A NOTE ON SOME PROPERTIES OF

H. SARBADHIKARI

ABSTRACT. This note deals with (M, \bullet) functions for various families M. It is shown that if M is the family of Borel sets of additive class α on a metric space X, then (M, \bullet) functions are just the functions of the form $\sup_{y,g}(x,y)$ where $g: X \times R \to R$ is continuous in y and of class α in x. If M is the class of analytic sets in a Polish space X, then the (M, \bullet) functions dominating a Borel function are just the functions $\sup_{y,g}(x,y)$ where g is a real valued Borel function on X^2 . It is also shown that there is an A-function f defined on an uncountable Polish space X and an analytic subset C of the real line such that $f^{-1}(C) \in C$ the α -algebra generated by the analytic sets on X.

1. Introduction. Let X be any set and M, N be classes of subsets of X. Following Hausdorff, we call a real valued function f on X a function of class (M, \bullet) if $\{x: f(x) > c\}$ is in M for every c. If $\{x: f(x) \ge c\}$ is in N for every c, f is said to be of class (\bullet, N) . Set $(M, N) = (M, \bullet) \cap (\bullet, N)$.

If X is a metric space and M is the family of sets of additive Borel class α , then functions of class (M, *) are called α^- -functions; if X is Polish and M is the family of analytic sets, they are called A-functions. We shall prove the following theorems:

THEOREM 1. Let f be a real valued function on a metric space X. Then f is an α -function if, and only if, there is a real valued function g defined on $X \times R$, where R is the real line, such that g(x, y) is a continuous function of y for fixed x, is of class α in x for fixed y and $f(x) = \sup_{x \in R} g(x, y)$.

THEOREM 2. Let X be a Polish space and let f be a real valued function on X which is bounded below. Then f is an A-function if, and only if, there is a real valued Borel function g on X^2 such that $f(x) = \sup_{x \in X} g(x, y)$.

THEOREM 3. Let **A** be the σ -algebra generated by analytic sets on an uncountable Polish space X. There is an A-function f on X and an analytic subset C of the real line such that $f^{-1}(C) \notin A$.

Theorem 3 answers in the negative a question raised by David Blackwell.

 Proof of Theorem 1. We define a complete ordinary function system on a set X as a system F of real valued functions on X satisfying:

Received by the editors September 26, 1974 and, in revised form, July 31, 1975.

AMS (MOS) subject classifications (1970). Primary 54C30, 26A21; Secondary 04A15, 02K30, 28A05.

Key words and phrases. (M, \bullet) functions, A-functions, α -functions, complete ordinary function system, functions of class α , operation A.

- (a) Every constant function is in F.
- (b) If $f, g \in F$, then $\max(f, g)$, $\min(f, g)$, $f \pm g$, $f \cdot g \in F$. If g does not vanish anywhere, then $f/g \in F$.
 - (c) If f_n ∈ F for all n and f_n converges uniformly to f, then f ∈ F.

We first prove the following:

THEOREM 4. Let F be a complete ordinary function system on a set X. Let P. Q be the families of sets $\{x: h(x) > c\}$, $\{x: h(x) \ge c\}$, for $h \in \mathbb{F}$ and c real, respectively. $f \in (P, \bullet)$ if, and only if, there is a real valued function g defined on $X \times R$ such that g(x, y)

- (a) is continuous in y for fixed x,
- (b) is in F for fixed y, and
- (c) $\sup_{x} g(x, y) = f(x)$.

PROOF. Suppose g(x, y) is a function on $X \times R$ satisfying conditions (a) and (b) and suppose $\sup_{x} g(x, y)$ exists and is f(x). Let c be any real number. Then $f(x) > c \Leftrightarrow \exists y \{g(x,y) > c\} \Leftrightarrow \exists y \{y \text{ is rational and } g(x,y) > c\}, \text{ since } g(x,y)$ is continuous in y. Thus

$$\{x: f(x) > c\} - \bigcup_{\substack{r \text{ rational}}} \{x: g(x,r) > c\}.$$

For fixed $r, g(x,r) \in \mathbf{F}$ and hence $\{x: g(x,r) > c\} \in \mathbf{P}$. Now as \mathbf{P} is closed under countable unions (cf. [1]), $\{x: f(x) > c\} \in \mathbf{P}$.

Conversely, suppose $f \in (\mathbf{P}, \bullet)$. It is shown in [1] that there is an increasing sequence $\{f_n\}$ in \mathbb{F} which converges to f. Define g on $X \times R$ by g(x,y) $= (f_{n+1}(x) - f_n(x))(|y| - n) + f_n(x)$ for $|y| \in [n, n+1]$. It is easy to see that g is well defined for all (x, y) and satisfies (a) and (b). As $f_n(x) \leq g(x, y)$ $\leq f_{n+1}(x)$ for $|y| \in [n, n+1]$ and $\sup_{x \in B} f_n(x) = f(x)$, $\sup_{y \in B} g(x, y) = f(x)$.

Theorem 1 follows from Theorem 4 and the following:

LEMMA. Let F be the family of all functions of class α on a Polish space X. Then **F** is a complete ordinary function system and the sets of the form $\{x: f(x) > c\}$, f \in F, c real, are just the sets of additive Borel class α .

PROOF. It is shown in [3] that F forms a complete ordinary function system. Any set of the form $\{x: f(x) > c\}, f \in \mathbb{F}, c$ real, is clearly of additive Borel class α . Let A be any set of additive Borel class α . If $\alpha = 0$, A is a cozero set and hence $A = \{x: f(x) > 0\}$ for some continuous function f. Let $\alpha > 0$, then we can write $A = \bigcup_{n=1}^{\infty} A_n$ where the A_n 's are ambiguous of class α . Let $f(x) = \sum_{n=1}^{\infty} 2^{-n} I_{A_n}(x)$ where I_{A_n} denotes the indicator function of A_n . As I_{A_n} is of class α , f is of class α and $A = \{x: f(x) > 0\}$.

3. Proof of Theorem 2. If $f(x) = \sup_{y \in \mathcal{S}} g(x, y)$ where g is Borel measurable, it is shown in [3] that f is an A-function. For this, f need not be bounded below.

Let f be an A-function on X such that f(x) > a for a fixed real number a. Without loss of generality, we take X = R. Let $\{r_n\}$ enumerate all rationals. Let $A = \{(x,y): f(x) > y\}$. Then $A = \bigcup_n \{(x,y): f(x) > r_n > y\}$ and hence is analytic. Let $B \subset R^3$ be a Borel set such that A = projection of B i.e. $(x,y) \in A \Leftrightarrow \exists z((x,y,z) \in B)$. Let $k: R^3 \to R^3$ be defined by

$$k(x,y,z) = \begin{cases} (x,y,z) & \text{if } (x,y,z) \in B, \\ (a,a,a) & \text{otherwise} \end{cases}$$

Then, as k is Borel measurable so is $\pi_2 k$ where π_2 denotes projection to the second coordinate and

$$\pi_2 k(x, y, z) = \begin{cases} y & \text{if } (x, y, z) \in B, \\ a & \text{otherwise} \end{cases}$$

Thus $\sup_{(y,z)} \pi_2 k(x,y,z) = \sup_{(y,z)} \{\{y: y < f(x)\} \cup \{a\}\} = f(x)$. Let ϕ be a Borel isomorphism from R onto R^2 . Let $h: R^2 \to R^3$ be defined by $h(x,y) = (x,\phi(y))$ and let $g(x,y) = \pi_2 kh(x,y)$. Then g is Borel measurable and $f(x) = \sup_y \pi_2 k(x,\phi(y)) = \sup_y g(x,y)$.

REMARK. It is easy to see that Theorem 2 holds even if the condition "f is bounded below" is replaced by "f dominates a Borel function". Thus an A-function is of the form $\sup_{x} g(x, y)$ for some Borel measurable g if, and only if, it dominates a Borel function. Equivalently, every A-function is of the form $\sup_{x} g(x, y)$ for some Borel measurable g if, and only if, given an ascending sequence of analytic sets $\{A_n\}$ such that $\bigcup_{n=1}^{\infty} A_n = X$, there is an ascending sequence $\{B_n\}$ of Borel sets such that $B_n \subset A_n$ and $\bigcup_{n=1}^{\infty} B_n = X$. However, we do not know if this condition always holds.

4. Proof of Theorem 3. In X, we put S_0 = the family of open sets, $B_0 = \sigma(S_0)$ and, for $0 < \alpha < \omega_1$, $S_\alpha = \mathcal{C}(\sigma(\cup_{i < \alpha} S_i))$ and $B_\alpha = \sigma(S_\alpha)$ where, for any family of sets G, $\sigma(G)$ denotes the σ -algebra generated by G and $\sigma(G)$ denotes the smallest family containing G and closed under operation A. We call (S_α, \bullet) functions S_α -functions. Theorem 3 is obtained from the following more general theorem by putting $\alpha = 1$.

THEOREM 5. On any uncountable Polish space X, there is an S_{α} -function f and there is an analytic subset C of the real line such that $f^{-1}(C) \notin \mathbf{B}_{\alpha}$.

PROOF. It is known that \mathbf{B}_{α} is not closed under operation A (cf. [2]). Let $\{Z_{n_1,\dots n_k}\}\subset \mathbf{B}_{\alpha}$ be such that $\bigcup_{n\in\mathbb{N}}\bigcap_{k=1}^\infty Z_{n_1,\dots n_k}\not\in \mathbf{B}_{\alpha}$, where \mathfrak{N} denotes the family of all sequences of positive integers and $n=(n_1,n_2,\dots)$. We can find countably many sets $\{A_i\}$ in \mathbf{S}_{α} such that for all n and $k, Z_{n_1,\dots n_k}\in \sigma((A_i))$. Let $f(x)=\sum_{i=1}^\infty (2/3^i)I_{A_i}(x)$. As the sum of two S_{α} -functions, a positive constant multiple of an S_{α} -function and the limit of an increasing sequence of S_{α} -functions are all S_{α} -functions, f is an S_{α} -function. As $f^{-1}(\mathbf{B})=\sigma((A_i))$ where \mathbf{B} is the Borel σ -algebra on R, we can find, for all n and k, $B_{n_1,\dots n_k}\in \mathbf{B}$ such that $f^{-1}(B_{n_1,\dots n_k})=Z_{n_1,\dots n_k}$. Let $C=\bigcup_{n\in\mathbb{N}}\bigcap_{k=1}^\infty B_{n_1,\dots n_k}$. Then C is analytic and $f^{-1}(C)=\bigcup_{n\in\mathbb{N}}\bigcap_{k=1}^\infty Z_{n_1,\dots n_k}\notin \mathbf{B}_{\alpha}$.

REMARK. Let X be any set and L a σ -additive lattice on X containing X and the null set, such that $\sigma(L)$ is not closed under operation A. We call a real valued function f on X an L^* -function if for every c, $\{x: f(x) > c\} \in L$. Evidently $f^{-1}(B) \subset \sigma(L)$. However, we can find an analytic set C and an L^* -function f such that $f^{-1}(C) \notin \sigma(L)$. The proof is similar to that of Theorem 5.

ACKNOWLEDGEMENT. I am grateful to Dr. Ashok Maitra for his many suggestions. I am indebted to Dr. B. V. Rao for various discussions and for greatly simplifying and improving the proof of Theorem 3. I am also grateful to Dr. M. G. Nadkarni and Dr. K.P.S.B. Rao for some discussions. I am grateful to the referee for his suggestions.

REFERENCES

- 1. Felix Hausdorff, Mengenlehre, de Gruyter, Berlin, 1937; English transl., Set theory, Chelsea, New York, 1957. MR 19, 111.
- 2. K. Kunugui, Sur un théorème d'existence dans la théorie des ensembles projectifs, Fund. Math. 29 (1937), 167-181.
- 3. K. Kuratowski, Topology. Vol. 1, 5th ed., PWN, Warsaw; Academic Press, New York, 1966. MR 36 #840.
- 4. E. Sélivanowski, Sur une classe d'ensembles définis par une infinité dénombrable de conditions. C.R. Acad. Sci. Paris 184 (1927), 1311.

STATISTICS-MATHEMATICS DIVISION, INDIAN STATISTICAL INSTITUTE, CALCUTTA, INDIA