whether Z,(8) can be replaced by &
statistic T,,, which is a function of the observations only, for purposes of statistical
inference. If we demnnd that T, should have the same propeny as Z,(0) in finite
samples, it is y » one to one the two for
each §, a situation wlnch is not usually obtainable. Ina ® recent paper Birnbaum (1961)
makes use of a strong dependence of T,, on Z,(6) such as

{X\: Z,(0)<0} = {X,: T,< 6}, (X,:Z,(0)>0}=(X,: T,,>6),

where T, is assumed to be the unique root of Z,(f) = 0, to deduce admb:lbllny and
local besiness of T, as an estimate of § in finite samples, from the corresp
properties of admmlblhly and local bestness of the test based on Z, (). These are
extremely special cases and it appears that one has to consider large samples in order
to say something definite, in general.

The various types of depend in large sampl idered are

(i) {Z,(6)—B(6)(T,— ) yn} >0 _in probability;
(iia) Pr{Z,(O)/(iJm}-(Ty= |3 ¢|T,— O} <p* (o<1
(iib) Pr{|Z,(O(in)=(Ty =03 | Zu BN} < (p<).
(iif) The asymptotic variance of
Z,(6)yn—nB(6) (T, ~ B)= nMB)(T, - 6

is 2 minimum for a suitable choice of A.

The last one, (iii), called second-order efficiency, ensures that the equivalence
between T, and Z,(6)/Jn takes place at the fastest rate as n—»co, The first two imply
that T,, in large samples, has the same properties as Z,/Jn. Condition (i), called
first-order efficiency, ensures the same local properties as Z,/Jn for T, while (iia, iib),
which are stronger forms of first-order efficiency, imply that T, is, in some sense,
sufficient for parametric values in small specified intervals in which supremum of p
is less than unity. The existence of p for cach 8 in conditions (iia, iib) ensures that T,
as 8 consistent estimate has the maximum concentration round the true value as
n-»w,

It has not been possible in the present paper to examine the concept of asymptotic
sufficiency of estimates as introduced in relation to tests of significance by Wald (1942)
or as implicit in Barnard’s work (Barnard, 1949), where he tried to approximate the
likelihood by a quadratic function of the m.l. estimate, or as rigorously formulated
by LeCam (1956). There are obvious connexions with the results of the present paper.

We may now ask whether m.L. estimates satisfy any of the conditions (i), (ii) and
(iii). In the case of the multinomial distribution, which has beeg studied somewbat
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thoroughly, it is known l}m estimates exm for which condition (i) is realized whea
the cell probabilities as fi of the admit i first
derivatives (Rao, 1960b) and conditions (ii) and (Ill) are realized when continuous
sccond derivauves exist (Rao, 1957, 1958, 1961). If the paramcter chosen is a con-
tinuous (unctional of the distribution funcunn, such csumalcs may be identified as
m.), esti In the i case n ilable to
answer all the questions relating to oondluons (1), (if) and (i), exa:pl for a recent
contributioa due to Bahadur (1960), who imposes rather severe restrictions on the
probability density. Partial answers exist in the work of Cramér (1946), Daniels
(1961), Doob (1934, 1936), LeCam (1953, 1956) and others.

Some may object to the mder concept of an esmnau ldopud in the present
paper, maintaining that esti procedures should be di d in terms of point-
estimates and their c/oseness to the true values of the parameter. The latier approach
brings in an extrancous clement requiring as 2 datum of the problem a measure of
closencss in some average sense. Ofien what is adopted is not a measure strictly
appiicable to a given practical situation, but some function which is justified as a
close approximation to the true one, or which is commonly adopted and which
provides algebraic convenience in the derivation of estimates. According 10 the wider
concept, what is made available is a suilable summary of data which offers some

in drawing infe about unk There could be a
valid criticism that the wider point of view offers only a partial solution and no
guidance is provided in reaching decisions from estimates.

Fortupately, there is no scope for any argument in the case of large samples, for
the "summary of daia” in the form of an m.l. estimate appears to be satisfactory
from all points of view. It is a point-cstimate which has an equal or a greater chance
of being closer to the true valuc than any given cstimate as the sample size increases.
It eoables a ready and a reasonable test to be made for any simple hypothesis or for
obtaining an interval estimate. Above all, a good approximation to the likelihood
function can be obtained as an explicit function of the m.). estimate at least in a small
imerval of the parameter round the true value, under suitable conditions where the
m.l estimate has maximum second-order efficiency. | hope it would be possible to
provide an equally satisfactory answer, though not on the same lines, in the case of
small samples.
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DiscussioN oN Paper 8y Professor C. R. Rao

Professor M. S. BARTLETT: Many of us have in the last few weeks been listening to
quite a few lectures by Professor Rao, including three lectures which he gave at the
invitation of the University of London, various seminar talks, and now tonight’s paper
to our Society. 1 am sure that in proposing the vote of thanks for his paper you will
allow me to congratulate Professor Rao on all his lectures, and welcome him back to
England on what I trust he is finding a pleasant visit.

The first of his University lectures was not unconnected with his present paper, for
he was discussing large-sample tests, and in particular the chi-square test, suggesting at
one point that Lhe log likelihood ratio test should be more sensitive than the alternative
quadrauc chu-squarc expressmn for small d ies, and the dratic form more

to targe di The 1 made 1o Professor Rao afterwards was that
10 classify the two procedures correctly in this way would require rather careful attention
to their distributions, for, although we know that they are asymptotically the same on the
null hypothesis in large samples, the question of the second-order departure from the
chi-square distribution would be very relevant. Actually I have shown that to this next
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order of approximation the two exp are equi on the null byp at Jeast
in distribution (Biometrika, 40 (1953), J06).

The same kind of remark scems to me relevant to his presenl paper. Professor Rao
bas given some very interesting and carefully discussed propertics of large-sample estimates,
and maximum likclihood ones in particular, but he has still tended 1o concenirale on their
inference properties rather than their use simply as tsumam Now to do this comprehen-
sively does, to me at least, require a correct k gc of their n
well as of how asymptotically “sufficient™ they are. Thus in definition (2.6) Profmor Rao
defines second-order efficiency in lerms of the vanance of the difference between the log
likelihood derivative and the best quadratic function of T— 8. But it is nol too clear to
me how, Il at all, he proposes Lo make use of this quadratic function. He doces nol say
what its distribulion is, nor does he scem to stress 1hat it involves optimizing coefiicients
which are of the unk 8. If his purpose, as he himsell rather
implies in his paper, is (o use a function of & which approxil 1o the log likeithood
derivative, why nol. as was my own sysiematic purpose in the paper that 1 have just
referred 10, use this function itself ?

We are often told to study the likelihood function directly: the advantages of the
loganithmic derivative are that it is usually very well behaved (especially if we choose the
right function of the unknown ) and its ling properties, including normality
properties, are much more casity and exactly investigated, 10 the extent of our making
second-order corrections. | believe in discussing concrete problems, so let me refer to
two examples to illustrate these points, First, let me remind you thal if we plot Z, /n = L',
say. as a function of & we hope to get a straight line near the point Z, = 0. If we do, and
the slope 1$ also — /.. a constant independent of the sample, then we can specily # and 1,
in place of L, say. and /.. this is the first-order situation and 1o this order we cannol
duungmsh the two al(emauvﬁ. as Professor Rao notes when referring to the linkage

problem di dby$S

Let me. however, write down the nexl order cquations in the developments of
80 =0-0and A8 = 6,- 0. Theyare

. .
i ”~ EL(L +h), wy L] m
which is equation (13) of my paper and
AO(L +I) (AGY L")
Jh A9+JI ~‘,—+l T ] @

1t is not clear to me off-hand which will provndc the better lest of 8 = 8, but it is not
100 difficult 1o invesligate this question, although easier for (2) than for (1). Sundrum
concluded in the linkage problem that in cerlain circumstances the lest based on L, is
better: though he did not altogether justify his neglect of bias and non-normality, aspects
which it is possible 10 allow for when necessary. [f my algebra is correct, the bias in
in the linkage problem is zero (o the next order, and the non-normality correctiolf the
same for both siatistics, so that Sundrum’s conclusion appears unaffected.

As a second example, let me recall that in the physical estimation problem (Phil. Mag.,
44 (195)), 249) which slimulated these higher approximation methods based on L', was
the eslimation of the mean lifetime & of a certain fundamental type of particle from
observations of decays over a limited (and variable) track length. | notwed that L'f{/ in
the neighbourhood of 1/8 = 0 was of the form 8/8 - A, and hence linear in 1/8. 1t was
Ihess much more sensible to estimate 1/8 than 8, the maximum likelihood estimate of 1/8
being 0-256 + 0-198 x 10" sec~*, and the upper 0-95 confidence limit for 1/, inferred most
accurately directly from L’, being 0-621 x 10',

Thus, while 1 agree with Professor Rao that it is most |mpomm to mvcsuga(e
second-order app i in larg ple tests and estil p , [ am less
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convinced of the practical value of some of the proposed definitions and results in his
plpler..m very pleased to move the vote of thanks to Professor Rao.

Professor H. E. DanteLs: Confronted by a paper of such excellence and o full of
new ideas, I find it difficult to follow the tradition among voters of thanks that praise shall

be m some exteat salted with blare. So perhaps I may be allowed to fall back on another
ition that ion at our ings may be broad to the point of

lrrelevanw

Professor Rao measures the first-order efficiency of an estimate in terms of its correlation
with 8L/28, the derivative of the log likelihood L(X,, §). This is the best discriminator
between neighbouring hypotheses under the assumed regularity conditions. It is interesting
to see how far the idea may still be appropriate when the regularity conditions are relaxed.
For densities like p(x, 6) = §e~'=-", 3L{08 has finite discontinuities in @, but it is still a
good discriminator because L is a convex polygon in 8 whose flat portions are of order n-?,
In such cases I have shown (Proceedings of 4th Berkeley Symposium) that the m.). estimate 12
is still asymptotically efficient in the old sense. On the other hand, for

plx, 0) = cexp{~|x-8}} (§<a<l),

8L}38 keeps varying belween —c0 and @ over Inlervals ol‘ order n~! near the true @ and
so is useless for di ing between hbourin; h Nevertheless, the
information function 1(0) = aT (2= (W T{L+(1/a)} is well defined. The function L is
not now monotonic in | #— 8| but exhibits a series of cusps as & passes through the
observation points. However, 1ls ﬁucluahons are relatively small when n is large so that
L can still be idered ap) ic in |50 By1. ln cases Like this it is still

p
possible ta obtain an asymptoti eI‘u‘uem i by izing L over a discrete
mesh of values of 8, provided the intervals of the mesh decrease with n faster than n
but slower than n-Y. It scems possible that by working with differences of L over such
intervals, rather than with 3L{38, Professor Rao might extend his results 1o some extent
to cover less regular situations. The definition of second-order efficiency would have to
be modified because the remainders in these cases are typically worse than O(a-Y).

There is another aspect of the example ¢ exp{—| x— #|°} which is worth considering.
As an estimate of 8 the sample median x has efficiency sin [m{(1/e) - 1))f[={(1/a)-1}).
This is unity when a = 1 but falls to zero as « decreases from 1 to §. To improve on the
median, consider an estimate T = Ax; +px;+ Ax incorporating the quartiles xy, xp also.
1t is unbiased when 2A+p = 1. If A and p are chosen to minimize its variance it will be
found that when } <a <1, A turns out to be negative and = exceeds unity. For example,
when « = § it is found that T = —0-1x;+ 1-2x—0-1x; approximately, at any rate for large
samples, and T has efficiency 63 per cent. as against 57 per cent. for the median. This
estimate has the curious property that a high value of the upper quartile, for example,
results in a low vatue of 7. The “tails" of the sample provide what might appear to be
misleading information about & which has to be contradicted in the estimate, a fact which
is related to the non-monotonic character of the likelihood ratio,

The estimation of location and scale parameters by linear functions of the order
slatistics has been studied extensively by Lloyd, Plackett, Mosteller and many others.
Particularly relevant to the present discussion are the book by Blom, Statistical Estimates
and Transformed Beta Variables (New York: Wiley, 1958) and the apparently indepeadent
work by Ogawa in Osaka Mathematical Journal, 1951-52. It is shown that if all the order
statistics x,, are used, the estimate T = ZA, x(, isasymptotically fully efficient for a location
or scale parameter 8 if A, is proportional'to — & log p(£., )/26%, where £, is the popuda-
tion quantile, or to an analogous quantity when the derivative does not exist. The A, do
not involve 8, The mull holds under wider regularity conditions than are normally

for m.l. , in small samples the estimales have “best linear
unbiased” properiies. For location and scale parameters this methdd of estimation is a
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serious itor to i likelihood and | was a little surprised that Professor Rao
did not include some comparison in his paper. To encourage him to examine these estimales
further | will hazard a conjecture that they have the same second-order efficiency as m.l,
atimates.

It is & pleasure to second the vote of thanks Lo Professor Rao for his excellent paper.

The vole of thanks was put 0 the mecting and carried unanimously.

Professor H. Crianory: | would like to say a few words in defence of the relevance
of the asymplotic variance as a measure of the efficiency of an estimator.

In small-sampic theory it is generally difficult 10 specify optimal statistical procedures
without resorting 10 arbitrary criteria or assuming some a priori distributions. 1t is usually
possible 1o improve the performance of 1 procedure for some values of £ at the expense
of harming the performance at other valucs of 6. Consequently it is difficull to compare
the procedures.

The classical phrasing of the effick of likelihood esti seemed lo
indicale that via considerations of large-sample theory one could find asymptotically
optimal procedures. 1t seemed (o indicate that performance could be mpnmd al one
point only at the expensc ol ruining it (ack of consi
of wpgf.cfﬁcm\cy proved that this was not so il uniform excellence of the asymptotic
varianoe is the criterion of asympiotic oplimality. However, Stein's variation of the
Cramér-Rao theorem (Chernofl, 1936), which does not employ regulanty conditions on
the estimators, indicales that all we need do is refax our criterion of asympiotic optimality
slightly. This theorem shows that it is impossible 10 do subsiantially betier than the
Cramér-Rao bound everywhere in any open interval. From this point of view one can
argue thal supe » and the exi of B.AN. esii do not force one to
abandon asymplotic variance as 1 measure of oplimality but merely point out that
asymplolically optimal procedures are not unique.

1n his concluding remarks Professor Rao criticizes the use of lppmxlmauons 10 some
measures of closeness. | would like 10 mention some results in the dissertation of
W. D. Commins, an abstract of which has appeared (Anan. math, Statist., 31 (1960), $32). 1If
one takes /{7, 8) as a measure of the loss of wiility associated with estimaling 7 when &
is the true value of the parameter, then the expecied loss derived from the use of an
estimator T, would be EpKT.. 8). I it were assumed that /s, ) were quadratic for

cach 8, ic.
1.8 = -0

with o{8)>0, then the mean squared error would be a relevant measure of the goodness
of the esti However. the quadratic loss is not always applicable. Worse, according
to the theory of utility, utility must be bounded and therefore it is never really applicable
when § is unbounded. On the other hand. one may frequently assume that /{1, 8) is locally
quadratic, i.c. one may be able 10 approximate /{1, 8) by c{8) {1~ 8)* for ¢ sufficientiy close
10 6. Whal happens then 10 the expected loss as #n -7 Under mild conditions. the
expected loss is here beiween the asymptotic variance of the estimator 7, and the
variance of T.: the latter quantity may be larger. Furthermore, Commins proved that
for the maximum likelihood eslimator (subject to regularity conditions on the distribution
function of the dala) 1he expected loss is given by the asymptotic variance. This, together
with Stein’s version of the Cramer-Rao theorem, shows that no estimator can do substan-
tially better in any open interval. ln this sensc we have the efficiency of the maximum
likelihood esti without a particular form for the loss function,

1t must be admitted that in spite of lhe genetal applicability of locally quadratic loss
functions, there are cases where other loss (unctions are called for. It would be interesting
if one could prove that, given an arbitrary loss funclion, there is an appropriate function
of the maximum likelihood estimator /.(T.) = T, for which the expecied loss is asymptoti-
cally minimized. The proof or disproof of such a generalizalion of Commins's result
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would undoubtedly relate to and depend on many of the ideas expressed in Professor
Rao’s paper.

Professor G. A. Baanarp: [ wish to add my congratulations to Professor Rao. [
am sure we have all been most impressed with the range as well as wilh the depth of the
contributions he has made during the course of his visit to London.

1f 1 may follow Professor Danicls in not being too closely relevant, and perhaps follow
also Professor Rao in that respect, 1 would Ilkc to comment on the first section of his
paper where he di the of This is not altogether relevant to
efficiency, but it is a topic worth dwcllmg on. Profmor R:o s definition of consistency is
formulated with reference 10 the possibility of ically between two
distributions and it has the propeny that the usual estimate s* of lhc variance is a consistent
estimator of o as well as of o*. This rather affronts our usual notions of what is meant
by consistency and I want to point out that one can get over the difficully in this particular
case by referring to the group properties of the problem. The reason we consider usually
that s* estimates o* lnd does not estimate o can be expressed by saying that if all the
observations are iplied by a a, s iplied by a', and o is o, but o is
multiplied by a.

The group covariance property is relevant also to the examples of super-efficient
estimales duc to LeCam. These fail to satisfy the reasonable group properties that one
would normally require of them (they are not covariant under the translation group), and
I am glad to learn this cvening from Professor Chernoff that there is a theorem which
implies that one cannot construct such examples which are group covariant.

1 do not wish to suggest that the difficulty of this definition of consistency can aiways
be repaired by group considerations, although the range of cases in which it can be so
repaired can be considerably extended il we use the idea of local group. That is to say, if
we apply these notions under the restrictions that « lies close to the unit element of the
relevant group. But in fact I think that no wholly satisfactory single definition of consis-
tency is ever likely to be given. The original idea of consistency used by Gauss in connexion
wuh lh: theorem of Ieasl squares, which condition has so Iong in the textbooks been so

ly and mist laced by the condition of d was based on the
fact that in the problems that Gauss was considering one could distinguish between true
values and errors. Gauss's consistency requirement was simply that when the observations
were free from crror the method of estimation used should give the true value. This is
very close to the Fisher consistency definition which Professor Rao mentions, but that
generalization, ingenious though it is, suffers from the disadvantage that it is restricted
to functionals on the empirical sampling distribution function. Not all the usual statistics
are definable as such, for it is a general property of all such functionals that if the same
set of observations occurs twice over in a sample of double size the sample distribution
function is unaltered. But, for example, s* will become (27-2) s*/(2n—1) instead of
remaining unaltered. Therefore the usual estimale of variance fails to be a statistic in
this sense. One might try to repair this defect by introducing well-behaved factors, such
as.functions of n whlch tend monolomcﬂlly 10 1; but | really think that the tendency to
look for a single defini of licable to a wide variety of different circum-
stances, is an ple of the tend: lo implification in a mathematical sense,
which has been endemic in the field of statistics for many years past. | do not think the
search is likely o succeed.

Now [ wish to comment on the main part of the paper. In spne of the emphuns which
Professor Rao has placed on the imponance of regarding as discri it
still tends to be overlooked that most of the definitions of consistency, second-order
efficiency and so on can be applied to “estimators” of the form (r,, 1) used for estimating
a single quantity 8. There is no restriction to a single number. 1l one is reducing data
one can reduce it to a pair of numbers, or 1o a triplet, as well as to & single number, and
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this possibility should be borme in mind. It would help to get us away from the misleading
concept of point estimation, which I think does a great deal of harm.

Finally, I would like also to comment, and I do not doubt that Professor Rao wil
agree with this, that nothing in this paper, or indeed nothing (hat bas been said tonight,
detracts from the desirability, in the small finite samples which unfortunately we wre
given in practice, of looking at the whole of the likelihood function. Thanks to computers,
we can now so often do this.

Professor D. V. LinpLey: Tonight's paper cannot be comsidered apart from two
others that Professor Rao has given at the Berkeley Symposium (1961) and at the Tokyo
meeting of the International Statistical Institute (1960a). In the trio he has developed a
highly interesting account of maximum likelihood theory approached (rom an original
and illuminating ange, and our Society is much honoured by his presenting his paper.
Professor Rao follows in the footsteps of Fisher in basing his thesis on intuitive considera-
tions of estimation that people, like myself, who lack such penetrating intuition, cannot
aspire to. We are forced to follow more pedestrian paths and it is such a pedestrian
spproach 10 estimation that I would like to consider this evening.

The probiem of large-sample estimalion was discussed in the paper thai | gave 1o the
Berkeley Symposium, but there it was treated as a decision problem with an explicit
statement of both a ulility function and a prior distribution. The best estimale was one
that maximized the expected ulility for a given observation. Only the product of utility
and prior probability enters into the calculations, and this function can be wrilten w(d, §),
for an estimate (or decision) d and & parameter 6, and called a weight function, It was
shown Lhat the expecied utility may be expanded in an asymptotic series which is

proportional to
Ly _SL3) (law_m
"""lm“m:] G- ©
as far a3 the terms of order a~'. The notation here is as follows: L is the log-likelihood
and L, is its ith derivative with respect to 8; w, is the ith partial derivative of w(d, 8) with
respect 1o 0; all the functions are evaluated at d and &, the maximum likelihood
estimate. The omitted constant of proportionality is a function of 8.

The first term in (°) is O(1), the other two are O(n~1). If only the first is retained the
expected utility is w = w(d, §) and the optimum d is that which maximizes w(d, §). In
other words one should act as if 8 was known (o be the maximum likelihood value. Thus,
10 first order, the maximum likelihood estimale is the best, and this corresponds to ils
known first-order efficiency properties. It is important lo notice thal this result does not
depend on the form of the weight function, provided only that it is sufficiently well behaved.
In all this discussion the appropriate regularity conditions are assumed to obtain.

1f the terms O(m~") in (*) are included we might expect to obtain a belter estimate by
maximizing this over d. instead of just w(d, 9). This will lead us to an estimate having $me
sort of second-order i and therefore perhaps with Professor Rao's. It
was shown in my Berkeley paper that, in general, the new estimate will not be the maximum
likelihood estimate but will differ from it by a small amount. The exact form of this
difference will depend upon the derivatives, w, and wy, of the weight function and upon
the derivatives of L up to L,. An explicit form for it was obtained in a special case. Now
this is quite contrary to the results given by Professor Rao, for example, in Table | of
tonight's paper. He claims that the above difference is zero and that the maximum
likelihood estimate is best, even to sccond order. There would appear to be a discrepancy
somewhere.

1t therefore occurred to me (o see whether there was some special form of weight
function for which vven (*) would yield the maximum likelihood estimate. This would
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happen if the third term in (*) were to vanish, for then (°) would be proportional to w(d, 8)
mdﬁnnmeuwmemuwilhmﬂm-orducuevom:hoWOwbem For the third
term to vanish it is necessary that

wily=wly,

the arguments still being d and J. This will certainly be true if the same equation holds
for all d and 8. (For this to happen the weight function will also have to depend on the
obeervations but the results persist even if this is $0.) Again this cquation is satisfied if w,
is proportional to L(6) which implies w = AL,(f)+ B, where A and B are functions of d,
and possibly the observations. It never has any effect on the determination of the best
estimate if an arbitrary function of 0 is added 1o w: and by this device it is possible to
work in terms of losses. Then we may take
w(d, 8) = {Ly(d) - Ly(O))".

Qur result then says that with this weight function the best estimate (to second order) is
the maximum likelihood estimate. I do ot know whether there are any other weight
functions with this property, but 1 suspect not.

The discrepancy is thus resolved. The weight function just derived is essentially
equivalent to that used by Professor Rao (Definition (2.4)) and the argument given here
provides a little support to his claim of the superiority of the maximum likelihood estimate,
Nevertheless, an extremely important proviso must be inserted. Unlike the first-order
efficiency, which is true for most weight functi the second-order effici depends
critically on the weight function. Professor Rao has hidden this dependence and thus
made the method appear to be better than it is. For example, if the Hellinger distance had
been used for the weight function it is quite likely that Hellinger's estimation method would
have emerged victorious in Table 1. An cstimation procedure can only have its second-
order efficiency judged in connexion with some form of weight function,

Mr A. STUART: The preceding discussion shows that Professor R2o was oo modest
in apologizing for the subject-matter of his paper. He should have been warned by the
experience of Professor Lindiey, who once {J. R. statis1. Soc. B, 15 (1953), 30) went 3o far
as to apologize for the mathematics of his papes, was taken to task for doing so in the
discussion by Professor Neyman, and in his reply 1o the discussion very nearly apologizes
for his original apology. | do not wish to press Professor Rao this far, but only to say
that he could hardly have chosen a more relevant or important topic.

1 should like to confine my remarks to section 3 of the paper. My starting point is the
definition (3.8) of the efficiency of a test. In the circumstances of the paper (variances of
order n-, principally), this is exactly the square root of the Asymptotic Relative Efficiency
(A.R.E.) of a consistent test as defined by Pitman in 1948; this definition was later
generalized by Noether (4nn. math. Statist., 26 (1935), 64) to statistics with variances of
orders n~%. 1t turns out that for one-tailed tests, the A.R.E. raised to the power § is the
ratio of first derivatives at 8, of the power functions of the tests being compared, and for
wo-lailed tests (not discussed by Professor Rao) it is, when raised to the power 235, the
ratio of second derivatives at 8, of the power function under fairly general conditions,
results given in Skand. Akr. by myself in 1954, p. 163, by Noether, and more accessibly in
Kendall and Stuart's Adoanced Theory of Statistics, 2, Chapler 25. Moreover, as originally
stated by me for 8 = § (J. Amer. siatisi. Ass., 49 (1954), 147), and for general 8 by Kendall
and Stuart, the A.R.E. is equivalent (o the ratio of estimating efficiencies of those trans-
formations of the test statistics which are 1 i of the 4 It
follows at once that the full effici of an esti its local test efficiency
and maximum power derivatives, which is essentially the content of Professor Rao's
Theorems 1 and 2. These relationships between A.R.E., derivatives of power functions
and estimation efficiency, together with Fisher's theorem that estimating efficiency is the




70 Discussion on Paper by Professor Rao [No. 1,

square of the correlation p between an estimator and an efficient estimator, imply at once
that p* is the 8th power of the ratio of power function derivatives. For 8 = §, this is
Professor Rao’s Lemma 1.3,

1 am sure that the reason for Professor Rao's not having connected his work with
that on A.R.E. and the derivatives of power functions is that the latier has been developed
in the ialired field of di frec methods for non-parametric problems. Non-

i isticians are the beat ion of statistics, and we cannot expect respect-
able m:xlmllen of likelihoods 1o have 100 much 10 do with them. | would only ask
Professor Rao 10 square his measure of test effici to make it ional (and
equivalent 10 A.R.E.)in the sense that it will then equal the limiting inverse ratio of sample
sizes required by two tests 10 autain equal local power, as does Pitman's A.R.E. As it
stands, his definition (3.8) local test effici in a manner Rattering to inefficient
tests in the same way as the comparison of standard etrors rather than variances Batiers
inefficient estimators.

Finally, | want to make a brief point about Sundrum’s work. referred to at the end of
secllon] Sundrum was not with loal test efficis : indeed. his paradox {1hat

fer esti does not camy gralcr power with i1} arises
specnl’u:ally because he considers fixed aliernatives not in the immediate neighbourhood
of 6,. and the paradox disappears as they approach . when we get left with the A.R.E.
In Sundrum’s treatment, large-sample size is necessary only to ensure normality of the
test statistics, and is essentially irrelcvant to his argument. There is thus no contradiction
between his result and Professor Rao’s, or, for that matter, the equivalent A.R.E. results
1 have mentioned.

Mr P. WeGNER: One of the difficulties of maximum likelihood estimation is that of
computalion of the estimates. [ should like 10 draw attention to a class of models where
computation is feasible in both the univariate and multivariate case, although the likeli-
hood function is not differentiable. Consider the case where the parameters are known
10 lie within a convex linearly bounded sub of the space (i.c. a zero prior
distribution is imposed on all points outside the convex subspace bul nothing is assumed
about the prior distribution within the subspace). In the general n dimensional case assume
that the parameter vector & = (), 0y, ..., 0.) is subject Lo restrictions of the form

lg‘la,, 0,<h (i=12..,m).

These constraints make it impossible 10 maximize the likelihood function by
differentialion. since ¢L/¢8 is not necessarily zero at the maximum. However, the
resulling problem is computationally traciable for a linear model wuh quadnluc or Imu:
Joss functions. The inequality restrictions bead \ly10 2
formulation of the likelihood maximization problem. In panticular, a qmdrahc loss
function leads to a quadratic programming problem, while the linear loss function that
has been mentioned by Professor Chernoff (minimization of the sum of absolute deviations)
leads 10 a linear programming problem.

The optimality propemu of the point esti blai n the ic case have
been investigated by H. O. Hartley bolh for Iam and small mmplu He has derived
formulae for the variance ol' i d convex spaces. He has

shown that the resulting estimates are more efficient than the corresponding unconstrained
es.imates, and that the cstimates are in general blased.

The class of problems mentioned here is both of practical and of theoretical interest,
and 1 feel thal funher mmugauon along lhm lines will prove fruitful. More generally,
1 feel that will be found useful in the analysis on
non-differentiabk Multivariate statisti P
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‘ uProl’mor Rao replied briefly at the meeting and subsequeatly more fully in writing as
ollows:

1 wish to thank all who cobtributed to the discussion and gave me material for further
research. [ am also grateful to the various speakers for the kind references to my visit to
the U.K. and t0 my lectures.

1 wish to make a few general observations on the approach to estimation adopted in the
paper, before answering the specific pomls raxsed dunng the discussion. [t is, indeed,
futile to avtempt any general di of by idering a particular loss
function, or a particular type of loss function, without reference to the practical situation
to which it actually corresponds. However, if in any practical problem a particular loss
function suggests itself, and what is of interest is the expected loss in the long run, this should
certainly be investigated. However, in the majority of investigations an eslimate will have
a variety of uses for all of which the concept of a loss function may not be meaningful;
besides, it may be necessary to preserve an estimate as a substitute for the whole sample for
possible future use. What is then needed is a more comprehensive approach for examining
the usefulness of an estimate, and onc way of doing this is to assess how good a substitute
an estimate is for the entire sample, for drawing inferences about unknown parameters.

With such a criterion, estimation need not be confined to what are called point estimates,
but may be looked upoo from a wider point of view as reduction of data in a form con-
venient for drawing inferences about unknown parameters. The scheme thus eavisages
consideration even of vector estimates of a single unknown parameter, as suggested by
Professor Barnard. This point was also siressed in my previous paper presented at the
32nd session of the International Statistical Conlerence, Tokyo.

1 have deliberately given a definition of without refe to ai
which fits in with the general approach, although | agree with Professor Barnard (ha(
consistency in other forms and with reference to particular parametric functions may have
to be considered in some specific problems. Although likelihood by itsell is an important
conoept, it is necessary to explore whether there exist more satisfactory forms in which
uncertainty regarding unknown parameters can be expressed. The fiducial inference is
one such cxample and it appears to be the ideal form for this purpose.

In view of the remarks I have already made, [ do not agrec with the general stand
taken by Professor Lindley of seeking for a justification of an estimation procedure through
a utility function and a prior distribution, both of which introduce some amount of
arbitrariness. It may be interesting 10 note that a m.l. esnmale |s best for a oenam type of
loss function, but the insi on point estimation is not a d ibl

For the same reason the concept of minimum asymptotic variance has lo be given up,
although Professor Chernoff shows that it can be cleared of an apparent anomaly pointed
out by LeCam. As shown in my paper, smaller asymptotic variance does not necessarily
imply better properties of an estimate from the point of view of inference.

1 must admit that I am not aware of the vast literature on the “efficiency of a test™
referred to by Mr Stuart. Much of that work does not seem to be rigorous. [, however,
agrec with Mr Stuart that there is some ad ge in defining the effici of a test as the
square of the expression I have given,

Maximum likelihood estimation involves a certain amount of heavy computation, and
any contribution such as that indicated by Mr Wegner will, no doubt, be useful.

Professor Daniels referred to his recent work on maximum likelihood estimation when
the usual regulamity conditions are not satisfied. [ agree with him that it is worth examining
whether some of the propositions proved in my paper are valid under less restrictive or a
different set of conditions. It may be possible to do so by studying particular examples as
Professor Daniels docs.

Professor Bartlett raised a number of questions to which I do not have ready solutions.
My statement, in one of my University of London lectures, on the comparison of the power
functions of the chi-square and likelihood ratio goodness of fit tests, is based on partly
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ical and partly empiri carmied out at the Indian Statistical Institute.
Further investigation is in progress and | hope a more convincing proof will be available.
1 am not, however, considering the rates of convergence of the distributions of these
statistics 10 the chi-square approximation, on the null hypothesis. This would be ao
associated problem for which Professor Barilett has already given a panial solution.
In the present paper [ was concerned with the development of criteria for judging the
usefulness of an estimate. One of the crileria suggesicd was the closeness of fit 10 the
likelihood of a quadratic function of the estimate. The residual vanance from the fitted
function is, under some conditions, the actual Joss of information due 1o estimation. The
quadratic fit, however, would provide an approximate reconstruction of the likelihood
when only the estimale is available. Regarding the test for linkage, I was only pointing
out that the argument given by Sundrum cannot possibly be correct in view of what has
been established in Theorem 1 regarding the effici of the test based on a m.). estimate.
It is quite possible that, when d-order terms arc i the ive test con-
sidered by Sundrum, which is now shown to be equivalent up 10 first-order terms, may
turn out to be better. This, however, needs careful examination.




	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072

