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The following results are praved in this paper.

1) If the diameter of a connected bipartite graph G{2) is lacger than six then the diameter of
the bipartite complement Gt2) of Gi2) is smaller 1han five. In particular, the diameter A of a
bipartite self-complementary graph satisfies 3<A =<6,

(2) If the diameter of a connected r-pantite graph G(r), r =3, is larger than five then the
giameler of the r-panite complement Gir) of G(r) is smaller than five. In particular, the
diumeter A of an r-panite self-complementary (r-p.s.c.) graph satisfies 2sA <5,

(3) It r23 and Gr) is an r-p.s.c. graph with a periedic r-p.c.p. . such that any cycle of o
having Yength > intersects al least 3 classes of the r-partition, then the diameter of Gir) is
cither 2 or 3. As a consequence of the above resull it folows that the diametcr of a
sell-complementary graph is either 2 or 3.

1. ntroduction

We consider finite, undirected graphs without loops and multiple edges. We
follow Harary [4) for the notation and terminology not defined here.

An r-partite graph is said to be complete r-partite if each vertex is joined to
partitioned into r3 1 non-empty subsets, also called classes so 1hat no edge has
both ends in any one subset. Let A,,..., A, constitute an r-partition of V with
Wl=n, n2lfori=1,....r

An r-partite graph is said to be |complete|7-pariite  if each|vertex is|joined to
ewery other vertex that is not in the same class. Such a graph is denoted by
K,, . .. Further, if G(r) is uniquely r-colorable for c i we call G(r) a
wmigquely r-partite graph, where r = x(G) or r = p, the order of the graph being p.

Bipartition of a connected graph, if it exists, is unique. But, in general, an
rpartition of a graph, when it exists, need not be unique. Henceforth, if G(r) is
piven L0 be an r-partite graph, we assume that an r-partition of G(r) is prescribed.

The r-partite complement G(r) of an r-partite graph G(r) is again an r-partite
raph with vertex set V(G(r)) and satisfying the following conditions:

@) for u, ve A, 1 <isruvg E(G(r);

(i) for ue A, veA, 1€i¢ j<ruve E(G(r) iff uvg E(G(r).

An r-partite graph G(r) with r 2 is said 10 be an r-partie self-complementary

us
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(r-p.s.c.) graph if there is an r-partition of G(r) with respect to which G(r) and
G(r) are isomorphic.

The concepts r-partite complement and r-p.s.c. graphs were first defined and
studied in Hebbare [5).

Note that an r-p.s.c. graph may be disconnected.

Remark. The class of classical self-complementary (s.c.) graphs, first studied by
Sachs [7] and Ringe) [6] is contained in the class of r-p.s.c. graphs, with 722 and
my=:--=n=1. We refer 1o a survey article by Bhaskara Rao [1] and the
references given there for most of the literature on s.c. graphs.

Let G(r) be an r-p.s.c. graph with the vertex set V={1,...,p}. Then the
isomorphism between G(r) and G(r) can be represented as a permutation o on V,
We call o an r-parfite complementing permutation (r-p.c.p) for G(r).

Now, let 0=0,- "0, be the disjoint cycle representation of 0. A cycle
g {i=1,...,n) of o is said to be ‘pure’ if ¢,C A, for some j(j=1,..., 1) and
‘mixed" otherwise. Let €, €, and €., respectively denote the set of all r-p.c.p.'s,
the r-p.c.p.’s each of whose cycles is pure, and r-p.c.p.'s each of whose cycles is
mixed, of G(r). Also let L, ={j: o, includes at least one vertex of A, 1%j</),
(i=1,....n).

An 7-p.c.p. o of an 7-p.s.c. graph G(r) is said to be periodic if o maps each A,
into some A,. It is easily seen that if ¢ is periodic and o (A,) € A; then equality
holds. The class of all periodic r-p.c.p.’s of G(r) is denoted by €*(G(r)). The
following observation is immediate.

Observation L Let G(r) be r-p.sc. and o€ €*(G(r)). Then u, uve A; for some
iiff o(u), o(v)€ A; for some j.

Periodic complementing permutations have many interesting properties (for
details see [2]). In particuiar we prove the following

Theorem 1.1. Let G(r) be an r-p.s.c. graph and let a€%4®. Then o€ Aut G{r),
where Aut G(r) denotes the group of all automorphisms of G(r).

Proof. Let u,ve V. If 4, v belong to some class A, then o*(), a*(v) belong 10
a*(A,). If u, v belong to different classes of the r-partition then by Observation
1, ¢*(u), o*(v) also belong to different classes of the r-partition and uv € E(G) iff
a(u)a(v)e E(G(r) ifl olu)o(v)¢ E(G) iff a*(u)o’(v)¢ E(G(r) il a*(u)o™(v)e
E(G). This proves the theorem.

Let G(r) be r-p.s.c. and o €%, A cycle 7 of o is said 10 be a (k, a)-cycle if there
exist k distinct indices iy, by, ..., k Such that 7 can be written in the form

(g gyl Uiz g *** ga ™ Uy B * o)
with u, €A, (I=1,...,k;m=1,...,a).
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For an r-ps.c. graph G(r) with €*(G(r))#9. one can easily prove the
following.

Theorem 1.2 (for proof see [2]). Let G(r) be r-p.s.c. and o € €™, Let 7 be a cycle
of @ such that |L|=k. Then

(i) 7is a (k, a)-cycle;

() if o is any other cycle of o with [,NL+#, then (a) I, =L and (b) if 7 takes
vertices in A, 10 A, then so does .

For further structural properties of r-p.s.c. graphs and r-p.c.p. we refer to
[2.3.5].

In this paper, the best possible bounds for diameters of connected r-p.s.c.
graphs are given. It is shown that, if the diameter of a bipartite graph G(2) is
lasger than six then the diameter of the bipartite complement G(2) of G(2)is
smaller than five. As a consequence, it follows that the diameter A of a connected
bi-p.s.c. graph satisfies 3= A <6. Further, if the diameter of a connected. r-partite
graph G(r) is larger than five then the diameter of the r-pantite complement G(r)
of G(r) is smaller than five. As a consequence, it follows that the diameter A of a
connected r-p.s.c. graph satisfies 2<A <S. Finally, it is shown that if r>3 and
Glr) is an r-p.s.c. graph with an r-p.c.p. o € €*(G(r)) such that any cycle of @
having length > 1 intersects at least 3 classes of the r-partition then the diameter
of G(r) is either 2 or 3. As a consequence of the above result it follows that the
diameter of an s.c. graph is either 2 or 3.

3, The bipartite case

Let G(r) be a connected r-partite graph with diameter A. Let x, t€ V be such
that d(x, t)= A where d(u, v) is the distance function of G(r), for u, v€ V. Then V
@ be partitioned into A + 1 non-empty subsets By, By, ..., B, such that By = {x}
and

B,={ueV:d(x,u)=p}, (p=1,...,A).

Theorem 2.1. Let G(2) be a connected, bipartite graph. If the diameter of G(2) is
larger than six then the diameter of G(2) is smaller than five.

Pool. If xe A,, then B, S A,, B, S A, for p odd, p=>1; and if x€ A,, then
B, A), By, EA; for all p odd, u=>1; Thus either B, S A, if and only if
B,wSAy or B,cA,if andonly if B, S A, for all g, 0€u<A-1. That is,
(B,UB,,)NA#0, (0€psr-1;i=1,2).

Let w,ve V. We shall prove that d(u, v) <4 where d denotes the distance
function of G(2). Then two cases arise according as

(1) u,veB,, for some u, 0= p <A, and

(2) ueB, and ve B, (0€pu <n<A)
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Case 1. u,veB,, 0<p <) Without loss of generality let B, c A,. Then ¢,
vEA,. Now, if B, € A, for some n#pu—1,p, p+1 then d(u v)=2. Otherwise,
B,S A, But then B, = for n<yu~3 and 7= +3. This implies that u -20
and p+2> ). Hence, A<p +2<4, a contradiction.

Case 2. ue B, and ve B, (1 <7). Then two subcases arise according as (2)
B,, B, are contained in the same class, say A, and (b) B,, B, are contained in
distinct classes, say B, € A, B, € A,.

Case 2(a). B,,B,c A, Then uwveA, If p=3, then for any we
(BoUB)NA,, uw, vwe E implying that d(u, v)=2, where E denotes the edge
set of G(2). Now, let u=2. 1f §# B, € A, for some a#1,2,3,9-1,n,7+],
O0sa=A then d(u, v)=2. Otherwise, B, A, implying that n %6 and A sn+2.
Now, B,c A, implies that B, € A, for all a even, and B, € A, for all a odd. But,
B, c A, implies that n must be even. Since n €6 and 1> p, it follows that n=4
or 6. If n=4 then Asn+2=6, a contradiction. Suppos¢ that 5 =6. Lat
weBycS A, and ye Bsc A,. Since x€Boc A,, ue B, A and veB,c Ay, we
get that uy, yx, xw, wo € E. Hence d(u, v)<4. Next let & = 1. If B, € A, lor some
a#0,1, 27— 1,7, n+1, 0sa=), then d(u, v)=2. Otherwise B,cA,. This
implies n =5 and A <7 +2. Now, B, A, implies that B, < A, for all a 0dd, and
B, S A, for a even. But B, c A, implies that n is odd. Since g =1 we get that
n=3or 5. If n=3 then A€n+2<5, a contradiction. If n =35 then for any
weB, and zeB, (B,#§, since A27) we get that weA, z€eA, and
uw, wz, 2x, xv € E and hence d(u, v) €4. Finally if £ =0then B,C A, if a is even
and B, € A; if a is odd. Also since B, € A,, n is even. If 3 <4 then let we B,
and if 726 let we By, Then uw, owe E and d(i, v)=2.

Case 2(b). B,c Ay, B,C A,. Then u€A, and ve Ay I n-p#), wek
and d(u, v)=1. Otherwise n=u+1. If 2&u €A -3, then for any ye B, ,c A,
and z€B, ., G Ay, we have that uz, zy, yve E and hence d(u. v) <3. Otherwise,
cither p&] or @A —2. If p=1 then for any ye B,.;C A; and z€ B, (S A,
(B, vs# 9, since p <1 and A7), we have that uy, yz, zv€ E and hence d(u, o)<
3. Finally, if p>A-2 for any yeB,_,CA, and z€ B, _,CA, (B,_s#9. since
u-52A-720), we have that uz, 2y, yve E and hence d(u, v)=3.

Thus we have shown that d(i, v) &4 for any u, ue V and hence A <4 follows,
where X is the diameter of G(2).

Corollary 2.2. If G(2) is a connected bipartite graph with diameter larger than six
then the bipartite complement G(2) is connected.

Corollary 2.3. If G(2) is a connected bi-p.s.c. graph with diameier A, then
3\ <6,

Remark 1. Connected bi-p.s.c. graphs with diameter A exist for all A, 3€A &6,
The graphs in Fig. 1 illustrate this fact.
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Remark 2, Let G(r) be an r-p.s.c. graph with diameter A. Construct a new graph
G*(r) from G(r) replacing each vertex u€ V by a set U of n distinct vertices and
whenever uw € E define a complete bipartite graph K, between U and W in
G*tr). Then G*(r) is again an r-p.s.c. graph with diameter A. Further if G(r) is a
1p.q)-graph then G*(r) is a (pn. n’q) graph. Using the above construction and the
graphs given in Fig. 1, onc can construct an infinite class of bi-p.s.c. graphs with
diameter A for all A,3€A €6,

3. The r-partite case, r >3

Theorem 3.1. Let G(r) be a connected r-partite graph with r> 3. If the diameter of
G(r) is larger than five then G(r) must have diameter smaller than five.

Proof. For any &, ve V, we shall prove that d{u, v)<4. We prove this in four
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cases. Let

s.=5.0(ya)
st=8:0(y,A)

for some fixed i,j, 1 €i<j%r and 0€p €A

Case | uve ANB, (1€i€r, 1€u<A). If S, #0 for some aFp—1,pup+
1; 0<a<A then for any weS,, uw, woeE and hence d(u, v)€2. Otherwise,
S.=9 and hence B, c A, But then B, =@ whencver a<p-3 and adp+3.
That is, #—2<0 and pu+2> A which imply that A <4, a contradiction.

Case 2. u,veB,; ucA, veA(0Sp€A; 1<i<j<r). If S2#0 for some
aFp-1,pp+l; 0€asA then for any weS? we have that uw. woe E and
hence d(w, v)&2. Otherwise, S¥=p implying that B,s A UA, Then
(B,UB.,,)NA#§ and (B, UB,.,)NA,#9. Now, if n<1, let we B,. Without
loss of generality let w € A,. Let 2 € (BsU BN A, Then uz, 2w, wo € £ and hence
d(u, v)=3. It p=2 without loss of generality let xe A, then for any ze
(BJUB)NA, uz,zx,xvueE and hence d(u,v)€3. If 3€ <=3, then for
we(B,;UB, )NA, and z€(B,.,UB,.;)NA, we have that uz. 2w, woef
and hence d{u. v)€3. If p=A-2, let z€ B, and without loss of generality let
z€ A, then for any we(B,_sUB, )N A, we have that uz, 2w, woe E and hence
d(u, v)€3. 1f p=2-1let z€B,_, and without loss of generality let z€ A, then
for any we(B,-sUB,_)NA, uz,zw.wve E and hence d(w v)=3. Finally. if
=), then for ze(B,. ,UBl JNA; and we(B,_(UB,_s)NA; we have tha
uz, 2w, wo € E and hence d(u, 0)<3.

Case 3. u,veA;; ueB,, veB, (1€i<y, 0cp<n=A) It S $9, for some
afp-lpgp+l, n-1,n,n+1 and O€a €A, then for weS,. uw. woe E and
hence d(u, v)<2. Otherwise, S, = and hence B, < A, Hence. u €2, q+224
and p+2€n€p+4 (if n=p+1 then A€n+2=p +3<S, a contradiction. Al
this stage, we consider three subcases of ¢ =0, 1,2.

Case 3(a). u=0.If n<3 then A€ +2<35, a contradiction. If n=4 then
B, ={u). Further, u€ A, implies that S, # . Again Byc A, implies that S;#§
(otherwise, A <5 8 contradiction). If possible, let we B,N A, and ye BsNA,
k#1#i Then uy,yw, woe E and hence d(u, v)<3. Otherwise, for some k#i,
B,S Ay, BoC A UA, Let we B,NA,. Since r»3, and B,< A, B, NA,#§ lor
some a=3,4, Let z€ B,NA,. Then uz, zw, wve E and hence d(u v)=3.

Case 3(b). g =1.1f n =3 then since n+2» A, A €5, a contradiction. Hence.
let n>4. Since ueB,NA, x€A, for some k#i Now, S, US,, #§ for
otherwise we have S, =@ and S, ., =§. This implies that B,, B, < A, and hence

B,.,=§. S0 A=n=p+4=5, a contradiction. Hence. 5, US, ., # 9. If possible.
let we(S,US,.)NA, I#k#i. Then uw, wx,xve £ and hence d(u, o)<3.
Otherwise, let we S, US,. € A;. Since 723, B,NA,#0 for some a=1,2,9~1
I#k#i Let ze B,NA, If ze B,UB, then uw, wz, zv€ E and hence d(u, v)%3.
It z€ B, then uz, zx, sweE and henge d(u, v)<3.
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Case 3(c). p=2. Let n=4. Then B,, B,c A, implying S,#0. S;#0. If
possible, let wes, and yeS, such thal weA,, yeA, where k#/#i then
up.yw.wo€ E and d(u, v)=3. Otherwise. B,.B;c A, UA, k#i. Then. since
123, B,NA#. for some a=2.3.4, follows. Let ze B, N A, If z€ B, then
uy. ¥z, zve E and hence d(u, v)<3. if 2€B,. then uy. yz. 2w, woe E and hence
Mu. )4, If z€B,, then uz, 2w, woe E and hence d(u, v)<3.

Suppose now that n=5. If S, #8 let yeS§,., and if possible let wesS,
1S, # 4, since ByC A,) such that we A, y€ Ay, k# I3 i. Then uy, yw. woe E and
hence d{u, v)€3. Otherwise, B, < A, UA, and B,..c A UA, Let weB,NA,
adyeB,, ,NA, k#i Since r=3, B,NA,# forsome L I#k#i, l=lsrand
forsome @=2,3,n-l.n. Let z€ B, N A, If z€ B, then uy, yz, 2v¢€ E and hence
die.v)<3. If zeB, or B,y then uy. Y2, 2w, wo€E and heace d{u, v)<d. It
1€B,, then uz, 2w. woe E and hence d(u. v)<3.

IfS,.. =@ then B,,,c A, Suppose S,# . Then. let ye S, and if possible let
weS, such that we A, y€ A, k#I#i. Then uy, yw. woe E and hence d(u. v)<
3. Otherwise, By A, UA, and B, c A, UA, for some k# i. Let we B,N A, and
yeB,NA,, k#i. Since r=3, B,NA#0 for some [, 1<i<r I#k¢iand a=
13.9-1.Let ze€ B,NA, If z€B,or B, then uy, yz. zve E and hence d(u. v)<
3.1f z€ B,_, then uz, zw, woe E and hence dlu, v)<3.

IfS, =@, then B, € A. But B,., € A, implies that B,., =@. Hence, 6<A=n <
u+4=6 and so n=6. If possible let weS, and yeS; such that we A, and
yeA, k#1#i Then d(u, v)<3. Otherwise, B,, By A, UA, for some k#i. Let
weB,NA, ye B{N A k#i. But, since r=3, B,NA,# 8 for some a (a=2,3),
k#1#i Let ze B,NA, then uy. yz. zv€ E and hence d(u, v)s3.

Case 4. ue A,NB, veANB, (I€i<j<r,0Ssu<y<A). If n~p>2then
wekE Solet n=p+1. 1f S¥#0 for some af u—1, pop+ 1 p+2 let weS?
Then uw, wo€ E and hence d(u. v)=<2. Otherwise, B, < A, UA, Then five sub-
cases anise according as p=0,1.2,3 and u 24,

Case 4a). p=0. Then ue By, veB, and B,c A, NA, for all a>3. If
B,NA#§. let we ByN A, Note that, (B;UB)N A, #§. Otherwise, B,N A, =9
and B,N A, = imply that Bsc A, B,€ A, and hence B,=9. But then A <5, a
contradiction. Let z € (BsUBy)N A,. Then uz. zw, wo€ E and hence d(u, v)<3.
Finally. if ByNA, =@ it follows that By A, Let weB, Then. for ze
1B;UB,)NA,#@ we have thal uw, wz. 20€ E and hence d(u. v)=3.

Case 4(b). p=1. Then B,SAUA, for all a4 and hence let we
B,UBJNA,# and ze(B;UBJ)NA,#§. Since r=3, B, N A, #8 for some a,
0<as3, k#i#j Let yeB,NA,. Then uz, zy, yw. woe E and hence d{u, v)<
4,

Case 4{c). p=2. Then B, B,€AUA, for a=5. Now. let we
(ByUBJNA,#0 and Ze(BsU By NA# 0. Now if x € A, then uz, zx, xve E and
hence diw, v)<3. If x €A, then ux, xw, woe E and hence d(u, v)=3.

Case 4d). p=3. Then BoB.B,SAUA, for a=6. Let we
(BUBINA,#, 2€(BoUB))NAZP and ye B, If ye A, then uz, zy, yve E
and hence d(u, v)<3. If ye A, then uy, yw, woe E and hence d(u, v)<3.
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Case 4(e). p24. Then B,c AJUA, for a#p-1, o, p+1, p+2 Let we
(BoUB\)NA#, and ze(BoUB)NA #D. Since r=3, B,NA,#§ for some
a=p-lmp+l,p+2; ki) Let ye B, NA,. Then uz zy. yw. woe E and
hence d(u. v)=4.

Thus we have established that d(u, v)=4 for all u, ve V(G(r)) and hence the
diameter A of G(r) satisfies X =4.

Corollary 3.2. If G(r) is a connected, r-partite graph with diameter larger than five
then the r-partite complement G(r) of G(r) is connected.

Corollary 3.3. Let G(r) be a connected r-p.s.c. graph with diameter A. Then
2sAsS.

Remark 3. r-p.s.c. graphs, with r =3, with diameter A exist for all A, 225,
This is illustrated in Fig. 2. One can construct infinite families of r-p.s.c. graphs
for each A, 2= A =5, by using the construction described in Remark 2.

4. r-Ps.c. graphs G(r) with €*(G(r)#9

In this section we generalise a well-known result of Ringel [6) and Sachs [7] in
the following

Theorem 4.1. Let r=3 and G(r) be r-p.s.c. If there exists o € €*(G(r)) such that
any cycle of o having length >1 intersects at least three classes of the r-pariition.
then the diameter of G(r) is either 2 or 3.

Proof. Let o€ €*(G(r)) be such that any cycle of o having length >1. intersects
at least three classes. By Theorem 1.1, o2 € Aut G(r). Let u, ve V(G(r)). We first
prove the following claims.

Chaim L. If o(u) # u, then d(u, o(u)) <2

Suppose o(u)# u. Then by hypothesis and Theorem 1.2, the cycle of o
containing u is a (k, a)-cycle for some k =3 and some a = 1. Thus u, a(u), oX{u)
all betong to different classes. Now if uo(u)e E we are done. Otherwise ug(u)€ E
and so o (u)ueE. Since g€ Aut G(r), it follows that a(u)o*(u)e E. Now.
cither o (u)o(u)eE or uo*(u)¢E and hence uo*(u)eE. Thus either
uo~'(u)a(u) or uo(u)a(u) is a 2-path in G(r). This proves the claim.

Chaim 2. If o(u) # u and o(v) # v, then either o(u), v belong to different classes or
u, a(v) belong to different classes.
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If the claim is false, there exist A; and A, such that o{u). ve A, o(v), ue A,
Since o€ €*(G(r)), it follows that o(A,)= A, and a(A)) = A;. Also by hypothesis
and since o(u)# u, we have i# j. But then o has a (2, a)-cycle, contradicting the
hypothesis. This proves the claim.

We will now prove that for any u, ve V(G(r), d(u, v)=3. We consider the
lollowing three cases:

Case 1. o{u)# i, o(v) # v. By Claim 2, we assume without loss of generality
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that o{u), v belong 1o different classes. Now if o{u), ve E then by Claim 1.
d(u, v)=3. Otherwise o{u)ve E and so uo™'(v)e E. By Claim 1, d(o™"(v), v)<2
and so d(u, v)=<3.

Case 2. o sends exactly one of u, v 10 itself. Without loss of generality assume
that o(u)#u,o(w)=v. If uveE we are done. Otherwise uvé E. hence
a(u)a(v)¢ E. i.e. alu)vg E. Now if o(u), € A, for some i, then since o(v)=u. il
follows that o(A,) = A,. Since a(u)€ A,, it also follows that u € A;. But u# o(u)
and so if 7 is the cycle of o containing u then 7 has length >1 and r takes vertices
from A, only, contradicting the hypothesis. Hence o(u), v belong to different
classes. Since o(u)ué E, it follows that o(u)ve E. Now by Claim 1, we have
d(u, v)<3.

Case 3. o{u)=u, o(v)=v. If u,v belong to different classes then uye
Eiff o(u)o(v)e E iff uvé E, & contradiction. So u, ve A, for some i. Choose and
fix a w in some A, j#i By a similar argument 10 that above it follows thal
o(w)# w. Now by hypothesis and Theorem 1.2 we have that the cycle containing
w is a (k, a)-cycle for some k>3. Thus, w, a(w), 0%(w) belong to differem
classes. Also since o(A,)= A, we have w, o(w), dX(w)¢ A, Now if uw, uw are
edges of G(r) we are done. Otherwise without loss of generality we assume thal
uwg¢ E. Then uo(w)¢ E and so uo(w)e E. Now if vo(w)e E, we are done.
Otherwise vo(w)¢ E and so va(w)e E. Since o' (v) = v, it follows that vweE.
Also, since o?eAutG(r), we have voX{w)eE. Now if wo(w)eE then
wo(w)hwov is a 3-path in G(r); otherwise o(w)oXw)eE, and s
u, o(w), @*(w), v is a 3-path in G(r). In either case, d(u, v)&3.

This completes the proof of Theorem 4.1.

h iall

As a consequence of the above , we have the

Corollary 4.2 (Ringel (6), Sachs [7]). Every s.c. graph G with more than one vertex
has diameter 2 or 3.

Finally we remark that the method adopted in proving the theorems of Sections
2 and 3 is due 10 S. Bhaskara Rao who proved Corollary 4.2 using this method.
Originally, Sachs [7) and Ringel [6] proved Corollary 4.2 using complementing
permutations.
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