r-PARTITE SELF-COMPLEMENTARY GRAPHS— DIAMETERS

T. GANGOPADHYAY and S.P. RAO HEBBARE

Stat.-Math. Division. Indian Statistical Institute, 203 Barrackpore Trunk Road, Calcutta 700 035, India

Received 22 December 1978 Revised 8 April 1980

The following results are proved in this paper.

- (1) If the diameter of a connected bipartite graph G(2) is larger than six then the diameter of the bipartite complement $\tilde{G}(2)$ of G(2) is smaller than five. In particular, the diameter λ of a highestite self-complementary graph satisfes $3 < \lambda < 6$.
- (2) If the diameter of a connected r-partite graph G(r), $r \ge 3$, is larger than five then the diameter of the r-partite complement $\tilde{G}(r)$ of G(r) is smaller than five. In particular, the diameter λ of an r-partite self-complementary (r-p, s.c.) graph satisfies $2 \le \lambda \le 5$.
- (3) If r≥3 and G(r) is an r-p.s.c. graph with a periodic r-p.c.p. σ, such that any cycle of σ having length >1 interacts at least 3 classes of the r-partition, then the diameter of G(r) is either 2 or 3. As a consequence of the above result it follows that the diameter of a self-complementary graph is either 2 or 3.

1. Introduction

We consider finite, undirected graphs without loops and multiple edges. We follow Harary [4] for the notation and terminology not defined here.

An r-partite graph is said to be complete r-partite if each vertex is joined to partitioned into $r \ge 1$ non-empty subsets, also called classes so that no edge has both ends in any one subset. Let A_1, \ldots, A_r constitute an r-partition of V with $|A_i| = n$, $n \ge 1$ (or $i = 1, \ldots, r$.

An r-partite graph is said to be [complete] r-partite; if each vertex is joined to every other vertex that is not in the same class. Such a graph is denoted by $K_{n,\dots,n}$. Further, if G(r) is uniquely r-colorable for convenience we call G(r) a miguely r-partite graph, where $r = \chi(G)$ or r = p, the order of the graph being p.

Bipartition of a connected graph, if it exists, is unique. But, in general, an r-partition of a graph, when it exists, need not be unique. Henceforth, if G(r) is given to be an r-partite graph, we assume that an r-partition of G(r) is prescribed.

The r-partite complement $\tilde{G}(r)$ of an r-partite graph G(r) is again an r-partite graph with vertex set V(G(r)) and satisfying the following conditions:

- (i) for $u, v \in A_i$, $1 \le i \le r$; $uv \notin E(\bar{G}(r))$;
- (ii) for $u \in A_i$, $v \in A_i$, $1 \le i \ne j \le r$: $uv \in E(\bar{G}(r))$ iff $uv \notin E(G(r))$.

An r-partite graph G(r) with $r \ge 2$ is said to be an r-partite self-complementary

(r-p.s.c.) graph if there is an r-partition of G(r) with respect to which G(r) and $\bar{G}(r)$ are isomorphic.

The concepts r-partite complement and r-p.s.c. graphs were first defined and studied in Hebbare [5].

Note that an r-p.s.c. graph may be disconnected.

Remark. The class of classical self-complementary (s.c.) graphs, first studied by Sachs [7] and Ringel [6] is contained in the class of r-p.s.c. graphs, with $r \ge 2$ and $n_1 = \cdots = n_r = 1$. We refer to a survey article by Bhaskara Rao [1] and the references given there for most of the literature on s.c. graphs.

Let G(r) be an r-p.s.c. graph with the vertex set $V = \{1, \ldots, p\}$. Then the isomorphism between G(r) and $\bar{G}(r)$ can be represented as a permutation σ on V. We call σ an r-partite complementing permutation (r-p.c.p) for G(r).

Now, let $\sigma = \sigma_1 \cdots \sigma_n$ be the disjoint cycle representation of σ . A cycle σ_i (i = 1, ..., n) of σ is said to be 'pure' if $\sigma_i \subseteq A_i$ for some j (j = 1, ..., r) and 'mixed' otherwise. Let \mathscr{C} , \mathscr{C} and \mathscr{C} m respectively denote the set of all r-p.c.p.'s the r-p.c.p.'s each of whose cycles is pure, and r-p.c.p.'s each of whose cycles is mixed, of G(r). Also let $I_{\sigma_i} = \{j: \sigma_i \text{ includes at least one vertex of } A_i, 1 \le j \le r\}$, (j = 1, ..., n).

An r-p.c.p. σ of an r-p.s.c. graph G(r) is said to be periodic if σ maps each A_i into some A_j . It is easily seen that if σ is periodic and σ $(A_i) \subseteq A_j$ then equality holds. The class of all periodic r-p.c.p.'s of G(r) is denoted by $\mathfrak{C}^{\bullet}(G(r))$. The following observation is immediate.

Observation 1. Let G(r) be r-p.s.c. and $\sigma \in \mathscr{C}^*(G(r))$. Then $u, v \in A_i$ for some i iff $\sigma(u)$, $\sigma(v) \in A_i$ for some j.

Periodic complementing permutations have many interesting properties (for details see [2]). In particular we prove the following

Theorem 1.1. Let G(r) be an r-p.s.c. graph and let $\sigma \in \mathscr{C}^*$. Then $\sigma^2 \in \operatorname{Aut} G(r)$, where $\operatorname{Aut} G(r)$ denotes the group of all automorphisms of G(r).

Proof. Let $u, v \in V$. If u, v belong to some class A_i then $\sigma^2(u)$, $\sigma^2(v)$ belong to $\sigma^2(A)$. If u, v belong to different classes of the r-partition then by Observation 1, $\sigma^2(u)$, $\sigma^2(v)$ also belong to different classes of the r-partition and $uv \in E(G)$ iff $\sigma(u)\sigma(v) \notin E(G)$ iff $\sigma^2(u)\sigma^2(v) \notin E(G)$ iff $\sigma^2(u)\sigma^2(v) \in E(G)$. This proves the theorem.

Let G(r) be r-p.s.c. and $\sigma \in \mathscr{C}$. A cycle τ of σ is said to be a (k, α) -cycle if there exist k distinct indices i_1, i_2, \ldots, i_k such that τ can be written in the form

$$(u_{11} u_{21} \cdots u_{k1} u_{12} u_{22} \cdots u_{k2} \cdots u_{1\alpha} u_{2\alpha} \cdots u_{k\alpha})$$

with $u_{lm} \in A_{l}$ $(l = 1, \ldots, k; m = 1, \ldots, \alpha)$.

For an r-p.s.c. graph G(r) with $\mathscr{C}^{\bullet}(G(r)) \neq \emptyset$, one can easily prove the following.

Theorem 1.2 (for proof see [2]). Let G(r) be r-p.s.c. and $\sigma \in \mathscr{C}^*$. Let τ be a cycle of σ such that |L| = k. Then

- (i) τ is a (k, α)-cycle;
- (ii) if ψ is any other cycle of σ with $I_{\bullet} \cap I_{\tau} \neq \emptyset$, then (a) $I_{\bullet} = I_{\tau}$ and (b) if τ takes vertices in A_{τ} to A_{τ} then so does ψ .

For further structural properties of r-p.s.c. graphs and r-p.c.p. we refer to [2, 3, 5].

In this paper, the best possible bounds for diameters of connected r-p.s.c. graphs are given. It is shown that, if the diameter of a bipartite graph G(2) is smaller than six then the diameter of the bipartite complement $\overline{G}(2)$ of G(2) is smaller than five. As a consequence, it follows that the diameter Δ of a connected bi-p.s.c. graph satisfies $3 \le \lambda \le 6$. Further, if the diameter of a connected, r-partite graph G(r) is larger than five then the diameter of the r-partite complement $\overline{G}(r)$ of G(r) is smaller than five. As a consequence, it follows that the diameter λ of a connected r-p.s.c. graph satisfies $2 \le \lambda \le 5$. Finally, it is shown that if $r \ge 3$ and G(r) is an r-p.s.c. graph with an r-p.c.p. $\sigma \in \mathscr{C}^{\bullet}(G(r))$ such that any cycle of σ having length > 1 intersects at least 3 classes of the r-partition then the diameter σ of σ of σ is either 2 or 3. As a consequence of the above result it follows that the diameter of an s.c. graph is either 2 or 3.

2. The bipartite case

Let G(r) be a connected r-partite graph with diameter λ . Let $x, t \in V$ be such that $d(x, t) = \lambda$ where d(u, v) is the distance function of G(r), for $u, v \in V$. Then V can be partitioned into $\lambda + 1$ non-empty subsets $B_0, B_1, \ldots, B_{\lambda}$ such that $B_0 = \{x\}$ and

$$B_n = \{u \in V: d(x, u) = \mu\}, (\mu = 1, ..., \lambda).$$

Theorem 2.1. Let G(2) be a connected, bipartite graph. If the diameter of G(2) is larger than six then the diameter of $\tilde{G}(2)$ is smaller than five.

Proof. If $x \in A_1$, then $B_{\mu} \subseteq A_2$, $B_{\mu+1} \subseteq A_1$ for μ odd, $\mu \geqslant 1$; and if $x \in A_2$, then $B_{\mu} \subseteq A_1$, $B_{\mu+1} \subseteq A_2$ for all μ odd, $\mu \geqslant 1$; Thus either $B_{\mu} \subseteq A_1$ if and only if $B_{\mu+1} \subseteq A_1$ for all μ , $0 \leqslant \mu \leqslant \lambda - 1$. That is,

$$(B_{ii} \cup B_{ii+1}) \cap A_i \neq \emptyset$$
, $(0 \le \mu \le \lambda - 1; i = 1, 2)$.

Let $u, v \in V$. We shall prove that $\overline{d}(u, v) \le 4$ where \overline{d} denotes the distance function of $\overline{G}(2)$. Then two cases arise according as

- (1) $u, v \in B_{\mu}$, for some $\mu, 0 \le \mu \le \lambda$, and
- (2) $u \in B_{\mu}$ and $v \in B_{\eta}$ $(0 \le \mu < \eta \le \lambda)$.

Case 1. $u, v \in B_{\mu}$, $0 \le \mu \le \lambda$. Without loss of generality let $B_{\mu} \subseteq A_1$. Then $u, v \in A_1$. Now, if $B_{\eta} \subseteq A_2$ for some $\eta \ne \mu - 1$, $\mu, \mu + 1$ then $\overline{d}(u, v) = 2$. Otherwise, $B_{\eta} \subseteq A_1$. But then $B_{\eta} = \emptyset$ for $\eta \le \mu - 3$ and $\eta \ge \mu + 3$. This implies that $\mu - 2 \le 0$ and $\mu + 2 \ge \lambda$. Hence, $\lambda \le \mu + 2 \le 4$, a contradiction.

Case 2. $u \in B_n$ and $v \in B_n (\mu < \eta)$. Then two subcases arise according as (a) B_μ , B_n are contained in the same class, say A_1 and (b) B_μ , B_n are contained in distinct classes, say $B_n \subseteq A_1$, $B_n \subseteq A_2$.

Case 2(a). $B_{\mu}, B_{\mu} \subseteq A_1$. Then $\mu, \nu \in A_1$. If $\mu \ge 3$, then for any $\nu \in A_1$. $(B_0 \cup B_1) \cap A_2$, uw, $vw \in \tilde{E}$ implying that $\bar{d}(u, v) = 2$, where \bar{E} denotes the edge set of $\bar{G}(2)$. Now, let $\mu = 2$. If $\emptyset \neq B_{\alpha} \subseteq A_{2}$ for some $\alpha \neq 1, 2, 3, \eta = 1, \eta, \eta + 1$. $0 \le \alpha \le \lambda$ then $\bar{d}(u, v) = 2$. Otherwise, $B_{\alpha} \subseteq A_1$ implying that $\eta \le 6$ and $\lambda \le \eta + 2$. Now, $B_2 \subseteq A_1$ implies that $B_\alpha \subseteq A_1$ for all α even, and $B_\alpha \subseteq A_2$ for all α odd. But, $B_n \subseteq A_1$ implies that η must be even. Since $\eta \le 6$ and $\eta > \mu$, it follows that $\eta = 4$ or 6. If n=4 then $\lambda \le n+2=6$, a contradiction. Suppose that n=6. Let $w \in B_1 \subseteq A_2$ and $y \in B_3 \subseteq A_3$. Since $x \in B_0 \subseteq A_1$, $u \in B_2 \subseteq A_1$ and $v \in B_6 \subseteq A_1$, we get that uy, yx, xw, wv $\in \bar{E}$. Hence $\bar{d}(u, v) \le 4$. Next let $\mu = 1$. If $B_a \subseteq A_2$ for some $\alpha \neq 0, 1, 2, \eta - 1, \eta, \eta + 1, 0 \le \alpha \le \lambda$, then $\bar{d}(u, v) = 2$. Otherwise $B_n \subseteq A_1$. This implies $\eta \le 5$ and $\lambda \le \eta + 2$. Now, $B_1 \subseteq A_1$ implies that $B_\alpha \subseteq A_1$ for all α odd, and $B_n \subseteq A_2$ for α even. But $B_n \subseteq A_1$ implies that η is odd. Since $\mu = 1$ we get that $\eta = 3$ or 5. If $\eta = 3$ then $\lambda \le \eta + 2 \le 5$, a contradiction. If $\eta = 5$ then for any $w \in B_4$ and $z \in B_7$ $(B_2 \neq \emptyset)$, since $\lambda \ge 7$) we get that $w \in A_2$, $z \in A_1$ and uw, wz, zx, xv $\in \bar{E}$ and hence $\bar{d}(u, v) \leq 4$. Finally if $\mu = 0$ then $B_a \subseteq A_1$ if α is even and $B_{\alpha} \subseteq A_2$ if α is odd. Also since $B_{\alpha} \subseteq A_1$, η is even. If $\eta \le 4$ then let $w \in B_1$ and if $\eta \ge 6$ let $w \in B_3$. Then $uw, vw \in \overline{E}$ and $\overline{d}(u, v) = 2$.

Case 2(b). $B_n \subseteq A_1$, $B_n \subseteq A_2$. Then $u \in A_1$ and $v \in A_2$. If $\eta - \mu \neq 1$, $uv \in \bar{E}$ and $\bar{d}(u,v) = 1$. Otherwise $\eta = \mu + 1$. If $2 \le \mu \le \lambda - 3$, then for any $y \in B_{n-2} \subseteq A_1$ and $z \in B_{n+3} \subseteq A_2$, we have that uz, zy, $yv \in \bar{E}$ and hence $\bar{d}(u,v) \le 3$. Otherwise, either $\mu \le 1$ or $\mu \ge \lambda - 2$. If $\mu \le 1$ then for any $y \in B_{n-3} \subseteq A_2$ and $z \in B_{n+6} \neq \emptyset$, since $\mu \le 1$ and $\lambda \ge 7$), we have that uy, vz, $zv \in \bar{E}$ and hence $\bar{d}(u,v) \le 3$. Finally, if $\mu \ge \lambda - 2$ for any $y \in B_{n-2} \subseteq A_1$ and $z \in B_{n-5} \subseteq A_2$ ($B_{n-3} \ne \emptyset$, since $\mu \le 3 \ge 3$), we have that uz, zy, $vz \in \bar{E}$ and hence $\bar{d}(u,v) \le 3$.

Thus we have shown that $\bar{d}(u, v) \leq 4$ for any $u, v \in V$ and hence $\bar{\lambda} \leq 4$ follows, where $\bar{\lambda}$ is the diameter of $\bar{G}(2)$.

Corollary 2.2. If G(2) is a connected bipartite graph with diameter larger than six then the bipartite complement $\tilde{G}(2)$ is connected.

Corollary 2.3. If G(2) is a connected bi-p.s.c. graph with diameter λ , then $3 \le \lambda \le 6$.

Remark 1. Connected bi-p.s.c. graphs with diameter λ exist for all λ , $3 \le \lambda \le 6$. The graphs in Fig. 1 illustrate this fact.

Remark 2. Let G(r) be an r-p.s.c. graph with diameter λ . Construct a new graph $G^{\bullet}(r)$ from G(r) replacing each vertex $u \in V$ by a set U of n distinct vertices and

whenever $uw \in E$ define a complete bipartite graph $K_{n,n}$ between U and W in $G^*(r)$. Then $G^*(r)$ is again an r-p.s.c. graph with diameter λ . Further if G(r) is a (p,q)-graph then $G^*(r)$ is a (pn, n^2q) graph. Using the above construction and the graphs given in Fig. 1, one can construct an infinite class of bi-p.s.c. graphs with diameter λ for all λ , $3 \le \lambda \le 6$.

3. The r-partite case, $r \ge 3$

Theorem 3.1. Let G(r) be a connected r-partite graph with $r \ge 3$. If the diameter of G(r) is larger than five then $\bar{G}(r)$ must have diameter smaller than five.

Proof. For any $u, v \in V$, we shall prove that $\tilde{d}(u, v) \leq 4$. We prove this in four

cases. Let

$$S_{\mu} = B_{\mu} \cap \left(\bigcup_{k \neq i} A_{k}\right),$$

$$S^{\Phi}_{\mu} = B_{\dot{\mu}} \cap \left(\bigcup_{k \neq i,j} A_k \right).$$

for some fixed i, i, $1 \le i < j \le r$ and $0 \le \mu \le \lambda$.

Case 1. $u, v \in A_1 \cap B_n$ $(1 \le i \le r, 1 \le \mu \le \lambda)$. If $S_n \ne \emptyset$ for some $\alpha \ne \mu - 1, \mu, \mu + 1$; $0 \le n \le \lambda$ then for any $w \in S_n$, $uw, wv \in \overline{E}$ and hence $\overline{d}(u, v) \le 2$. Otherwise, $S_n = \emptyset$ and hence $B_n \subseteq A_n$. But then $B_n = \emptyset$ whenever $\alpha \le \mu - 3$ and $\alpha \ge \mu + 3$. That is, $\mu - 2 \le 0$ and $\mu + 2 \ge \lambda$ which imply that $\lambda \le 4$, a contradiction.

Case 2. $u, v \in B_n$; $u \in A_i$, $v \in A_i (0 \le \mu \le \lambda; 1 \le i < j \le r)$. If $S_n^* \ne \emptyset$ for some $\alpha \ne \mu - 1$, μ , $\mu + 1$; $0 \le \alpha \le \lambda$ then for any $w \in S_n^*$ we have that uw, $wv \in \tilde{E}$ and hence $\tilde{d}(u, v) \le 2$. Otherwise, $S_n^* = \emptyset$ implying that $B_n \subseteq A_i \cup A_i$. Then $(B_n \cup B_{n-1}) \cap A_i \ne \emptyset$ and $(B_n \cup B_{n-1}) \cap A_i \ne \emptyset$. Now, if $\mu \le 1$, let $w \in B_j$. Without loss of generality let $w \in A_i$. Let $z \in (B_3 \cup B_n) \cap A_i$. Then uz, zw, $wv \in \tilde{E}$ and hence $\tilde{d}(u, v) \le 3$. If $\mu = 2$ without loss of generality let $x \in A_i$, then for any $x \in (B_n \cup B_n) \cap A_i$, $ux \in B_n \cup B_n \cup B_n$. If $x \in A_i$ then for $x \in (B_n \cup B_n) \cap A_i$, $x \in A_n$. If $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for any $x \in (B_n \cup B_n) \cap A_n$, $x \in A_n$ and without loss of generality let $x \in A_n$ then for any $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in (B_n \cup B_n) \cap A_n$ and $x \in (B_n \cup B_n) \cap A_n$ we have that $x \in A_n$ then for $x \in A_n$ then for

Case 3. $u, v \in A_i$; $u \in B_u$, $v \in B_u$ $(1 \le i \le r, 0 \le \mu < \eta \le \lambda)$. If $S_u \ne \emptyset$, for some $\alpha \ne \mu - 1$, μ , $\mu + 1$, $\eta - 1$, η , $\eta + 1$ and $0 \le \alpha \le \lambda$, then for $w \in S_u$, uw, $wv \in \widehat{E}$ and hence $\widehat{G}(u, v) \le 2$. Otherwise, $S_u = \emptyset$ and hence $B_u \subseteq A_i$. Hence, $\mu \le 2$, $\eta + 2 \ge \lambda$ and $\mu + 2 \le \eta \le \mu + 3 \le 5$. a contradiction. At this stage, we consider three subcases of $\mu = 0$, 1, 2.

Case 3(a). $\mu=0$. If $\eta=3$ then $\lambda \leq \eta+2\leq 5$, a contradiction. If $\eta=4$ then $B_{\mu}=\{u\}$. Further, $u\in A_1$ implies that $S_1\neq\emptyset$. Again $B_0\subseteq A_1$ implies that $S_5\neq\emptyset$ (otherwise, $\lambda \leq 5$ a contradiction). If possible, let $w\in B_1\cap A_k$ and $y\in B_2\cap A_k$ $k\neq l\neq i$. Then uy, yw, $wv\in \bar{E}$ and hence $\bar{d}(u,v)\leq 3$. Otherwise, for some $k\neq i$. $B_1\subseteq A_k$, $B_2\subseteq A_k\cup A_i$. Let $w\in B_1\cap A_k$. Since $r\geq 3$, and $B_2\subseteq A_i$, $B_0\cap A_i\neq\emptyset$ for some $\alpha=3$, 4. Let $z\in B_0\cap A_i$. Then uz, zw, $wv\in \bar{E}$ and hence $\bar{d}(u,v)\leq 3$.

Case 3(b). $\mu=1$. If $\eta=3$ then since $\eta+2 \geq \lambda$, $\lambda \leq 5$, a contradiction. Hence, let $\eta \geq 4$. Since $u \in B_1 \cap A_1$, $x \in A_k$, for some $k \neq i$. Now, $S_n \cup S_{n+1} \neq \emptyset$ for otherwise we have $S_n = \emptyset$ and $S_{n+1} = \emptyset$. This implies that $B_n, B_{n+1} \subseteq A_i$, and hence $B_{n+1} = \emptyset$. So $\lambda = \eta \leq \mu+4 = 5$, a contradiction. Hence, $S_n \cup S_{n+1} \neq \emptyset$. If possible, let $w \in (S_n \cup S_{n+1}) \cap A_i$. $l \neq k \neq i$. Then $uw, wx, xv \in \widehat{E}$ and hence $\widehat{d}(u, v) \leq 3$. Otherwise, let $w \in S_n \cup S_{n+1} \subseteq A_k$. Since $r \geq 3$, $B_n \cap A_i \neq \emptyset$ for some $\alpha = 1, 2, \eta = 1 \neq k \neq i$. Let $z \in B_n \cap A_i$. If $z \in B_1 \cup B_2$ then $uw, wz, zv \in \widehat{E}$ and hence $\widehat{d}(u, v) \leq 3$. If $z \in B_{n-1}$ then $uz, xx, xv \in \widehat{E}$ and hence $\widehat{d}(u, v) \leq 3$.

Case 3(c). $\mu = 2$. Let $\eta = 4$. Then B_0 , $B_0 \subseteq A_1$ implying $S_1 \neq \emptyset$, $S_2 \neq \emptyset$. If possible, let $w \in S_1$ and $y \in S_2$ such that $w \in A_k$, $y \in A_1$ where $k \neq l \neq l$, then $y_k, y_k, w \in \bar{E}$ and $\bar{d}(u, v) \leq 3$. Otherwise, $B_1, B_2 \subseteq A_k \cup A_k, k \neq l$. Then, since $r \geq 3$, $B_0 \cap A_1 \neq \emptyset$, for some $\alpha = 2, 3, 4$, follows. Let $z \in B_0 \cap A_1$. If $z \in B_2$ then $y_1, y_2, z_1 \in \bar{E}$ and hence $\bar{d}(u, v) \leq 3$. If $z \in B_3$, then $uy, y_2, z_1 \in \bar{E}$ and hence $\bar{d}(u, v) \leq 3$. If $z \in B_3$, then $uy, y_2, z_1 \in \bar{E}$ and hence $\bar{d}(u, v) \leq 3$.

Suppose now that $\eta \ge 5$. If $S_{n+1} \ne \emptyset$ let $y \in S_{n+1}$ and if possible let $w \in S_1$ $S_1 \ne \emptyset$, since $B_0 \subseteq A_1$ such that $w \in A_k$, $y \in A_k$, $k \ne l \ne i$. Then uy, yw, $wv \in \widehat{E}$ and hence $\widehat{d}(u, v) \le 3$. Otherwise, $B_1 \subseteq A_k \cup A_i$ and $B_{n+1} \subseteq A_i \cup A_i$. Let $w \in B_1 \cap A_k$ and $y \in B_{n+1} \cap A_k$, $k \ne i$. Since $r \ge 3$, $B_n \cap A_i \ne \emptyset$ for some l. $l \ne k \ne i$, $1 \le l \le r$ and for some $\alpha = 2, 3, \eta - 1$, η . Let $z \in B_n \cap A_i$. If $z \in B_2$, then uy, yz, $zv \in \widehat{E}$ and hence $\widehat{d}(u, v) \le 3$. If $z \in B_3$ or B_{n-1} then uy, yz, zw, $wv \in \widehat{E}$ and hence $\widehat{d}(u, v) \le 3$.

If $S_{n+1} = \emptyset$, then $B_{n+1} \subseteq A$. Suppose $S_n \neq \emptyset$. Then, let $y \in S_n$ and if possible let $w \in S_1$ such that $w \in A_k$, $y \in A_k$, $k \neq l \neq i$. Then u_1 , y_2 , w_3 we $\in \widehat{E}$ and hence $\widehat{d}(u, v) \le 3$. Otherwise, $B_1 \subseteq A_k \cup A_i$ and $B_n \subseteq A_k \cup A_i$, for some $k \neq i$. Let $w \in B_1 \cap A_k$ and $y \in B_n \cap A_k$, $k \neq i$. Since $r \ge 3$, $B_n \cap A_l \ne \emptyset$ for some l, $1 \le l \le r$, $l \ne k \ne i$ and $\alpha = 2, 3, \eta = 1$. Let $z \in B_n \cap A_k$. If $z \in B_2 \cap B_3$, then u_2 , y_2 , $y_3 \in \widehat{E}$ and hence $\widehat{d}(u, v) \le 3$. If $z \in B_{n-1}$, then u_2 , z_n , $w_1 \in \widehat{E}$ and hence $\widehat{d}(u, v) \le 3$.

If $S_n = \emptyset$, then $B_n \subseteq A$. But $B_{n+1} \subseteq A_i$ implies that $B_{n+1} = \emptyset$. Hence, $6 \le \lambda \le \eta \le \mu + 4 = 6$ and so $\eta = 6$. If possible let $w \in S_1$ and $\gamma \in S_k$ such that $w \in A_k$ and $\gamma \in A_k$, $k \neq l \neq i$. Then $\overline{d}(u, v) \le 3$. Otherwise, $B_1, B_2 \subseteq A_k$, $U = A_k$

Case 4. $u \in A_1 \cap B_u$, $v \in A_1 \cap B_n$ $(1 \le i < j \le r; 0 \le \mu < \eta \le \lambda)$. If $\eta - \mu \ge 2$ then $uv \in \overline{E}$. So let $\eta = \mu + 1$. If $S_a^* \neq \beta$ for some $a \ne \mu - 1$, $\mu + 1$, $\mu + 1$, $\mu + 2$ let $uv \in S_a^*$. Then uw, $uv \in \overline{E}$ and hence $\overline{d}(u, v) \le 2$. Otherwise, $B_u \subseteq A_1 \cup A_p$. Then five subcases arise according as $\mu = 0, 1, 2, 3$ and $\mu \ge 4$.

Case 4(a). $\mu=0$. Then $u\in B_0$, $v\in B_1$ and $B_\alpha\subseteq A_1\cap A_1$ for all $\alpha\ge 3$. If $B_3\cap A_1\ne\emptyset$, let $w\in B_3\cap A_1$. Note that, $(B_3\cup B_4)\cap A_1\ne\emptyset$. Otherwise, $B_3\cap A_1=\emptyset$ and $B_\alpha\cap A_1=\emptyset$ imply that $B_3\subseteq A_1$. $B_\alpha\subseteq A_1$ and hence $B_\alpha=\emptyset$. But then $\lambda\le 5$, a contradiction. Let $z\in (B_3\cup B_4)\cap A_1$. Then $uz,zw,wv\in \widehat{E}$ and hence $\overline{d}(u,v)\le 3$. Finally, if $B_3\cap A_1=\emptyset$ it follows that $B_3\subseteq A_1$. Let $w\in B_3$. Then, for $z\in (B_3\cup B_3)\cap A_1\ne\emptyset$ we have that $uw,wz,zv\in \widehat{E}$ and hence $\overline{d}(u,v)\le 3$.

Case 4(b). $\mu = 1$. Then $B_{\alpha} \subseteq A_{\epsilon} \cup A_{\epsilon}$ for all $\alpha \ge 4$ and hence let $w \in (B_{\delta} \cup B_{\epsilon}) \cap A_{\epsilon} \ne \emptyset$ and $z \in (B_{\delta} \cup B_{\epsilon}) \cap A_{\epsilon} \ne \emptyset$. Since $r \ge 3$, $B_{\alpha} \cap A_{\epsilon} \ne \emptyset$ for some a_{ϵ} . $0 \le \alpha \le 3$, $k \ne i \ne j$. Let $y \in B_{\alpha} \cap A_{\epsilon}$. Then $uz, zy, yw, wv \in \overline{E}$ and hence $\overline{d}(u, v) \le \overline{d}$.

Case 4(c). $\mu=2$. Then B_0 , $B_a\subseteq A_1\cup A_1$ for $\alpha\geqslant 5$. Now, let $w\in (B_3\cup B_a)\cap A_1\neq\emptyset$ and $Z\in (B_3\cup B_a)\cap A_1\neq\emptyset$. Now if $x\in A_1$ then $uz, zx, xv\in \bar{E}$ and hence $\bar{d}(u,v)\leqslant 3$. If $x\in A_1$ then $ux, xw, wv\in \bar{E}$ and hence $\bar{d}(u,v)\leqslant 3$.

Case 4(d). $\mu = 3$. Then B_0 , B_1 , $B_a \subseteq A_1 \cup A_1$ for $\alpha \ge 6$. Let $w \in (B_0 \cup B_1) \cap A_1 \ne \emptyset$, $z \in (B_0 \cup B_1) \cap A_1 \ne \emptyset$ and $y \in B_a$. If $y \in A_1$ then uz, zy, $yv \in \bar{E}$ and hence $\bar{d}(u, v) \le 3$. If $y \in A_1$ then uy, yw, $wv \in \bar{E}$ and hence $\bar{d}(u, v) \le 3$.

Case 4(e). $\mu \ge 4$. Then $B_\alpha \subseteq A_1 \cup A_j$ for $\alpha \ne \mu - 1$, μ , $\mu + 1$, $\mu + 2$. Let $w \in (B_0 \cup B_1) \cap A_i \ne \emptyset$, and $z \in (B_0 \cup B_1) \cap A_j \ne \emptyset$. Since $r \ge 3$, $B_\alpha \cap A_k \ne \emptyset$ for some $\alpha = \mu - 1$, μ , $\mu + 1$, $\mu + 2$; $k \ne i \ne j$. Let $y \in B_\alpha \cap A_k$. Then uz, zy, yw, $wv \in \overline{E}$ and hence $\overline{d}(u, v) \le 4$.

Thus we have established that $\bar{d}(u, v) \le 4$ for all $u, v \in V(\bar{G}(r))$ and hence the diameter $\bar{\lambda}$ of $\bar{G}(r)$ satisfies $\bar{\lambda} \le 4$.

Corollary 3.2. If G(r) is a connected, r-partite graph with diameter larger than five then the r-partite complement $\tilde{G}(r)$ of G(r) is connected.

Corollary 3.3. Let G(r) be a connected r-p.s.c. graph with diameter λ . Then $2 \le \lambda \le 5$.

Remark 3. r-p.s.c. graphs, with $r \ge 3$, with diameter λ exist for all λ , $2 \le \lambda \le 5$. This is illustrated in Fig. 2. One can construct infinite families of r-p.s.c. graphs for each λ , $2 \le \lambda \le 5$, by using the construction described in Remark 2.

4. r-P.s.c. graphs G(r) with $\mathscr{C}^*(G(r)) \neq \emptyset$

In this section we generalise a well-known result of Ringel [6] and Sachs [7] in the following

Theorem 4.1. Let $r \ge 3$ and G(r) be r-p.s.c. If there exists $\sigma \in \mathfrak{C}^*(G(r))$ such that any cycle of σ having length >1 intersects at least three classes of the r-partition, then the diameter of G(r) is either 2 or 3.

Proof. Let $\sigma \in \mathscr{C}^*(G(r))$ be such that any cycle of σ having length >1, intersects at least three classes. By Theorem 1.1, $\sigma^2 \in \operatorname{Aut} G(r)$. Let $u, v \in V(G(r))$. We first prove the following claims.

Claim 1. If $\sigma(u) \neq u$, then $d(u, \sigma(u)) \leq 2$.

Suppose $\sigma(u) \neq u$. Then by hypothesis and Theorem 1.2, the cycle of σ containing u is a (k, α) -cycle for some $k \geq 3$ and some $\alpha \geq 1$. Thus $u, \sigma(u), \sigma^2(u)$ all belong to different classes. Now if $u\sigma(u) \in E$ we are done. Otherwise $u\sigma(u) \in \bar{E}$ and so $\sigma^{-1}(u)u \in E$. Since $\sigma^{-2} \in \operatorname{Aut} G(r)$, it follows that $\sigma(u)\sigma^{-2}(u) \in E$. Now, either $\sigma^{-1}(u)\sigma(u) \in E$ or $u\sigma^{-2}(u) \notin \bar{E}$ and hence $u\sigma^{-2}(u) \in E$. Thus either $u\sigma^{-1}(u)\sigma(u)$ or $u\sigma^{-2}(u)\sigma(u)$ is a 2-posit in G(r). This proves the claim.

Claim 2. If $\sigma(u) \neq u$ and $\sigma(v) \neq v$, then either $\sigma(u)$, v belong to different classes or u, $\sigma(v)$ belong to different classes.

Fig. 2.

If the claim is false, there exist A_i and A_j such that $\sigma(u), v \in A_i$, $\sigma(v), u \in A_j$. Since $\sigma \in \P^*(G(r))$, it follows that $\sigma(A_i) = A_i$ and $\sigma(A_j) = A_i$. Also by hypothesis and since $\sigma(u) \neq u$, we have $i \neq j$. But then σ has a $(2, \alpha)$ -cycle, contradicting the hypothesis. This proves the claim.

We will now prove that for any $u, v \in V(G(r)), d(u, v) \le 3$. We consider the following three cases:

Case 1. $\sigma(u) \neq u$, $\sigma(v) \neq v$. By Claim 2, we assume without loss of generality

that $\sigma(u)$, v belong to different classes. Now if $\sigma(u)$, $v \in E$ then by Claim 1, $d(u, v) \le 3$. Otherwise $\sigma(u)v \in \overline{E}$ and so $u\sigma^{-1}(v) \in E$. By Claim 1, $d(\sigma^{-1}(v), v) \le 2$ and so $d(u, v) \le 3$.

Case 2. σ sends exactly one of u,v to itself. Without loss of generality assume that $\sigma(u) \neq u, \sigma(v) = v$. If $uv \in E$ we are done. Otherwise $uv \notin E$, hence $\sigma(u)\sigma(v) \notin E$, i.e. $\sigma(u)v \notin E$. Now if $\sigma(u), v \in A$, for some i, then since $\sigma(v) = v$, if follows that $\sigma(A_i) = A_i$. Since $\sigma(u) \in A_i$, it also follows that $u \in A_i$. But $u \neq \sigma(u)$ and so if τ is the cycle of σ containing u then τ has length >1 and τ takes vertices from A_i only, contradicting the hypothesis. Hence $\sigma(u), v$ belong to different classes. Since $\sigma(u)v \notin E$, it follows that $\sigma(u)v \in E$. Now by Claim 1, we have $d(u,v) \in 3$.

Case 3. $\sigma(u) = u$, $\sigma(v) = v$. If u, v belong to different classes then $uv \in E$ iff $\sigma(u)\sigma(v) \in \bar{E}$ iff $uv \notin E$, a contradiction. So u, $v \in A$, for some i. Choose and fix a w in some A_v , $j \ne i$. By a similar argument to that above it follows that $\sigma(w) \ne w$. Now by hypothesis and Theorem 1.2 we have that the cycle containing w is a (k, α) -cycle for some $k \ge 3$. Thus, w, $\sigma(w)$, $\sigma^2(w) \ne A$. Now if uw, w are classes. Also since $\sigma(A_v) = A_v$, we have w, $\sigma(w)$, $\sigma^2(w) \ne A_v$. Now if uw, w are edges of G(r) we are done. Otherwise without loss of generality we assume that $uw \ne E$. Then $u\sigma(w) \ne E$ and so $u\sigma(w) \in E$. Now if $u\sigma(w) \in E$, we are done. Otherwise $v\sigma(w) \ne E$ and so $u\sigma(w) \in E$. Some if $u\sigma(w) \in E$ then u, $\sigma(w)$, u is a 3-path in G(r): otherwise $\sigma(w) \sigma^2(w) \in E$, and so u, $\sigma(w)$, $\sigma^2(w)$, v is a 3-path in G(r): otherwise $\sigma(w) \sigma^2(w) \in E$, and so u, $\sigma(w)$, $\sigma^2(w)$, v is a 3-path in G(r). In either case, $d(u, v) \le 3$.

This completes the proof of Theorem 4.1.

As a consequence of the above theorem, we have the following

Corollary 4.2 (Ringel [6], Sachs [7]). Every s.c. graph G with more than one venex has diameter 2 or 3.

Finally we remark that the method adopted in proving the theorems of Sections 2 and 3 is due to S. Bhaskara Rao who proved Corollary 4.2 using this method. Originally, Sachs [7] and Ringel [6] proved Corollary 4.2 using complementing permutations.

References

- S. Bhaskara Rao, Explored, semi-explored and unexplored territories in the structure theory of self-complementary graphs and digraphs, Proc. Symp. in Graph Theory (ISI, Calcutta, 1976).
- [2] T. Gangopadhyay and S.P. Rao Hebbare, Structural properties of r-partite complementing permutations, Tech. Rep. 1977, ISI, Calcutta, 1977.

r-Partite self-complementary graphs-diameters

- [3] T. Gangopadhyay and S.P. Rao Hebbare. Paths in r-partite self-complementary graphs. Discrete Math. 32 (1980) 229-244, this issue.
- [4] F. Harary, Graph Theory (Addison Wesley, New York, 1972).
- [5] S.P. Rao Hebbare, r-Partite self-complementary graphs, Tech. Rep. 15/77, ISI, Calcutta, 1977.
- [6] G. Ringel, Selbsikomplementäre Graphen, Arch. Math. 14 (1963) 354–358.
 [7] H. Sachs, Über selbsikomplementäre Graphen, Pub. Math. Debrecen 9 (1962) 270–288.