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0. Summary. A vector variable X is said to have a linear structure if it can
be written as X = AY where A is a matrix and Y is a vector of independent random
variables called structural variables. In earlier papers the conditions under which
a vector random varinble admits different structural representations have heen
studied. It is shown, among other results, that complete non-uniqueness, in some
sense, of the linear structure characterizes a multivariate normal variable. In the
present paper we prove a general decomposition theorem which states that any
vector variable X with a linear structure can be expressed as the sum (X, + X,)
of two independent vector variables X, , X; of which X, is non-normal and has a
unique linear structure, and X is multivarinte normal variable with a non-
unique linear structure.

1. Introduction. In two previous papers (Rao, 1966, 1967), the author proved
a number of results characterizing the distribution of structural variables in
linear structural relations. An important result is the characterization of the
multivariate normal variable through non-uniqueness of its linear structure. The
object of the present paper is to prove a general theorem which characterizes a
vector variable with a linear structure.

DeriNiTION 1. A vector variable X is said to have a linear structure if it can
be expressed as

(L.1) X = u+ AY

where u is a constant vector, Y is a vector of non-degenerate independent one
dimensional variables (called structural variables) and A is a matrix such that,
without loss of generality, there are no two columns of which one is a multiple of
the other.

DerinrrioN 2. Two structural representations

(1.2) X = u + AY, X = w + BZ

are said to be equivalent if every column of A is a multiple of some column of B
and vice versa. Otherwise, they are non-equivalent.

As a necessary condition for equivalence, matrices A and B must be of the same
order.

DeriNiTION 3. A variable X is said to have an essentially unique structure, or
simply 2 unique structure, if all its linear structural representations are equiva-
lent.
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We prove a lemma which enables us to drop the constant vector in the struc-
tural representation (1.1).

LesmMa 0. Let X = w1 + AY and X = . + BZ be {wo structural representations
of X. Then the linear manifolds yenerated by the columns of A and B are the same and
w — u: belongs lo this common linear manifold.

Let « be a column vector such that «’A = 0. Then

(1.3) X = ¢'wy = «’y; + o«'BZ

which shows that o'BZ is a degeunerate random variable, which is not possible
uniess «'B = 0, observing that the elements of Z are non-degenerate variables.
Thus «’A = 0 = «'B = 0, i.e., the linear manifolds generated by the columns of
A and B are the same.

Further o’A = 0 = &' (w1 — w:) = 0, i.e, m — u. belongs to the same mani-
fold generated by the columns of A or of B.

It follows from Lemma O that, by subtracting a suitable constant vector from
X, we can express a structural representation simply as AY. We shall use such a
representation in all subsequent work.

We shall state a theorem which follows from the results of the previous papers
(Rao, 1966, 1967 ) and which will be used in the present paper.

TaeoreEM 1. Consider a structural representalion X = AY of a veclor random
variable X. Let Y, , Y be two subsets of Y such thal the elements of Y, are non-normal
and those of Y. are normal variables. Further let A, , A, be the corresponding parti-
tion of A so that

(1.4) X =AY, + AY,.
Then any other structure of X is of the form
(1.5) X = AU, + B0,

where, after suitable scaling, the elements of U, are non-normal with the same struc-
tural mairiz A, as for Y., and those of U, are normal variables wilth a structural
malriz B, which may be different from A. in the number of columns and which may
nol be deducible from A, by suilable scaling of columns.

Note that in all structural representations of X, a part of the structure is
unique and the other part can vary both with respect to the structural coeffi-
cients and the number of structural variables. The number of non-normal vari-
ables is the same in all structural representations; hence we have the following
theorem.

THEOREM 2. Let X = AY be a structural representation of X and let the elements
of Y be all non-normal variables. Then there does not exist a non-equivalent structure
tnvolving the same number or a smaller number of structural variables than that of Y.

It also follows from Theorem 1, that if X = AY and X = BZ are two structural
representations such that no column of A is a multiple of any column of B, then
X is multivariate normal.

The main theorem proved in this paper is as follows.
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TaeorbM 3. Let X be a p-veclor random variable with a linear structure X = AY.
Then X admils the decomposition

(1.6) X=X +X

where X, and X, are independent, X, has an essentially unique linear structure and
X, is p-variate normal (with a non-unique linear structure). It is possible that X, or
X, 7s a null veclor.

We need to establish some preliminary lemmas.

Lesya 1. Let G, for each n be a veclor of k independent random variables.
Consider the sequence of p-veclor random variables X, = BG, where Bis p X k
matrix. If X, — . X, then X has also the structure, X = BG where G is a veclor of k
independent random variables.

We may assume, without loss of generality, that B has no column of all zeroes.
Then the condition X, —. X implies, by a slight extension of a theorem due to
Parthasarathy, Ranga Rao and Varadhan (1962) that G, is shilt compact, i.c.,
there cxists a subsequence G., with a sequence of centering vectors C,, , such that
(Gm — C,) —. G. Now consider

1.7) X, = B(Gn, — C.) + BC,..

Since X, and (Gm — Cn) have limiting distributions, it follows that BC, — C (a
constant vector). Then

(1.8) X =BG + C.

Let b be a vector orthogonal to the columns of B. Then

(1.9) 0 = b'BC.. - b'C, ie, bC =0,

i.e., the constant C can be absorbed in the random variable G in (1.8), so that

the structure of X can be simply written as X = BG.
LEmyma 2. Let X be any p-vector variable. Then X admils the decomposition

(1.10) X=X +X

where X, and X, are independent, and X, is p-variale normal with a mazimal dis-
persion malriz, t.e., there is no other decomposition

(1.11) X=Y 4+Y

where Y, and Y. are independent, and Y. is p-variale normal with its dispersion
malrix grealer than thal of X, .

Let C(t) be the characteristic funetion (ch.f.) of X and let S be the set of all
non-negative definite matrices such that for any member A ¢ S

(1.12) C(t) exp [3t'At]

is 2 ch.f. It is easy to see that the set of matrices in S is bounced above.
Consider the set {afi} of the first dingonal elements of the members of S. It
is easy to see that there is an upper bound a7 belonging to the set. Now consider
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the set (al1, @k}, where a%; represents the second diagonal element of & matrix
with al1 as the first diagonal element. The set {af,} has similarly an upper bound
a2 belonging to the set. Finally we arrive at a matrix with diagonal elements
aly, --+, app which is obviously a maximal element in S. The associated de-
composition (1.10) satisfies the requirements of Lemma 2.

2. Proof of the main theorem. Consider the structural representation X = AY.
Let us partition the vector variable Y into Y,, Y; where the elements of Y, are
non-normal and those of Y; are normal variables. We have the corresponding
partition of A giving the structural relationship

2.1) X =AY, +AY, = U, + U,

where U, and U: are independent and U, is p-variate normal. The equation (2.1)
provides a decomposition of X but U, may not have a unique structure. However,
from Theorems 1 and 2, it follows that if U, does not have a unique structure, it
has an alternative structure of the form

2.2) U, = AiYi, 4+ BaZo = Xig + Xia

where Z, is a vector of N (0, 1) variables.

Consider the set S of non-negative definite matrices {D.| = |B.B,'| for which
a decomposition such as (2.2) exists. Then applying Lemmas 1 and 2, we find
that there is & maximal element G in the set S leading to the decomposition

(2.3) AY, = U, = AV, + HV,

where HH = G. Let X; = A,V;. Then X, has a unique structure. If not let
(24) X, = AW, + FW,

where W is a vector of N (0, 1) variables. In such a case

(2.5) U, = AW, + FW, + HV,

where the dispersion matrix of the normal components (W., V,) is
FFF+HH =z HH =G leading to a contradiction.
From (2.1)

(26) X = AY, + AY,
= (A,Vi + HV,) + A Y, = AV, + (AV. + A.Y,) =X, + Xe

where X, and X, are independent, X, has a unique structure and X; is multivariate
normal.

Thus we have proved that given a vector variable with a linear structure, it
can be expressed as the sum of two independent variables one of which has a
unique linear structure and the other is multivariate normal (with a non-unique
linear structure). The non-uniqueness of the linear structure of X is due to the
(multivarizte) normal component in it.

In general, the decomposition {(2.6) may not be unique. An alternative decom-
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position Z; + Z; may exist such that X, and Z; both have unique linear structure
but may have different distributions. A sufficient condition for unique decom-
position is that rank A; = the numbers of columns of A; where A, is as defined in
(2.1) (see Rao, 1967).

I wish to thank Dr. V. V. Sazanov for some useful discusaions I had with him
in connection with the present paper.
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