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ABSTRACT. Some results relating to parametrizations of Borel sets are de-
duced from selection theorems.

1. Introductlon. Several authors, most notably Cenzer and Mauldin [1] and
Mauldin (6], have shown that measurable parametrizations of Borel sets in the
product of two Polish spaces can be constructed in two steps. Step 1 consists in
the construction of homeomorphisms from the Cantor set into the sections of the
Borel set, while step 2 involves carrying out a Schroder-Bernstein type argument.
In this paper we will be concerned with the first of these steps. We take as our
point of departure a recent article of Pol {7], wherein he used the selection theorerm
of von Neumann and Yankov to get hold of the h phisms. Pol obtained
analytically measurable parametrizations. We show that Pol's method adits of
sufficient precision to yield Borel parametrizations. Incidentally, the present article
provides new applications of Borel selection theorems.

The essence of Pol's method for vbtaining an analytically measurable param-
etrization was to use the von Neumann-Yankov selection theorem to prove the
following.

THEOREM 0. Let X be a separable melric space, F a mullifunction from X
to w* such that Graph(F) is analytic in X x w* and F(z) is a nonempty, perfect
subset of w* for each x € X. Then there 15 a function g: X X 2¥ — w* such that

(a) g(z,-) 12 ¢ homeomorphism of 2* inlo F(z) for each z € X, and

(b) (-, ¥) s analytically measurable on X for each y € 2.

In the same spirit and as illustrative of the power of Pol’s method, we shall prove
the following results in the present paper.

THEOREM 1. Let X be a separable metric space, F o Borel measurable mulls-
Junction from X to w* such that F(z) is o nonemply, perfect subsel of w* for each
z € X. Then there is a function g: X x 2% — w* such that

(a) g(z. } i8 @ homeomorphism of 2 into F(z) for each z € X, and

(b) g(-,y) is Borel measurable on X for each y € 2,

THEOREM 2. Let X be a separable metric space, F a Borel measurable multi-
function from X 1o 2 such that F(z) is a nonemply, perfect subset of 2* for eack
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z € X. Then there is a function g: X x 2 — 2¥ such that
(8) g(z,") ¥s a homeomorphism of 2 onto F(z) for each z € X, and
(b) 9(-,y) i3 Borel measurable on X for each y € 2¢.

In [5] it is shown that Borel parametrization theorems for Borel sets with large
(vertical) sections can be reduced to Theorem 1 above. We shall use a selection
theorem for Gs-valued multifunctions to prove Theorem 1. Theorem 2 is a general-
ization of Proposition 1 of Purves (8], which was one of the early results in this area.
We deduce Theorem 2 from the well-known Kuratowski-Ryll-Nardzewski selection
theorem for closed-valued multifunctions.

The next section is devoted to some preliminaries and the proofs will be given
in §3. We conclude with some remarks in §4.

2. Preliminaries. We fix some notation first. We denote the set of natural
numbers by w. The set of infinite sequences of natural numbers (0's and 1's) is
denoted by w”(2¢). Endowed with the product of discrete topologies on w({0, 1}),
w*“(2) becomes a homeomorph of the irrationals (Cantor set). Ifu € 2 and § € w,
u; will denote the ith coordinate of u. Define a metric d on 2* as follows:

d(u,v)=1/(k+1) if us#vand k is the least ¢ such that u; # v;,
=0 fu=v
Plainly, d induces on 2 the product of discrete topologies on {0,1}. For each finite
sequence 8 of 0’s and 1's, P(s) will denote the set of elements of 2* which start
with s. Denote by Sx the set of finite sequences of 0’s and 1's of length .

The set of continuous functions on 2* into 2 is denoted by C(2¥,2¥). Equipped
with the compact-open topology (or, equivalently, the topology of uniform conver-
gence), C(2*, 2*) becomes a Polish space. Let d be the uniform metric induced on
C(2¢,2¢) by d, that is, for k, k' € C(2¥,2%),

d(h, k') = sup{d(h(x), ¥ (u)): u € 2}.

Let H(2“) denote the set of homeomorphisms of 2% into 2. Now H(2*) is a Gs
in C(2¢,2¥). (Reason: For h € C(2¥,2), we have

ke H(2%) — (¥s)(V)[P(s) N P(1)
=@ — (IV)(@EFV')(V, V" are open in 2 &V NV’ =@
&h(P(s)) CV &APH) C V')

Consequently, H(2*) with the topology inherited from C(2¥,2¥) is itself a Polish
space. For fixed y € 2, ¢,: H(2¥) — 2¥ denotes the evaluation map, that is,
ey(h} = h(y). 1t is known that e, is continuous.

3. Proofs.

PROOF OF THEOREM 1. Imbed w* as a G5 in 2. So we may write w* =
N0 Gn, where each G, is open in 2¥. Fix a countable dense set D in 2%, We
define & multifunction & from X to H(2“) as follows:

®(z) = {h e H(2"): h(2) C F(z)}.
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Since F(z) is 8 nonempty perfect subset of w*, ®(z) is nonempty. The graph of &
is easily described thus:
Graph(®) = | X x n {he H(2¥): h(2¥) C G,.)]

n20

n
veD

n {{z.h) € X x H(2“): (z.¢ey(h)) € Graph(F))l .

Since F is Borel measurable and closed-valued in w*“, Graph(F) is a Borel set in
X x w* and hence Borel in X x 2¥. It now follows that Graph(®) is Borel in
X x H(2*). Moreover,

®(z) = [ {h€ H(Z*): (2} C Ca} N [ ¢ (F(a)).
nz0 vED
Recalling that F(z) is closed in w* and so a G5 in 2, we see that ®&(z) is a G; in
H(2).

We now check that ¢ is a Borel measurable multifunction. Let, then,0 <5 <1
and assume that n # l/l:,_k 2 1. Fix h* € H(2¥) and let B be the open sphere in
H(2+) with center A* and d-radius . Choose m > 1suchthat 1/(m+1) < n < 1/m.
We claim that

(1) (z)NB#D = (¥s € Sn)(h*(2) N P(s) # B — F(z) N Ps) £ Q).

To see this, let A € $(z)N B, so that h(2*) C F(z) and zi(h.h') < 7. Suppose that
h*{2¥)NP|s) # O for some fixed 3 € Siy. So there is u € 2% such that h°(u) € P(s).
But d(h(u),h*(u)) < n < 1/m, hence (h{u)); = (A*(u));, ¢ = 0,1,....m - 1.
Consequently, h(u) € F(z) N P(s), so that F(z) N P(s) # @. Conversely, assume
that the right side of (1) holds. Fix s € S such that A*(29) N P(s) # @. Plainly.,
h*(29) N P(s) is a homeomorph of 2“, By hypothesis, F(z) N P(s) # @ and
hence is a nonempty perfect subset of w*, since F(z) is a perfect subset of w*“.
So F(z) N P(s) contains a homeomorph of 2*. Let ¢, be a homeomorphism of
h*(2)NP(s) into F(z)NP(s). We now piece together the homeomorphisms . for
all s € Sy, such that h°(2¢) N P(s) # @. Thus, define p: h*(2¥) — 2 be setting
© =1, on h*(2¥) N P(s) whenever s € S, is such that A*(29) N P(s) # @. It is
clear that y is a homeomorphism on h*(2“) into F(z). Let h = poh®, so that h
is a homeomorphism of 2* into F(z), that is, h € ®(z). For any u € 2%, choose
3 € S5 such that h*(u} € P(s). Then h{u) = p(h*{u)) = p,(h"(u)} € P(s). s0
that (h*(u)); = (h(w));, 1= 0,1,...,m — 1, and hence d(h(u), k*(u)) < 1/(m +1).
Consequently, since u is arbitrary, it follows that d(h,h*) < 1/(m+1) < n, that is.
h € B and so ${z)NDB # @, establishing the equivalence (1). It follows immediately
from (1) that @ is a Borel measurable multifunction as F is.

Thus, $ is a Borel measurable , G's-valued multifunction from X to H(2*) such
that Graph(¢®) is Borel in X x H(2“). Hence, by a selection theorem in |4), there is
a Borel measurable function y: X — H(2*) such that $(z) € &(z) for each z € X.
Define g: X x 2% — 2 by g(z,y) = w(z)(y). Clearly, for each z € X, g(z.-) = ¥{2)
and so a homeomorphism on 2 into F(z). For fixed y € 2, g(-,) = ¢, 0¥, which
is Borel measurable on X. This completes the proof.
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We now turn to the proof of Theorem 2, which is similar to that of Theorem 1,
only simpler.
PROOF OF THEOREM 2. Define a multifunction & from X to H(2¥) as follows:
®(z) = (h € H(2¥): h(2¥) = F(z)}.

By hypothesis, ®(z) is nonempty and, as is easily checked, (z) is closed in H(2¥).
If B is as in the proof of Theorem 1, one verifies as in Theorem 1 the equivalence

(2) ®(=)NB#Q o (Vs€8Sm)(h*(2¥) N P(s) # @ ~ F(z) N P(s) # D).

Since F is a Borel measurable multifunction, it follows from (2) that so is ®.

Thus, & is a Borel measurable, closed-valued multifunction from X to H(2¥).
Hence, by a selection theorem in [2], there is a Borel measurable function y: X —
H(2“) such that ¥(z) € ®(z) for each € X. The proof is concluded by setting
o(z,y) =v(z)y) forz € X, y e 2.

4. Concluding remarks. We observe that more precise results can be obtained
by this method by invoking the relevant selection theorem if the multifunction F
in Theorems 1 and 2 is assumed to be Borel measurable of class £ for fixed € > 0.

In greater detail, suppose in Theorem 1 that the multifunction F is of class
£ >0, that is, {z € X: F(z) NV # O} is a Borel set of additive class £ in X
for each open subset V of w*. An easy computation shows that then Graph(F)
is Borel of multiplicative class £ + 1 in X x 2¥. It follows that Graph(®) is Borel
of muitiplicative class £ + 1 in X x H(2¥), where ® is defined as in the proof of
Theorem 1. Furthermore, it follows from (1) that ® is a multifunction of class
£ Consequently, by a result in [3], there is a selector ¥ of class £ + £ for the
multifunction ®. If we set g(z,y) = ¥(z}(y), z € X, y € 2, then g(z,-} is a
homeomorphism of 2¥ into F(z) for each z € X, and g(-,y) is a function of class
£+ € for each y € 2. If we assume in addition that Graph(F) is closed in X x w®,
then the preceding argument will show that g can be defined so that g(-,y) is a
function of class € for each y € 2*.

Similarly, suppose in Theorem 2 that the muitifunction F is of class £ > 0.
Then (2) will imply that the multifunction ¢ in the proof of Theorem 2 is of class
£+ 1, so that a selector ¥ of class £ + 1 can be obtained for ® by virtue of the
Kuratowski-Ryll-Nardzewski selection theorem [2]. Setting g(z,y) = ¥(z)(y) for
z € X,y € 2%, we see that g(z,-) is a homeomorphism of 2* and F(z) for each
z € X, and g(-,y) is a function of class £ + 1 for each y € 2*.
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