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This pupor deals with some new arithmetical properties of tho Fourier coefti-
cionts ¢{n) of the modular invuriant j(r), 1t estublishes simple congrucnce

relationshipa betweon l:(pAn.) and op(n), with vortnin powers of p (= 2, 3, 5. 7}

us moduli, It shows thot if n=0 (mod 29 3% 5¢ 7%) then ¢(1) = 0 (moid
23a+12 320%6 5e+2 7d+1) gor yimost ull such values of n. Explieit exprossions

have been obtained for the least residues of c(p’\) to modulj which urs sumne
suitable powers of p. More general resulls ure aleo given.

1. INTRODUOTION

The object of this paper is to develop in a connected manner some urith-
metical properties of the integral coefficients ¢(n) of the Fourier expansivu of
Klein’s clagsical modular invariant,

Jr) =1728J (7} = e(—7)+ Z c(n)e(nr), e(r) = vxp Lair.
n=
Such properties have been studied previously by Lehmer (1942), Lehner
(19494, ), van Wijnggarden (1953), Newman (1958, 1960), and Kolberg (1961,
1962). The new results, Lahiri (1965), proved in this paper and their position in
relation to some of the previously established properties are set forth in
Section 3.

2. Some SymsoLs

The symbols A and = stand for arbitrary positive integers unless vtherwise
specified; p represents any one of the primes 2, 3, 5 or 7. Occusionally p
stands for the prime 13 also, and the text will explicitly state this whonever
nevessury. The symbols rp, 8p, fp, U Pp) Bpy ve and pp(d), or, simply r, s, f, ¢,
P B, v and p or u(d), are detined bolow. Lt will bo noticed that (p—1)r = 24
and v = p-rf2-1 = p(l).

v 2] 8y Je Yn Py B vp  pp(d)
2 24 1 3 3 4 b 16 3A-]-12
3 12 1 2 1 2 2 7  2A45
6 6 1 1 3 1 1 3 A2
1 4 3 1 b 1 1 2 A+1
13 2 — — — 1 — 1 —
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The symbol dg(A) denotes a periodic function of A of period Mg,
for g =25, de(d) = 11,1, 3, 9,27, 17,19, 26 when A = 0, 1, 2,....7 (mod 8),
for g = 2%, dg(d) = 11, 1, 3, 9 when X = 0, 1, 2, 3 (mod 4),
for g = 3%, dg{A) = 1 whatever be the value of A,
forqg=5,d,A) = 2,1, 3,4, whend = 0, 1, 2, 3 (mod 4),
forg="7,de{2)=3,1,6,4,6 2whend =0,1,2 ..., 5 (mod 6).
In fact dg(A) is the least positive residue of gr~! to modulus ¢, and M, == 8, 4,
1, 4, 6 for g = p* = 2°, 2% 3%, 5, 7 respectively, is the grder of g (mod ¢), g =
gs-

3. TaE REesuits

Newman (1968) proved that ¢(13n) = —r(n) (mod 13), where r(n) is

Ramanujan's function, defined by

® 34 ©
z ;,..Iz,“—’m)} = Z 7(2)zn.

n=l

We shall re-establish Newman’s result by a different method; and establish
similar congruences given below for other primes, p, #z. 2, 3, 5, 7.

TrEOREM 1. If p stands for any of the primes 2, 3, 5, 7, 13, then

e(pn) = — p'2=lz(n) (mod p*).

A generalization for all the above primes excepting 13 follows.

THEOREM 2.

c(pin) = c{pAr(n) (mod pk).

Tho next theorem helps the roplacement of the ¢(p?) in Thevrem 2 by

suitable multiples of certain powers of the primes.

TuEOREM 3. The numerically least negative residue of c{p?*) to the modulus
prP+B s —dg(A)pH-P, where g = ;B.

It is easy to deduce from this theorem the undernoted result.

CoroLLARY 1. The highest power of p dividing ¢(p?) is p#~*.

Lehner (1864) showed, as is also evident from the next theorem, that
n c(phe) = 0 (mod pr-P).
Thus ¢(p*) is divisible by p#=? which, ns proved by Kolberg, is the highest
puwer dividing ¢(p*) for p = 2, 3. Corollary 1 shows this to be true for p =
6, 7 also.

Congruence relations between c(p*n) and o.(n), the sum of the s-th
powers of the divisors of n, are given below.

THEOREM 4.
c(phn) @ —dg(A)pt~Priog(n) (mud p#), ¢ = p°.
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Caloulation of residues of c¢(pn) to the modulus p* is simplified by the
use of the above theorem as o,(n) is more amenable to residue dotormination.
Kolberg obtained the residues of ¢(2*a) and c(3'n) for the moduli 2%** gnd
3%+% respectively; his results are therefore stronger, for the primes 2 and 3,
than those obtainable from Theorem ¢, where the corresponding moduli are of
lower powers being 2%+12 apd 32445,

It is possible to speoify the n's for which p8 is the highest power dividing
c(p*n), provided p—p < 8 < p. The case § = p—p, which gives a generali-
zation of Kolberg type of divisibility property like Corollary 1, follows.

CoroLLARY 2. The highest power of the prime p dividing c(p*n) would
bo pr-*, if and only if ¢y = 0, &, 3= —1 (mod p), &p_, # I (mod 2) for p = 2, 3;
and tho additional conditions for p = 5 are ag, a3 5% 3 (mod 3), and for p = 7,
&g, 2 % —1 (mod 7) and «y, a5 3 1 (mod 2), whero p, stands for any prime fall-
ing in the residue olass s(mod p), and «¢’s are the exponenta of such primes
in the standard form of n.

The sets of n's for which c(p*) has p® as a divisor require similar ela-
borate specifications when p—p < 8 < p. We concentrate on their more inter-
esting subsets, simply specifiable us arithmetic progressions.

I'ueorem 5. The unly p primes for which there exist at least one positive

integer A and another positive integer k < p such that

c(pApntk)) = 0 (mod p#=**Y),
for every non-negative value of n, are 3 and 7. In these cases every pusitive
integer is an admissible value of A, and the admissible values of & are
independent of A, being always the quadratic non-residues of p.

Relaxation of the form of the argument to p¥(p‘n+ k) enubles inclusion of
the case p = 2 also, the moduli being even higher than p#-f*!. Further
relaxation to pAan+-b) where « and b are no longer co-prime gives congruences
10 still higher modulus. lilustrations follow.

THEOREM 6.

(242 —1)) = 0 (mud 27+, e =2, 3;
o pMputn—ru)) = 0 (mod p#) if u = —1 (mud 2%), e =4—p, p=2,3;
c(pMutn—ud)) = 0 (mud p#) if ag{n) = 0 (mod pP), (z, d) = 1.

Non-existence of roots of ¢(p'n) = d (mod p#) when pH-f is not a
divisor of d is obvious from Theorem 4. It is therefore sufficient to consider
the following congruence for studying the number of roots.

TreoreM 7. The congruence ¢(phn) = dp*~* (mod 2#), 0 <d < 2,
has an infinity of solutions for any given A and d. If d = 0, then the same
seb of values of %, constituting almost all positive integers, satisfies tho con-
gruence whatever A may bo. But if » is given any of the rare values for which
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¢(pPn) is not divisible by p*, then for 7 non-zero values of d for p = 3, and 11,
13 or 14 values (depending upon =) for p = 2, the congruence is not satisfied
even by a single value of A; A’s exist in all other cases.

The case A = 1 of the first part of the theorem shows that p~**+°c(pn)
falls in all residue classes modulo pr infinitely often, where p is understood
to be 2, 3, 5 or 7. That this holds for p = 13 also is seen from Newman's
(1960) result for that prime.

COROLLARY 3.
of2'3°67"n) = 0 (mod 25012 346 5ot 2 g44Yy
for almost all values of n where a, b, ¢, d > 0.
This may be compared with Lehner's result,
o(2°3°%67°n) = 0 (mod 2349 g¥+3 5o+ 79,
for all values of n. If @, b, ¢ or d venishes, then the corresponding prime
powers are to be totally removed from the moduli in the two congruences
for c(n).
4. LeENER'S IDENTITIES
We require some identities due to Lehner (1964). For p = 2, 3, 5, 7, 13
he proved that

© P2
@ 2, dpmelnr) = 45 5 €0y p,
n=0 ha)

with €' a constant and Cy integral (depending upon p), and where
Do(+) = (n(p7)fnir))".
(r) = e(r)24) IT (1~e(mr)), Imz > 0.

He derives the further identities which (with some notational chauges) are

@) D cPuke(ir) = A+2ME S 42"y,
ne=( ke |
@ c(3rnle(nr) = A3 4,340V,
DIZU AZI gy ’
(6) D clbMnle(nr) = A+5M 4, Bg(x) +6 > v,
=0 Am
(6) Z (T)e(nr) = A+ 4,0,(1)+7 z AT (TP,
nmQ A2

where the 4x’s are integers. The A,’s and » depend upon A and also on the
prime p appearing in the subsoript of ®,(7).
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6. A LEMMa
It is easily seen that with p = 2, 3, 5, 7, 13

Dylr) = elr) { ..1?1 {1—e(mp))/ mj:I : (l—e(mr))} = ={f@)f (=),

where z = e(r) and f(z) = IT {l—zm),

Now it is easy to derive by elementary means that f(z?) = {f(z)}*+»],
where I is a power series in x with integral coefficients; and therefore we get
S?)flz) = {f(x)}*~'+pI; (I possibly different in different cases). Thus

Polr) = 2({f(2)}P~1+pl) = 2{ fz)} P14 pl = 2{f(z)}244pl.
But for the primes 2 and 3 wo obtain the following moro general relations:
Dolr) = a( flz)+-21)2
= 2{{f(x)}24+24 . 2I{ f{2)}3+12. 23 . 221{ f()} 22+ 4 .28 22, 281 { f(x)}2!
+241)
= z{f(z)}e4+241.
Byfr) = 2({ f(2)}2 431112 = 2{{ f(z)}*4 +12 . 3I{f(z)}*2+321),
=a{f(e)}e+ 321,
By combining the above results we arrive at the following lemma:
Lewa. @yr) = a( fz?)ff (@) = 2{ flz)}M+1.

6. Proor oF TREOREM 1
The identity (2) can be written as

© e
) > dpmn = C+p™ Y O A )
n=0 LN
Clubbing together the terms corresponding to k> 2 as p'=1I, we have

D elpnpen = CHCop™L {2 f)) 5,

=

= C+Cpre1 . (e f(z)}+p D)+ 771,

= C+Cp 2t x{f(x)}+p"1,

=C+OpB D rimpntprl,

w1
Comparing coefficients of z*, = > 0, we got ¢(pn) = Cyp*"'r(n) (mod p%); and
in particular, c(p) = C1p"?"'r(1) = Cyp"®-! (mod p*). Hence c(pn) = c(p)r(n)
(mod p*), p being 2, 8, , 7, 13 as in identity (2).
Theorem 1 follows by considering tho values of ¢(p) given in Section 8.
7



100 D. B. LAHIBI

7. Proor or THEORBM 2
Expressing the identities (3)-(6) in terms of z, and noting that p#+fisa
common factor of the coefficients of the terms involving @,(r)4, with 1 > 2,
we easily obtain

®) D s = A+prP Ay o) @)y + prtel.
n=0
Now making use of the lemma it is a simple deduction that
o
) > clpinjan = A+ pr-PAa{f@)i+ L.
n=0
By equating the coefficients of z%, n > 0, on both sides, and using the
particular case n = 1 for replacing 4,, as in the proof of Theorem 1, we got
Theorem 2. Using the wenker form of Theorem 3 given near the end of the
next section, the right-hand side may be freed from tho Fourier coefficient ¢(p?)
as follows:
THEOREM 2'.
o(phn) = —doA)p#=Pr(n) (mod p#), g = .

8. Proor or TrrorEm 3

Comparing the coefficients on both sides of (8) we get, for n >0,
c(pPn) = prPA bp(n) (mod pHtP), where

Olr) = f@)f@) = > bylnlan.

n=l

Uking the case n = 1, this congruoence leads to the interesting result,

(10) c{phn) = c(pby(n) (mod pr+?).
Now this congruence with » = p” gives
(11} pHOAYI-N(PAY) = by(pY)H(pA) (mod p¥),

where {(p}) = p=HW+P¢(pA) is integral in virtue of (1).
The following expansions give the first few values of by(n):
Do(7) = a424a24 .. .,
Py(r) = 24122248023+ .. .,
Ds{r) = x-622+2728 + 0828+ 316254 ... .,
Oyfr) = z 4+ 422+ 1425+ 4028+ 10526 4+ 25228 - 5T4a T+ . ..
Taking ¥ = 1 in (11) and substituting the values of b»(p) we obtain
{(pr*1) = gl(pH) (mod ph).
By a process of iteration one can derive easily the relation,
(12) UpY) = gA-U(p) (mod pA).
The values of i(p) are derivable from Zuckerman’s (1939) table of ¢(n).

The values of ¢(p) including that of ¢(13) used in Theorem 1 for re-establishing
7B
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Newman's congruence are given below.

c(2) = 21403760 = 211(28 . 41 —1) = 2114(2),

¢(3) = 884289970 = 35(30 . 4879—1) = 38/(3),

¢(5) = 333202640600 = 52(5¢ . 21324960 —1) = 5%4(5),

¢(7) = 44656994071936 = 7(7+. 2657047306—1) = T(7),

¢(13) = 4872010111798142520 = 13 . 374770008599857117—1.
1t is now easily seen that the ¢(p) appearing on the right-hand side of (12)

can be replaced by —1. Then it is also easily sean that —d,(3), with ¢ = p,
is the (numerically) least negative residue of tho right-hand side of (12) to
the modulus p8. Thus

(13) HpY) = —dg()) (mod pB), g = ph.
Now we revert to the function ¢(p”) instead of ¢(p?), obtaining
(M) e(ph) = —dq(2)p#-F (mod pr=P*B).

Theorem 3 follows from the inequality dg(A)p#-# < p#-P*B. Corollary 1 is an
obvious deduction from the theorem, or its slightly weaker version, iz, the
numerically least negative residue of ¢{p*) to the modulus p# is —dg(A)pr=*,
where ¢ = pP.

It might be of interest to note that with A =1, (11) gives
(15) by(?) = 0 (mod p%)
ify>2 when p=2, and if ¥ > 2 when p =3, 5, 7. This follows from the
facts that 4(p) is not divisible by p, and that u(l14-v)—p(1) > 2p for v > 2
when p = 2, and for v > 2 when p = 3, 65, 7.

9. Proof¥ or THEOREM 4

Making use of the congruence, Lahiri (1947),
(16) 7(n) = 5(3nt—Tnd)og(n) —T7(2n6—bnd)a(n) (mod 2¢.32.5.7),
and remembering Lehner’s divisibility property, (1), it is not difficult to
establish from Theorem 2’ that, with ¢ = p°,
(17) o(pAn) = —dg(A)(6(3nb—~Tnd)oy(n)—T(2n8 —but)a(n))pH—° (mod pr).
The neater form (but involving symbols f and 8) given in Theorem 4 is
obtained by using the Ramanujan congruences listed by Rushforth (1952).
These congruences, also derivable from (18), are
(18) 7(n) = nfo,(n) (mod pf).

The validity of Corollary 2 and the subsequent observation is easily estab-
lished by considering the divisibility properties of os(p%).

10. Proor oF Turorem &
If for any particular value of A, ¢(p*(pn+k)) is divisible by p#-*+! for
every n > 0, then from Theorem 4 it is easily seen that os,(pn+k) must be
divisible by p for all such »’s. But it can be easily checked that for p = 2
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and b there are always some values of #n for whioch e¢(pn-k) is not divisible
by p, for every fixed positive value of k < p. For p = 3 and 7 similar illus-
trations are easily available when %k is a quadratio residue of p. We are
thus left only with the cnses » = 3 and 7 with &£ a quedratic non-rosidue,
To demonstrate that for these cases c(pMpn-+k)) is divisible by pr-f+! we
require the result,

19) oy(n) = 0 (mod p), I = §(p—1),

when 7 is & quadratic non-residue of any odd prime p; reference may be made
to Ramanathan (1945) and algo to Lahiri (1046). Now by Theorem 4 we have

(33n+2) = —32*%(3242)%0(3n+-2) (mod 3%*%), 1 > 0;
and, further, by Ramanathan’s result (19), o(3z+2) = 0 (mod 3). Thus,

(20) (3 (3n+2)) = 0 (mod 3%H4).
Similerly, by using Ramanathan’s result for p = 7 we have
(21) (P(In4-k)) = 0 (mod 7Y,

where % is any quadratio non-residue of 7. This congruence is also directly
derivable from Theorem 2 and Ramanujan's congruence, Hardy (1940),
7(7n+k) = 0 (mod 7) for the same values of k. The result (20) for the prime
3 is also derivable from the same theorem provided it is backed by the easily
established fact that r(3n4-2) = 0 (mod 3).

11. Proor oF THEOREM 6

By considering the expression for 8n—1 in the form ITpPIpSeITpisIIps,
where p; stands for any prime falling in the residue class (mod 2°), it is possible
to establish from first principles that o(82—1) = 0 (mod 23). Also, o(4n—1)
= 0 (mod 2%) is similarly but more simply obtninable. These results wore
proved by Ramanathan (1943). The first congruence of Theorem 6 is now
obtained by an application of these results to the case p = 2 of Theorem 4.

For the second congruence we note that o(p‘utn—u) = o(u)e(pun—1).
But as o(4n—1) = 0 (mod 2%) and o(3n—1) = 0 (mod 3), the two right-hand
factors are both multiples of %, and therofore o(p‘utn—w) = 0 (mod p).
The required result now follows from Theorem 4. Muitiplicative properties
of a,(n) may be similarly exploited to establish the last and other congruences.

12. Proor oF THEOREM 7
If » = wf~!: where w = 17, 19, 1], 29 for p = 2, 3, 5, 7, then Theorem 4
gives c(pn) =2 —d(A)p*~".6 (mod p¥). And as 8 runs over all positive
integers, —dy(A)8, for any given A, runs over each of the residues modulo p*
infinitely often. Hence the first part of the theorem.
A joint consideration of Theorem 4 and Watson’s (1935) theorem that
oi(n) is divisibla by any prescribed number for ‘almost all’ values of %, for
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any odd ! shows that ¢(p*s) is divisible by ps for ‘almost all’ values of n, viz.
the roots of nfo,(n) = 0 (mod »°). More specifically, if (N) is the number
of n's < N for which ¢(p*n) is divisible by p#, then ¢(N)/N —+1 as N - 0.
If c(p*n) % 0 (mod p#) then nfo,(n) % 0 (mod p”) and as dg(A) has M, values
—dg(A)nfas(n) has < My (non-zero) values incongruent modulo g, for variations
in A. Closer scrutiny yields the exact number. And the Jast part follows.
Corollary 3 follows immediately from the second part of the theorem.
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