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We investigate the following intersection property of balls in a Banach space
X: for every ¢>0 there is a finite family (x,) in the open unit ball of X such
that ['x—x;1 <1 for all i implies [[x|| Se. It was introduced in [3] as an casy-to-
check criterion in conncction with M-ideals and it can considerably faciliate
the study of the M-structure of a Banach space. Apart from the relations to
M-ideals a closc invesligation of this property reveals several connections and
applications to other areas in the geometrical theory of Banach spaces.

In section I we give a general study of the intersection property (/P for
short). Neither this property nor its negation pass in general 10 subspaces or
quotients, bul working with M-ideals we can prove some posilive results. We
give a new sufficient condition for the /P using the w®-closurc of the extreme
points of the dual unit ball. We show how the /P and non-/P behave with
respect to densc and to separable subspaces. Finally, in Th. 1.7 and Prop. 1.8
we characterize the isomorphic versions of /P and non-/P by showing that
any Banuch space is isomorphic to a space with IP and a space is isomorphic
10 a space without / P ifT it contains c,.

We say a Banach spacc X can bc a proper M-ideal if there is a space
Y such that X is an M-ideal, but not an M-summand in Y. In [3] it was
shown that in this case X fails the /P and it was asked whether the converse
is also true. In section 2 we negatively answer this by constructing a counterex-
ample. A modification of this example together with the /P is used Lo show
that the ultraproduct of Cy-spaces is in general not a Cy-space, lhus giving
a new approach 1o this problem, sec [8, 9].

In section 3 we sorl of specialize the 1 P to one point and show the connection
with the strong extreme points introduced in [[1]. We give several examples
of strong cxtreme points and classes of Banach spaces where all extreme points
are strong extreme points. There are a few obvious relations of the /P with
other geometric properties of the unit ball; yet, we give two examples which
show thal strict convexily or smoothness are not enough to guarantce the /P,

In the final section 4 we give several conditions and examples which ensure
that the space of compact operators on a Banach space has (resp. fails) the
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IP. We also show that no M-summands can lie between the finite rank operators
and all bounded operators.

Let us fix some notation. For Banach spaces X and Y we denote by K(X, Y)
[K(X) in the casc X =Y] the space of compacl opcrators from X to Y and
by L(X,Y) [L{X) il X=Y] the spacc of all bounded opcrators from X to Y.
For 1Spso X@®,Y denotes the P-direct sum of X and Y. By(a.r) is the
closed ball with center a and radius r in X {(we omit the X if the space is
clear from the context). By is the unit bali of X and Sy stands for the unit
sphere. We write ex A for the extreme points of a sct 4 and A stands for the
interior of A. The underlying field K of all spaces can be either R or €.

For the definition of an M-idcal and rclated terminology we refer to [2],
for all other unexplained notation see (6, 12], and [16].

The essential part of this work was done in 1985 when we both held visiting
positions at Texas A & M Universily. We would like 10 thank the Department
of Mathematics for its hospitality and stimulating atmosphere.

1. The Intersection Property and M-ideals

In this section we study the intersection property of balls introduced in (3).
Although it has in gencral no nice stability behaviour we get some positive
results in connection with M-ideals, for dense subspaces and for separabie sub-
spaces. We characterize the “isomorphic versions ™ of this property and ils nega-
tion.

Let us first recall the definition and some examples

Definition. A normed space X is said to have the intersection property (/P
for short) if for each ¢>0 there is a finite family (x), i=1,...,n in the open
unit ball of X such that whenever || x— x| 1 forall i=1, ..., n we have |Ix' St.

It was shown in [3] that C(K)-spaces, any Banach space with the Radon-
Nikodym property and Banach spaces lhat have a non-trivial [*-projection
(1 Sp< ) are some of the spaces with this properly. On the other hand any
Banach space which can be a proper M-ideal fails the /P ([3). Th.4.3). so
Co(L) with L locally compact, not compact, K (i) with | <p< 0, and C(T)/4
provide examples of spaces without /P. We will give several new examples
of spaces with I P/without /P throughout this paper.

Remarks. 1) With an obvious modification the definition of the /P makes sense
in any metric space. However, with the exception of Lemma 1.5 and Cor. |6,
we will use it only for Banach spaces.

2) a) If one requires only the existence of a finite family (x,) in the closed
unil ball of X, onc gets a strictly weaker property.

b) Replacing the condition jx—x|S1 by [x—xfl <1 gives an equivalent
form of the definition of the /P.

3) The spaces ¢, @, K and ¢, =c, ®.. K show that ncither the IP nor s
negation pass lo subspaces, quotients or ranges ol contractive projections.

4) A straightforward calculation using the definition shows that if twe Banach
spaces X and Y are such that their Banach-Mazur distance d(X,Y)=1, then
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X has the 1P iff Y has the 1P. The renorming of Prop. 1.9 applied to the space
¢cp shows that this is the best distance estimale to preserve the /P,

In addition to the third remark let us note that the /P doesn't pass from
a space to an M-ideal in the space (c.g. ¢, is 8n M-ideal in c), however

Proposition 1.1. Suppose X is a Banach space with the 1P and M c X is an M-ideal,
then X/M has the'l P.

Proof. Let >0 and get x,. ..., x, as in the definition of the IP. We claim

that (r(x)),. ..., will do for X/M, where n: X — X/M denotes the quotient

map. Suppose ||r(x)—n(x)ll <1 (seec Remark 2b above). Since there are meM

with J(x—x)—m" <l we have Mnﬁ(x—x., 1%, Since J(x—x)—x|l= x|

<1 we have ) B(x —x,, 1)+ &. The characterisation of M-ideals with the n-batl
i

property for open balls (see e.g. [2], Th. 2.17) now gives an me M with [{(x —x,)
—mll<1 for i=1, ..., n. Since X has the IP this implies [Ix—m| Se. Therefore
lalx} Slx—mi ge. O

Remark. 1) It is easy to see that if M is an M-summand in X, then X has
the /P iff both M and its complementary M-summand have the /P.

2) Il M is an M-ideal in X and both M and X/M have the /P, then so
does X. [Use Th. 4.3 in (3] and part 1) for a proof.]

The most interesting part of the following result (ie. if a Banach space X
fails the /P, then ex By,* contains an interior point of the dual unit ball) was
first observed by E. Behrends. If one views el of X as i functi
on ex By, this part supports the intuition that spaces without the IP are
“vanishing at infinity”.

Theorem 1.2. Let X be a Banach space, then ex By,™ < Sy. iff (¢) holds, where

() For each £>0 there is a finite family (x5, in the open unit ball of X
such that for all peex By, we have max |p(x)|> 1 —¢.
1sign

If X satisfies one (hence both) of the above conditions, then X has the 1P.

Proof. Suppose (s) fails for X. Denote by & the set of all finite subsets of
B,. For any FeF we have by assumption a preex By. with max |pr(x)|S1—¢
anf

for one universal e>0. Let f be a w*-accumulation point of the net (pplr,s-
Since for xe By we have {x} €, it follows easily that | f(x)[ S 1 —e. Hence || 1 < 1
and feex By

Conversely suppose (¢) holds. Let (p,) be a net in ex By. converging in weak-+-
topology 10 . Let £>0 and choose xy, ..., x, &s in (s). Then m‘ax |pa{x)|>1—¢

for all @ and we find &y such that for a2a, we have |p (x)—f(x)l<e for i
=L ...,n. Now | f(x)}|S1—2¢ for all i would imply

1Polx) S 1pa(x) =S (x)| +] f(x)) Se+ 1 ~2e=1—¢

for all i. Hence for some | f(x))|> 1 —2¢. As & was arbitrary we get || || =1.
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To prove the last statement we need the following fact

X has the IP iff for each £>0 there is a finite fumily (x)<, in B, such
that for all x there is a te Sy with ||x+1 x| S 1 for all i implies [ xliSc.

To see that the latter condition implies IP, take £>0 and get (x,)c By for
£/2. Choose & with 0<é <! and (1 +d)max [lx;| < 1. Choosc a finite 5-net 1)
in Sx. The points y;;= —(1+8)1,x, now give the /P in X.

Given t>0take x, ..., x, as in (s). For xe X choose peex By. with Ix- =p(x}
Choose je{l,...,n} and teSy with 1 pix))=|p(x)|=max |ptx)|> [ —c. Now il

i

Ix+1x( 1 for all i, we get
lIxi=p(x)=px+tx)—tplx)S1—1+e=x
Hence X hasthe IP. [

Remarks. 1) Examples of Banach spaces satisfying ex By.™ cSy. arc Banach
spaces with ex By, w*-closed (e.g. Cy-spaces, sce [12], §10) and Banach spaoes
X for which there is an xo€ X with |p{xo)|=1 for all pecx By. lc.g. L'-preduals
which have an extreme point in the unit ball, sce {15]. Th. 6.1).

2) The condition ex By.” < Sy. is far from being cquivaleal to the 1£: X =I!
has 1P, but satisfics ¢x By.”" = By.. (In example 1.3 we show that also spaces
without /P can have the latter property.)

There are relations between “classical ™ geometric properties of the unit ball
of a Banach space and the /P (c.g. uniform convexily implics 1 P). But because
of the more “local” character of the / P it doesn’t scem appropriate 1o emphasize
these connections. However, it is remarkable that relatively “mild ™ glabal condi
tions - like smoothness (Ex. 1.3) and rotundity (remark 4 following Prop. 3.1)
— are not enough to guarantce the IP.

Example 1.3. There is an equivalent norm |.| on c¢q such that (co. | P)* is strictly
convex, hence (cq. | |) is smooth, and (cq, | |) is an M-ideal in its bidual. In particular
(o | I} is @ smouth space without IP.

Proof. Let X =c, and take a dense sequence (x,) in By. Define an operator
T: P> X by T(A)=Y 2,x,/2" 1L is easy to see that T*: X* ~1* is given by

T* f=(f(x./2"), and that T* is one-to-onc. Put for fe X* | f1* =1 flly. + 1T*f 0.
Standard arguments show that |.|* is an cquivalent strictly convex dual norm
on X*. Let |.| denote the equivalent norm on X whose dual norm is |.[°*.

To show that (X, ||} is an M-ideal in its bidual we usc the following irick
to calculate the new norm [.|*** on X*** without using |.|**. The operator
S:(X* ) > X* @, I* defined by Sf=(£ T*f) is an isometry, hence also §*¢:
(X*** |.[***) > X*** @, /* is an isometry and S** F=(F, T*** F) for FeX***,
Since T**(4,)=T(4,) (we will identify all Banach spaccs with their canonical
images in their biduals) we get for F=f+peX* @ X' thal T***F=T*/ Since
X is an M-idcal in ils bidua) we have with respect to the original norms (see
[7], Prop. 3.1) X***=X*@®, X*. Hence
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IFI* = f+QI** =1 [+l + ) T** P
=171+ gl +4T*S s
=1/1*+ 1)
=If 1 Hlpleee

ie. X! is (with respect to the new norm) stilt an L-summand in X***. (O

Remarks. 1) The proof shows that the statement in Example 1.3 is true for
every separable Banach space X which is an M-ideal in its bidual.

2) The proof also shows that the two norms agrec on X*, This gives that
the we-closed L-summands in X!, i.e. the M-ideals in X**/X, i.c. thc M-ideals
in X** lying between X and X** remain unchanged. For X =¢, we thus obtain
a new (separable!) example for the situation discussed in remark 2) on p. 259
in[7].

The next two results prepare the isomorphic characterization of non-1P
in Theorem L.7.

Lemma 14. Let X be a Banach space and A a dense subset of By. If there
is an 2>0 such that for all finite families (x);5, in A there exists a y in A
with |yl >z and |ly=yll S 1. i=1, ..., n, then X fails the IP.

Proof. We claim that X fails the /P with &' =a/2. Let x), ..., x,€ X with |Ixi <1,
i=1,....n. Choose 0<d<(l—max|xl)/2. Get y,€4 with |y,—x,[|<24. By
hypothesis there is a y with ||y >a and [y~ y|S 1 for | SiSn. Now

Sty—yll+Ey—xl+4xd

Sd+6+4max|x) <1

y
5=

4

and 3

>;=an Hence X fails the IP. O

Corollary 1.5, If Y is a dense subspace of X, then X has the IP iff Y has the
1P.

Proof. If Y fails the 1P, then so does X, follows from the above lemma. The
other implicalion is obvious if one uses the remark 2b at the beginning of this
section. [

The proof of the following propaosition is inspired by Thm. 4.4.a in [15].

Proposition 1.6. If X fails the 1P, then for every separable subspace Y of X
there exists a separable space Z failing the 1P with YeZc X.

Proof. Let (y,) be a dense sequence in By. Get a>0 from the definition of

non-/P in X. Denote by %, the set of all linear combinations of elements of

() with rational coefTicients. For each finite family G <%, n By. choose Xg with

ixgll>a and xge () B(x, 1). Let 4, be the set of all lincar combinations of
1eG

clements of 4, U {xo|Gc ¥, n By, G finite} with rational coefficients. Repeat the

preceding step with finite subsets of 4, By. Continuing this way we get a
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countable collection ¥=|) 4, of clements in X such that for any finite subset

G of By, there is a ye¥ with [yl >a and y is in the interscction of balls
with centers from G and radius . Put Z=span @ (=9). Z is a separable subspace
which fails the /P by Lemma 14. O

The next two results give the characterization of the isomorphic versions
of 1P and non-IP. Theorem 1.7 has been improved meanwhile by D. Yost [per-
sonal ication}, since he showed that for a Banach space X containing
an isomorphic copy of ¢, is the same as having an equivalent norm with which
X can be a proper M-ideal.

Theorem 1.7. A Banach space X can be renormed to fuil the 1P iff X contgins
a subspace isomorphic 1o ¢,.

Proof 1l T: ¢y — Yc X is an isomorphism, renorm first Y by taking |y|=1T""y).
Since ¢, fails the 1P. (Y,||) fails the /P. Now let K=(8,y,,+By)". K is a
convex body in X. Denote by ||[.[|| thc cquivalent norm on X whose closed
unit ball is K. To show that (X, [||.[I) fails thc /P we claim that the dense
set A=By, ,,+B, satisfics the hypothesis of Lemma 1.4.

Note that since (Y, | |) fails the 7P there is «>0 such that for ail finite families
Yiv e Y in H(,..“, there is a ye Y with [y—y{<! and |y|>a. Now for any
finite family y,+ x; in A4, i.c. y,eﬂ,”,, and x,€ B we have with the y correspond-
ing to the y's: y—(y+x)=(—p)—x,edcK, hence [ly—(y+x)llIS! and
lllylil> C &, where C is the constant coming (rom the cquivalence of the norms.
Consequently (X, ||| ]ll) fails the /P. The other implication is Th. 44 in [3]. D

Proposition 1.8. Any Banach space X can be renormed (with an arbitrarily small
change of the norm) so that the unit ball in the new norm has a strongly exposed
point. Consequently X with the new norm has the IP.

Proof. We call a point x4 of a closed, bounded, convex, non-empty subser D
of a Banach space X strongly exposed il there is an fe X* such that for all
£>0 there is a 6> 0 such that xeD and Ref(x)>m—3 imply [Ix— x4 Sc where
m=sup{Ref(x)|xeD}. Notc that this gives the usual definition for real spaces
and it implies (as in the real casc) thal x, is a denting point of D. So if D
is unit ball of the new norm, it has the { P by Prop. 4.2 (i) in [3).

To see the renorming take p = 1+ 1/k> | and fix xg€ Sy, f€Sy. with fixs)=1.
Let K =co(ByupxoBy). We have BycKcp B, and K is the unit ball of an
equivalent norm on X. For xeco(Byupxg By, ic. x=(1-2)y+dapx, with
yeBy, aeBy it is easily scen that Ref(x)>p—¢ implics p—e<l—1+ipRea
But this gives 1—i<g/(p—1)Ske and [ —RelasS(l—Ai+e)p=tc. hence |l

—Aulg[/Z_c. So we gel

lloxo—xl=1p(1—2a)xo—(1 =)yl Sp |l —Aea|l +(1 D) Sp |/ 2k + e+ ke

and p x, is a strongly exposed point in K. [
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2 A Coanterexample

In this section we give an example of a Banach space that fails the /P and
can not be a proper M-ideal. As an application we obtain some results on
the stability of Crspaces. (We refer to [12] for the relevant definitions and
properties of L'-preduals.)

Propasition 2.1. Let (X,) be a sequence of Banach spaces such that each X, can
not be a proper M-ideal. Then X =(®Y_ X}« can not be a proper M-ideal.

Pmo] We oonslder X, as naturally embedded in X and denote by F, the corre-
jection, which is an M-projection on X with range
X Now suppose lhal X is an M-ideal in a Banach space Z. Since X, is an
M-ideal in X, we have that X, is an M-idcal in Z ([2]. Prop. 2.9). Smoc X,
is not a proper M-ideal there is an M-projection Q,: Z - Z with range X,.
Now Q,|y is an M-projection, so that by the uniqueness of the range of an
M-projection ([7], Prop. 2.1) we have Q,|y=P.. Define Q: Z— X by Q¢ z=(Q, 2),.
Clearly Q is a contractive, lincar map and for xe X we have since x =(P, x),

Qx=(Q.x)y=(Rx)=x.

Therefore Q is a contractive projection on Z with range X. Since X is an
M-ideal in Z, it follows ([7], Cor. 2.2) that X is an M-summand in Z, ie. X
can not be a proper M-ideal. O

Theorem 2.2. The Banach space X =(@ Y. C,(S™)i=, where §" = Sype 1) 0: S" = S"
N

is defined by a{x)= —x and C,(8") ={feC(S")| foa = —f}, satisfies
a) X can not be a proper M-ideal
b) X fails the IP.

Proof. ad a): Since C,(5*) is a Cy-space, the extreme points of the dual unit
ball are we-closed {see {12], §10). Hence it follows from Theorem 1.2 that the
component spaces of X have the /P, thus can not be proper ideals ([3), Th. 4.3).
Proposition 2.1 now finishes the prool.

ad b): Let us introduce an auxiliary definition

A Banach space X is said to fail the 1P for n, if there is an «>0 such

that for any family (x,) of n points of the open unit ball in X there exists

aywith [yl >aand ly—-xfS1 fori=1,....n
To prove that C,(S*) fails the [P for n, we will invoke a consequence of a
theorem of Borsuk-Ulam (see [1], p. 485, Satz VIII) which says that given
Jiv oo JuEC,(S™). there is an xqeS” such that fi(xo)=0fori=1,...,n

Take a=1/3 and let f,, ..., L6 C,(S") with | fii <1 fori=1, ... n. Lel x;eS"
be such that fi(xg)=0 for i=1,...,n. Choosc an open neighbourhood U of
Xo such that —UnU=¢ and |fj(x)|<1/2 for all xeU and i=1,....n. Take
a conlinuous function g: §*— [0, 1] with g(xg)=1 and § vanishes on S™\U.
Put g(x)=[Z(x)—§(—x)]/2 and V=—UuU. We have geC, (8" lgh=1/2>qa,
and g vanishes on S™\V. It is easy to verify that lg—fIS1 for i=),...,n,
hence C,(S*) fails the /P for n (with a=1/3).
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To sec that X fails the P, take a=1/3 and a finite family (f)), i=1.....k
in 3,. Si=(fi(n)). Since for n2k we have “E fails the /P for n= E lmls l)n
IP for k" (with the same a) and C,(S%) fails the /P for n, we get for Ihese
nag(n)eC,(S") with lIig(n)l > 1/3 and lig{n)—fi(n)l <1 for i=1, .... k. Put g()=0
for j<k. The geX defined this way satisfies lgll>1/3 and Hg—f¥ S for ¢
=1, ..., k. Hence X failsthe IP. [

Remarks. 1) E. Behrends was the first to use the space C,{S") to show that
the number n of points x, in the definition of the /P can be arbitrarily Jarge,
thus answering the question in the note on p. 167 in [3].

2) We will see below that the space X in Th.2.2 is a C,-space. but not
a Cyspace. By part a) of the theorem and [3), Th. 3.4 it conlains no proper
pseudoball. Therefore it gives the answer Lo the correct formulation of the prob-
lem in [3), p. 167 “... whether C,-spaces which are not Cy-spaces always have
pseudoballs which are not balls™.

3) With Prop. 2.1 and Th. 2.2 we have: the property “not a proper M-ideal™
is stable under /®-products, the property *“/P™ not.

The next proposition is known and only included to show how the 1P
can be used to distinguish C,- and Cy-spaces. Part [Ib goes back 10 a question
of S. Heinrich [8], which was first answered with topological arguments in
[9], Prop. 2.5.

Proposition 2.3,
[a) The I®-product of C,~spaces is a C,-spaces.
b) The ultraproduct of C,-spaces is a C,-space.
I1a) The I®-product of Cy-spaces need not be a C-space.
b) The ultraproduct of Cy-spaces need not be a Cspace.

Proof. 1a) This follows from the characterization of C,-spaces as norm-one-
complemented subspaces of C(K)-spaces (see [12]) and the well-known fact
that the [*-product of C(K)-spaces is again a C(K)-space.

ib) see Prop. 2.1 in [8].

I1a) The space X in Th, 2.2 is the I*-product of C-spaces and fails the
IP. Hence by Th. 1.2 the set of extreme points of the dual unit ball can not
be w*-closed, so X is not a Cy-space.

IIb) Let X be as in Th. 2.2. For a frec ulteafilter U on N denote by N
the subspace of X formed by those (f{n)) for which lim || f{n)]| =0. We claim
that X/ fails the IP. v

Take «=1/3 and a finite family (f), i=1, ...,k in the open unit ball of
X/N. Find meN with |l f;+nj <1. Construct a ge X for {f;+n,) as in the last
part of the proof of Th. 2.2, i.c. llgll > (/3. Ig—(fi+n)l £ 1 and Jigla)i > 1/3 for
all n2k. Since we work with a free ultcafilter we have I/JShm Mg =1g"
and of course |g—flIslg—fi—-mIs1. O

3. Strong Extreme Points and the /P

The easiest way a Banach space X can have the I P is with one point x, which
has the property (s) in Prop. 3.1 below. This turns out to be equivalent to
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Definition [11]. A point x4eBy is called a strong extreme point if for every
£>0 there is a >0 so that if y, z belong 10 By and ||(y+2)/2— xoll <4, then
Iy—zli<2e

In this section we also give scveral examples of Banach spaces whose unit
balls have strong extreme points.

Proposition 3.1. Let X be a Banach space and xo€ By. Then x, is a strong extreme
point iff we have

(v) For every >0 there is a p <1 such that for any ye X |yt p xoll S1 implies
Iyl se

In particular: Banach spaces which have strong extreme points have the IP.

Proof. Suppose X, fails (s). Let 0<p,<! with limp,=1. By hypothesis there
isan >0 and y,e X with ||y, >« and lly,*p,Xoll S1 for neN. For any >0
choose n so that 1 —p,<é. Take y=p,xo+ yn 2=p,Xo—y,. Then y, ze By and
(y+2)/2=p, Xo. y—2=2,. Hence

yrz_

2

=1-p,<é, but Jy—z||>2a

i.e. Xq IS nOt a strong extreme point.

Conversely supposc we have (s) for x4. Let us first note that for any £>0
the p appearing in (#) satisfies p 2 | —e. [To sec this observe that |(1 —p) £ p]< 1.
Using y=(1 — p) x, we get |igll =1—p<c]. Now let £>0 and take ¢’ =min{z/2, I/
2}. Get p as in (s) for €. Then p21—¢'21/2. Let =1—p. For any y, zeB,
with |I(y +2)/2—x,ll <6 we have by taking d =(y—2z)/2

+z +2
proms ()|l (54

sp(l-p)+psl.

loxotpdl =

Therefore |pd| ¢, hence ly—:zlf<2&/p<2e, ie. xp is a strong cxtreme
point. (O

Remarks. 1) It follows from the proof above that if a Banach space X is such
that By has an e-strong extreme point for cach £>0 (scc [11]). ie. X has the
AKMP in their notation), then X has the /P.

2) It is well-known that midpoint locally uniform rotundity (MLUR) (see
[20] for relevant definitions — and for an answer to question 4 on p. 174 in
[11]) is equivalent to saying that every point on the surface of the unit ball
is a strong extreme point. Consequently any such space has the IP.

3) It is easy to sec that we have the implications: x, denting point = x,
sirong exireme point = X, extreme point and none of the arrows can be reversed.
(Below we give a striking example for the lust claim.) Still it scems that strong
extreme points are closer to extreme points than to denting points. This is
supporied by Prop. 3.5 and the following observation (which can easily be
deduced from the proof of Th. 6.1 in [15)): Every extreme point in an L'-predual
space is a strong extreme point.
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4) The space C(T)/A, where T denotes the unil circle in the complex plane
and A the disc algebra, is a strictly convex Banach space which is an M-ideal
in its bidual. (The M-ideal part of the last statement is in [17] and follows
also from Ex. 3.3a and Th. 3.4.2 in [7] with the identification of C(T)/A and
the space of compact Hankel operators. To sce the strict convexity, show that
H{=(C(M/A)* is smooth by using the description of smooth points in
L'(p)-spaces and the F. and M. Riesz theorem.) Conscquent C(T). 4 is a strictly
convex space that fails the [P, in particular it has no strong extreme points.

A weaker form of the next result for the more gencral situation of closed
bounded convex sets was proved in [11]:

Proposition 3.2. If x, is a strong extreme point of By. then it is also a strong
extreme point of By...

Proof. Let £>0 and put £ =¢/2. By hypothesis and Prop. 3.1 there is a p<)
such that Jy+pxolS1 implies [yl Sc’. Choose >0 so that p'=(l +d)p<i
and 6§|/i—l. Now if y**€X** and [ly**+p’ x,l S I, using the principle of
local reflexivity, we can get an operator T: spanjxg, y**} — X so thut Txg=x,
and |ITh KT 'IS1+4. Taking y=Ty** we have [[y+p Xl S1+4 so tha
Iyt +8)£pxoi S1. hence |ylSec'(148). Therefore fy*®l= T " yis(l
+68)2 £ S2€ =¢, ic. X is a strong extreme point of By... [

The following proposition is ially known ([4]. p. 38). Notc. however,
that the crucial step in the proof - “the numerical radius is an cquivalenl norm™
- is only true for complex Banach algebras; bui it is not hard to circumvent
this difficulty:

Proposition 3.3. If A is a Banach algebra with identity e, then ¢ is a point of
local uniform convexity of By, in particular a strong extreme poini.

Proof. The complex case is Th. 5 on p. 38 in [4). If A is real, consider 4 in
its complexification Ag (see [18], Th. 1.3.2). Since e is still the identily and
the restriction of the norm of Ag¢ 1o A is the original norm of A4. it follows
from the definition of a point of local uniform convexity that e has this property
alsoind. O

Corollary 34. For any Banach space X, the identity operator idy and every isomer-
ric isomorphism T of X are strong extreme points of By x,.

Proof. See the remark on p. 38 in [4).

Proposition 3.5. Let X be a Banach space. xo€Sy. and ISp<x. If X
=Y®,Kxq, then xq is strongly exposed in By - in purticular u sirong exreme
point. Consequently every extreme point of the unit ball of un L'(pu}space is
a strong extreme point.

Proof. The second statement comes [rom the fact that extreme points of
L'(u)-spaces generale 1-dimensional L-summands. To see the first write X*
=Y*® K[ with Y=kerf f(xo)=1. and |f}}=1. If we have for £>0 that
Re f(x)>1—¢ for an xe By we get with ||x{I®=1y+axyl®=yi®+|al”S 1. with
Re f(x)=Rea, and some calculation that |xo—x||?S(2£”*+ 1 —(1 —c)". Since
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the right hand side of the last inequality can be made arbitrarily small, we
get the claim. O
4. IP for Spaces of Compact Operators

In this section we give several conditions and examples which ensure that K(X),
the space of compact operators on a Banach space X, has (rep. fails) the I P.
Theorem 4.1. Suppose X is a Banach space such that ex By.™ c Sy, and X* has
the I P, then M has the I P for any space M with X*® X <M < L(X).

Proof. Let £>0. Since X* has the IP choose f}, .../, as in the definition and
put y=max J|fjll. Choose a § with 0<é<1/p—1. Since ex By.” =§y. we get

by Theorem 1.3 x,, ..., X, in l?, such that max [p{x)|>1—4 for all peex By..
]
Thbe operators (fi®x))- ..., are in the open unit ball of M. Now assume

- ...
we have for TEM | T—fi®x,|<1 for i=1,...,n, j=1, ..., m. Fix peex By, and
choose jo such that |p(x,)|=max |pix))|>1—4. Passing to p=e""p for some
J

1, we can assume that r=p(x;)=|p(x;)|. Then 1 —é <r<1<1/n, so that

in—1
In—-r"

I=Ar+(1=2)1/p where A=
Now fi=2Arf;+(1—2)f/n and since
IT*p—plx, ) Sl =1T*p—(i®x,)* pI St foralli
we have
NATp=fSANT* p—r [l +(1 =D fil/nS1  foralli.
By the choice of the f's this implies [[A T* p|| S¢. But since 1 —6 <r we get

1_In—r l/n—l+6_l+ é
A Up=1" ip=1 T =1
Therefore || T® p) S2¢. Since this is true for any peex By. we get IT*)S2¢
and consequently M hasthe /P.

<2.

With a similar proof one gets

Corollary 4.2. If xq€X is such that |p(xo)|=1 for all peex By. and feBy. is
a strong extreme point, then @ x, is a strong extreme point of the unit ball
of K(X).

Remarks. 1) 1t is not trivial (and sometimes not possible!) to exhibit extreme
points of By, Corollary 4.2 gives the existence at least for L'-preduals X with
cxBy#*g.

2) Tt is known that the unit ball of K(I%) has no extreme points [we get
the non-existence of strong cxtreme points easily from the fact that K (1) fails
the 1P as being an M-ideal in L(1%)]. Therefore the assumption about x, in
Cor. 4.2 can not be weakened to “x, a strong extreme point in By ™.
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3) The assumption in Cor. 4.2 can be modified 10 “xy€ By is a strong extreme
point and fe X* is such that |x**(f)|=1 for all x**€ex By..". In the next propo-
sition this gives the existence of strong extreme poinls in B,y if X is an
L'(n)-space with ex By # & (cf. Prop. 3.5 and Prop. 3.2).

Proposition 4.3, For any L' (u)-space X, K(X) has the I P.

Proof. Since X has the approximation property and X * = C(T) for some compact
space T we have K(X)=X*®, X =C(TV®, X =C(T. X) (the spacc of X-valued
continuous functions on T), see [6]. Chap. VIII. However. it is easy to see
that if E is a Banach space with the /P and S a compact space. then C(S. E)
has the IP. In the present situation since X has non-trivial L-projections, it
has the [P (cf. Prop. 4.2 (vi) in [3]). Therefore K{X) has the IP. O

The rext proposition is an improvement, due to D. Werner, of one of our
former results. Note that (with the notation of Prop. 4.4) K(X) is not an M-ideal
in L(X) if L is not discrete (combinc the remark following Th. § in [14] and
Th. 2 in [14]). See also the open problems at the ¢nd of this paper.

Proposition 4.4. Let L be a locally compact, not compact space, a L the one-point
compactification of L, Y any Banach space, and X =Co(L)® . Y. Then K(X)
is a proper M-ideal in K(X. C(aL)®,, Y). in pariicular K(X) fails the IP.

Proof. Using the M-projections in X and C(aL)®,, Y we get with Prop. 6.1
in [13] the decompositions K(X)=K(X.ColL)® . K(X.Y) and
K(X,ClaL)®, Y)=K(X.CaL)®,K(X,Y). Since Co(L) and C(a L) have the
approximation property, we know K (X, Co(L)=X*®,ColL)=ColL. X*) and
K(X,ClaL)=X*&®,ClaL)=ClaL, X*). Itis known that Cy(L. X*)isa proper
M-ideal in Cla L, X*)([2), Cor. 10.2) and being a proper M-ideal is stable with
respect to the @, -sum with an arbitrary Banach space. O

The proof of the following result is inspired by Prop. 2 in [10].

Proposition 4.5. Let X be a Banach space and M be a space such that X*® X c
Mec L(X). For TeL(X) denote by Py(T}={SeM||S—Tl=d(T. M)} the se1 of
best approximants for T from M.

Then Py(T) has empty interior (relative to M) for all TeL(X), in particular:
if X*®XcMGL(X), then M is not an M-summand in L(X). Consequently if
such an M is an M-ideal in L{X), it fails the IP.

Proof. The last statement follows from the second and Th. 4.3 in [3]. The second

is an i di q of the first, since we have: if M is an
M-summand in E and e€E, then £, (e)=B(Qe, d(e, M)}, where Q denotes the
M-projection from E onto M.

If the first claim is not true we can assume (after a suitable translation)
that 0 is an interior point in B,(T) for some Te L{X)\M, i.c. there is a 6>0
such that SeM and (Sf<d implies | T+ S| =T [=d(T. M)]. Now choosc
x€Sy with | Tx||> )\ T — /4 and feSy. with f(x)=1. Let T,=(6/2) f@ Tx/iTxi.
Then e X*® X <M. | Tyl =4/2, and
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]
Tx+3

X
IT+ T2 T+ T xi= 3 Tl

é ]
=“TXH+5>RTH+3> Iy

So §=T, gives a contradiction and the claim is proved. (O

Remarks. 1) In some situations Prop. 4.5 combined with arguments using the
1P give complete information about the M-ideals between K(X) and L{X):

- If X is infinite dimensional and K(X) has the IP, then K(X) is not an M-ideal
in L{X) [Prop. 4.5])

- If in addition X is such that K(X)** = L(X). then there are no M-ideals between
K(X) and L(X) [A proof similar 10 the one for Prop. 3.2 shows: If a Banach
space E has the /P, then E** has the [P (which points from E!), i.e. any
space F with EcFc E®® has the [P. Apply this and for a second time
Prop. 4.5]

2) a) The following problem from [3] is still open: Does every dual space
bave the /P? The answer is affirmative for separable duals by Prop. 4.2.v in
[3). Let us give another partial result: If X* is such that for any separable
subspace Y of X* there is a separable subspace Z with YeZc X* and Z comple-
mented in X*, then X* has the IP. (The assumption about X* is satished e.g.
if X* is weakly compactly generated, (5], p. 149). Proof: If X* fails the /P,
so does a separable subspace Y (Prop. 1.6). Hence cy— Ye Zc X* with Z com-
plemented and separable (Th. 1.7). From Th. 1.3 in [19] it follows that Z contains
a subspace isomorphic to I, which gives the contradiction.

b) We don't know whether K (X) has the /P implies X has the IP. Proposi-
lioo 4.4 gives a positive answer for a special case.

Added in proof. Proposition 4.5 already appeared as Theorem 2.9 in K. Saatkamp - Best Approxima-
tion in the Space of Bounded Operators and ils Applications, Math. Ann. 250, 35-54 {1980)
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