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This paper i ig! the ibility of i ing social choice (unctions via protective
equilibria - a refinement of maximin behavior. We describe a necessary condition, as well as a
set of sufficient conditions for a social choice function to be implementable. The set of implemen-
1able functions is certainly not emply, and it conains interesting procedures, allowing for some
agents to have some veto power. However, posilional or Condorcet-type methods cannot be im-
plemented via protective cquilibrium. The connections and the differences between different no-
tions of implemeniation are also discussed.
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1. lntroduction

In an earlier paper,’ we had explored the possibility of implementing social
choice functions under a solution concept which we had called proteciive equilibria
- essentially a refinement of maximin behavior. We characterized the class of im-
plementable social choice functions under the assumplion that the aggregation
mechanism has (o be the social choice function itself; in other words, the agents are
confronted with a game form in which strategy sets are the set of possible preference
orderings and the outcome function is the social choice function to be implemented.

! Sec Barbera and Dutta (1982). See also Moulin (1981) for & closely related solution concept.

* This paper was the basis for pari of one Schunbrunn Lecture, delivered by S. Barberd ai the Institute
for Advanced Siudies, Hebrew University of Jerusalem, July 1983,
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The literature? on impl ion has idered a more general framework
which allows for a much wider class of game forms - players® strategy sets are per-
mitted to be arbitrary finite sets, while the only restriction placed on the outcome
function is the obvious one that it always select a feasible aliernative for each .
tuple of strategies. For most solution concepts, this richer framework allows for a
wider class of implementable social choice functions, although the much-talked
about ‘relevation principle’ shows that for many solution concepts, if a social func-
tion can be implemenied by an arbitrary game form, then it can also be "truthfully
implemented’ by a direct mechanism, i.c. a mechanism in which sirategy sets are the
set of possible characteristics (preference orderings) of agents.’

The purpose of this paper is to see whether the class of implementable social
choice functions under protective equilibria is enlarged when the implementing
mechanism is permitted to be any arbitrary game form. Indeed, we distinguish be-
tween three different notions of implementation. The first and most restrictive no-
tion is self~implementability, in which strategies are preference orderings and the
outcome function is nothing but the social choice function to be implemented. A
second possibility, called direct implementability, is to restrici strategies to be
preference orderings but allow the outcome function to be a social choice function
different from the one being implemented. The most liberal notion is general imple-
meniability (henceforth referred to as simply implementation) in which no restric-
tions at all are placed on the game form.!

Our most important result is that the main necessary condition for sell-
implementability continues to be necessary for implementability in general. This
necessary condition is not satisfied by many familiar social choice functins. We also
show that if a social choice function is impl ble but not self-i
then the strategy sets in the implementing game form have to be ‘larger’ (in a sense
to be made precise later on) than the set of preference orderings. Finally, we also
provide a set of sufficient conditions for implementability. These sufficient condi-
tions are satisfied by the class of voting by veto social choice functions, and al least
one element in this class is not self-implementable.

The paper is organized as follows. Section 2 contains notation and definitions and
presents the main result in our earlier paper regarding self-implementability. Section
3 contains our results on general implementability. In Section 4 we present some ex-
amples to show that there is no general connection between the three notions of im-
plementability that we have referred 1o earlier, except the obvious one thal self-
implementability implies direct implementability and the latter implies general im-

2 Excellent surveys are Dasgupta et al. (1979), Laffont and Maskin (1983).

3 See Dasgupta et al. (1979) for a of the distinction beiween i and truthful
implementation.

4 In Basberd and Dutta (1982), self-implementability was actually called direct implementability. The
present definitions conform to the convenlional practice in the literature,
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plementability. We conclude in Section 5. An Appendix elaborates on the restric-
tiveness of upper strong positive iation, a y dition for SCFs to be
implementable via protective equilibria.

2. Notation and definitions

Let A={x, 5,,...} be a finite set of alternatives, with cardinality m=3. (When
convenient, alternatives will also be denoted, a4, ...)

Let/={1,2,...,n} be an initial of thei whose el are called
individuals. # is the set of asymmetric orderings over A. Elements of # are
tepresented by P, P, P, P, ... and are called preferences.

The following definitions are useful to describe partial characteristics of a
prefererice ordering and to compare it with others.

If Pe 2, YC A, we say that Y is bottom for P iff (¥Vye Y)(Vxe A - Y)xPy. For
ke{l,...,m}, Pe #, the k-bottom of P, denoted by B(k, P), is the unique subset
of A which is bottom for P and contains exactly k alternatives.

For P.P'e #, YC A, we say that P and P’ agree on Y ifi (Vx, y € Y)(xPy+~xP’y).

For any Pe #, re {1,2,...,m}, the rth ranking worst alternative in P, denoted by
a,(P), is defined by a,(P)={xeA|there exist exactly (r—1) alternatives
yEA:XPy).

Let 2" be the n-fold cartesian product of . Elements of 4" are denoted by

P,P',..., and are called preference profiles.

Let iel. Given a preference profile P=(Py, Py, ..., Pi_}, P Pjs s ..., Py), We may
denote it by P=(P, P.,), where P_;=(P, Py ..., Pi_ |, Py 1aeees Py)-

Given Pe#" and P/e #, P/P,"é'(P,.Pz.....P,_|.P,',P,-.,.....P,,), i.e. P/P/
stands for a profile obtained from P by changing its ith p from P10 P;.

2.1. Social choice functions

A social choice function (SCF) is a function f: 2, A.

Individual i€ I has a veto under [ iff, for every xe A, there exists P;(x) such that
JP, P #x, for all P_,e ",

The following properties of SCFs will be relevant in analyzing their strategic pro-
perties. Upper strong positive association is the most important and attractive. It
is the conjunction of a monotonicity property (if x=f(P) and x ‘ranks better’ in P’,
which is otherwise identical to P, then x=/(P’)), and an invariance property (if
x=f(P)and the set of elements better than x is the same for all individuals in P and
P’, then x = f(P)). This condition is similar to, though strictly weaker than, Muller
and Sattenthwaite’s (1977) Strong Positive Association which was shown 1o be
equivalent to strategyproofness.

Lower conditional independence and bottom equivalence are rather special ‘regu-
larity’ conditions on the connections between the images of profiles having ‘similar’
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bottoms. Although they do not seem to have any particular normative appeal, they
turn out to be crucial conditions for a SCF to be self-implementable via protective
equilibria.

Given any social choice function f, for any P,e # and xe A, we denote by
g/(xP) the set {P_je »"~V/f(P_;,P)=x}.

Letiel, P, P € » and YC A. We say that P,and P/ are Y-equivalent for i under
Jiff (Vye Y)ig0nP)=g,0 P/)). P, and P/ are equivalent for i iff they are A-
equivalent.

A social choice function / satisfies:

(i) Upper strong positive association (USPA) iff, for all i€/, all Pe .7 ,and all
P e, [(J(P)=aP))&(B(r-), P)=B(r -1, P))&(P;and P; agree on B(r- 1, P))|~
P/ =f(P)).

(i) Bottom equivalence (BE) iff, for all i/, for all P, P e 2, [(P, and P| are
B(k, P)) equivalent, but are not B(k+1,P) equivalent)&(P, and P; agree on
A-B(k.P))} = Bk, P))=B(k, P)).

(iii) Lower conditional independence (LC1) iff, for all i€/, all Pe #", all Ple s,
[{U(PY=a,, \(P))&(B(r, P)) = B(r, P/)) & (P and P] are B(r, P))-cquivalent and agrec
on A= B(r, P)) - L/(P/P)=/(P)).

2.2. Game forms, prolective equilibria and the implementation of social choice
JSunctions

A social choice function f is implementable if there exists a game form such thal,
for every preference profile, and thus for every specification of the payoffs of
players, the equilibrium outcomes coincide with the function’s image at this profile.
This general definition should be qualified in two directions. Firstly, we need to
specify what is the relevant concept of equilibrium. Secondly, we may or may not
impose restrictions on the type of game form to be considered. We will comment
briefly on each of these points as they appear.

2.2.1. Game forms

A game form for (I,A) is an n + |-tuple F= (9}, ..., ¥: w)=2(S w), where forall
i, #;is the strategy set of agent i, and y: ¥— A is the outcome function.

A game form F for (1, A) is direct iff ¥;C # for all iel.

A social choice function f's own induced game form is the one defined as ;=
(2" /1.

Direct game forms, and in particular those induced by a SCF, are specific types
of game forms which arise naturally in connection with particular interpretations
of the problem of imp! ion. The gies of a direct game form are of the
same nature as the inputs of a SCF. The outcome function for the game form induc-
ed by a SCF establishes the same relationship between strategies and outcomes as
the SCF prescribes between preferences and outcomes.

Given a game form F=[¥; y], elements of &= X+ X ¥, are denoted by
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$=(8)s 83 .15, ) @ (s_,5)), where $€4,5€9,..., and s €A x-XT_ %
S X XS ym Sy,

The next two definitions relate the attainability of an issue through the use of cer-
tain strategies.

Given TC Y, let w(T)={aeA|a=y(s) for some se T}.

Given F=[7, y], for any 2€ A and 5,€ 7}, let gela s)) = {s_,€ /-, | w(s;.5-)) = a}.

Some strategies in a game form systematically lead to the same outcome as others.
The following definitions are useful in order to classify strategies on the basis of the
outcomes they give rise to.

For any BC A, s; and s; are B-equivalent iff for all ae B, gr(a,5,)=gr(a,s]).
When two strategies are A-equivalent, we simply say that they are equivalent.

2.2.2. Games and protective equilibria

A game (in normal form) for (/, A) is & (2n+ 1)-tuple G=(%),..., Zpi ¥; Pyv...,
P,|m{F; P}, where Fis & game form for (/, A) and P=(P,, ..., P,) € #” is a prefer-
ence profile on A. We denote by G(F, P) the game associated with the game form
F and profile P. When the game form we are referring to is unambiguous, we may
simply write G(P).

Given a game G(F, P*)=[Z,.... Zpi w; P)\....P}), for any i€, a strategy s;
proteciively dominates s, denoted by s;dp(P?)s; iff there exists k€ [1,m], such
that:

(i) 8r(ay (P*)5))Cgrlar(P) 5), and

(ii) 8r(a,(P*).5,) =grla,(P*),s]) for all r<k.

We then say that s;P,* dominates s; at the k-level.

Let Dip(P") = {s,€ 91| ~5de(P)s, for any 5€ 71}, and De(P*) = [1,,, Dy (P*).
De(P*) is the set of all n-tuples of protectively undominated strategies for game G.

Whether a strategy is more protective than another depends, then, not only on
what outcomes will obtain when the strategy is used, but also on the circumstances
under which these outcomes will obtain. For s to protectively dominate s’ the set
of plays by other individuals which would lead to some outcome x when s is used
should be a proper subset of the set of plays by others yielding x when 5’ is used,
with x being the worst-ranked alternative for which s and s’ are not equivalent. Pro-
Lective strategies are those which are protectively undominated. This type of lexical
maximin comparisons among strategies may be justified in contexts where the
players lack all information on their opponents, both on their payoff and on the
type of strategic considerations they will engage in. They are, of course, open to
much of the general criticism that can be addressed to maximin solutions, but not
10 all. In many frameworks, imin-type sol are hardly discriminat-
ing, and most strategies can be admissible; in our particular context and given our
notion of protettive domination we find classes of functions under which the set of
undominated strategies are systematically small.
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2.2.3. General, direct and self-implementation

A social choice function f is implementable via protective equilibria (PY) iff 1here
is a game form F=[¥, y] such that for every P*e #”, f(P*)=y|Ds(P*)).

If f is implementable by a direcr game form, we say that it is directly implement.
able. If it is implementable by its own induced game form F=[.#"; /], we then say
that f is self-implementable.’

The distinction between general, direct and self-implementation is more than a
technicality. Implementability of each type, when possible, corresponds to a dif-
ferent type of solution for the economic problem of mechanism design. If a SCF
is implementable by a game form, this game form represents the ‘institution’ which
will guarantee that the relationship between preferences and outcomes as prescribed
by the function does hold. This ‘institution’ involves both the type of messages that
agents must generate and the rules by which these messages will be processed. When
direct imp ion is possible, the can just be the preferences (or their
relevant characteristics), and institutional design concentrates on the outcome func-
tion through which preference information will be processed. Finally, when a SCF
is self-impl bl ing the desired function itself would guarantee it
realization.® The following theorem, which is proved in Barbera-Dutta (1982),
characterizes the SCFs which are self-implementable via protective equilibria. In the
next sections we turn to more general types of implementation.

Theorem 1. A4 social choice function is self-implementable via protective equilibria
iff it satisfies USPA, BE and LCI.

3. Implementability of social choice functions

Our first result in this section (Theorem 2) establishes that in order to be imple-
mentable’ at all, an SCF must satisfy one of the conditions that we already know
to be y for self-impl ion: USPA. This is a very restrictive condition,
and many interesting SCFs do not satisfy it. We stress this point in the Appendix,
where it is shown that almost all positional SCFs, as well as all rules selecting
generalized Condorcet aiternatives, violate USPA. Yet the condition is met by an
important class of procedures, the class of voting by veto SCFs. Thus we are far
from an impossibility result, as we can also prove that different functions in this

3 See foolnote 2.

6 These informal assume, in that the indis plays will be ibrium plays
(in this case, protective equilibria).

7 From here on, we may omit to qualify our notion of implementability with reference 1o protective
equilibria, since this is the only equilibrium concept to be used throughout. We only make exphit
reference 1o it in formal statements, but not in discusston.
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important class are indeed implementable.

The two following results (Lemma 1 and Theorem 4) refer to the relationship be-
tween the preferences which serve as the basic input of SCFs, and the strategies to
be used in game forms which implement it. Essentially, Lemma 1 establishes that
a sirategy in the game form cannot be und d under two quivalent pre-
ferences, and the other result indicates that if a game form can implement a SCF
which is not self-implementable, then there must be more nonequivalent strategies
in the game form than there are nonequivalent preferences under the SCF. Finally,
Theorem $ provides a sufficient condition for a SCF 1o be implementable: that at
Jeast two individuals have at least one veto each. This condition falls short of being
necessary for implementation and we thus do not have a full characterization of im-
pl ble functi Notice, h . that there exist SCFs that are even sell-
implementable.® Theorem $ shows that there is additional gain from relaxi 8 the
notion of implementability since there are other SCFs which are not setf-implement-
able, but are implementable. An important example is the rule called voting by aiter-
nating veto by Moulin (1982). Under this SCF, the individuals do not exercise their
velo power in one shot, but are allowed 1o do so in stages. Of course, Lhere can also
be several other rules which satisfy the conditions of Theorem $§ but violate either
LCl or BE, which are both y diti for self-impl: bility. We now
proceed to state and prove the announced results.

Theorem 2. A social choice function f is implementable via proteciive equilibria only
if it sarisfies USPA.

Proof. Let f be implementable by the game form F=[¥; y). Suppose f violates
USPA. Then, there exists i/, Pe #?”, P/ e # such that:

(@) f(P)=a,(P)=x,

by B¢ -1, P)=B(r-\,P),

(¢) P, and P, agree on B(r—1,P),

(d) SIP/P))=y#x.

Since f is implementable, there exists s;€ De(P)) for all j#i, and s;€ Dr(P,).
5,€ D,s(P)), such that:

wisns.)=x, m
visis. )=y 2)
This means that s and s/ are not equivalent. Implementability then requires that
5d¢(P)s; and s/dg(P/)s;. This is because if ~s,de(P))s], then s;€ D,r(P,), (si5-,)
would also be protective under the profile P, and w(s;.$.,) =y #/f(P) would contra-

dict the ion that f Is impl ble by the game form Fe{.7; y). Similarly,
assuming that ~s;d;=(P})s; leads to a contradiction. We can now proceed to com-

! See Barberd-Duita (1982) for examples.
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plete the proof.

(A) Suppose yP;x. Since 5;d(P,)s;, then (1) and (2) imply that for some k<7, s,
and s; are (i) B(k — 1, P;,) equivalent and (i) g(a, (P;).s,)C gla,(P,).s,). However, il
(i) and (i) hold, then (b) and (c) imply that s,dx(P)s;. Hence, s,dftP,)s~
5,dp(P)s;. a contradiction (o s/ € D,p(P)).

(B) Suppose xP,y. Then, in an analogous manner, it can be shown ihat
sidp(P))s,~s,dg(P,)s. a contradiction 10 s5,€ D;r(P,). In either case, violalion of
USPA leads to a contradiction, so that USPA is necessary for implementability of /.

Lemma 1. Suppose [ is implementable via protective equilibria by the game form
F=[%.y]). Then

(a) if P; and P, are not equivalent under f, De(P,)N\Dg(P)=8;

(b) {f 5,6 De(P,), there must be an s’ € De(P)) such that s'dg(P)s,.

Proof. (a) If P, and P; are not equivalent under f, there is a P*,& »”~ such tha
S(PLP2Y=x, f(P,P%)=y, and y#x. Suppose 5,€ D{P)NDp(P). Let s'e
ﬂ,_,D;(P,'). Then, since f is implementable,

wis;,s®)=x and y(s;,s%)=y, which is impossible.

(b) Follows directly from transitivity of the d,(P)) relation.

Remark 1. Since De(P;)N\De(P/)=8 whenever P, and P, are nonequivalen! under
/, it follows that for all i€ N, we need at least as many nonequivalent strategies per
player under w as there are nonequivalent preferences under f. Moreover, if for
some individual je/ there is a strategy s which is always dominated, 1.c. Is'e
U,,,, » Dg(P)), then the number of w-nonequivalent strategies will be greater than
the number of f-nonequivalent preferences. The following theorem 1clis us that this
must indeed be the case when impl ion is possible but self-impl i
is not.

Theorem 3. Suppose f is not self-impl ble via protective equilibria, but that
it is implementable (via p.e.) by the game form F=|¥; y). Then, for some je |, the
number of y-nonequivalent sirategies Is greater than the number of f-nonequivalent
preferences.

Proof. From Theorem 2, f satisfies USPA. Since it is not self-implementable, it
violates either LCI or BE, by Theorem 1. Suppose it violates LCI. Then, there exists
ieN, Pe #, P e such that f(P)=a,, (P)=x, f(P/P)Y=y, B(r,P,)=B(1,P).
and P, and P; are B(r, P))-equivalent under /.

Since f is implementable by F, for all Pe :#", f(F)=y(s), where sis any element
in ]'[,‘,D,,-(P,). Pick s,€ Dg(P;) for all j#i, 5,€ Dp(P,} and s, € Dy(P;) such that
5;d{P;)s;. Then y(s;.s_,)=x and w(s;.s;) =y. Since P, and P, are B(r. P,)-cquivalent
under f, we must have yPx. Hence, s;dp(P;)s; implies that for some k<7,
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8rla(P).s) =8r@(P)s])), Vi<k, o)

2rla(P),5)C8rlax(P),s)). (4)
(4) implies that there is s%;€ 7., such that

wis,st)=2, with ZPa,(P) %)
and

visisS) =a(P). (6

Suppose now that %€ [,y De(F}’) for some P%e.#""'. Since [ is imple-
mentable by £, (S) and (6) imply that

JP.P2)=1, O]
SUPLP2)=ay(P). (8)

Since k<r, (5) and (6) contradict the assumption that P; and P, are B(r,P)-

cquivalent under /. Hence, 5°;¢ [1,,, De(P}") for any P2,e """, Thus, for some

J» there is an s,‘( U,p,e » Dg(P)). By Remark 1, this means that the number of -

nonequivalent strategies is greater than the number of f-nonequivalent preferences.
The proof for the case when f violated BE is exactly analogous.

Remark 2. Theorem 3 shows the need for ‘large’ strategy sets when implementing
an SCF which is not self-implementable. However, notice that ‘largeness’ is relative
to the number of nonequivalen! strategies in /. One can have seemingly the same
sirategy sets - revealing preference orderings, but the number of nonequivalent
sirategies under F=[2"""; f] may not be the same as under F'={»"""; f*]. This
will be exploited later to construct SCFs which are not self-implementable but are
nevertheless directly implementable.

Our next theorem provides sufficient conditions for an SCF to be implementable.

Theorem 4. Let [ satisfy USPA, and have a1 least two players with veto power.
Then, f is implementable via protective equilibria.

The proof of this result is quite involved. It is based on the construction of a game
form guar ing that each individual finds his true preferences to be the unique
protective strategy available, whatever these true preferences might be. Before pro-
ceeding to the proof itself, we introduce two useful lemmata and provide a sketch
of the main idea involved in the construction.

Lemma 2. Let f satisfy USPA, and F=(2": f) be its own game form. Given iwo
preference orderings Py, P!, let B(P,, P*) be the maximal sel such that

(a) B(P,, P?) is bottom for both P, and P?®, and

(b) P, P* agree on B(P,, P®).
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Let q be the cardinality of B(P,, P"). Then, if Pde(PP)PY, the level at which p,
dominates P is at least q+2.

Proof of the lemma. By USPA, P, and P* are equivalent on B(P,, P*) and cannal
dominate each other at P* levels /< g. Suppose that P; dominates P? at the g+)
level. 1t must be that gy, ((P)#a,,(P?), by the definition of B(P, P*), and that
for some P_;e:#""", f(PYP_)=a,.\(P®) while (P P_)Plag, (P"). Bul hes
SPLP_)-S(PP_)=ay, (P?) is again a violation of USPA.

Remark 3. When ¢ =0, this means that P, and P have different bottom alterna-
tives. Lemma 2 tells us that P; cannot dominate P at level 1, and therefore thu
each P? is at least a,(P)-equivalent to any other strategy (or else dominates i),
under f's satisfying USPA.

More in general, each P* is at least B(P, P*)Ua,, (P/)-equivalent 10 any other
strategy P, (or eise dominates it).

Lemma 3, If individual i€l has a veto under f and [ satisfies USPA, then
SP,P.)Y#a\(P), for all P,and all P_;.

The proof of this lemma is left to the reader.

A sketch of the proof, for the case with # A4 =4, I=2. Given f, we shall keep all
preferences as possible strategies for each individual. We will then add extra
strategies to the strategy space of each of the two, and will specify the outcomes
associated 1o the usage of such strategies in such a way that

(1) the added strategies guarantee that no sincere preference is ever dominated by
any other preference, and

(2) none of the added strategies is ever protective.

Table | describes the outcomes associated with the use of each one of the six
strategies added 1o player j, against each one of the *original’ strategies (preferences)
of player i. We denote this (partial) outcome function by 8%,

Consider now the game form defined by

Strategy spaces.
§'={#UalU--Ug{}m{2UZ} (i=1,2)
outcome function:

fGs15) 5,569
wi(s;,5)=10"(sysy) ifse:#and 5;€ X
constant if 5,56 X.
By Lemma 2, every preference which is not A*-dominated by P; must be equi-

valent to P, under f, for the set B(P", P,)Ua,, (P). Our construct guarantess
that all preferences P, P? are still B(P", P)-equivalent under y when they are
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ne
Table
Preference siratcgles for Added strategles for player j
player 1 (left is worse) ol af ay o) al al
W 2 z w H w w
s y 2 w H w z
oW y z w w y w
ey y T w w y y
wye Y z w y 14 1
™y y T w y H y
raw z w x H w w
oWz z w x T w <
= H w x w x w
yowx T w x w x x
yert T w x x ] T
wzx T w x x H x
w x y y w w
w x y y w ¥
w x y w x w
w x y w x x
w x y x ¥ y
w x y x y x
x y z y 2 H
x y H y z ¥
x y H z x H
x y T z x x
x y T x y ¥
x y z x y x

under /. Given this equivalence, the added strategies guarantee that, for each P,
P!dom (P)P; at the (g + |)-th level, where g= # B(P", P).

For example, suppose that the preferences we use to evaluate strategies are xyow.
By USPA, strategies xyzw and xywz must be (x, y)-equivalent, since they agree on
x and y as the bottom alternatives. By USPA, xywz cannot dominate xyIw at level
Z (refative 10 preferences xyzw, remember) when only preferences are strategies.
Thus, either xyzw already dominated xywz in the direct game, or they were equi-
valent. In the latter case, addition of strategies af 10 g{ guarantees that xyzw now
dominates xywz, since the first five strategies still make them cquivalent, and the
\ast one has z as the outcome for xywz, while w (a better alternative) is the oulcome
(or xyzw.

Adding new strategies is a way to create effective threats against deviations f[rom
truth-telling. But it would not be sufficient 10 guarantee that f is implementable if
any of these added strategies could itself become a1 some point a protcctive equili-
brium strategy. We use our assumption that some individuals have one veto in order
to guarantee that these added strategies will always be dominated. By construction,
we guarantee that if / has at least one veto under £, i still has one veto under y pro-
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vided he uses preferences as strategies (the worst outcome for a given preference
does not appear in the row corresponding to this preference). On the other hand,
however, each nonpreference strategy allows for all outcome to arise (each column
contains all possible outcomes). In particular, then, all nonpreference straiegies
allow for a player’s worst alternative to be the outcome, and are thus dominated
by all preference strategies where the worst alternative is placed last. This completes
the (sketchy) proof that truth-telling is a unique protective strategy for our game
form, and that f is implementable.

Proof of Theorem 4. Given f satisfying USPA, assume w.l.0.8. that the two indivi-
duals having veto power are 1 and 2. We shall construct a game form by enlarging
the strategy spaces of these two individuals, while retaining all preferences as possi-
ble strategies for both, as well as for all other agents. Our outcome function ¥, when
resiricted (o strategy n-tuples where the strategies of all individuals are preferences,
will still be f. Thus, we shall describe w as an extension of f to those strategy a-
tuples where some of the strategies are not preferences.

Let P be any ranking of al the alternatives in A. From now on we take this rank-
ing as fixed. We can also represent it as 2,,8;,...,d,,, where &, is the worst alter-
native and 4, is the best according to P. We want to represeni the restrictions of
P 1o subsets of A in a way that makes explicit what elements in A4 are not considered.
We denote these resirictions as P(A - B); we also represent it as 402845 _,,
since m — |B} will be the number of elements to be ranked. To be consistent with
notation, notice that a,ma..

We shall use these rankings in our description of an outcome function, and in this
construction il will be useful to take the convention that =22, _ . Givenm,
it will also be convenient to partition the set of the first m(m + 1)/2 imegers. N,
will stand for the ficst m— | integers, N, will stand for the next m -2 (from mto
2m=3), Ny for the next m—3 (from 2m -2 to 3m—6), etc. We shall rename the
integers accordingly, so that (i, /) will denote the ith ranking integer in N,.

We shall now cnlarge the strategy space of player | by adding to » another
(n—1)x (m —1)! sirategies. Each set of (m — 1)! strategies will be constructed in such
a way that the threats (o one particular agent (from 2 to n) make truth to be his uni-
que prolective strategy. This is why we denote the added strategies for player | with
a superscripl, indicating the player they are addressing. Let .7 be the set of all added
strategies for individual 1. Its elements will be denoted by oy, with i=23,....n,
and k=1,2,...,(m—1)!. We shall also enlarge the strategy space of player 2, by ad-
ding to .#* another (1n — 1)! stralegies. These strategies are oriented to guarantee thal
player 1I’s truthful relevation of preference is always his unique protective straiegy.
Let .7 be the set of added strategies for individual 2. Its elements will be denoted
by 1,, With h=1,2,...,(m- DL

The strategy spaces for the players will then the

Z =2 fori=3,...,n,
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I-9uy
§=9ux

Let us now describe the outcome function w for our game form:

(L1 S0 eerSp) i SpyoeerSp€ 2
abr if $300er05 € 7
s=af,
k=(r!)and
&, is the Ith
ranking alternative
W) 5200 8p) = for s;,=P.
afrm R -I ]
and s;=14,
k=(r,1) and
a, is the /th ranking
alternative for s,=P,.
\ constant otherwise.

This construct is a generalization of the one given in Table 1. Since it is
quite involved, it may be helpful to have some specific examples spelled out.
Suppose individual 1 uses strategy of, and all other players use preferences as
strategies. The outcome will depend on the least preferred alternative for player i,
B(1,5,); if B(l,5)=4a,, then w(s;,8....5,)=w(0{,Pp....,P)=2,,,. Similarty,
VIOH Py P =05 et and Wisy, 1, P P) =0y . =8,

If individual 1 uses strategy o, where k€ N;, k =(r,/) and all other players use
preferences as strategies, the outcome will depend on what alternatives are the worst
I for individual i, and also on which of these alternatives is the /th worst ranking.
If, for example, /=3 and & = (2, 3), the outcome will depend on what Lhe worst three
alternatives are for individual i, B(3, P,), and on what his third-worsl ranking alter-
native is. Let this alternative, ay, be equal to 2%*”). Then the outcome for
Vi1 S0 00025,) = WAGH Prs oo Pa) = W (0 3y Py o Pa) = 8PP,

Now, if individual 2 uses stralegy v,, where keN,, k=(r./), and all other
players use preferences as strategies, the outcome will be (P, Py ....P)=
824P where 1 is such that 82" is the /th ranking worst alternative for .

Finally, notice that the function y is over all binations of i
where both agents | and 2 use nonpreference strategies.

We claim that the game form F=[Z, x X, X - X Z,; y) as defined implements f
via protective strategies, because using their true preferences as strategies is always
the unique protective equilibrium for all players. Let us first argue that this is true
for players 3 to n. Suppose Py are the true preferences of k (k€ {3...n}). Any other
preference Py is either dominated by P or B(Py, P)Ua,. \(P?)-equivalent under
/. Suppose the latter is true. By adding strategies a* to I's stralegy space, the set
of complementary profiles having a, \(P?) as an outcome when k uses strategy Py
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is strictly contained into its equivalent when Py is used, i.c. gr(ay. (PP
£r(ag,\(P?). Pi), and thus P’ dominates P, at level g + 1 in the exiended game. On
the other hand, if PYd,(P,")P;. it will siill be the case that Pd,(P{)P;.

For players | and 2 we must add to the preceding argument one guaranteeing that
no added stralegy can ever be protective. This results from the laci that both | and
2 have a veto under f, that this veto is preserved by the definition of the new func-
tion (except for those cases where y is constant, which cannot make a dilference)
while the added strategies allow for all outcomes, and thus eventually for an agen’s
worse outcome, to arise.

4. Direct implementation

In this section we provide two examples, one showing that a SCF can be imple.
mentable but not directly implementable, and the other that an SCF can be direcily
impl ble but not self-impl ble. These ples thus show that each of
these notions of implementability must be examined separately under the present
solution concept, and it is up to each author to decide which of the three suits his
particular concern.

Example 1. A social choice function which is directly implementable but not sell.
implementable.
Let /={1,2}, A={xy.zw}. For CCA, Pe ? let

WC. P)={aeCla’PaVa’'eC}.
Now, define f': .1~ 4 so that, for all (P, Py) € #2, (P, P) = A - {ay.ap0,),
where

a,=b(A,P),
@ =b(A,, ),
ay=b(Ay Py),

Ay=A-{a}.
A=A —{m).

In words, f' assigns to each preference profile the alternative that would be left
after a sequential elimination procedure in which 1, 2 and | again eliminate the alter-
nalives they most dislike among those not yet eliminated.

/" is not self-implementable because it violates condition LCI. Indeed, for player
1, if P, is such that xP,yP,zP;w and P, is such that xP,yP/wP,z, then Dg(P)N
Dp(P)={P, P}, although P; and P, are not equivalent under f'. (Here, F=
[#": /"), is f/"'s own-induced game form.)

We will now show that /' is implemented by F'=[:»"; '], where v ' is an SCF
whose consiruction is given below.

Let PYE (xyzw), PO (xzyw), POE (yzxw), PYE (ywxz), P (xwyz), PHE
(zwxy). (Here, we have followed the earlier convention that alternatives to the lefi
are worse.) Let 7= [P, P\, p®},

The SCF w' is now defined as lollows:
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(i) for all P¢ &, w'(P)=/"(P),

(ii) for all Pye 7, v'(P,, P)=0'YP\.0}) where Py=P" for some i=1,2,...,6
and 8'% is the partial outcome function defined by Table .

For exactly the same reasons as in the sketch of the prool of Theorem 4,
Dy(P)=1{P} for all Pye 7. Hence, | always reveals his true preference. If 2
reveals a preference P& .#, then from Table | it is clear that 2 cannot veto any
alternative. On the other hand, if 2 reveals a prefercnce Py@ .7, then he retains his
power to veto one alternative. Suppose now 2's true preference is P, Clearly, 2's
unique protective strategy is the stratcgy (xywz) ¢ .. Since (xywz) and P'" are equi-
valent for 2 under f*, F' implements f'.

Note that this construction has been made possible by the fact that N2, p')>
NS

Example 2. A social choice function which is implementable but not directly imple-
mentable.

Let 71={1,2}, A= {x;, X5 Xy, X0 X3 }.

Using the same notation as in Example 1, let j’: #2= A be such that for all
(P.PYE P},

SUPLPY=A{a, apaa,),

where
a,=b(A. ), A=A-{a})
ay=b(A), P), Al=A —(:z i
ay=b(Ay, Py), Ai—A; (nz)'
=A-{a).

a,=b(Ay. Py),

Here again the outcome is defined by efimination, with players | and 2 alternating
in veloing the outcome that is worst to them among those not previously eliminated.
Again, f? violates LCI, and is thus not self-implementable. It cannot be directly
implementable either, because N S =|P|, and from the proof of Theorem 3 it
is clear that /’ can be implemented only by a game form under which both | and
2 have a larger number of nonequivalent strategies than nonequivalent preferences.

Howcver.j‘ satisfies USPA and has 2 vectors, and so by Theorem 4 it follows
that /? is implementable.

§. Concluding remarks

We have proved that a large class of social choice functions is implementable via
protective equilibria, thus strengthening the already known positive result that non-
degenerate self-implementable social choice functions exist when the relevant solu-
tion concept is that of protective equilibria. We find this line of inquiry of some im-
portance, since protective equilibria is one solution concept having the attractive
feature that every player can compute his play while only knowing the game form
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from which the actual game he is involved in was drawn from, and his own prefer-
ences. This property is shared by dominant strategy equilibria - the difference being
that, while dominant strategy equilibria are more compelling than the ones we con.
sider here, we are able to find ble functi which are impl ble via
protective equilibria, an impossible task with domi: strategies.

One possible objection to the use of our notion of protective equilibria could
come from observation of our examples in Section 4 and of the construct used in
order to prove Theorem 5. In all these cases some strategies of one individual, say
i, are dominated by others only because some other player, say j, has some siralegy
s; available, but this will never itself be protective, no matter what the preferences
of j might be. Is it reasonable to discriminate between strategies of i on the basis
of the expected consequences of playing them against a strategy that j will never use?
The answer seems to be no, and therefore one may want to consider a different
refinement of maximin, under which a player would first eliminate those strategies
that will never be protective for the other players, regardless of what their prefer-
ences might be, and then compute protective equilibria relative to the uneliminated
strategies. Such a concept would be consistent with a general assumption that each
individual is ignorant of the preferences of others, and would lead to different
results than the ones considered here.

However, we feel that the preceding criticism does not destroy the interest of pro-
tective equilibria - it just forces us 10 specify the type of information, or lack of
it, characterizing the games we have in mind. Individuals may not only be unaware
of the characteristics of their opponents, but they can well ignore the type of sira-
tegic considerations that will guide their opponents’ actions. The preceding argu-
ment that a protective individual should disregard those threats coming from
strategies which will never be protective for others assumes that protective indivi-
duals regard their opponents as being protective too. This symmetry assumption is
unnecessary, and it may well be that the opponents are guided by different con-
siderations - they may be trying to maximize their (expected) gain, say, rather than
to maximize their minimum gain.

Thus, the notion of protective equilibria may apply to some attractive frame-
works where information is lacking. The examples in Section 4 constitute, then, an
interesting proof that the relationship between different types of implementation is
not always as 'nice’ as it is when the relevation principle holds.

Appendix

In order 1o bring out the restrictive nature of USPA, we show that this property
is violated by all members of two wide classes of social choice functions.

A.l. Condorcet soctal choice functions (CSCF)

Let D/C2' be a set of decisive coalitions. For each preference profile P, define
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a binary relation R over A as follows:
for all x, ye A, xRy » {iel|yP,x} ¢ D,. 1

[is a Condorcet social choice function iff there is a set of decisive coalitions rela-
live to which, YPe 2", [CW(/, P)m {xe A| xRy Vye A} #8] > f(P)e CW(/;P)).
Hence, R is the familiar social weak preference relation, and a CSCF selects a pair-
wise ‘best’ element if such an element exists. In order to economize on space, we
appeal to the reader’s familiarity with the several impossibility theorems in this con-
text and merely assert that we consider Condorcet social choice functions for which
CW(/,P)=0 lor some Pe 2", Clearly, the class of such social choice functions is
very large. For example, if |A|2|/], every CSCF under which there is no vetoer
belongs to this class. See Craven (1971) for the general restriction on the size of
decisive coalitions and the relative cardinalities of / and A.

Proposition A1, If fis a CSCF, and CW(/, P)=0 for some profile P, then f violates
USPA.

Proof. Consider Pe 2" such that CW(/, P)=0. Let f(P)=x. Since x¢ CW(/, P),
there is y such that ~xRy. Let ¢={ie/|yPx}. Then ce D;. Choose P’ such that
(a) Viee, P=P,
(b) Viec, [yPz for all ze A—{y} and P, and P; agree on {ze A|x=z or xP;z}.
By USPA, we should have f(P')=x. But, since ce D; and yP;z for all i€ c and
all zeA-{y}, CW(/,P')={y}. Hence, f(P')=y, which is the desired contradic-
tion.

A.2. Positional social choice functions (PSCF)

Where m is the number of alternatives, an m-vector e=(e),€...,2,) is a posi-
tional scoring vector if ey = e,2 - 2 e, with &) >ep,.
For any P, for any xe A,
el
W P)=enyi-r» When x=a;(P),
and

wit P2 T wix P)).
iat

Jis a positional SCF iff for all P, f(P)e{aeA|wla, P)2w(b, P)VbeA}.
Call f a k-positional SCF if f is based on the positional scoring vector e such that
e =ey=-r-=€,_;>¢. In other words, k is the smallest integer for which e, >e,.

Proposition A2, For all k<m, a k-positional SCF satisfies USPA only if k=n,
where n Is the number of individuals.
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Proof. Suppose n> k. Since n>k and k<m, there are at least (k + 1) alternatives
and (k+1) individuals. Let the alternatives be a.a;, ...,a,.
Construct the following profile:

Individuals This se1 may be empty if
n=k+)
Ranking 1 2 3 k-1 k k+1 k+2..n
1 Qg1 QG Gyel G @ a Every individual | in
2 ay ay a ay a ay this sc1 ranks alternative
3 a ay a, @ ay ay In the order
; H : : H H 0y 000,
k-1 Gy B a G-y @y G
k - aq aq G-y o LT
k+l ay a ay Q) LY ay

Any ordering of remaining alternatives, if any.

Since n> k, there are two possibilities:
M n=k+1;
Q) a>k+1.

Case 1: n=k+1. Then, for each ie{l,....,k+1},
wia, Py=(k-1)e|+ e +ep,. (Al
Clearly, f(P)€ {a,,...,a;,,}. Note that for each i€ {l,...,k+ 1}, there is an in-

dividual j who ranks g, in the (k+ 1)th position. So, without loss of generality, la
JS(P)=a,.
Consider Py such that a,_, and a,_; switch positions. Then,
w(ag . (P P_\))=Ke,+e;, . (A2

Since e)>e,, (Al) and (A2)=f(P)=a;_,.
However, by USPA, we should have f(P)=a,.

Case 2: n>k+1. Then, for each ie{],...,.k—1},

w(a;, P)=(n—-2)e,+e,+e4.1,
while w(ay, P)=(k—1)e, + €5, +(n— ke, (Ad)
Wy, P)=(k—1e)+ep+(n-K)eg,s.

Hence, f(P)e {a,,...,a,_,}.

Let f(P)=a,. Note that for individual /, g, is in the (k + 1)th position, while the
alternative in the kth position also belongs to the set {a,a,...,a;_}. The rest of
the proof is the same as in Case 1.
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Corollary. If nzm, and a positional f satisfies USPA, then f is m-positional.

Remark. The plurality rule (1,0, ...,0) and the Borda rule (m,m-1,..., 1) violate
USPA.
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