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1. Introduction

C. A. McCarthy proved in [7], among several other results, the following
inequalities for Schatten p-norms of Hilbert space operators:

AIAN5+1BID <14+ BIS+IA—Bli; <27~ (I 415+ |1 BI2) )
for 25 p< 0, and

271413+ IBID S IA+BIB+ | A—Bls S 2(1 A3+ 1BE2) [¥)]
for 1Sp<2

These are non-commutative analogues of some inequalities of Clarkson for the
?lassiul Banach spaces and constitute one half of the “Clarkson-McCarthy
mequalities.” These estimates have been found to be very powerful tools in
operator theory and in mathematical physics. (See, e.g., Simon [11].)

Here we formulate and prove a more general version of these inequalities. Qur
analysis extends these inequalities to a wider class of norms which includes the
p-norms and at the same time leads to a proof which is much simpler than
McCarthy's original proof or some later proofs. Indeed, it appears to be simpler
and more elementary than any other proof of which we are aware; sec the
discussion in [11].

Let 4(¢) denote the space of all bounded linear operators on a Hilbert space
. For convenience, we take W to be infinite-dimensional. If an operator A is

ompact, we the eigenvalues of the positive operator (4°4)'/? as
5)(A)255(A)2 ... . These are called the singular values of A. An operator A is said to

©
belong to the class f, if ¥ (s{A)Y < oo, where p is a real number, 1 Sp<co. If
/<

A€ S, then the Schatten p-norm of A is the number || A[l,=(X(s{A)P)"/7. It is well
known that J, is an ideal in #(¢), that || A]), defines a norm on it, and that it is
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complete with respect to this norm. See Gohberg and Krein [5), Schatten [10],
or [11).

These norms are special examples of symmetric norms or unitarily invariant
norms each of which arises as a “symmetric gauge function” of the singular values,
(See [10] for definitions.) Each such norm || - || is defined on a natural subclass
Syy- 1y of B(#) called the norm ideal associated with the norm [[ - } and satisfies the
invariance property [\UAV||=]|A|| for all 4 in this ideal and for all unitary
operators U, V. The usual operator norm | - || is also such a norm defined on all of
B(H) and, for compact A, ||A|| =s,(A). It is hence conventional to denote |A]
by (4]

Let 2<p<oo and let r=p/2. Note that ||A[l2={|A*A},. This is a special
instance of a more general phenomenon. We say that a (unitarily invariant) norm
[l - it is @ Q-norm if there exists some other unitarily invariant norm )f - ]|’ such that
NAlI2= il A*All’. See Bhatia [2] for more examples of such norms and for an
approximation theorem involving them.

We also recall that each symmetric gauge function has an “associate” [10] ora
“conjugate” [S] symmetric gauge function and through this duality each unitarily
invariant norm has a conjugate norm associated with it. The norm |- |, is

. L1 . T .
conjugate to |- fi u‘; + 7 =1. We will say that a unitarily invariant norm is a

Q*-norm if it is conjugate to a Q-norm. The class of such norms includes the
p-norms for 1 Sp<2.

The lollowing questions are thus natural. If an inequality 141, S cllBil, holds
for 1 S p < oo (with the same constant c) then does it hold for all unitarity invariant
norms? If such an inequality holds for 2 S p < oo then does it hold for all Q-norms
and if it holds for 1 Sp<2 then does it hold for all 0*-norms? There are several
well-known results in operator theory (see, e.g. Marshall and Olkin [6]) where the
first question has a positive answer. See [2] for a recent result in which the second
question has a positive answer.

We will obtain extensions of (1) and (2) to Q-norms and Q*-porms respectively.
However, to do this we peed to recast them in a form such that the constants
occurring in them become independent of p. We will see that such a recasting also
leads 1o a better understanding of the original inequalities.

2. Main Resuits

Let R? be the space of all sequences of pasitive real numbers. Given two elements

{x;} and {y)) of this space define another element by setting {x}v {y)}

={xy,¥1, X2, Y2, ...}. Let [1- ] be any unitarily invariant norm on #(J¥) and let ¢

be the associated symmetric gauge function on R, i.c., [|All = &({s{A)})-
Given two operators A and B we define

IA® Bl = &({s{A)} v {s{B))).

This quantity is simply the || - [{-norm of A@ B regarded as the operator (A 2)
in #(# @ #). Note that 0

| A B|| =max (]| A}, I BI),
Il4®Bl,=(14)5+1B1)"" for 1Sp<co,
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end in particlar Al =20 A, for 1Sp<eo.
Extensions to direct sums involving more than two operators are obtained in the
same way. If the operator ideal #, is normed by the symmetric gauge function ¢
then so is S, by the above procedure.

The proof of (1) and (2) in [7] goes via the following inequalities, which are of
independent interest. If 4, B are positive operators in ., for any p21, then

2177 A+BISS AN+ IBISS 1A+ BlS. 3)
Note that in the notations defined above this can be rewritten as
$I(4+BY®(A+B)l, < ADBI, < (A + BSO] ,. 4)

Thus the following theorem (its history is outlined in the next section) includes
a generalisation of (3).

Theorem 1. Let A, B be any two positive operators belonging 10 the norm ideal
associated with a unitarily invariant norm || - {|. Then

14+ BYD(A + B) S llABBIN S (4 + B)@OY .. ()

To recast (1) and (2) in a similar mould we need to go to quadruplets instead of
pairs. Thus, for example, the second inequality in (1) can be rewritten first as

217\ A+ B|5+ | A—BID'P S ANAlS + | BID?
and then as
(4 + B)®(A4 + B)®(A— B)d(A - B)[, < 2| AGOD BSOI|,

for 2<p<co.

Note that the first inequality in (1) can be obtained from the second one by
replacing A and B by A+ B and A— B respectively, and vice versa. Similar
considerations apply to the pair of inequalities in (2). The following two theorems,
then, are the promised generalisations of (1) and (2).

Theorem 2. Let A and B be two operators belonging to the ideal # associated with a
Q-norm (- |lg. Then

[(4+ B)®(A + B)®(4 - B)®(A - B)l 21 ABOB B0l - (6)

Theorem 3. Let A and B be two operators belonging to the ideal #o. associated witha
Q*-norm || - lgs. Then

2] ABODBDOI e S (A + BYD(A + B)D(A —~ BYD(A—B)lge- M

3. Proofs of the Results

In finite dimensions Theorem 1 is a restatement of a majorisation result due to
Thompson [12]. One proof of Thompson's result given in Ando [ 1] goes through,
without any change, to infinite di i For the conveni of the reader we
reproduce this short and elegant proof.
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To prove the first inequality in (5) write (4 + B)®(A + B)=(A® B)+(BdA)
and note that the two terms on the right-hand side have the same norm. To prove
the second, write

132 13z
(A;B g)=XX', where X=(A0 Bo )
Then note A g
X*X= (B”’A"’ B )

By general properties of unitarily invariant norms (see, eg., [S)),
XXt =\X*XH and (0 B) , being a “pinching” of X*X, has smaller norm
than X*X. This proves the second inequality in (5).

Recently, in [3], we have begun a study of “weakly unitarily invariant™ norms.
These are norms on spaces of finite-dimensional operators that are invariant under
unitary conjugations 4— U® AU. The pinching incquality extends readily to these
norms and, in a finite-dimensional setting, X* X and X X ® are unitarily conjugate.
Thus the proof above shows that the inequalities (5) are valid for this extended
class of norms. Such a norm v’ gives rise to a unitarily invariant norm t by the same
procedure as we have used to define Q-norms: t(A) = (1'(4°*A))'/? (provided this t
satisfies the triangle inequality). On this basis analogues of Theorems 2 and 3 may
be formulated and proved in the new setting.

‘We now turn to the proofs of Theorems 2 and 3. Since A*4@0and B*B@&0are
positive operators, the first inequality of (5) shows that, for any unitarily invariant
norm |f - i,

2[{(A*A+ B*B)®OD(A* A + B*B)@ON| S4[| A ADOHB*BBON.  (8)

By unitary invariance and the relation 2(A°A+B*B)=C'+C~ where
C*=(A+B)*A+B), C”=(A—B)*(A—B), the left side of (8) is (C*HC*)
+(C™HCNBODO). By the second inequality of (S) this is not less than
IC*®C*®C™ BHC|j. Thus we have

HC*®C* DC™OC Il £ I144*A0D4B*BOON,

for every unitarily invariant norm. Hence, the inequality (6) is true for al! Q-norms.
We shall obtain (7) from (6), by duality. It is a central result of the Schatten
theory (see [10]) that S, is the Banach space dual of #, under the bilinear pairing

4
(T, §>=1trTS. We apply this to operators in a=a(@x). For Ted let A(T)
1

- 5_;_’5@ .T_‘.;i q;I'-z—T‘ o ¥ where the 7, are the diagonal blocks in
the 4 x 4 operator block matrix corresponding to T. Clearly 4 is a linear map on 4
and we claim tha it is contractive with respect to | - fi. To see this note that the
pinching inequality ensures that (T2 [T ®T,®Ty®T,llq. while this is the
sameas § T, ® — T,® Ty ® — T, llg by unitary invariance. Hence each is no less than
17, 08 Ty @0R o which dominates | A(T)i by (6). On general grounds, then, the
adjoint A* is also contractive (with respect to |- Ig)-
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Now we claim that A%(4 + B)®(A + B)®(4— B)®(4 - B)=24002B0.
To sce this we must check that for all Te £y

tr T2AG0D2BD0)=tr A(T)(A + B)B(A + B)B(A— B)D(A—B)),

that is tr2T, A®0D2T,BD0)
—((55B)urmo( B3R )uen)

T—T T — T
e('T’)(A—B)e (—‘T—‘)(A—B)).

Bearing in mind that tr(®X,)= Y trX,, verification of this is routine. Since A* is
contractive, the inequality (7) follows. We have proved all the theorems stated in
Sect. 2.

We recall that the inequalities

2 ARG+ IBISY? S| A+BiS+ 1 A— B3 ©)
(for 28p<oo; 1 +1=1), and
P a

4+ Bl§+ I A—BI§ S A1 AL+ 1 BI® (10)

(for 1<p<2) complement (1) and (2) to form the complete set of “Clarkson-
McCarthy inequalities.” We remark that, while (1) and (2) are commonly proved
separately, they follow from (9) and (10) simply by the convexity properties of the
power functions. Thus (1) is a q of (9) and the convexity of t—¢7/4. It
would therefore be doubly worthwhile to find a more direct proof (perhaps along
the lines of our treatment of (1) and (2)) for the inequalities (9) and (10).

4. On an Inequality of Phillips
In [8] Phillips proved the following theorem, which is related to material in the
preceding sections.
Theorem 4 (). Phillips). Let A2B20 and t21. Then
4*— B li< | A~ Bl - an
When ¢=2, this is a special case of the Powers-Stermer inequality [9] which is
valid for any two positive operators A and B. Phillips gave an intricate proofof (11)
and noted that a simpler proof would be possible if one had the inequality
tr(A'+ B) S tr(A + B)' for all positive operators A4, B and real numbers 2 1. But
this is a fact proved by McCarthy in [ 7]. Indeed, the inequalities (3) are equivalent
to the inequalities
2'Ptr(A+BP SirA?+tr B2 Str(A+ BY (12)
for all positive operators 4, B and for all p21.
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Let us now indicate a short proof of (11) following Phillips. The map A—~ A’ is
operator monotone for 0 Sr <1 on the class of positive operators (sec Donoghue
[4)). So, the condition A2 B20implies A" = B 20 for all £ 2> 1. Using (12) wrile

trA=tr(A""—B""+ B"") 2tr(A""— By +wrB.
Le., te(4— B) 2 tr(A'"— B'"y, which is the same as the inequality (11).
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