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Abstract: An algorithm for learning class parameters using a restricted updating programme is described along with investiga-
tion of its convergence for optimum learning. The algorithm is a generalisation of some existing ones which were found (o be

useful for practical data.
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1. Introduction

An adaptive pattern recognition system can be
viewed as a learning machine in which the decision
of the system gradually approaches the optimal
decision by acquiring necessary information from
observed patterns. System performance is improv-
ed as a result. In a supervised system, the machine
rcquires an extra source of knowledge, usually of
a higher order, for correcting the decision taken by
a classifier. When an extra source of knowledge on
which a supervisory programme could be based is
Bot readily available, the performance of the
sysiem becomes highly unpredictable.

The most widely used tools for recursive learn-
ing of class parameters are Bayesian estimation
mcthods and stochastic approximation (Fu, 1968;
Tsypkin, 1973). In this context, we would like to
single out the self-supervised learning system based
on the concept of a ‘guard zone’, mooted by Pal
ot al. (1980). It was used to restrict the updating of
dstimates of parameters (feature means and
variances) by means of ‘doubtful’ samples. For
this purpose a guard zone was defined for each
class in such a way that a training sample was used
for updating only if it fell within the guard zone.

0167-8655/86/$3.50 © 1986, Elscvier Science Publishers B.V. (North-Holland)

A similar algorithm was presented by Chien (1970)
as a solution to the problem of identifying
‘spurious’, that is, possibly non-representative
training samples for the case when feature means
are to be learned. A threshold is defined such that
if the ‘distance’ of the current training sample
from the preceding estimate of the mean (the same
‘distance’ is used for defining a guard zone) ex-
ceeds it, the training sample is rejected. As such
both algorithms are basically the same, and are
stochastic approximation procedures of sorts.

Although these algorithms were tested with suc-
cess on some practical data, the two works did not
provide any proof of convergence or any
theoretical investigation of the choice of the con-
trolling parameter namely, guard zone dimension
or threshold for optimum learning.

The present work describes a generalized version
of the two, called the Generalized Guard Zones
Algorithm (GGA). Basically, it aims to detect
outliers and reject them from the parameter-
updating procedure. As such, it can be looked
upon as a robust estimation procedure (Andrews,
1975; Huber, 1981). (Essentially, the term
‘robustness’ signifies insensitivity to small de*’
tions from the underlying assumptions /'
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1981)). Under rather general assumptions, we have
investigated the stochastic convergence of this
algorithm for some special problems of estimation.
For this purpose, results on stochastic approxima-
tion are used.

2. The Generalized Guard Zones Algorithm
(GGA)

Let X=[X; X2 .-, Xn)'. XeR™ be an N-
dimensional feature vector defined over a pattern
class C.

Let us make the following assumptions:

(A1) The distribution of X over C is continuous.

(A2) This distribution depends on a g-dimensional
parameter vector 8, some or all of which
need to be learned.

(A3) The distribution of X over C is such that
E(X) exists and is equal to u.

(A4) The dispersion matrix of X, namely,

Disp(X) =X =((g,)) exisls.

Before stating the algorithm itself, let us define
a guard zone formally as follows:

Definition. Let S be a metric space and é a metric
defined on it. Then for any point a€ S, a guard
zone G(a. A) having an ‘extent’ A is the subset of
S defined by

G(a, A)={x:6(a, x) =<1},

where A =0.

Clearly, G(a, A) is nothing but a closed ball of
radius A centred at 2 in S with respect to the metric
4.

In the subsequent discussions we shall be taking
S=R" and a metric d defined as

d¥x, y)=(x-p)' A(x-y), x,yeR",

A being a symmetric, positive definite matrix.
Let us now proceed 1o the algorithm properly.
Let X, X, X),...be the scquence of learning

(or training) samples, randomly sclected from C,

that is, assumed (o be independently and identical-

ly distributed, i.e., we assume that correctly la-
belled training samples are available.

1
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We restrict ourselves (o the case where 8 include
p and/or clements of X only.

The peneralized guard zones algorithm (GGA)
for estimating @ recursively is as follows:

8. = S(X:) for k=1, m
KT 6k —a Y for k> 1;

Y, = 0\ —f(X) if X,eGlm; . A o
k= lo otherwise,

6;: the k-th-stage cstimate of 8.

far}: a sequence of positive numbers, with
a, <1 Vk.

f: RN = RY is a continuous mapping, defining

an unbiased statistic for 8.
my _: the (k~1)-th stage GGA cstimate of u.

Glmy oy, A)={x:xe R dy(x, m . )=A )
dix, ) =(x-) A (x—y),

Ay A symmetric, positive deflinite matn,
which may or may not be a lunction of .\,
and/or 6, i=1(1)k.

Ayt A positive number, prespecified.

In essence, this algorithm uses only those train-
ing samples for updating the estimate, which lie
within the corresponding guard zone centred at the
preceding estimate of the mean. Training samples
which lie outside it are ignored and the estimate
kept unchanged at the corresponding stages.

Special cases

(1) Wheng=N, 8=u, i.e., only the mean vector
is to be learned, we have f(X)=.X, and the
algorithm is as follows:

6 =m =Xy,
and for k> 1, with 8,=m,,
my - acmy - X,)
m; = if dy(m,, .\, X )< A, £}
4y -, otherwise.

(2) For estimating o,.i=1(1)N, j=lDAN
recursively, there are two alternative procedures
(we write dyuy=si):

(a) s{’=0, and Tor k> 1,
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siET Do lsF V= (X - g 0 WXk, = my )]
i dy(m, 1 XD <Ay,

s

s¢=" otherwise.
(4a)
(b) s{'=0, and for k>1,
5= e =y, my. 1), (4b)
where
C.(,'A_”"GA-IC.!}_”—XLXL‘,]
cfl=9 if dum,_\, X =1y, (5)
e~ otherwise.
(3) When 6=(u’'ia’}),6'=(0),05 " anpl,
q=2N,
5,0 0~ 0!
Sa 0 -~ 0

0
A= | 0 05y 0
0 0 0 -suy
= [Diag(s)1, Sazv---»Sandl 7

a; = A=

1
T
then the GGA reduces to the algorithm of Pal et al.
(1980).
(4) When 8=u, g=N,

1
e

A, =K,, the dispersion in X due to ordinary
measurement variation, i.e., type 1 noise (see
Chien (1970)),

Ai = 6, (the threshold in Chien's algorithm),

a; = {(k—1)+v] "' where v is such that

Disp(ug) = K, /v,
Uy = being the initial estimate, v>0,

the GGA reduces to the non-linear learning
algorithm of Chien (1970).

(5) As all A, 's decrease progressively, the system
approaches the nonadaptive state. Clearly, this is
because the dimensions of the guard zones
decrease and hence the probability of a training
sample to fall within the guard zone decreases with
decrease in the corresponding A,-value; so the
number of training samples getting selected for the
updating process decreases.
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(6) On the other hand, when the A,’s increase
progressively, the system approaches the non-
supervised state for, as the ‘extent’ of the guard
zones increases, more and more training samples
get selected for the updating of estimates; that is,
the updating programme becomes less and less
restrictive,

3. Convergence of the generalized guard zones
algorithm

The convergence of a recursive discrete
algorithm for estimating a parameter 4 by 4, can
be defined in various ways. For instance, we say
that

(i) the sequence {4,} converges to @ with pro-
bability one or almost surely if

P[ 1imw,,—9|=o]=|.

P being the probability measure.
(ii) {d,} converges to 8 in the mean-square
sense if

lim E(14, - 8] =0,
n—o
E being the expectation operator.
For proving certain results on the convergence

of the GGA, we shall be making use of the follow-
ing results:

Theorem 1 (Schmetterer, 1968). Let {a,} be a se-

quence of positive real numbers such that

Bl) Y ¢i<ow.

n=1

Let x,, and y, be K-dimensional random vectors
which satisfy

(B2) x,,,=Xx,~a,y,, nz1l.

Let M, be a measurable mapping from RX 10
R¥, such that

(B3)  E(yulx), X0 X,) = M, (x,) a.e.
Let a, b, ¢ be nonnegative real numbers and let
(B4) E(Jy,)?|xp X0 .. xp) s @+ bix, | +clx, |’ a.e.

Also, for every xe R* and nz=1,
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(BS) x'M,(x)=0.
If x, is chosen in such a way that
(B6) E(Ix,I?) exists,

then the sequence {x,} converges with probability
1 (that is, almosr surely) and the sequence
{Elx, |’} converges also.

Theorem 2 (Schmetterer, 1968). Suppose that
assumptions (B1)-(B6) hold. lf there exists for
every n>0 a 6>0 such that for n=1

(B7) inf Jx'M,,(.r)]zé,
"

n<|x) <y

then {x,} converges to the k-dimensional null vec-
tor 0 almost surely.

We shall now be proving the following:

Proposition 1. For the problem of estimating 8 = u
recursively, let 6, = m, be the sequence of esti-
mates, where m is given by equation (3).
Iy
@
€1y Y al<ew
n=l
and
(C2) py=Pldilmy . X)<Ai|my_,)>8, Vi,
Jor some >0,

then

(a) {m,} converges with probability 1 to u as
k— oo,

(b) {EVm, — uf*} converges as k — .

Proposition 2. Consider the problem of estimating
u und X completely.

Let
00'I=[/l'§a‘.'"§a‘3"§---§¢7$”"l (6a)
and
e e i), (6b)
where

=N(N+ 1)
2
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() » e °
as’ =lof oy, on

ax
g =N-i+1l,

0, =EX, X)) =0,+mu,

and the elements of m, and c{*=(c*' ¢l | el

are given by equations (3) and (5) respectively.
If the conditions (Cl) and (C2) hold. und
besides, the following condition is also sausfied:

(C3) n,= E(X X ) exists YV i, j=1(1)N for the
elements oj the feature vector X,

then

(a) {6;} (given by (6b)) converges with pro
bability 1 10 8 (given by (6a)) as k — oo;

(b) {ENG, — 8}*} converges as k ~ .

Proposition 3. Consider the problem of estimating
u and X completely.

Let
=[u g i ig™) ()
and
o= [m i s i 5@ gy (b
where
6"'=l0, 0,4, 1ol

with a,,= E(X,X,) - u,u,, and

S |sBrgt gy

=185 Si
the s,’s being given by equation (4b).

If the conditions (C1), (C2) and (C3) hold. ther:
8. (given by eqn. (7b)) converges with probabili
1 to 8 (given by eqn. (7a)).

Proofs of Propositions

Before we give the formal proof of the proposi-
tions, we would like to make the following point

If we subtract @ from both sides of the equation
(1) we get, writing

6r=6,-
g7 = f(X )-8 for k=1, ®
KT —a Y fork>1,

where
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08\ - (f(X)-8)
Y= if XpeG(my_,, Ay), )
0 otherwise.

This is because 0<a, <1 Vk by choice, so that for
k> 1,
02=6.-0=6,_,-a,Y,-6

Oy —ax (B —f(X,:)) -8

if XeeG(my_y, 2;),
6,_, -8 otherwise,
(1-a)[6;_, - 0) +a, [ f(X,) - 6]

if X, € Glmy_ ), A),
62_, otherwise,

writing 8=(1 —a,)0+a,0.

01— a6 - {f(X) -8}
if X,eG(my_\, A,),
67, otherwise.

Thus Propositions 1 and 2 can be shown to be
true if we can show that under the conditions
assumed therein,

(i) 62 —0 almost surely as k —oo;
(i) E(§671°) converges as k — oo,

To establish these we shall apply Theorems !
and 2 directly, by showing that conditions
(B1)-(B7) are true for §¢ as defined by equations
(8) and (9).

The conditions (B1) and (B2) are true because of
our assumption (Cl) and equations (8) and (9)
respectively.

Proof of Proposition 1. Here,
E(Y?|6}, 63, ...,60)
=pk4|E[a‘k._(Xk+l —0)|0|'. éf.--~.5;]
(as f(x)=x here)
=pk~|[§;—E(xkcl_9)]
(as X, ,, is independent of
X,, X3, ..., X, and hence 87, ....67)
=Pk 0;
(as @=pu here and E(X;,;)=n).

Ihis verifies condition (B3), with

PATTERN RECOGNITION LETTERS

April 1986

M (x)=py. 1 x, xeRN.
Further,
Elly1"167. 63, ..., 621
=Pu ENOS = (Xt — O |67, ... 00)
= Pens (162126 (X0~ 0)+ EN X1 = 6F)

(as X, ,, is independent of 87, ...,6¢)
N
=Pk.|[|é;|2+5 v (X(nl).‘lln)l]
nwj
(as E(X,,,~-8)=0)
, N
=pe[ 167+ ]
e
N
<|621+ ¥ a2 (as py, <1 and a}=<a; <),
n=1
which means that condition (B4) holds with
N
a=Y o, b=0, c=1

LRI

Also, X'M (x)=p;,,x'x=0 Vx e R" which verifies
condition (BS). That (B6) holds, is rather obvious,
as

N
EIfX) =0 =EVX\—pf = & ap<ee.
ns=
Finally, we can see that by virtue of our assump-
tion (C2), the condition (B7) holds, for
inf . [x" M, (x))

n<lx)<n

= inf  [peex'x1>6n%
n<ixl<n!

Thus Theorems 1 and 2 hold for 8. Hence the
proposition is proved.

Proof of Proposition 2. Here

Floy= | x@igVE g Lt
TaN'EXN' IX(N-1) [BF]

with
xP=x,

. 2 ,
X = [xf, XiXpp iy Xixnl's
axl

qgi=N-i+l.
Thus
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E[Yr|67. 65, ....62)
=E02-(f(X:.,)-8%]60. 62 ...

=pi 08 - E{f(xx, )-8}
(for the same reasons as before)

=pe 02, (as E[Lf(X . )] =9).

621px

This verifies (B3). Now,
ENYZi |67 65.....60)
=pe 67 - (S (X D) -ON 187, 62, 67)
=0 168 - 28 (E(S (X 1) - 6))
+E}f(X,, 1) - 8Y") (as before)
=P WO+ ELS(XC, 1) - 61°)
(as E[f( Xy, )] =0).
However, as
EGSOG )
-e| £ - £ L B
NN )

Z E(X])+ Z Y Ex X))

1=81 -7

AY
(smce EiX{"™,, —E[ T X
n-)

~
and EjXY!, 3=El N XSX,-?J)

-

Z (o) +ud)+ ): ): n,

"= Sty

(by assumption (C3))
=K,

with K a finite positive constant independent of

#r.63....,62. we must have

EL Y2167, 63.....62)

=pc W67 + K). (as ENLF (X, ) - 017D

=< ﬂéﬂz +K
= ENS (X P =20 E(f (X, ) + 168
=EWS (X, 1P -162

(@s E(f(X;,1))=8)
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SE{S(Xe. ).

Thus condition (B4) is satisfied, with ¢= K, b=0,
¢ =1. Further, conditions (BS), (B6é) and (B7) al
can seen to be true, as

X'M(x)=p,, x'x20, VxeP",
Elf(X) - 8P 1< ELf (X)) <K<,
as seen abové, and

inf  [x’'M(x)| >8>0,
pe<ixl<y !
because of our assumption (C2).
Thus Theorems 1 and 2 hold for {87} This com.
pletes the proof of Proposition 2.

Proof of Proposition 3. The prool lollows directly
trom Proposition 2 and the following lemma, if w¢
note that s'“ as given by eqn. (4b), is a con
tinuous Iununon. say, g, of 4, | (given by ega
(6a)), where g, (x), xe ® is defined as

8,(x)= X, = XN,
where

N+/ iwi=1,
YT IN+ 2 (N=nDy+(j=i+ ) if I<is),

t=1
and x; denotes the A-th vlement ol x, k=1(l)g
Further, g,(8)=0",-p,u,=0,. Hence Propos
tion 3 follows.

Lemma. Ler {X,} be a sequence of randor
variables taking values in R and let g : =" =V K
a continons map. Then | XN, ) converges with pro
bability | to a ( € R”) implivs that g(.X,) convergn
with probability | to gla) (€ R").
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