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A NOTE ON SOME PROPERTIES OF
A4- FUNCTIONS

H. SARBADHIKARI

ABSTRACT. This note deals with (M, ¢) functions for various [amilies M. It
is shown that if M is the family of Borel sets of additive class « on a metric
space X, thea (M., ¢) functions are just the functions of the form sup, g(x.y)
where g: X X R — R is continuous in y and of class a in x. If M is the class
of analytic sets in a Polish space X, then the (M, «) functions dominating a
Borel function are just the functions sup, g(x.y) where g is a real valued
Borel function on X 2. {t is also shown (ha( there is an A-function f defined
on an uncountable Polish space X and an analytic subset C of the real line
such that f~'(C) & the o-algebra generated by the analytic sets on X.

I. Introduction. Let X be any set and M, N be classes of subsets of X,
Following Hausdorfl, we call a real valued function fon X a function of class
(M, o} if (x: f(x)} > ¢) is in M for every c. If {x: f(x) > c}is in N for every c,
[fis said to be of class (¢, N). Set (M,N) = (M, ) N (+,N).

If X is a metric space and M is the family of sets of additive Borel! class a,
then functions of class (M, ) are called o~ -functions; if X is Polish and M is
the family of analytic sets, they are called 4-functions. We shall prove the
following theorems:

THEOREM 1. Let f be a real valued function on a metric space X. Then f is an
o -functign if, and only if, there is a real valued function g defined on X X R,
where R is the real line, such that g(x, y) is a continuous function of y for fixed x,
i of class & in x for fixed y and f(x) = sup,g(x,y).

THEOREM 2. Let X be a Polish space and let f be a real valued function on X

which is bounded below. Then f is an A-function if, and only if, there is a real -
valued Borel function g on X ? such that [(x) = sup,g(x,y).

TueorReM 3. Let A be the o-algebra generated by analytic sets on an
uncountable Polish space X. There is an A-function f on X and an analytic subset
C of the real line such that f "' (C) & A.

Theorem 3 answers in the negative a question raised by David Blackwell.

2. Proof of Theorem 1. We define a complete ordinary function system on a
set X as a system F of real valued functions on X satisfying:
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(a) Every constant function is in F.

(b) If f. g € F, then max(f.g), min(f,g),f* g, f-g € F. If g does not
vanish anywhere, then f/g € F.

(c) If f, € F for all n and £, converges uniformly to /, then f € F.

We first prove the following:

TneoreM 4. Let F be a complete ordinary function system on a set X. Let P,
Q be the families of sets {x: h(x) > c), {x: h(x) > c), for h € F and c real,
respectively. f & (P, ») if, and only if, there is a real valued function g defined on
X X R such that g(x, y)

(a) is continuous in y for fixed x,

(b) is in F for fixed y, and

(c) sup, g(x,») = f(x).

PROOF. Suppose g(x.y) is a function on X X R satisfying conditions (a) and
(b) and suppose sup, g(x, y) exists and is f(x). Let ¢ be any real number. Then
J(x) > ¢ = Iy{g(x,y) > c} = Iy{ yis rational and g(x,y) > ¢}, since g{x, y)
is continuous in y. Thus

fx)>c)— U {xigler)>d.
rral’ionll
For fixed r, g(x,r) € F and hence {x: g(x,7r) > ¢} € P. Now as P is closed
under countable unions (cf. [1]), {x: f(x) > ¢} € P.

Conversely, suppose f € (P, »). It is shown in [1] that there is an increasing
sequence { f,} in F which converges to f. Define g on X X R by g(x.y)
= (fis1 () = LCNUY = n) + f(x) for |y| € [n,n + 1]. It is easy to see that
g is well defined for all (x, y) and satisfies (a) and (b). As f,(x) < g(x.»)
€ fi1(x) for |y| € [n,n + 1] and sup, f,(x) = f(x). sup,g(x,y) = f(x).

Theorem 1 follows from Theorem 4 and the following:

LEMMA. Let F be the family of all functions of class a on a Polish space X. Then
F is a complete ordinary function system and the sets of the form {x: f(x) > c}, f
€ F, c real, are just the seis of additive Borel class a.

PROOF. It is shown in [3] that F forms a complete ordinary function system.

Any set of the form {x: f(x) > c}, f € F, c real, is clearly of additive Borel
class a. Let A be any set of additive Borel class a. If a = 0, 4 is a cozero set
and hence 4 = {x: f(x) > 0} for some continuous function /. Let & > 0, then
we can write 4 = Uj. A4, where the A,’s are ambiguous of class a. Let
f(x) = 35, 271, (x) where 1, denotes the indicator function of 4,,. As 1,
is of class a, fis of class @ and 4 = {x: f(x) > 0).

3. Proof of Theorem 2. If f(x)} = sup,g(x,y) where g is Bore! measurable, it
is shown in [3] that f is an A-function. For this, f need not be bounded below.

Let f be an A-function on X such that f(x) > a for a fixed real number a.
Without loss of generality, we take X = R. Let {5,} enumerate all rationals. Let
A = ((x,»): f(x) > y}. Then 4 = U,{(x,»): f(x) > 5, > »} and hence is
analytic. Let B C R*> be a Borel set such that 4 = projection of B i.e.
(x,») € A4 & Az((x,y,z) € B). Let k: R* = R? be defined by

[ (y2) if(x,p2) € B,
k(x.p2) = {(a, a,a) otherwise .
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Then, as k is Borel measurable so is m k where m, denotes projection to the
second coordinate and

mk(x,y,z) = {y if ("-)'»_Z) € B,
a otherwise .

Thus sup(, ) mk(x,»,z) = sup(y,)(gy: y < f(x)}u (3a)) = f(x). Let ¢ be a
Borel isomorphism from R onto R2. Let h: R* > R? be defined by A(x,y)
= (x,¢(»)) and let g(x,y) = m kh(x,y). Then g is Borel measurable and
J(x) = sup, m k (x,8(1)) = sup,g(x,»).

REMARK. It is easy to see that Theorem 2 holds even if the condition “f is
bounded below™ is replaced by *f dominates a Borel function”. Thus an A-
function is of the form sup, g(x, y) for some Borel measurable g if, and only if,
it dominates a Borel function. Equivalently, every A-function is of the form
sup,g(x,y) for some Borel measurable g if, and only if, given an ascending
sequence of analytic sets {4,} such that U2, 4, = X, there is an ascending
sequence {B,} of Borel sets such that B, C A, and UL, B, = X. However,
we do not know if this condition always holds.

4. Proof .of Theorem 3. In X, we put Sy, = the family of open sets,
By = 0(Sg) and, for 0 <a < w,S, = &0(U;,S;)) and B, = oS,)
where, for any family of sets G, o(G) denotes the o-algebra generated by G and
6(G) denotes the smallest family containing G and closed under operation A.
We call (S,, ») functions S,-functions. Theorem 3 is obtained from the
following more general theorem by putting a = 1.

THEOREM 5. On any uncountable Polish space X, there is an S-function [ and
there is an analytic subset C of the real line such that f~'(C) & B,.

PROOF. It is known that B_ is not closed under operation A (cf. [2]). Let
{Z, ...n} C B, besuch that U,eq Mi%, Z, ..., & B,, where 9 denotes the
family of all sequences of positive integers and n = (n,,n,,...). We can find
countably many sets {4;} in S, such that for all n and &, Z,, ..., € o({4})
Let f(x) = X2, (2/3’)14,(x). As the sum of two S,-functions, a positive
constant multiple of an S,-function and the limit of an increasing sequence of
S.-functions are all S,-functions, f is an S,-function. As f~!(B) = o({4,))
where B is the Borel o-algebra on R, we can find, for all n and &, By ..o € B
such lhatf“'(Bfl coom) = Zn g L&t C = Upeq Mf% 1By, ..., - Then Ciis
analytic and /7 (C) = Upeq M1 2, ... € B,

REMARK. Let X be any set and L a o-additive lattice on X containing X and
the null set, such that o(L) is not closed under operation 4. We call a real
valued function f on X an L*-function if for every c, {x: f(x) > ¢) € L.
Evidently f ~'(B) C o(L). However, we can find an analytic set C and an L*-
function f such that f~'(C) & o(L). The proof is similar to that of Theorem 5.
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