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On the evaluation of the probability integral of the
multivariate z-distribution

By S. JOHN
Indian Statistical Institute, Calculta

1. INTRODUCTION AND SUMMARY
Arandom vector? = (4,4, ...,%,) i8said to have the p-variate ¢-distribution with n degrees
of freedom if its distribution in p-dimensional Euclidean space has for its density function
the function

Py = 'A[M]) ~in+p)
Tttty 53F) = s ) 23 Bt 2

(—o <t <oo;i=12,..,7), )
with P = (p,) & positive definite p x p matrix having every one of its diagonal elements

equal to unity, 4 = (&) = P, and | 4| denoting the determinant of the matrix 4. We shall
introduce the symbol G, (k), ks, ..., hy: P) to denote the corresponding distribution function,

ie.

Gty i P = [ [ [” gttty PY @
In the bivariate case, we shall write g,(4,¢; p1g) for g.(4), & P) and G (4, ¢; p,y) for
Gplly ta; P).

If the random variables zy, ..., 7, follow the multivariate normal law with means zero,
common variance o2 and a correlation matrix (p;) and if (ns?)/o? is an independent y?
v&riab]eWiLhndegreesofﬁ‘eedom therandom vectort = (L, ...,4,), wheret; = x,/s(i =1,...,p)
will have g,(ty, ..., &y; P) as density function. Bechhofer, Dunnett & Sobel (1954) consider
this distribution in connexion with a problem in the ranking of means of normal populations.
Dunnett & Sobel (1954) give & formula for evaluating the probability integral when p = 2.
Using this, they have prepared tables of the function &, (h k; +0-5)anditsinverse. Dunnett
& Sobel (1855) provide approximations for G (k,, ..., &,; P), valid when P satisfies certain
conditions. In this paper we give an alternative formula for the evaluation of the probability
integral. Though we too discuss only the bivariate case in detail, our method is of wider
applicability in the sense that it can be adopted to get the probability integral of the multi-
variate ¢-distribution of any dimension.

We must mention here that the method of this paper is'similar to that of Kendall (1941}
for evaluating the probability integral of the multivariate normal distribution.

We have already mentioned that the multivariate ¢-distribution arises in the ranking of
normal populations according to their means. We give more applications towards the end of
this paper. It ia shown how the multivariate ¢-distribution can be used in setting up simul-
taneous confidence bounds for the means of correlated normal variables. Other applications
are in construoting simultaneous confidence bounds for the parameters in a linear model and
for future observations from a multivariate normal distribution. Further applications will
appear in & later paper.
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2. THE CHARACTERISTIO FUNCTION
To derive our formula for the probability integral we require the characteristic function.
For this purpose, we may, without loss of generality, put o = 1. The characteristic function
is given by

te fre fe |44 . . .
$(0,,6, ...,0;) =J’~w '"J._., .J-o o oxp (10, x,/8 + 10,2,/ + ... +i6,z, /s

17 » 2)in-1 .
x exp (—— z 2‘1(1‘"(“;) 2;:{,)—”&7‘)6‘5"‘ nedsdz,...dz,
[ [ [ A .
" "J. 20104 )e da o (2o)dP exp (2, +... +i6,2;)

x oxp(— 3s2% Za”z‘z,)dz,...dzﬂ]
(]

I (ns‘)rl";‘ et " 1 |
=], 2T ) e d(ns )exp(—gzﬂPﬁ)

1 © n
= fn-1 = 4
F(in)fg ! exp( t MBP@)d:, (3)
where 0 = (6, e O,)

3. THE PROBABILITY INTEGRAL

For the sake of simplicity we now restrict our attention to the case p = 2; exactly similar
methods will give the probability integral whatever positive integral value p has.
In this case,

$(6,,6,) =ﬁf:ﬂ"“exp[—t——(0 +02)H>: (——) 0'0]dt @

where we have set p = p,,.
By the inversion theorem, the joint density function g,(t, £; p) of ¢, and ¢, is given by

1o
Ialln, beip) = (2—”),_[_” J‘—m exp (—10, 4, —16,,) dO,d6,

e -mnl{£ 3 o]

“mm [y o[ 35 () @) )

o ()& & ol .

We are now in & position to evaluate the probability integral. It is easy to see that

1] = v
Cnlln s ) = Yoo ha) 45 5 Ery, (b, o), ()
where "

o= o Q4] (2] [(3)" (-]
R PR E

(r=1,2.) (M
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Here H,(z) denotes the Hermite polynomial of degree r defined by

d\r .
and
)l [ hy
Yn.olhy, By) = (l.,(; ] eltin [J. exp (—— t‘t) ] [J. exp (—— t’l) de,] dt
4
—hn-1 =
- g, <o ael[5] ) o 1) ®
1
—dw
where Gz) = f e e~tu'dy, (10)
Woe give below explicit expressions for y, ,(ky, k) (r=1,2,...,8).
If we set 2 = 1+ (1/n) (h3+A3), (11)
Yn1lhy, ho) = 2717, (12)
Yu. 2y, hg) = hyhyz=tned, (13)
Ynalhy, he) = {1+ (2[n)} Rfhgz—Aned — (hf 4 R 2t 2md, (14)
Yn.alhy, Bg) = (H%)( )hsh’z“l"'f” 3( )h ho(h? + k3 z=Un+D 4 O h,z—ns)

(15)
2 (h RY=1[1 2 1 4 1 6 RipszAn+o_gl1+ =) |1 4 R2R2(R% + h2) z-Un+3
Yn st 2) ( ) ) )1 ) n n) ! 3R 3z d

+ 3(1 + ) (% + 12h2 02 + h3) 2~Gn+2 _ 18(A3 + h3) 740 +V  Gg—im, (16)

Yn. bk he) = (1 +71) (1 +:) (1 +9) (1 + §) h§ hgz—dnt0)
2 4
- 10(1+7—J (HZ) ( )hghg(huh )z=n+d)
+5(1 +?) (1 +'3) Ry ha(3K4 + 20K 13 + 3h) z-hr+9
- 150(1 +~ ) by hy(R3 + h3) 2 n 4D 4 925k b,z ~n+D) an
The evaluation of y, o(h,, k) requires separate consideration.

4. EVALUATION OF y,,o(%y, hy)
First we observe that Yn.olhy, ) = Glly, R 0). (18)

LEquation (9) can be used to evaluate y, o(k,, k,). The integration involved has to be done
numerically. Gauss’s formula for numerical quadrature (Kopal, 1955, p. 371) will be found
especially convenient. By this method we have prepared tables of y, 4(k,, k,) forn = 11,12,
The first of these, that for » = 11, is reproduced at the end of this paper as Table 2. The next
section gives recurrence relations connecting these values of # with other values of n.

Other methods for the evaluation of y,(%,, ,) are given by John (1961). The table was
computed on HEC-2M at the Indian Statistical Institute. The programme was prepared by
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Mr P. K. Mitra, and Mr B, Mukherjee was responsible for the running of it off the computer,
A similar table for the case » = 12 is available at the Institute.

In the tables, y, o(k, ks) has been tabulated only for values of k, and k, satisfying the
inequalities &, > 0, by > 0, kg > k). Values of y,, o(Ry, ) for hy or k, negative can be found
from the formulse

Yn.olhy, he) = Cplha) = Yp ol — By, ), (19)
Yn,olP1s 5) = Gulhy) =Y olPy, —Ry), (20)

where G, (z) is the probability thet a random variable having Student’s {-distribution with
n degrees of freedom has & value less than or equal to z. If both &, and k, are negative, we
may use the formula

Ynolha k) = V4 yn ol =y, — ) = Go(—hy) =G —hy). (21)
Further, there is no loss of generality in assuming %, > &, since
Yn,olba o) = 9y oo 1) (22)

5. SOME USEFUL RECURRENCE RELATIONS

From equation (9), we get by integration by parts the following recurrence relation:

Yn ol Ra) = C‘/u+z.o([1 + ;]! hy [1 + 72“1]& hz)
D+ d) {"‘0"“([::1:%]%") . "’G"“(L%:J'“)} ,
Cn) L {1 +(1n) hEjhesn {1+ (1) Agjesn |7 (23)

In getting equation (23), th"~1 was the factor which we selected for the first integration.
If we now select the factor e~ for the first integration, we get the recurrence relation given
below :*

2]¢ 27
Yn,olhy, Ba} = yn—z.o([l —;1] by, [1 —;L] h,)

n—174 n—17¢
+ynmyt A=) [’“ 6us{fiza) ) . x5 "1)] ,
Cidn) L {1+ (1/n) h3)ht=-D {1+ (1/n) kgln-n (n>2).

— (n3m)—t

(24)

By the same procedure we can express ¥ o(k,, h,) entirely in terms of the probability

integral of the univariatet-distribution. This relationship is given by the following equation:
hyOW([2+ k1A hy) | ByG((2+ R3] hx)]

(1+ 4t (L+gppt 1

Yaolby by) = $ 487 [ (25)
This, together with (24), shows that y, 4(k,, k,) for all even » can be built up from tables of
the probability integral of the univariate ¢-distribution. If n is a small even integer this
procedure is to be preferred. Similarly if » is & fairly large integer (odd or even) it may be
advantageous to connect it with the probability integral of the bivariate normal distribution
through the formula (23).

* Relation (24) can be derived also from (23).
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5. COMPARISONS WITH THE VALUES GIVEN BY BECHBOFER, DUNNETT
AND SoBEL {1954)

Asa check on the correctness of our formula and as 2 means of seeing how good an approxi-
mation is obtained by taking the sum of a few terms from the beginning in the series expan-
sion (6), we carried out some computations. The results are presented in Table 1, where we
have taken n = 12 and &, = k, = k; in the approximation, we have used the first six terms
in summing the second expression on the right-hand side of equation (6). It is seen that for
p = +0:5, the sum of the first seven terms of the series expansion (6) provides an approxi-
mation to the correct value which is satisfactory for most purposes. If the value of l6] is
larger, more terms have to be included in the summation to get the same accuracy. We have
developed simpler methods for computing the probability integral in such cases. These
methods will be published when the required tables are ready.

Table 1. Values of Gyu(k, b; + 0-5)

Cose p = 05,0 = 12 Cose p =—0-5,n = 12
A Approx. from (6) Exact value Approx. from (8) Exact value
0-00 0-3333 0-33333 0-1867 0 16667
25 -4355 43555 -2709 27988
.50 6421 -541560 4131 -41366
15 6420 -64292 -5488 -54880
1-00 7330 73301 -6694 -66936

6. THE MULTIVARIATE CASE

We have discussed in detail how the probability integral of the bivariate ¢-distribution
may be evaluated. It is possible to get an expression similar to (6) for the probability integral
of a multivariate t-distribution of any dimension by methods similar to those which were
adopted in the bivariate case. The formula is the following:

Gplhy by ooy P) = Golhy g, o By )+ (2) "’E Yo by, By P),  (26)
where
Y, by by P) = ﬁn)J‘o tn-texp [— {1+ (1n) (B3 +... + N U, (& hy, ..., by; PYd,
and 27)

S (10 | IO I A

1t is to be understood that in (28) after expansion of the integrand, H*{([2t/n]kA,) is to be
replaced by H[2t/a) ) if r 2 0 and by (2m)} G([2t/n )} k) exp ((1/n) th3}if r = — 1,

For many of the terms in (26), explicit expressions similar to those in equations (12) to (17)
can be given; but others have to be evaluated by numerical quadrature.

7. APPLICATIONS

{The multivariate {-distribution arises in many statistical problems. In this section we
shall describe a few of these problems.
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7-1. Simuld fid bounds for the means of correlated normal variables

Suppose z = (2, ..-, z,) follows a multivariate normal distribution with mean vector
# = (B, -, i) e0d dispersion matrix oP. P is the correlation matrix and we shall suppose
that thisis known. The parameters 4 and o* are unimown. Itiadesired to set up simultaneous
oonfidence bounds for the x,’s.

This can be done as follows: draw a sample of size N from the population of z’s. Let the
observationsbezy (1=1,2,...,9;§ = 1,2,..., N), the first subsoript pertaining to the variate
and the second subscript pertaining to the sample. Let

N
= (’Z:lz‘,)/lv (i=12,...,p). (29)
» 2 N _ _
Then #=[ £ By % ee-ra-5)] fr-2) (30)

is an unbiased estimator of o%. The random variable (N —1)ps*/o? is distributed inde-
pendently of the Z,’a as x* with (N —1)p degrees of freedom. We shall set n = (N —1)p.

Determine & so that
A A
J.—-Am.l.—hg"(’” cnbpi PYdty, . dE, = a, (31)

where & is a positive number between zero and one. Then the inequalities
5¢—N"M<;l,‘<5‘+1v‘|ha i=12,..9) (32)

will be simultaneously eatisfied with probability «.

The condition that all the variates havo the same variance can be slightly relaxed. It is
enough that the ratios of the variances are known. Thusif ¥(z,) = ¢;0* (i = 1,2, ..., p) and the
¢;’s are known, we have only to consider y, — ¢; ¥z in the place of z,. This will yield simul-
taneous confidence bounds for ¢f bx,’s, which can be readily converted into simultancous
confidence bounds for the x,’s.

We must refer here to a paper by Olive Jean Dunn (1958) discussing methods of setting
simultaneous confidence bounds for the expected values of correlated normal variables. She
does not require that the correlation matrix be known. She achieves her result by con-
sidoring p linear combinations of the observations which have the same expectations as the
original variables. The first linear combination is a lincar combination of the observations
on the variable z,; the second linear combination is & linear combination of the observations
on z, and 80 on. In o far as the linear combinations are not unique, this procedure is
unsatisfactory.

7-2. Simultaneous corfidence bounds for future observation
Here again we will supposo that the population is multivariate normal, that all the
variates have equal variances and that the correlation matrix is known. A sample of aize
N is available and it is required to set up simultancous confidence bounds for the com-
ponenta of a future observation vector z = (g, ..., 2p).
Consider the inequalities

Z— (1 + N he gz, € Z+ (1+ N-Y)hAs (=12,...,p), {33)
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%, k and 8 having the same meanings as in §7-1. The probability that these inequalities will
hold simultaneously is @. The inequalities (33) will thus serve aa simultaneous confidence
bounds for the components of z.

As in §7'1 the condition that all the variates should have the same variance can be
replaced by the weaker condition that ratios of the variances should be known.

7-3. Simullaneous confidence bounds for regression coefficients*

In regression analysis we have N independent normal variables y,, y,, ..., yy with common
variance o® and expectations given by

P
E(y,) = Bu+ ‘Zlﬂm, (r=12,..,N). (34)
The z,,’s are known constants. The f's are unknown parameters.
Put N _ N .
8y = 21 (Zp—Z) (2, — %) (Lj=12,..p) (35)
8 = (8, (36)
N
Tx= Zl!/y(xrr‘fl) (=12,..,p), (37)
y -
Ty = El(y,—y)’- (38)

Let (by, bg, ..., bp) be & solution of the equations
Spby+ Szt ...+ 8,0, = T
Spybr+ Speby+ ...+ 8,50, = Ty,

81yt Spabat o + 85505 = Ty

(39)

1
Also Jet $t = N—p-1 (T =0Ty = b Typ — .. = b, Ty ). (40)

Then (by, b, ..., b,) have & multivariate normal distribution with means (8,, 5,, ... Bp) and
variance-covariance matrix (c,;) o? = §'o%.

% is an unbiased estimator of a2 (N —p—1)s%/o? has a x® distribution with (N —p—1)
degrees of freedom and is independent of (b, ..., b,). We shallset n = N—p—1.

The correlation matrix (p,;) for (b, s, ..., b;) is given by

Py = (cacy) ey (41)
and is known. Determine  so that
A A
J. '[ Fultssntps PYdb L dE, = (42)
—nt-n
Then the probability that the inequalities
by—heks < B <b+hehs (G=1,2..p) (43)

are simultaneously satisfied is «. Thus inequalities (43) serve as simultaneous confidence
bounds for #,, 8,, ..., #,. Simultaneous confidence bounds for any set of independent linear
functions of the parameters can be set up in this fashion. These bounds appear to be more

* I am indebted to Dr C. R. Rao for pointing out the possibility of this application.
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relevant than Scheffé’s (1953) who gives methods for setting up simultaneous confidence
bounds for all possible linear funations of the parameters, standardized in a particular way.
Most often we are interested in & few parametric functions and not the whole family of such
funotions. These functions get a bad deal in Scheffé's method; the width of the confidence

interval is unnecessarily large.*
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Table 2. Values of y,. ok, ko) for n = 11
hy 0-0 01 0-2 03 0-4 0-5 0-8 0-7 08 0-9

0-0 0-25000

-1 26946 0-29051

2 -28871 -31133 0-33369

-3 -307565 +33170 35558 0-37894

4 -32679 -36141 -37876 40164 0-42652

0-5 0-34326 0-37029 0-39703 0-42318 0-44848 0-47260

-6 -35983 38819 -41824 44368 47022 -49562 0-51967

-7 -37538 -40498 -43427 46200 -49061 -51712 -54222 0-56575

-8 -38983 42059 -46100 -480756 -60953 -53707 -56314 58769 0-61027

-9 40314 434956 -46641 -40717 -52603 55541 -58238 -60766 63111 0-65267
1-0 0-41529 0-44805 0-48045 0-51213 0-54279 0-57212 0-59990 0-82593 0-66010 0-67230
1-2 -43616 47053 50452 563777 56094 -60072 -62988 65721 -63258 70590
14 -45272 -488356 -52350 -56808 -59141 -62333 -65357 -68181 -70823 73243
18 -48552 -50210 -53828 -57367 60791 -64070 -87175 -70088 -72792 75280
18 47516 -51244 54932 58539 -62029 -65372 -68538 71509 742687 -76805
2-0 0-48229 0-52008 0-55745 0-59401 0-62940 0-66328 0-69539 0-72561 0-75349 0-77924
2-2 48747 -52561 -56334 -60026 63597 -87019 -70261 73303 -76129 -78731
24 -49119 -52058 58756 -60470 84007 -67511 70776 -73338 766856 -79305
28 -49382 -53239 -57053 -80785 -04398 -B87868 71138 -74216 77070 -79709
28 -49568 -53430 57262 -61008 -64630 -88101 -7I381 74479 77348 79991
30 0-49698 0-53674 0-57408 0-61160 0-64791 0-68270 0-71567 0-74662 0-77539 0-80187
40 49948 -53838 57686 61462 85007 -68589 71900 -75008 -77897 -B0557
50 -49980 -53881 -57732 -61409 -65147 -63641 71963 -75063 77053 -80815
60 48007 -53800 -57740 61508 85156 -63850 -71983 76073 77964 -80626
7.0 +40099 -653802 -57742 61610 -B5168 -88663 -71068 -75078 77967 -80620

80 0-49999 0-53892 0-67743 0-81511 0-66169 0-68653 0-71066 0-75076 0-77087 0-30629

¢ Boheffé's method is easier to apply, as a referee haa pointed out.



Probability integral of the multivariate t-distribution
Table 2 (cont.)

\\;., 09 1-0 12 14 16 18 20 22 24
hy
09 085267
10 0-67230 069253
12 170590 -72714 0-76361
14 -73243 76448 70224 0-82209
18 15280 77547 81430 84502 0-86864
18 -76806 -79118 -33083 86222 -88637 0-90450
2.0 0-77024 0-80271 0-84296 0-87485 0-89939 0-91784 0-93142
22 78731 -81103 85172 88396 00881 92740 94125 0-95122
24 79305 -81606 85796 80045 91551 93437 94827 -95834 0-06654
26 -79709 -82111 86233 -80503 02024 03022 -95322 96337 -97064
28 79901 82402 88540 89822 92365 94262 -05660 -96690 97421
30 0-80187 0-82604 0-86753 0-90045 0-92585 0-94499 0-95911 0-06937 0-97671
40 -80557 -82085 -871564 -80463 -93019 04946 06369 97403 08144
50 80616 83045 87217 90530 -03088 05017 -06442 -97477 -98220
60 -80626 -83056 87220 -90542 -93101 -95030 06455 -97401 98234
70 -80629 83059 -87231 80545 -93104 -95033 -D6450 07496 -08238

80 0-80629 0-83059 0-87232 0-90545 0-03104 0-95034 0-06459 0-97495 0-98238

hy 2:4 2-6 2-8 30 4-0 50 8-0 70 80

hl

2:4 0-96654

2-6 97064 0-97578

28 97421 97939 0-98302

30 0-97671 0-98191 0-98556 0-98812

40 -98144 98670 99040 99209 0-99795

50 -98220 -98747 -09118 -99378 -00878 0-99958

80 -98234 -08762 -99133 -90393 -09892 -09974 0-09990

70 98238 -98765 90138 99308 -09895 -09978 -989904 0-99998

80 0-08238 0-98766 0-99137 0-99397 0-99806 0-99970 0-99995 0-99999 1-00000
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