ON CLASSIFICATION BY THE STATISTICS R AND Z

By S. JOHN
(Received May 28, 1962)

1. Introduction
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where T¥(k=1,2) is the mean of a sample of size N, from population
P, S an estimate of the variance-covariance matrix X of Pt and P,
7 a constant and

N'+ N7 IN,+N,

are three criteria that have been proposed for deciding the population
to which an individual, with measurement z, known to belong to P‘" or
P, really belongs. If P and P are normal, W is the statistic ob-
tained by replacing the parameters in the logarithm of the likelihood-ratio
by estimates of them from random samples; see Anderson (1951). The

statistic
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was proposed by Rao (1954). He showed that it is best for discriminating
between alternatives that are close to each other. The statistic Z is
equivalent to a statistic derived by Anderson (1968, p. 142).

[Z with =1 was considered by John (1960). It was proposed there
because it appeared reasonable to give the individual to that population
which, on testing, rejects it at a higher level*. Note that if y=1 the
two terms, whose difference Z is, are the criteria used for the tests. We

* Rao (1954, p. 655) had previously stated this principle.
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wish also to mention that A. Kudo (1959) has shown that the procedure
of assigning the individual to P’ or P according as

N,
N+1

B30 % T | ety Ns —_ YN -} —_——hy =
(z—ZV)5 (x—F") ——M_H(z V) Nz—F") =0

is the best of all two-decision rules invariant under translation and
rotation of axes.

The three statistics W, R and Z (with y=1) are asymptotically
equivalent. W and R are equivalent if N\=N,. Z is equivalent to W,
if Nh'(N|+l)=7] Ny (N, +1).]

If W, Ror Z is used to classify individuals, the probability (given
z¢, ¥V and S) of assigning an individua) to P or P‘" depends on the
realised S, " and Z*. John (196la, 1962) gave the distributions and
expected values of these probabilities in the case of W. With R and Z
the problems are more difficult. The present paper will indicate what
results have been obtained.

2. Notation

A glossary of the symbols used is given below. Notations introduced
in the previous section are repeated for the sake of completeness.

Pw(k=1,2): the two parent populations (assumed p-variate normal)
claiming the individual to be classified.

P: a third population (also assumed p-variate normal).
p: the number of characters used.

r=(2,, 2,,»+-, %,): the vector of measurements on the individual to
be classified.

€ P means that z is the vector of measurements on an individual
from P (etc).

HEO = (0, g, e 0o, yl?):  the mean of P® (k=1,2).

n=(py, ptg,**=, 1) the mean of P.

S =(o,): the variance-covariance matrix of P, P® and P.

S=[(u® — p V) Hpt — Y

#%: the arithmetic mean of the observations in a random sample
of size N, from P (k=1, 2).

S: an unbiased estimate of Y7, distributed independently of %' and
zv, and following the Wishart law with n degrees of freedom.

N.: size of the sample from P (k=1, 2).

n: the degree of freedom of S.
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a,=N/(N\+Ny) ; a,=Ny/(N+ Ny).

ay=N7'"+N7': a,=14+(N,+ Ny~

a,=N/(N,+1); a;=Ny/(Ny+1).
d=2(a,/as)"’/(a:—a,).

W= —g"V)S 2’ — }(@*—z")S- (T "+ )

R=(x—a,z"—ax")S '(x—a,z"—ax")
—d{a,/a)" (P —z")S "z —a, 2" —a,z").

Z=a,x—x")S (x—E") —ralz—x%")S (x—Z7).

W., R,, Z,: respectively the same as W, R and Z with X" substituted
for S.

Q=(5(l)_5(l))\'_’—\—I(i(i)_ill))l'

T=(a,p 4yt — ) STV =Y /C\.

Ci=(a.pV +ay” — 1) SNt + @apd P — 1)’

=(anlt“’+a./l"’—/t)\““(/l"’—/t“’)'
C,=8'—CyC,; C,=C,/C\"” ¥
F(Q, T): the joint densnty of Q and T.

Lir, 8)= MS Y1 —z) dz.

r (1‘) I'(s)
dp(l ) i (é 2) (xl)(l/:)pw— — .

20 = Tpt 1]

A random variable having J, (3': 2) as the density function of its distribu-
tion will be spoken of as a non-central chi-square with p degrees of
freedom and non-centrality 2.

L«,z): the value of 2 satisfying the equation S-J,(z';l)dz’=z_

eV, %" ;S): the probability, given ", Z” and S, of assigning an
individual from P to P'{k=1,2), if individuals are assigned to
P or P* according as R#c.

e (", #*; S): the probability, given &, &* and S, of assigning
an individual from P, to P‘“(k=1, 2), if individuals are assigned
to P or P according as Za&c.

(@, BY)=aE", B ) (e=1,2).

& ED, BP) =g (B, EV ;) (k=1,2).
The symbol for a random variable preceded by E denotes its expected
value.

Let Y=(y,)*be a wmxv random matrix whose elements are
independent normal variables with unit variance. Let Ey,=0,
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(i=1,2,-++,m;j=1,2,---,v). Let A= (TT“. 8, {I,,). We shall call any
random matrix having the same distribution as ¥ Y’ a non-central
Wishart matrix of order m, degree of freedom » and non-centrality } .I.
In case . is the null matrix, we shall call the random matrix simply a
Wishart matrix of order m and degree of freedom v.

3. Distribution of the probability when the statistic is R

If N,=N,, Risequivalent to W. In what follows we shall, therefore,
assume that N,#N,. Whether individuals assigned to P'® should be those
for whom R,=c depends on whether N;= N,. For the sake of definiteness,
we assume that N,>N,. Suppose that the individuals assigned to P
are those with R,zc. We denote the probability, given ' and ¥, of
assigning an individual from P to P by ez, ). Since e)(z'", ")
=1—e¢,(x'?, ), we consider only e(x", V).

The inequality R,=c is equivalent to the inequality

Vzc+{ad'Qla,, (3.1)
where
V= [:z:—a.i:"‘—a,i"’— }d(a.,’a,)"’(i”’~— 5:1.)]:- 1
[r—ax" —a.z'" — bd(a,/a,) (" -z )] . 3.2)

Given " and %'V, V is distributed as a non-central chi-square with p
degrees of freedom and non-centrality

p—a TV —a.2 — ld(a/a) (@ —2") T

[p—a.i‘“—a,:?:"’—— id(al/a’)ll:(iﬂi_ill))]l= v (say) (33)
Therefore
s an= |7 st viae 3.4
c+ /03 pera,
Hence,

Prle(z", 2V)<2z]=Pr[V'< L,(c+}a.d'Q/a,, 2)]. (3.5)
To find Pr[V’'<L/c+ {ad'Q/a,, 2)], we first find
Pr{V'< Ly(c+ }ad'Q/a,, 2)|TV—xV].

Given z¥—x'V, 2(N,+ Ny) V’ is distributed as a non-central chi-square with
p degrees of freedom and non-centrality

(I + N))[Ha/a,)d'Q+d(Cia,/a)* T+ C,] = V. (say). (3.6)
Therefore,



ON CLASSIFICATION BY THE STATISTICS R AND Z 241

Pr[V'< L(c+ }{ad'Q/a,, 2)|z¥ —Z"]
4, V'dy, (3.1

e, +N,)S,(c+(|/c)- “Mrayn

a function of z, @ and T, which we shall denote by the symbol 2 (z;
Q, T). Let F(Q, T) denote the joint density of Q and 7. Then

Pr{V'< L (c+1adQlas, 2)] =jja<z : Q. T)F(Q. T)dQdT, 3.8

where the domain of integration is the entire domain of variation of Q
and T. That is,

Prie@®, 3 <4 =({a6: Q. T)F (@ TIaQeT. (3.9)

The joint density of @ and T was required in the solution of pro-
blems connected with W, and will again be required when we consider
the statistic Z. John (1962) shows that

FQ 1)={8=T00 " exe] — L (@—2CT+#]

- (i C./a,)"'(Q—T’): o s
Z kiluprr—y (T sT=@N. (3.10)

if C,#0; if C,=0, 2 (z;Q, T) does not involve T, and, therefore, in
equation (3.9), F(Q, T) may be replaced by the density function of Q;
the density function of @ is a;'d,(Q/a,; % é'/a,).

4. Distribution of the probability when the statistic is Z

Suppose individuals are assigned to P or P® according as Z,=c.
We denote the probability, given " and Z*, of assigning the individuals
to P*(k=1, 2) by e,(z", z'”). Since e/'(Z", *)=1—¢, (3", ), we shall
consider only e;(z", ).

The inequality Z,=c¢ is equivalent to

[x_?l)_'_n(in)_i(l))]z—llx_E(l)_l_a(i(l)_iu))]'

Sa(a+1)0Q+¢ (4.1
according as a,27a,;
_ NN, +-1)p :
T NN+ 1)—NN 41y “2)
¢=__ oN+1)N,+1) (4.3)

NN+ 1)— NN, ¥ Iy~
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For the sake of definiteness, we shall assume that a,>5a,. (If a,=7a,,
Z, is equivalent to W,.) Then ¢;(z", ) is the probability, given z®
and Z®, of the inequality (4.1) with the upper inequality sign being
satisfied. It is easily seen to be equal to

4,(x"; v)dy', (4.4)
ala+1)Q+e*
where
,u=i[!‘_i(l)+a(E(I)_E(I))]E-|[/‘_El“_*_"(illl_i(l))]l. (4'5)
By methods similar to those of the previous section we can show that
Priey @, 2 <al={|2: @ TIF@, TydqaT, (4.6)
where
22:Q. T)= 5 4,06 V) (@.7)
oAU N 4 Y Calo #1204 )
v =§(N,+ N)[FQ—-28CY"T+C)); (4.8)
f=a+ta,. (4.9)

If C,=0, 2 does not involve T, and, therefore, in equation (4.6), F(Q, T)
may be replaced by the density function of Q; i.e., by a;'4(Q/a,;
1¥'/a,).

5. Expected values

If individuals are assigned to P‘” or P‘" according as R,=c¢(Z,=c),
the expected probability of assigning the individual to P is clearly
equal to the integral of the density function of R,(Z,) from ¢ to oo.
The density function of R, for z€ P, together with that of W, and
another statistic, was given by John (1960). They all have the form

exp[—2,—2,— (b, —b,)4]

- - 1:1: bf"”"'b?'”"' ] 1/3p+ rta) aw
i M ) 0 Won(4bi+510) (5.1

for §=0 and the form

exp[—2a,—4—1(b—b,)6]
i - 1.’1; Mlh)ﬂ'bslIﬂNl ( —8 )lll(rfrfl)
reoima rlal  I(4p+8) 2b,+-2b,

0-'W_io(—4[0+b:10) (5.2)

for 6<0. Here
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I=4(r—s), m=i(r+s+p—1); (5.3)
W,.. is Whittaker’s confluent hypergeometric function defined by the
equation

gn+am

el " pnrmmt—arn -4 1=C1/)
Tm—159) R

W, (0)=

The density functions of W,. R, and Z, retain the form given above even
if xeP. If in (5.1) and (5.2) we take 7=R,,

1|=%[ Y(l+d)+ 1) (r—a i —ayl®)

(T+d)"™(2a)"

_AVA+A) 41T T
o adyigay ]S

_[ﬂ1+d’)+1 2
(14+dY)'7(2a,)'"?

_dlvY(a4dy+1)” m_,,m)]’- (5.4)

(4h

(1—ayt”—ap'?)
(L+a)"@ay

—_—l { ‘/(1+_d_')_fl__f (11— a, ;™ —agy?)

T2l A+ dy 20"

d(“/(l"‘d’)_l!-ln (1) __ 1) -
S ran ey ¢ 2

{JA+d)—1}"7
(1+dH)"(2a,)'”

+d! $/(1+d')—1!_'h (/’u:_'“lu)]" (6.5)

(1+d")"(2a)"
b=(2/a)/[ V(1 +d)+1]. by=(2/a)/[ v(1+d)—1], (5.6)

we shall get the density function of R, (for x€P). To get the density
function of Z, (for x€ P) we should take, in (5.1) and (5.2), ¢=2,

(r—at’ —a,pu™)

A =4{a)"(r+r)(e—p)+ () (n— g —p™) !
(@ (ri+ r)(p— 1)+ (@) *(ri— 1l — )]+ (2rir,— 20+ 2), (6.7)

=4[y, — r N — )+ (pa) (1 + 1) (p— )}
{ad(ri— ) —1£) + (e )+ i) — o)) ]+ (2rir 4+ 29— 2), (5.8)
b,=2{[(1+79)'—daiap])"+1 -y}, (5.9)

and

by=2{K14n)—4aam]'*+7—1}"% (5.10)
n=[14+7—-20aw)'"'*; ri=[1+75+2(ya,a,)/]"". (5.11)
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John (1961a, 1962) has given an expression of the form

—(‘I“I’I: - A4 {I—Ia,/(nn,) (% p+r, 1 P+ 8)}

vmo im0 ! 8! 2
- = .
+55 'r‘)" Lo, +.,)(2 p+s, —2—-p+r):| (6.12)

for Pr(W,=0) and has shown that it is approximately equal to

S__71§; e~y (5.13)
where
= 2B (L A0) = (1 4 0))] 1 9(rd) " — (14571 (6.14)
(18)71[b%r; A1+ 0+ b r P (1 + 0)]
r=p+23 (i=1,2); (5.15)
=22/(p+22) (:=1, 2). (5.16)

Since the density functions of R, and Z, are the same as that of W, in
form, these same expressions will be equal to Pr(R,>0) or Pr(Z,>0)
according as 2,, 4, b, and b, are as in equations (5.4) to (6.6) or as in
equations (5.7) to (5.10)*.

We shall now give some results regarding R and Z. John (1961b)
shows that R is distributed as

(na /XN By—d{By—(n—p+2)~""t| B|"}]. (5.17)
where
pu— BII BII
B _(B,. B,,) ’

t and z* are independent random variables distributed as follows: B has
the non-central Wishart distribution with p degrees of freedom and, if
we let

=30 M

denote its non-centrality matrix, with
=(p— ey —a,y ") 5 (p—a,p’ —ay*Y/a,, (5.18)
A= (=, — gy YD — p0) (a2 and A=y

t follows Student’s law with n—p+2 degrees of freedom; 3' has the

* In my 1960 paper (1960a), snother expression Is given for Pr(Z,>>0] for x€ P1V. A
similar expression can be given for x € P also, but will be less simple than what is given here.
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chi-square distribution with n—p+1 degrees of freedom*. From this
it follows that

Ee;(i(l), 5(" ; S)
=FE Pr[y's (ra/c) By —dBy+d(n—p+2)~/ B|'t}] (5.19)
according as ¢=20. If ¢=0, we can write
E¢e (z”, 2" ; S)=FE Pr[t>(n—p+2)”| B|"'”(B,— B,/d}]. (5.20)

These results will facilitate the evaluation of Ee(z,®";S) by Monte
Carlo methods. Similarly, it has been shown there that Z has the
distribution of

(/OA—7)Bu+2(r—aeady)”{By—(n—p+2)"|Bjt}],  (5.21)

where By, B,, By, t and x' have the same joint distribution as in the
case of R except that

A= ([} (u— V)~ (a) *(p— )

(a3 (p— g ) — (@) (e — p '} + [1+ 59— 2(nasa)'], (5.22)
A= [[a*(p— p) — (7@26) (e — N

[Be— o)+ Bt — ")} + [L+ 9 — 2(n@5@:) ], (5.23)
Zu=[B(—p®)+ Bl — NS Blr— V) + Bl — )] 5 (5.29)
fi= a;”[27—2(asan)""] ; (5.25)

2(p—aam)[1+7—2(aam)' ]
b= (72712 —2(ya,a,)""] (5.26)

2(p—a,a)'"[1+7—2(aayp) "
Hence it follows that
Ee;'(i(l)’ E(D ; s)
=E Pr[x's (n/c)(1—9) B+ 2(n/c)(n—aam)”
{Bu—(n—p-+2)~'7| B|'t}] (6.27)
according as c20. If ¢=0, we can write

Ee;’(ill)' Eﬂ) ; s)

=EPrt<(n—p+2)| B~ (By+3(n—asayn)/*(1—9)By] ). (6.28)

INDIAN STATISTICAL [NSTITUTE, CALCUTTA

* This result is similar to that of Bowker (1960) for W. Some implications of this
representation of R and that of Z, given below, will be developed elsewhere.
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