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This paper aims at finding best possible paths in r-partile sell-complemeniary (r-p.s.c.) graphs.
Gir). )t is shown thal. every connecicd bi-pas.c. graphs G(2) of order p. with a hi-partile
complementing permutation (bi-p.c.p) @ having mixed cycles. has a {p-3)-path and this result
is best possible. Furiher, if 1he graph induced on cach cycle of bi-p.c.p. of G(2) is connecied
hen Gt2) has a hamiltonian path. Lastly the fact thal every r-ps.c. praph with an r-panite
complementing permutalion (r-p.c.p.) o which permutes the partitions and for which each cycle
of r has non-empty intersection with at feast four panitions of Gir). has a hamiltonian path, is
oablished. The graph obtained from Gir) by adding a vertex u constituting tr + 1)-st partition
of Gtr), which is the fixed painm of o* = (u)a also has a hamiltonian puth. The last two resulis
generslize the resull that every sell- y graph has a hamiltonian path,

Introduction

The word “graph™ will mean a finite, undirected graph without loops and
multiple edges. For the notation and terminology not defined here we refer to
Harary [4].

An “r-partite graph G(r) is a graph whose vertex set V= V(G(r)) can be
partitioned into r=1 non-empty subsets. also called partitions. so that no edge
has both ends in any one subset. Let A,..... A, constitute an r-partition of V
wilh |Af=n. n=l(i=1,..., r.

An r-partite graph G(r) is said to be “complete r-partite” if each vertex is
joined 1o every other vertex that is not in the same subset. Such a graph is
denoted by K, . Clearly. K, .. hasYi.,n vertices and ¥, ., mn edges.

Bipartition of a connected graph. if exists. is unique. But. in general, r-partition
of a graph need not be unique. Henceforth. if G(r) is given to be an r-partite
yaph. we assume that an r-partition of G(r) is prescribed.

The “r-partite complement™ G(r) of an r-partite graph G(r) is again an
+-partite graph with vertex set V(G(r)), satisfying the following conditions:

() for woe A, 1%i<r:(u v)¢ E(G().
(i) for ue A, ve A, i<i#jsr:(uv)eE(G()) #f (4 v)¢E(GK).
An r-partite graph G(r) is said to be *'r-partite self-complementary™ (r-p.s.c.} if

there exists an r-partition of V(G(r)) with respect to which G(r) and G(r) are
somorphic.
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230 T. Gangopadhyay, S.P. Rao Hebbare

The pls r-partite pl and r-p.s.c. graph ere first defined and
studied in Hebbare [5).

Remark. The class of classical self-complementary (s.c.) graphs, first studied by
Ringe! [7]. and Sachs {8). is included in the class of r-p.s.c. graphs, with r3 | and
ny=-++=n=1 We refer to a survey article by Bhaskara Rao ()] and the
references given in there. for most of the existing literature on s.c. graphs.

Let G(r) be an r-ps.c. graph with the vertex set V(G(n))={1.2..... p}. Then
the isomorphism between G(r) and G(r) can be represented as a permulation o
in the set V(G(r)). We then write. a(G(r))=G(r). and call o an *r-partite
complementing permutation™ (r-p.c.p) for G(r). We assume that, all permutations
are expressed as the product of disjoint cycles. Further, we do not distinguish the
symbols of the permutation and vertices of the graph. Now, let ¢ =a, - g, be
the disjoint cycle representation of 0. A cycle, a; (i =1..... A) of o is said o be
“pure” if o; < A, for some je{1,2,. .., r} and “mixed" otherwise. In other word.
a mixed cycle of o contains vertices from at least two partitions of G{r). Let
B(G(r). €,(G(r). and €.(G(r)) denote the set of all r-p.c.p.. r-p.c.p. each of
whose cycles is pure, and r-p.c.p. each of whose cycles is mixed. of G(r). We
simply write 4. €, and €, for the above sets when there is no confusion. We list
here some observations and th from Gangopadhyay and Hebbare (3]
which will be useful in what follows.

Observation 1. Let G(r) be an r-p.s.c. graph and o € €. Then for any 1wo vertices
u and v belonging to different partitions of G(r), (u. v)€ E if and only if (o{u).
.a(v))¢ E where (u v) denotes an edge of G(r).

Observation 2. For an r-ps.c. graph G(r). L35-, mm must be cven. In particular.
when r=2. n, or n, must be even and when r=3, at least two of n,. n, and n,
must be even.

Observation 3. Let {o;,..... 0.} be a subset of the set of cycles of o where
1< <A such that the union of gy, ..., 0, has non-empty intersection with k
partitions (1 =k =r) of G(r) and with no other. Then the graph induced on the
vertices of 0;,..... o, is 8 k-ps.c. graph with & k-p.c.p. being o* =0, - 0.
An r-p.c.p. o of an r-p.s.c. graph G(r) is said to be periodic if o maps each A
into some A;. The class of all periodic r-p.c.p.'s of G(r) is denoted by €*(G(r)).

Theorem 1.1. Let G(r) be an r-p.s.c. graph and let o€ €*. Then o* ¢ Aut G,
where Aut G(r) denotes the group of all automorphisms of G(r).

In panicular, if o is a bi-p.c.p. of a connected bi-p.s.c. graph G(2). then
?e Aut G(2), and if o is a p-p.c.p. of a p-p.sc. (e, s.c) graph G(p). then
ole Aut G(p).
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Letoe% and 0 = o, - * - 0;. A mixed cycle o, of o, with |o;| = ka. is said to be a
“tk.a)-cycle™ if o, has exactly a 21 verlices from each of the k 22 partitions.
say. An.... A, of G(r) in the following order:

o= (g T ey et )

where
u.eA(l=1 ... k;m=1. a).

Theorem 1.2. Let G(r) be an r-p.s.c. graph and let a € 6*. Let o) be a mixed cycle
of o having non-empty intersection with k of the partitions of G(r) and with no
other. Then |oy|=ka. for some k=2, a=z\| and o is a (k.a)-cycle. Further.
k=0(mod 4) when a is odd.

Theorem 1.3. Let G(r) be an r-p.s.c. graph and let 0 € €*. Lei 0, be a (k. ay)-
cyele of o having non-empty intersection with A, . ... A, in the same order. Then
the following hold:
(a) Any other cycle o, of o having non-empty intersection with any of the
partitions A,.. ... A, is again a (k. ay)-cycle, for some ay =1 and oy JI\ A,
(b) The order of the partitions of o, is same as that of o, upto a cyclic
permutation.

As a consequence of Theorems 1.2 and 1.3 it follows that cycles of any
connected bi-p.c.p. of a bi-p.s.c. graph are either all pure or all mixed.

Theorem (Rédei (6]). Let C be a set of n elements with a relation < such that, for
all a and b (a#b) in C, either a<b or b<a. Then the elements of C may be
amanged in a sequence a,<a,<---<a,.

Note that. Rédei’s theorem is equivalent to saying that every finite tournament
has a hamiltonian path.

S.c. graphs by their very nature enjoy nice properties such as that every s.c.
graph G has a hamiltonian path, a fact proved by Clapham [2); if p =8, for every
integer 1. 3€1<p-2. G has an I-cycle and furthermore. if G is hamiltonian then
G is pancyclic. Hence. the class of s.c. graphs can be classified into (hree classes
xcording as the circumference being p-2. p-1 and p. Further, each of the above
three classes of s.c. graphs is characterized in terms of degree sequences. in
particular, the case p characterizes the class of hamiltonian s.c. graphs. All these
lacts are proved by Bhaskara Rao and we refer to [1] for the relevant references.

The class of r-p.s.c. graphs is a natural generalization of s.c. graphs in the class
of simple (without loops and multiple edges) graphs. In particular, we have the
leeling that most of the results in s.c. graphs may be generalized or extended lo
r-ps.c. graphs, especially to r-p.s.c. graphs with an r-p.c.p.€ 6™ consisting of only
[k, a)cycles.
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Structural properties of r-p.c.p. of r-p.s.c. graphs are considered in Gan-
gopadhyay and Hebbare [3] wherein. besides the resulls stated ahove. a generali-
zation of Ringel and Sachs’ Theorem (See [1}) for s.c. graphs [0 r-p.s.c. praphs is
given,

This peper aims at delermining the maximum length of a path Ihat exisis in any
r-p.s.c. graph. It is shown that, every connected bi-p.s.c. graph G wilh €, # § hag
a (p-3)-path, (i.c. a path consisting of exactly p-3 edges and p-2 vertices) and that
this resull is best possible and that G has & hamiltonian path if the graph induced
on cach cycle of a o € €,, is connected. Laslly. the fact that for 7 =4d. every r-ps.c.
graph G(r) with a o€ €* such that each cycle a; of o has non-empty intcrsection
with at least 4 panitions of G(r). has 2 hamiltonian path. is also established.

The graph obtained from G(r) by adding a vertex u constituting (r+ 1)l
partition of G(r). which is the fixed point of o ={u)o. also has a hamiltonian
path. The last two resulls generalize the result of Clapham [2).

The proof technique employed in proving the results in this paper is essentially
similar 10 the proof technique in Clapham [2).

2. Paths in bi-p.s.c. graphs

Theorem 2.1, Every connected bi-p.s.c. graph G(2) of order p with €, # ¥ has a
(p-3)-path; this statement is best possible.

Proof. Let 0e %, and a=0, - " 0, be its disjoint cycle form. We then consider
wo cases according as (i) A =1, and (ii) A> L.

Case 1. A=1, Let o=(1 2...n) where n=41 t>1 (n=0(mod4) by
Theorem 1.2). Without loss to generality, we can assume that (1.2)e E f(for
otherwise, (2.3)¢ E and we can consider @ =(23--- n 1)), Since a*¢ Aut G(21.
we get that (i.i+ )¢ E for all i odd.

If =1, then G consists of two copies of K.

Suppose that, 1> 1. Then two cases arise according as {1.4)¢ E or not.

If (1.4)€ E. then (i, i +3)€ E for all odd i. In this case,

1.4.3.6,...,4141-1,2, 1

is a hamiltonian cycle.
If (1.4) ¢ E. then (2,5)€ E and hence (i. i +3)e E for all i even. In this case.
G(2) has two disjoint 2¢-cycles as follows:

Ci:1,2,5,6,....41-7,41-6,41-3.41-2, 1
and
C3:3,4.7,8,...,41-5,41-4,41-1,44, 3,
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Remark. The cycle C},(C3) has the vertex labels= | or 2(mod4) (=0 or
3(mod 4)) and they appear alternatingly.

Since G(2) is connected there must exist an edge from some vertex of C}, to
some vertex of C3. Then G has a hamiltonian path.

Case 2. A> 1. Let
@ = (gt e =1, A)
where |oy| =g, (i=1,...,A). Then each oy (i=1..... A) is one of the following
three types:
(1) (@) is hamiltonian.
{2) (0,) has two disjoint 2¢-cycles.
13 (o)) 2K,.

Let & have A, cycles of type i (i = 1. 2. 3) and accordingly arrange the cycles of
o such that the first A, cycles are of type 1, the next A, cycles are of type 2 and
the last A, cycles are of type 3. as follows:

0=a| b .ahBI i .Bl_“yl T yA.
e A My CRR)
Type | Type 2 Type 3
where A=A + A+ A,

We now define an ordering between two cycles of certain type. First, for any a.
o cycles of type 1. we write a; <a; if there is an edge from some even vertex of a,
10some odd vertex of a; where i# j. 1<i j€A, and y €0, (i=1..... A) is said
10 be odd or even according as j is odd or even. Notice that. if o, <a; then every
even vertex of a; is adjacent to some odd vertex of ay, and every odd vertex of a;
is adjacent to some even vertex of a;.

Now. if @ %a, then (i, 43)¢ E. which implies that (i, 4,)€ E and hence
a,<a, Thus for any two cycles a, & of type | either o, <a, or a; <@, holds.

Observation 4. (i) @, <a; and & <a; may both hold.
(ii) @, < o, and a; <a, do not imply a; <ay. where &, a;, a, are cycles of type 1.
By Rédei's theorem the cycles of type | may be arranged. after suitable
relabelling. as follows:
o<a<--<a,

Consider now B,. 8, cycles of type 2, where i#j, 1€ j<A,. Recall that each
such cycle B; of length [B]=4s (i=1,...,A;) induces a subgraph (8,) which
contains two disjoint 25,~cycles as follows:

Clattis Uz Uiss tgs -+ + Uity Vian-3s idgoas Ut
and

ng: D3 Bao Urs Vigo -« -+ 1 Viagets Uit Vians ty-
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We shall write B, > 8, if there is an edge from some odd vertex of C}, to some
even vertex of C},, and in this case we write that C3,> C},. Also, it can be easily
seen that, C3,>G5,.

Now, if B,#8, that is, it C},#C;, then (n,,9) £ E and hence (v, u3)€ E
which implies that C3,> C},. Thus interchanging the roles of C}, and C3, we get
B, > B, Thus for any two cycles §, and §, of type 2 either B, > B, or 8,> B, holds.
(Observation 4 is true for B's (i=1.....A;).) Hence, by Rédei’s Theorem the
cycles of type 2 may be arranged after suitable relabelling as follows: 8,>g,>
> B,

Lastly, let y, and v, be cycles of type 3, where i#j, 15 j=A,, each (y)
consists of two copies of Kj say, Ki,=(wi.wo) and K3,=(w, w,).
(i=1,...,y). We write v, >, if Ki,>K3, that is, when (w,,, w;,)€ E. This
implies that K3,> K3, since (wy, w)€E. If v v then (w,;, wa)¢E. that is
(wiz. wi3) € E and hence K3,> K}, In this case, by interchanging the roles of K},
and K3, we obtain that y,> v, Thus for any two cycles v, and y; of type 3 either
¥ > or y,> ¥y, holds. (Notice that Observation 4 is true for y,s (i=1,...,1,))

Hence by Rédei’s Theorem cycles of type 3 may be arranged after suitable
relabelling as foliows:

N>%> >,

Now, let B, and y; be cycles of type 2 and 3 respectively. We write B, >y, if
CL> K3, that is. there is an edge from some odd vertex of C}, 0 w;,. Also it
follows that C3, > K3,. Analogously, v, > 8, means that there is an edge from w;,
to some even vertex of C},. If ;3 v, then (v, w;)¢ E that is (u,, w))€ E and
hence K3,>Cl,. Now, by interchanging the roles of K3, and K}, we get thal
¥,>B,. Thus, for any cycles B, of type 2 and vy, of type 3 either B, >, or y,>8,
holds. Hence, by Rédei’s Theorem the cycles of type 2 and 3 may be arranged
after suitable relabelling as follows:

&A|0I>8A.02>' " '>8Av

where each (§) is spanned by two cycles or copies of K,, say, 8! and §2. Two
cases anise according as (8) A, >0, A, +A;20, and (b) A, =0, A,+1;,>0.

Case (3). A,>0, A+ A;»0. Choose B=a,, C=aq,, and, if A;+A;>0, A=8},
and D=83,,.

We write A> B (C> D) if every odd vertex of A(C) is adjacent to some even
vertex of B(D). Note that if A¥ B, then every even vertex of A is adjacent 10
some odd vertex of B and it C# D, then given any even vertex v of C either v or
o(v) is adjacent to some odd vertex of D. We also observe that if u is an odd
vertex of C and u is adjacent to v, w in the hamiltonian cycle in C, then either
v=0%w) or w=0*(v). Thus if C#D, then there is a hamiltonian path in C
which starts at any given odd vertex of C and ends at an even vertex of C which is
adjacent to some odd vertex of D. We now consider the following four cases. In
each of these cases we shall specify a (p-3)-path in G(2).
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Case {a.i). A>B.C>D. A>B implies that each odd vertex of A is
sdjacent to some even vertex of B. Since. C> D the same thing holds between
them. The (p-3)-path is as follows (see also Fig. 1):

Start with any even vertex in 8} .y, cover all the vertices of it traversing along
the cycle (or K,) ending up in an odd vertex. This odd vertex Jeads to an even
vertex of 8),., and cover all the vertices of it from this even vertex. Proceed until
an even vertex of 8, is reached and cover all its vertices, the end vertex being odd.
Since A > B, this odd vertex leads to some even vertex of B, Cover all the vertices
of B from this even vertex, except the last odd vertex, the end vertex being even.
This even vertex leads 10 an odd vertex of a,. from which cover all its vertices, the
end vertex being even. Thus proceed until an odd vertex of a,, is reached. from
which cover all its vertices except the last even vertex. The last odd vertex leads to
an even vertex of D from which cover all its vertices, the last vertex being odd.
This in turn leads to an even vertex of 8},,, from which cover all its veriices
ending in an odd vertex. In this way all the vertices of 8:,.,‘_ ... 82 can be covered.

The path described above is a (p-3)-path which misses exactly iwo vertices, one
from each of a, and a,,.

In all the other three cases we shall describe the (p-3)-path through figures.

Case (aii). A>B, C# D. The (p-3)-path in this case is as shown in Fig. 2,
which misses exactly two vertices, one from each of 8} ., and a,.

Note that, if the vertex missed by the path is in a part of cycle of type 3 then
simply we cover one vertex of the corresponding K, and go 10 the succeeding
cycle. We assume the same in what follows. whenever such a situation arises.

Case (aiii). A$B, C>D. The (p-3)-path in this case misses exactly two
vertices of G(2), one from each of 8} and a,, and is as shown in Fig. 3.
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Case (0.iv). A}B, C#D, or Ay +A;=0, If A, +1,>0, the (p-3)-path misses
exactly one vertex from each of 8} and 87,4, and is as shown in Fig. 4.
It A,+Ay=0, that is if all cycles of o are of type 1, then, clearly, G has a
hemiltonian path, see Fig. 4 (only the type 1 part).
Case (b). A, =0, Az+A;>0. In this case, the cycles & (i=1,...,A) of o may
be arranged as follows:

8,>8,>::>8,
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where A = A+ A, and each (8,) is spanned by two cycles or copies of K,. viz, &;.
Sitk=1.... A). We now consider the following three cases:

Case (b. i). An odd veriex of 8 is adjacent 10 some even vertex of §}. Then
every odd vertex of 8} is adjacent to some even vertex of 3. In this case we have
a hamiltonian path as exhibited in Fig. 5.

Case (b.if). An odd vertex of 8} is adjacent to some even vertex of &}. Then
every even vertex of 8} is adjacent to some odd vertex of 5} and every odd vertex
of 5] is adjacent to some even vertex of 82. Let V,, = ., 87 (m = 1, 2). Since G
is connected, there is a vertex u, € V., (m = 1, 2) such that (u,, u,) € E. Let u, € 8}
and u,€ 87 for some (i, j=1...., o). Without loss of generality, we can take u, to
be odd and u, to be even. Otherwise, we can interchange the roles of 8 and &}
for each (k= 1,..., A). We now construct a hamiltonian path, as exhibited in Fig.
6.
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Case (b.iii). Every even vertex of 8] is adjacent to some odd vertex of &2, In
this case we exhibit 8 (p-3)-path, which misses exacily one vertex cach 1n 5! ang
&1, as exhibited in Fig. 7.

This completes the proof of the first part of the theorem.

{n order 10 show that the result is best possible, we exhibit an infinite class of
bi-p.s.c. graphs having a (p-)-path and no (p-2)-path. For this. by Obsena-
tion 2. in connection with the hypothesis €,,# 9. it is enough to construct such
examples for the order p = 41 where n, = 21 = n,.

Let H = H, be the graph shown on Fig. &(a). Define, H, (See H, of Fig. &hn
such that V(H,)= V(H,.)U{i, v. w, x} and that H, contains H,. , as an induced
graph on V(H,_,) with the additional edges as (ollows:

(1, b). (0. &) for all beB,.,.
(4. w) and (4. x).

where (A,_,. B,_)) is the bipartition of V(H,.,). Then. H, is of order padisd
and is 8 bi-ps.c. graph, for each i>] and the following permutation @, & a
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Y ,

Y
% 4
w w
v x
V‘ 11
% x,
() Wy ) Hy
Fig. 8.
bi-p.c.p. of H;:

o (uxuw) e (uy x o wdluxow),

A (p-3)-path of H, is as given below:
VX Uy Xy, Uge Xy Dge vy 0o, Xy U W, Uy,
Wy g Wau iy Wy, ooy Yoy Wiy, W

Notice that. the vertices x, and u are missing in the above path.
Finally. since H, contains 4 vertices of valency 1 {namely. . v. x,, w;)} there
cannot be a (p-2)-path. This completes the proof of the theorem.

Theorem 2.2. Let G(2) be a bi-p.s.c. graph with bi-p.c.p. a € €, #§ such that the
graph induced on each cycle of o is connected. Then G(2) has a hamiltonian path.

Proof. Let 0=0, - 3, €%,,. (@) is connected impties that G is connected and
that |o|28, and |ojm0(modd) for each (i=l....A). Let |of=4t
i=l.... A). Further, let

0= (M e - tgg)

Without loss to generality, we can assume that (i, u,)€ E. Since o Aut G(2),
{uy, w0 )€ E for all odd j. Suppose now that, (4. w.)€ E. Then (uy, u,;,5)€ E
for all odd j. In this case, we have the following hamiltonian cycle:

Uy Upao g3, Yo Byg, Wims Wi - - - o Mgy - sl Biag-e W2 8-

Such a cycle o; is called of type 1.
In the other case, that is if (wy wJ¢E, then (u u)eE and hence
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(uy, us3)€E for all even j. In this case, we have two disjoint 2i-cycles as
follows:

C%».i Ky, Wia, Yyss g Lyge Ya0, - - -5 Uiag-y Yiag-20 40
C’;;?“u- W 7, Byg Upps Uigg - o os Bragoys Hiag: U

Such a cycle ¢ is called of type 2. In this case, since (o,) is connected, there i
u, €(C3) and ug €(C3) such that (w, u,)€ E, where either j is odd and k i
even, or, | is even and k is odd. In either case. since e Aut G(2). we have tha
for any wu,e(Cj) with j odd. there is an u, €(C3) with k even and for any
1, €(C3) with j odd, there is an u, €(C3) with k even such that (u, u,)e E
Now, given any even vertex of (C3,) (resp. (C3)) there is a path along C} (resp.
C1) which covers all the vertices of (C},} (resp. (C3)) and ends up in an odd
vertex say u of (C3,) (resp. (C2.)): this odd vertex is adjacent to some even verex
say uy of (C},) (resp. (C},) and one can continue along C3, (resp. C,) in a pat-
which ends up in an odd vertex of (C;Q (resp. {C3)). Thus, if o, is a cycle of type
2, given any even vertex uy of o; there is a hamiltonian path in o, which siars
with t, and ends up in an odd vertex of o Note that the last observation also
holds if o, is a cycle of Type 1. Thus. given any cycle o, and an even vertex wy in
{o,), there is a hamiltonian path in (o;) which starts from wy and ends up in an
odd vertex of (o,).

Now, we order gy, ..., 0, in the following manner. We shall write 5, >0, if an
odd vertex of g; is adjacent to an even vertex of o, Evidently, if ;3 g;, then
a;>a; follows. Hence, by Rédei’s Theorem, the cycles of o may be ordered by
suitable relabelling as follows: 6,>0,> >0,

We now start with any even vertex wy, of o, We know that there is a
hamiltonian path in {o,) which starts with uy, and ends up in an odd vertex of o,.
Since o, >0, this odd vertex is adjacent to some even vertex iy, of a,. There is
a hamiltonian path in {o,) which starts with uy, and ends up in an odd vertex of
a,. From this odd vertex we proceed to an even vertex uy, of o3 and so on. This
gives us a hamiltonian path.

Thus, G has a hamiltonian path with any even vertex of o, as an end vertex.
Similarly, reversing the procedure, we can get 2 hamiltonian path with any odd
vertex of o, as an end vertex.

3. Hamiltonian paths in r-p.s.c. graphs with €*#§
Theorem 3.1. Let G{r) be an r-p.s.c. graph, r=4 with an r-p.c.p. o€ €* # p where
each cycle of o has non-empty intersection with at least four partitions of G(r).

Then G(r) has a hamiltonian path.

Proot. The proof goes on similar lines as that of Clapham [2).
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Let o=@, - 0, €6* Then by Theorems 1.2 and 1.3 we conclude that each

ali=h.... A) of o is a (k; a;)-cycle. where k, =4, by hypothesis.
To begin with. we consider 1wo cases according as (1) A =1, and (2} A> 1.
Case ). A=1. For convenience, let o be a (k.a)cycle, k&4 and ¢ =

(123 ka), where |o|=ka, is even. We first assume that (1,2)e E.
fk=4and a=1,then 2. 1.3,4 or 1.2,4, 3 is the required hamiltonian path.
Otherwise. since ka is even, it follows that k =4 and a =2. Then (1.4)e Eif and
only if (4. 7)¢ E. Hence, we may suppose that either (a) (i.i + 3) € E for all odd i,
or (b) (. j+3)€ E for all even j.
In case (a), we consider the hamiltonian paths P, or P, according as (1,3)e E
or (2.9)e E where

Pi:2,1,4,3,6.5,... . ka—2, ka—3, ka.
Py:1,4.3,6,5.8.... . ka—3,ke, 2, ka-1.

In case (b). we construct a hamiltonian path P as follows. Let P, be the path
1,.2,5,6,9,10,..., the last term being ka—2 or ka according as ka®( or
2(mod 4), and P, be the path 3,4, 7,8, 11, 12,... ., the last term being ke or ka—2
acording as ka m0 or 2 (mod 4). Then P is obtained by combining P, and P,
wing the edge (1, 3) or (ka — 2, ka) whichever exists. (Note that since o€ Aut G(r),
cither (1.3)€ E or (ka—2, ka)e E.

If (1.2)¢ E. then (2,3)€ E and the proof is similar. In any case, since o€
Aut G(r). we have the following

Remark. Either (i) for any two consecutive odd vertices of o. there is a
hamiltonian path in which they appear consecutively and (i) for any two consecu-
live even vertices of o, there is a hamiltonian path for which they are end vertices,

or. (i)’ for any two consecutive even vertices of . there is 2 hamiltonian path in
which they appear consecutively and (i)’ for any two consecutive odd vertices of
g, there is a hamiltonian path for which they are end vertices.

Case 2. A> 1. Then by the Remark made in Case 1, it follows that any cycle o,
of o satisfies either (i) and (ii) or (i)’ and (ii)". A cycle o, of o is said 10 be of type
1 it it satisfies (i) and (ii), and is of type 2 if it satisfies (i)’ and (ii)’.

We now define an ordering between any two cycles of o as follows:

Let o; and o, be cycles of o of type 1. Then we write 0, <o, if some even
veriex of g, is adjacent 1o some odd vertex of o;. Then, it can be easily seen that if
0,%.0; then 0;<a;.

Hence, for any two cycles o;, o; of & of type | either ¢, <o, or 0, < g, holds.

Let o, and o, be of type 2. We wrile 0; <o, if an odd vertex of g, is adjacent to
some even vertex of a;. Again, it follows, with this ordering, that either ¢, <o;, or
6,<g; holds.

Lastly, if o; and o, are of types 1 and 2 respectively, we write o, <o; if an even
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vertex of g, is adjacent to some even vertex of oy, and o; <o, if an 0dd vertex of
o is adjacent to some odd vertex of a;. Then if a;£q; it follows that o, <g,
Hence, either a,<a, or g; <, holds in this case also.

Thus for any two cycles @, and o, of & either &; <a, or , <o, holds. Hence by
Rédei's Theorem the cycles of o can be ordered by an appropriate relabelling of
a;'s as follows:

g <o, < - <a,.

Now, each (a;) is 8 k-p.s.c. graph for some k=4 and by Case 1 there is a
hamiltonian path in each {g;){i=1....,A). For @, and o, we consider the
following four cases according to their types:

Case 2(a). o, and o, are both of type 1. Then there is a hamiltonian path in
(o)} with its end vertices at consecutive even vertices, say, u,, and u,,., of g,.
Sinee oy < @,. (uy,, uy) € E for some odd j and hence (u, .5, Uy, .,) € E where the
second suffix of a vertex is reduced modulo the length of the cycle containing it.
Now, since o, is of type 1, there is a hamiltonian path in (o) with uy, and u,,,,
with odd j, appearing consecutively. We can now obtain a hamiltonian path in
{o,Ua,) by inserting the hamiltonian path of {a,) between u,, and u, ., in the
hamiltonian path of (o,).

The remaining cases are dealt with in an analogous way:

Case 2(b). o, is of type 1 and o, is of type 2. In this case, we can obtain a
hamiltonian path in (g, Ua;) by inserting the hamiltonian path of {(o,) (its end
vertices being consecutive even vertices uy, and uy,.; of o) between u,, and
Uy .7 Of the hamiltonian path of (g,) (this is possible since. @y <o, implies that,
for some even j, (uyn Uz), (Uy ez Uaye2) E and uyp 4,42 appear consecutively).

Case 2(c). o, and o, are of types 2 and 1 respectively. In this case, a
hamiltonian path of (o, Ua,) can be obtained by inserting the hamiltonian path of
{o,) (its end vertices at consecutive odd vertices uy; and u,,., of o) between uy
and u,.,- the consecutive odd vertices appearing consecutively in the hamilto-
nian path of (o) with odd .

Case 2(d). o, and o are both of type 2. In this case, the hamiltonian path of
{o,), with its end vertices being consecutive odd vertices uy, and u, ., is inserted
between uy and u;;.,—the consecutive even vertices in the hamiltonian path of
(o,) which gives a hamiltonian path in (o, Uo>).

Thus it is possible to construct a hamiltonian path in (o Ua,), where o, <o,
Next, in a similar way this hamiltonian path can be inserted into a hamiltonian
path of {c,), and so on. Theorem 3.1 is now proved.

Note that the hamiltonian path constructed in the above proof has the following
properties:

(1) It has two consecutive odd (even) vertices of oy appearing consecutively if
a, is of type 1 (type 2).
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(2) Dis end vertices are consecutive even (odd) vertices of o, if , is of type 1
(type 2).

3 For ;<o (i=1.....A), it has some u, and u.,, appearing consecu-
tively where j and k are as follows:

j even and k odd. if @, g;,, are both of type 1,

f even and k even. if o; is of type 1 and g;,, is of lype 2,

j odd and k even, if g, and o,,, are both of type 2. and

jodd and k odd. if g; is of type 2 and o, is of lype 1.

Let G{r+1) be an (r+1)-ps.c. graph with an (r+1)-p.c.p. o* =(u)oec€*
where u is a fixed vertex. A,.,={u} and all other cycles of o has non-empty
intersections with at least four partitions of G(r + 1). Then we have the following:

Theorem 3.2. G(r+1) has a hamilionian path.

Proof. Let G(r) be the subgraph induced by o in G(r+ 1). Then G(r) satisfies the
conditions of Theorem 3.1,

Now consider the hamilionian path h in G(r) as described in Theorem 3.1. it is
composed of several paths cach being hamiltonian within a cycle of a. By the
properties (1), (2) and (3), consecutive vertices (say) . u,., of same parity
appear conseculively within hamiltonian path of o, and consecutive vertices of
opposite parity to i, and u ., appear as end vertices within that hamiltonian path
h. Further, if u is adjacent to a vertex u, of @, then u is adjacent to all the
vertices of o; with the same parity as that of &, and u is not adjacent to all other
vertices of oy

Now. let uy,, u,,,, be two vertices of same parity appearing consecutively in h,
where h, denotes a hamiltonian path in (o) (i=1..... A). Suppose lhat, u is
adjacent 10 u,;. Then (. uy ;.)€ E and hence u can be incorporated in between
uy and uy .z in h and we gel a hamiltonian path of G(r+ 1.

Now, let u, be an end vertex of h, (and hence by (2) also that of h). It
(u.u,)€ E. we extend h so as 10 include w

If neither of the above two cases is possible. then u is adjacent (0 vertices in o,
having opposite parity with wy. But, h, has one such vertex as its end vertex.
Therefore, u is adjacent to this end vertex of h,. By (3) this vertex is adjacent 10 a
veriex of o, in h. If u is adjacent to this vertex of o also, then we are through.
Otherwise, u is adjacent to vertices of opposite parity in @,. As h, has one such
end vertex, u is adjacent 10 it. Thus we proceed; we may find an i 1€i€A -1
such that (u, u,)€ E and u is also adjacent to the consecutive vertices w,,, and
K4 )442 2ppearing consecutively in hy, . But (4, U, ,,)€ E 0 (U, &,,,.)€E in h
and we accommodate u between either u, and 4., Or u, and &, ., 2s the case
may be. If there is no such i then finally we get that u is adjacent to the end
vertices of h,_, and u is not adjacent to the vertices appearing consecutively
within h,. Then u must be adjacent to the end vertices of h,, contrary to the
sssumption. This proves the theorem.
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Corollary 3.3, (Clapham [2]). Every s.c. graph has a hamilionian path.

Lastly, we remark that, the results of this paper are not direct consequences of
the sufficient condition given by Chvétal in terms of degree sequences and heace
the special proof technique of Clapham is needed.
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