MINIMAL N-COMPACT SPACES

K. P. S. BHASKARA RAO AND ASIT BARAN RAHA

ABSTRACT. In this note it is established that minimal N-compact spaces are compact.

1. Introduction. Given two spaces X and E, we say that X is E-completely regular (respectively E-compact) provided that X is homeomorphic to a subspace (respectively, closed subspace) of E^m for some cardinal number m [4]. When E = R, the space of real numbers, E-compact spaces are precisely the realcompact spaces of Hewitt. When E = N, the space of natural numbers with discrete topology, E-compact spaces are called N-compact spaces.

For any topological property π and a nonvoid set X, let $\pi(X)$ denote the set of topologies on X with property π . $\pi(X)$ is obviously partially ordered under inclusion. A topological space (X, \mathcal{T}) is minimal π if \mathcal{T} is a minimal element in $\pi(X)$. (X, \mathcal{T}) is said to be π -closed if \mathcal{T} has property π and X is a closed subspace of every π space in which it can be embedded. Our problem is to characterise minimal E-compact spaces for the case E = N. For E = R, the problem was solved in [5].

2. Definitions. A subset of a topological space X which is both open and closed is called a *clopen* subset of X. $\mathcal{B}(X)$ denotes the collection of all clopen subsets of X.

A 0-dimensional space is a Hausdorff space (sufficient to assume T_0) which has a base for the topology consisting of clopen sets.

A clopen filter $\mathcal F$ on a space X is a nonempty collection of clopen subsets of X such that:

- (i) Ø ∉ F;
- (ii) if $U, V \in \mathcal{F}$ then $U \cap V \in \mathcal{F}$; and
- (iii) $V \in \mathcal{F}$, $U \in \mathcal{B}(X)$ and $U \supset V$, then $U \in \mathcal{F}$.

A clopen filter $\mathcal F$ is fixed if $\bigcap \mathcal F \neq \emptyset$ and $\mathcal F$ is said to have the countable

Received by the editors July 26, 1973.

AMS (MOS) subject classifications (1970). Primary 54D25; Secondary 54D35, 54F45.

Key words and phrases. E-compact, E-completely regular, N-compact, clopen ultrafilter with countable intersection property.

intersection property provided that for each countable subcollection \mathcal{G} of \mathcal{F} , $\bigcap \mathcal{G} \neq \emptyset$. A clopen ultrafilter is a clopen filter which is maximal in the collection of all clopen filters ordered by inclusion.

- Result. In order to prove our result we shall appeal to the following characterisation of N-compact spaces due to Herrlich [3] and Chew [2].
- 3.1. Theorem. A 0-dimensional space X is N-compact if and only if every clopen ultrafilter on X with the countable intersection property is fixed.
 - 3.2. Theorem. The following are equivalent for an N-compact space X:
 - (i) X is minimal N-compact;
 - (ii) X is N-compact-closed;
 - (iii) X is compact T2.
- **Proof.** (i) \Longrightarrow (ii). Suppose (X,\overline{Y}) is minimal N-compact but it is not N-compact-closed. Then there exists an N-compact space Y with $X \neq \overline{X} \in Y$ i.e., X is not a closed subset of Y. Suppose $p \in \overline{X} X$ (\overline{X} denotes the closure of X in Y). Then p is an accumulation point of X. Let $C = \{V \cap X : V \text{ is a clopen nbhd of } p \text{ in } Y \}$. Note that $\bigcap C = \emptyset$. Fix $x_0 \in X$. Define a topology S on X by the following open neighbourhood bases:

 $S(x) = \text{clopen nbhds of } x \text{ in } (X, \mathcal{T}), x \neq x_0;$

 $S(x_0) = |C \cup G: C \in \mathcal{C}$ and G is any clopen nbhd of x_0 in $\mathcal{I}|$.

- (1) (X, δ) is 0-dimensional. Let $C \cup G \in \delta(x_0)$. Then it is already open in δ . Again, $(C \cup G)^c = C^c \cap G^c$, a clopen set in (X, \mathcal{T}) and belongs to $\delta(x)$ for any $x \in C^c \cap G^c$ and hence is open. So $C \cup G$ is a clopen set in δ . Take $x \neq x_0$ and $U \in \delta(x)$. We have to exhibit an δ -clopen set inside U. Without loss of generality let $x_0 \notin U$. Choose $C \in \mathcal{C}$ such that $x, x_0 \notin C$. Now $C \cup U^c \in \delta(x_0)$ and is clopen in δ . So, $U \cap C^c$ contains x and is contained in U. Also it is clopen in δ . (X, δ) is thus proved to have a base consisting of clopen sets. We shall have to show that δ is Hausdorff. It suffices to show that δ is T_0 . Let x and y be two distinct points of X. If x and y are both different from x_0 , then there is nothing to show. So, let us assume $y \neq x = x_0$. Since (X, \mathcal{T}) is 0-dimensional there exists a \mathcal{T} -clopen set G with $x_0 \in G$ and $y \notin G$. Again, since $\bigcap C = \emptyset$, it is possible to find $C \in \mathcal{C}$ such that $y \notin C$. Then $C \cup G \in \delta(x_0)$ by definition and $y \notin (C \cup G)$. Thus (X, δ) is T_0 . The 0-dimensionality of (X, δ) is now proved.
- (2) (X, δ) is strictly weaker than (X, \mathcal{T}) . Since Y is a 0-dimensional space, there exists a clopen nbhd V_0 of p in Y such that $x_0 \notin V_0$. Then $V_0^c \cap X = (Y V_0) \cap X$ is a \mathcal{T} -clopen nbhd of x_0 .

Claim. $V_0^c \cap X \notin S$. Since (X, S) is 0-dimensional and since $x_0 \in V_0^c \cap X \in S$, there should exist an S-clopen set of the form $C_1 \cup G_1$ such that $x_0 \in C_1 \cup G_1 \subseteq V_0^c \cap X$. Then $C_1 \subseteq V_0^c \cap X \subseteq V_0^c$. But $C_1 = V_1 \cap X$ where V, is a clopen nbhd of p in Y. Hence

$$\emptyset = C_1 \cap V_0 = V_1 \cap X \cap V_0 = X \cap (V_1 \cap V_0)$$

-a contradiction.

(3) (X, δ) is N-compact. Let \mathcal{U} be an ultrafilter of δ -clopen sets with countable intersection property. Because of Theorem 3.1 we shall show that $\bigcap \mathcal{U} \neq \emptyset$. If $x_0 \in \bigcap \mathcal{U}$, nothing to prove. Let $x_0 \notin \bigcap \mathcal{U}$. Then there exists $U \in \mathcal{U}$ such that $x_0 \notin U$. Without loss of generality U can be taken to be of the form $X - (C \cup G) = (C \cup G)^c$ where $C \cup G \in \delta(x_0)$ [$x_0 \in U^c$. So there exists $C \cup G \in \delta(x_0)$ such that $x_0 \in C \cup G \subset U^c$. Therefore, $x_0 \notin (C \cup G)^c \supset U$ and $(C \cup G)^c$ is clopen in δ . So $(C \cup G)^c \in \mathcal{U}$ by definition of \mathcal{U} .]

Let $\mathcal F$ be an ultrafilter of $\mathcal F$ -clopen sets of ining $\mathcal V$. If $\mathcal F$ has countable intersection property then $\mathcal F$ will be fixed because of Theorem 3.1 as $(X,\mathcal F)$ is N-compact. Then $\mathcal V$ will be fixed also. Let $\{F_n\colon n\ge 1\}$ be a countable subfamily of $\mathcal F$. Write $F_n\cap U=H_n$ (say). Then $H_n=F_n\cap U=F_n\cap (C\cup G)^c$. So

$$H_n^c = F_n^c \cup C \cup G = C \cup (F_n^c \cup G) \in \delta(x_0).$$

In fact $C \cup (G \cup F_n^c)$ is clopen in δ . So H_n is δ -clopen for each n. Let $D \in \mathbb{U}$. Then $H_n \cap D \neq \emptyset$ for all n. Thus inasmuch as \mathbb{U} is an ultrafilter of clopen sets, $H_n \in \mathbb{U}$ for all n. Therefore, since \mathbb{U} has countable intersection property, $\bigcap_{n=1}^{\infty} H_n \neq \emptyset$ i.e., $\bigcap_{n=1}^{\infty} (F_n \cap U) \neq \emptyset$ or $(\bigcap_{n=1}^{\infty} F_n) \cap U \neq \emptyset$. In particular $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$. Thus \mathcal{F} has countable intersection property, so \mathbb{U} is fixed. Hence (X, δ) is N-compact as it is already proved to be 0-dimensional.

Now (X, δ) is N-compact and δ is strictly weaker than \mathcal{T} . So the minimality of the N-compact space (X, \mathcal{T}) is contradicted. We therefore conclude that $X = \overline{X}$ i.e., X is closed in Y.

- (ii) → (iii). This follows from the fact that every N-compact space X has a 0-dimensional compactification; e.g., β_{10.1} ξX.
- (iii) \rightarrow (i). Suppose (X, \mathcal{T}) is a compact N-compact space. Then it is well known that (X, \mathcal{T}) is minimal Hausdorff. Since each N-compact space is T_2 , (X, \mathcal{T}) must be minimal N-compact. Q.E.D.
- 4. Remarks. The results of [5] and this paper may lead one to conjecture that for any E, a minimal E-compact space is compact. However, this is not

the case. Let E be the countable minimal Hausdorff space which is not compact [1]. Then E is clearly minimal E-compact but not compact.

REFERENCES

- 1. N. Bourbaki, Espaces minimaux et espaces complètement séparés, C. R. Acad. Sci. Paris 212 (1941), 215-218. MR 3, 136.
- 2. Chew Kim-peu, A characterization of N-compact spaces, Proc. Amer. Math. Soc. 26 (1970), 679-682. MR 42 #2436.
 - 3. H. Herrlich, E-kompakte Räume, Math. Z. 96 (1967), 228-255. MR 34 #5051.
 4. S. Mrówka, Further results on E-compact spaces. 1, Acta Math. 120 (1968),
- 161-185. MR 37 #2165.
- 5. A. B. Raha, Minimal realcompact spaces, Colloq. Math. 24 (1972), fasc. 2, 219-223. MR 46 #4482.

INDIAN STATISTICAL INSTITUTE, 203 B. T. ROAD, CALCUTTA 700035, INDIA