A DECOMPOSITION THEOREM FOR VECTOR VARIABLES WITH A LINEAR STRUCTURE

BY C. RADHAKRISHNA RAO

Indian Statistical Institute

- 0. Summary. A vector variable X is said to have a linear structure if it can be written as X = AY where A is a matrix and Y is a vector of independent random variables called structural variables. In earlier papers the conditions under which a vector random variable admits different structural representations have been studied. It is shown, among other results, that complete non-uniqueness, in some sense, of the linear structure characterizes a multivariate normal variable. In the present paper we prove a general decomposition theorem which states that any vector variable X with a linear structure can be expressed as the sum $(X_1 + X_2)$ of two independent vector variables X_1 , X_2 of which X_1 is non-normal and has a unique linear structure, and X_2 is multivariate normal variable with a non-unique linear structure.
- 1. Introduction. In two previous papers (Rao, 1966, 1967), the author proved a number of results characterizing the distribution of structural variables in linear structural relations. An important result is the characterization of the multivariate normal variable through non-uniqueness of its linear structure. The object of the present paper is to prove a general theorem which characterizes a vector variable with a linear structure.

DEFINITION 1. A vector variable \mathbf{X} is said to have a linear structure if it can be expressed as

$$X = \mu + AY$$

where u is a constant vector, Y is a vector of non-degenerate independent one dimensional variables (called structural variables) and A is a matrix such that, without loss of generality, there are no two columns of which one is a multiple of the other.

Definition 2. Two structural representations

$$X = \mu_1 + AY, \quad X = \mu_2 + BZ$$

are said to be equivalent if every column of A is a multiple of some column of B and vice versa. Otherwise, they are non-equivalent.

As a necessary condition for equivalence, matrices A and B must be of the same order.

DEFINITION 3. A variable X is said to have an essentially unique structure, or simply a unique structure, if all its linear structural representations are equivalent.

We prove a lemma which enables us to drop the constant vector in the structural representation (1.1).

LEMMA 0. Let $X = y_1 + AY$ and $X = y_2 + BZ$ be two structural representations of X. Then the linear manifolds generated by the columns of A and B are the same and $y_1 - y_2$ belongs to this common linear manifold.

Let α be a column vector such that $\alpha' A = 0$. Then

(1.3)
$$\alpha'X = \alpha'y_1 = \alpha'y_2 + \alpha'BZ$$

which shows that $\alpha'BZ$ is a degenerate random variable, which is not possible unless $\alpha'B = 0$, observing that the elements of Z are non-degenerate variables. Thus $\alpha'A = 0 \Leftrightarrow \alpha'B = 0$, i.e., the linear manifolds generated by the columns of A and B are the same.

Further $\alpha' A = 0 \Rightarrow \alpha'(\mu_1 - \mu_2) = 0$, i.e., $\mu_1 - \mu_2$ belongs to the same manifold generated by the columns of A or of B.

It follows from Lemma 0 that, by subtracting a suitable constant vector from X, we can express a structural representation simply as AY. We shall use such a representation in all subsequent work.

We shall state a theorem which follows from the results of the previous papers (Rao, 1966, 1967) and which will be used in the present paper.

THEOREM 1. Consider a structural representation X = AY of a vector random variable X. Let Y_1 , Y_2 be two subsets of Y such that the elements of Y_1 are non-normal and those of Y_2 are normal variables. Further let A_1 , A_2 be the corresponding partition of A so that

$$X = A_1Y_1 + A_2Y_2.$$

Then any other structure of X is of the form

$$X = A_1U_1 + B_2U_2$$

where, after suitable scaling, the elements of U_1 are non-normal with the same structural matrix A_1 as for Y_1 , and those of U_2 are normal variables with a structural matrix B_2 which may be different from A_2 in the number of columns and which may not be deducible from A_2 by suitable scaling of columns.

Note that in all structural representations of X, a part of the structure is unique and the other part can vary both with respect to the structural coefficients and the number of structural variables. The number of non-normal variables is the same in all structural representations; hence we have the following theorem.

THEOREM 2. Let X = AY be a structural representation of X and let the elements of Y be all non-normal variables. Then there does not exist a non-equivalent structure involving the same number or a smaller number of structural variables than that of Y.

It also follows from Theorem 1, that if X = AY and X = BZ are two structural representations such that no column of A is a multiple of any column of B, then X is multivariate normal.

The main theorem proved in this paper is as follows.

THEOREM 3. Let X be a p-vector random variable with a linear structure X = AY. Then X admits the decomposition

$$\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2$$

where X_1 and X_2 are independent, X_1 has an essentially unique linear structure and X_2 is p-variate normal (with a non-unique linear structure). It is possible that X_1 or X_2 is a null vector.

We need to establish some preliminary lemmas.

LEMMA 1. Let G_n for each n be a vector of k independent random variables. Consider the sequence of p-vector random variables $X_n = BG_n$ where B is $p \times k$ matrix. If $X_n \to_L X$, then X has also the structure, X = BG where G is a vector of k independent random variables.

We may assume, without loss of generality, that B has no column of all zeroes. Then the condition $X_n \to_L X$ implies, by a slight extension of a theorem due to Parthasarathy, Ranga Rao and Varadhan (1962) that G_n is shift compact, i.e., there exists a subsequence G_m with a sequence of centering vectors C_m , such that $(G_m - C_m) \to_L G$. Now consider

$$X_m = B(G_m - C_m) + BC_m.$$

Since X_m and $(G_m - C_m)$ have limiting distributions, it follows that $BC_m \to C$ (a constant vector). Then

$$X = BG + C.$$

Let b be a vector orthogonal to the columns of B. Then

(1.9)
$$0 = b'BC_m \rightarrow b'C$$
, i.e., $b'C = 0$,

i.e., the constant C can be absorbed in the random variable G in (1.8), so that the structure of X can be simply written as X = BG.

LEMMA 2. Let X be any p-vector variable. Then X admits the decomposition

$$\mathbf{X} = \mathbf{X}_1 + \mathbf{X}_2$$

where X_1 and X_2 are independent, and X_2 is p-variate normal with a maximal dispersion matrix, i.e., there is no other decomposition

$$\mathbf{X} = \mathbf{Y}_1 + \mathbf{Y}_2$$

where Y_1 and Y_2 are independent, and Y_2 is p-variate normal with its dispersion matrix greater than that of X_2 .

Let $C(\mathbf{t})$ be the characteristic function (ch.f.) of \mathbf{X} and let S be the set of all non-negative definite matrices such that for any member $A \in S$

$$(1.12) C(t) \exp \left[\frac{1}{2}t'At\right]$$

is a ch.f. It is easy to see that the set of matrices in S is bounded above.

Consider the set $\{a_{11}^{\alpha}\}$ of the first diagonal elements of the members of S. It is easy to see that there is an upper bound a_{11}^{α} belonging to the set. Now consider

the set $[a_1^*, a_2^0]$, where a_2^0 represents the second diagonal element of a matrix with a_{11}^* as the first diagonal element. The set $\{a_{22}^0\}$ has similarly an upper bound a_{22}^* belonging to the set. Finally we arrive at a matrix with diagonal elements $a_{11}^*, \dots, a_{pp}^*$ which is obviously a maximal element in S. The associated decomposition (1.10) satisfies the requirements of Lemma 2.

2. Proof of the main theorem. Consider the structural representation X = AY. Let us partition the vector variable Y into Y_1 , Y_2 where the elements of Y_1 are non-normal and those of Y_2 are normal variables. We have the corresponding partition of A giving the structural relationship

$$X = A_1Y_1 + A_2Y_2 = U_1 + U_2$$

where U_1 and U_2 are independent and U_2 is *p*-variate normal. The equation (2.1) provides a decomposition of X but U_1 may not have a unique structure. However, from Theorems 1 and 2, it follows that if U_1 does not have a unique structure, it has an alternative structure of the form

$$U_1 = A_1 Y_{1\alpha} + B_{\alpha} Z_{\alpha} = X_{1\alpha} + X_{2\alpha}$$

where Z_{α} is a vector of N(0, 1) variables.

Consider the set S of non-negative definite matrices $|\mathbf{D}_{a}| = |\mathbf{B}_{a}\mathbf{B}_{a}'|$ for which a decomposition such as (2.2) exists. Then applying Lemmas 1 and 2, we find that there is a maximal element G in the set S leading to the decomposition

(2.3)
$$A_1Y_1 = U_1 = A_1V_1 + HV_2$$

where $\mathbf{HH}' = \mathbf{G}$. Let $\mathbf{X}_1 = \mathbf{A}_1 \mathbf{V}_1$. Then \mathbf{X}_1 has a unique structure. If not let

$$(2.4) X_1 = A_1W_1 + FW_2$$

where W_2 is a vector of N(0, 1) variables. In such a case

$$\mathbf{U}_{1} = \mathbf{A}_{1}\mathbf{W}_{1} + \mathbf{F}\mathbf{W}_{2} + \mathbf{H}\mathbf{V}_{2}$$

where the dispersion matrix of the normal components (W_2, V_2) is $FF' + HH' \ge HH' = G$ leading to a contradiction. From (2.1)

$$(2.6) \quad \mathbf{X} = \mathbf{A}_1 \mathbf{Y}_1 + \mathbf{A}_2 \mathbf{Y}_2$$

$$= (\mathbf{A}_1 \mathbf{V}_1 + \mathbf{H} \mathbf{V}_2) + \mathbf{A}_2 \mathbf{Y}_2 = \mathbf{A}_1 \mathbf{V}_1 + (\mathbf{H} \mathbf{V}_2 + \mathbf{A}_2 \mathbf{Y}_2) = \mathbf{X}_1 + \mathbf{X}_2$$

where X_1 and X_2 are independent, X_1 has a unique structure and X_2 is multivariate normal.

Thus we have proved that given a vector variable with a linear structure, it can be expressed as the sum of two independent variables one of which has a unique linear structure and the other is multivariate normal (with a non-unique linear structure). The non-uniqueness of the linear structure of X is due to the (multivariate) normal component in it.

In general, the decomposition (2.6) may not be unique. An alternative decom-

position $Z_1 + Z_2$ may exist such that X_1 and Z_1 both have *unique* linear structure but may have different distributions. A sufficient condition for unique decomposition is that rank A_1 = the numbers of columns of A_1 where A_1 is as defined in (2.1) (see Rao, 1967).

I wish to thank Dr. V. V. Sazanov for some useful discussions I had with him in connection with the present paper.

REFERENCES

- PARTHABARATHY, K., RANGA RAO, R. and VARADHAN, S. R. S. (1962). On the category of indecomposable distributions on topological groups. Trans. Amer. Math. Soc. 102 202-217.
- [2] RADHAKRISHNA RAO, C. (1966). Characterization of the distribution of random variables in linear structural relations. Sankhva, Ser. A 28 252-260.
- [3] RADHARBISHNA RAO, C. (1967). On vector variables with a linear structure and a characterization of the multivariate normal distribution. To be published in Bull. Inst. Internat. Statist. 42.