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THE MATRIX EQUATION AXB+CXD=E*
SUJIT KUMAR MITRA?

Abstract. Canonical representation of a singular pencil given in Gantmacher [1] and a theorem
of Kucera [3] for a special case are used to solve the matrix equation AXB+CXD =E.

1. Introduction. Let ™" denote the vector space of complex matrices of
order m X n. For given matrices A, Ce 4”*", B, De %" and E€ 4" we
consider the problem of determining the solutions Xe&$™ " of the matrix
equation

o) AXB+CXD=E.

Equations of this type occur in the MINQUE theory of estimating covariance
components in a covariance components model (Rao [7]) and are likely to occur
elsewhere. A special case of this equation where B and C are identity matrices has
been extensively studied in literature. See for example the books by Gantmacher
[2], Pease [6] and Lancaster [4]. A comprehensive review of work done in this area
appears in Lancaster [5]. A more recent account is given in Kugera [3]. Our
approach follows that of Kucera.

A basic method is to express (1) in an equivalent vector form as follows. The
column string of X(cs X) is the column vector obtained by writing the columns of
X one below the other in the natural order. Let ' denote the matrix of order
pgXmn

I'=B'®A+D'®C

where ® denotes Kronecker product, and prime on a matrix represents its
transpose, then (1) is equivalent to the equation

(1) FesX=cE

the consistency of which can be examined by standard methods and a general
solution obtained in terms of a géneralized inverse I'” of I' (Rao and Mitra [8]). It
is of interest to examine if (1) could be solved by a method which does not
explicitly require generalized inversion of I', usually a matrix of large order.

2. Regular and singular pencils, Consider the pencil A +AC determined by a
pair of matrices A and C of the same order. The pencil is regular if A and C are
square and the determinant |A +AC|is not identically equal to zero. The pencil is
called singular otherwise.

Let F, and T, denote respectively the matrices obtained by deleting the first
row and the last row of an identity matrix of order (r+1). Write

L,(A)=F,+AT,.
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THEOREM 2.1 (Gantmacher [1]). Given a singular pencil A +AC there exists
a pair of nonsingular matrices P and Q such that

(2) P(A+AC)Q=diag(0,L,(A), "+, Ly, (A), L5,(A), * ++, L (A), Ag+ACo),

where 0 is the null matrix of order py X m, and Ay+AC, is a regular pencil of order
vXv. If A and C are of order p X m.

p=ptln+ls+c+y, m=m+Lr+lstato

3. The equation AXB+CXD =E.

3.1. The case where the pencils A +AC and B +AD regular. Since |A +AC|
and B +AD| are not identically equal to zero, |A +AC] being a polynomial in A of
degree =m can vanish at most at m distinct values of A and |B +AD)| similarly can
vanish at most at n distinct values of A. Let e be a scalar such that

|-eA+C|#0, |B+eD|#0.
Observe that
(3)  AXB+CXD=E
©AX(B+eD)+(C-eA)XD=E
&(C-eA)'AX+XD(B+eD)'=(C—eA)'E(B+eD) ™.

The last equation is of the same type as considered by Kuéera [3] and others and
can be solved accordingly.

3.2. The general case. In the general case let matrices P, Q, R, S be
determined as in Theorem 2.1 so that

PAQ=diag(0,F,,**,F,y Fyyy+, Fiy A) =4,
PCQ=diag(0,T,,,***, T, Thy, ++, Tho C) =G,

where 0 is a null matrix of order p, Xm,, A, and C, are or order v X v each,
RBS=diag(0, F,,,***,Fyy Fip,* . Fun B) =B,
RDS=diag(0,T;,+*, T, Th ** *» Toww Do) =D,

where 0 is the null matrix of order n, X q,, By and D, are of order w X w each. Put
PES =F, X=QYR. Then (1) is equivalent to the equation

(4) AYB+CYD=F.

Since the coefficient matrices /i, B, € and D are block diagonal, (4) can be solved
by solving equations of smaller order in which the diagonal blocks appear as
coefficient matrices. Most of these subequations, each one of which fixes separate
portions of the Y matrix, involve matrices of the type F,, T, or their transposes as
coefficient matrices. These equations can be algebraically solved without much
difficulty. Of the remaining equations there is exactly one which involves the
matrices Ao, Co, By, D, of the regular pencils Ag+AC, By+AD,. This again can
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be solved as in § 3.1. The rest involves both matrices of the type F,, T, or their
transposes and the matrices of one or the other of the two regular pencils. These
equations can first be simplified taking advantage of the invertibility of A+eC,
or of By+eD, for some scalar e, on the same lines as indicated in § 3.1 and then
algebraically solved after simplification.

4. Anopen problem. The method discussed here does not extend itself to the
situation where the left-hand side of equation (1) has one or more additional terms
of the same structure as AXB and CXD. Solution of such an equation remains an
unsolved problem.
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