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Absiract: The present work describes an algorithm for automalic image ation using o h iy’ and a
‘conirast” measure defined on the co-occurrence matrix ol the image. The measure of contrast iavolves the concepl of
loganthimic response (adaplibility with background intensity) of the human visual system (HVS). A merging algorithm is also
iniroduced in order 10 remove the undesirable thresholds.

Effectiveness of the algorithm and the comparison of ils performance with the existing ones are demonsiraled for a set of

images.

Key words: Image processing, homogeneily and contrast measures, human visual system, co-Occurrence matrix.

1. Introduction

One of the key problems of scene analysis is
wgmentation of a scene into different regions.
Seementation is essentially a pixel classification
problem where one tries to classify the pixels into
different classes such that each class is homo-
¢eneous and at the same time the union of no two
adjacent classes is homogeneous. In other words,
given a definition of uniformity, segmentation is a
partition of the picture into connected subsets,
tach of which is uniform, but such that no union
of adjacent subsets is uniform [1).

There are scveral techniques of image segmenta-
ton based on global and local information of an
image. One of the techniques based on global in-
formation is histogram thresholding which selects
the valley points as threshold levels. For images
where a histogram may not have sharp valleys (i.e.,
having flat minima or local minima) the histogram
is usually sharpened (2] by a suitable transforma-
uon so Lhat the task of selecting valley becomes

easier. These transformations usually require some
parameters whose choices have significant impact
in determining the number of thresholds. The co-
occurrence matrix, on the other hand, uses local
spatial information of an image and provides in-
formation regarding the number of transitions be-
tween any two gray levels in the image. These
information have been used by different authors
namely, Weszka and Rosenfeld [3], Deravi and Pal
{4] and Chanda et al. [S] for segmentation.

The measures on co-occurrence matrix reported
by these authors did not consider the fact of loga-
rithmic response of the human visual system (HVS)
{6,7) in measuring ‘contrast’ between regions in an
image. The present work attempts to bring this fac-
tor into consideration while defining a measure of
‘contrast’ in addition to defining another measure
called homogeneity within a region. The combina-
tion of these two measures made the algorithm
effective in determining threshold levels. Further-
more, a provision is also kept for merging un-
desirable segments, if generated.
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The effectiveness of the algorithm along with its
comparison with three other methods [3-5] has
been demonstrated on a set of images. A Digital
Computer EC-1033 has been used for analysis.

2. Co-occurrence matrix and some measures for
segmentation

2.1. Co-occurrence matrix

Let F=[f(x. )| be an image of size P x Q, where
JS(x.v) is the gray value at (v y), (v, WeG, =
{0,1,2,....L - 1}, the sct of gray levels. The co-
occurrence matrix of the image F is an L xL
dimensional matrix that gives an idea about the
transition of intensity between adjacent pixels. In
other words, the (i j)th entry of the matrix gives
the number of times the gray level *j° follows the
gray level 'i* in a specific fashion.

Let ‘a” denote the (4, j)th pixel in Fand let'd’ be
one of the eight neighbouring pixcls of ‘a’, i.e.

beag={(i.j- 1) GJj+ DG+ L= 1))
G=Lj=NU-Lj+ 1D+ 1j-1)

G+ 1.+ 1)},

Define
w=1Y g
veF
beay

where d =1 it the gray level value of @ is / and that
of b is k., 6 =0 otherwisc.

Obviously, 1, gives the number of times (he
gray level "k* Tollows gray level '/’ in any one of
the cight directions. The matrix T= /], ., is.
therelore, the co-occurrence matrix of the image F.

One may get different definitions of the co-
occurrence matrix by considering diflerent subsets
of uy, i.c., considering b€ ay, where ay C ay.

The co-occurrence matrices may again be either
non-symmelric or symmetric. One of the non-
symmetrical forms can be defined considering

rog
=Y L )
S0
with
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=1 il fUu.j)=1and fli,j+1)=k
or f(i.j)=!and f(i+1,j)=k;
5=0 otherwise.

Here only the horizontally-right and verticallva
lower transitions are considered. The following
definition of ¢, gives a symmetric co-occurrence
matrix:

P Q
w=Y Y6
=1y
where
d=1 if f(i.jy=1and f(i,j+ 1) =k
or f(i.j)={and f(i,j—-1)=k
or f(i,jY=1and f(i+1,j)=k 7]
or f(i,jy=1and f(i- 1, j)=k;
d=0 otherwise.
We consider here both horizontally right and
left, and vertically upper and lower transitions.

2.2. Measures for thresholding

Since the co-occurrence matrix contains intog-
mation regarding the spatial distribution ol eray
levels in the image, several workers have used them
for scgmentation. For thresholding at grey level
s, Weszka and Rosenleld [3] defined the busyness
measure as follows:

0y 1 -1 Lt s
Busy()=Y ¥ r,+ L Yo, 3)
YRV

i=0 5l

The co-occurrence matrix used in (3) is symmetnc.

(4] S L=

N

1NN

L-y

Figure |. Pictorial representation of the busyness meisufe.
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The sum of the entries of the shaded portion in
Figure 1, represents the busyness measure for the
level s*. For an image with only two regions, say,
object and background, the value of ‘s’ for which
the minimum of Busy(s) occurs, gives the thres-
hold. Similarly, for an image having more than
wo regions the busyness measure provides a set of
minima corresponding to different thresholds.

Deravi and Pal [4] have given a measure for the
conditional probability of transition from one
region (o another as follows.

If 1he threshold is at ‘s’, the conditional prob-
ability of transition from the region [0,s] to
[s+1,L-1]is

1’ [ j-_.(l' l'
4
PI —:—IZ/ 01:;+Z. 0):; .Hl U ()
and the conditional probability of transition from
the region [(s+ 1), (L — 1)] to [0,s] is
[.— 1 s t
i=s+1 &j=0 u (5)

Py=
-1 -1
r=s4) ,=“|'u+zl s+| ):, oly

1,in equations (4) and (5) corresponds to the one
mn equation (1).

pcls), the condition probability of transition
across Lthe boundary is defined as

PASY= (P + Py)/2. (6)

The lower the value of p.(s), the lower is the
probability that the next transition will be to a dif-
lerent class. That means a minimum of p.(s) will
correspond (o a threshold such that most of the
iransitions are within the class and few are across
the boundary. Therefore, a set of minima of p.(s)
would be obtained corresponding to different
thresholds in F.

Chanda et al. [5) have als used the co-occurrence
matrix for thresholding. They defined an average
contrast measure as

£ z, e =0
=0 z/:sltl

AVC(s) =

L-1 2
i=s4l ; D[il"('_j)
e n . (@]
R
AVS(s) shows a set of maxima corresponding to
the thresholds among various regions in F.

In the computation of ¢, they considered only
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vertical transitions in the downward direction.

It is to be mentioned here that all the three
measures described before are basically based on
some weighted combinations of the number of en-
tries in the shaded and blank regions of Figure 1.

3. Segmentation based on contrast and
homogeneity measure

In this section, we present an algorithm, for
segmentation on the basis of the information of
contrast and homogeneity (between/within the
regions in F) as obtained from the co-occurrence
matrix (eqn. (1)). The concept of human visual
facts has been incarporated in the contrast
measure in order to make the method of segmenta-
tion more effective.

Before describing the algorithm let us first of all
explain some facts of the human visual system.

3.1. Human psychovisual facts

In psychology, a contrast C refers 1o the ratio of
difference in luminance of an object B, and its im-
mediate surrounding B [7] i.e.,

=|B,— B|/B= B
The perceived grayness of a surface depends on its
local background and the perceived contrast re-
mains constant if the ratios of contrasts between
objects and local background remain constant.

The visual increment threshold (or just notice-
able difference) is defined as thc amount of light
ABy necessary to add 1o a visual field of intensity
B such that it can be discriminated from a refer-
ence field of same intensity B. It therefore gives a
limit for a perceivable change in luminance or in-
tensity.

At low intensity near the absolute visual thres-
hold (mere presence or absence of light intensity
detectable under a dark adapted condition), the
visual increment threshold 4By is constant. With
an increase in B, 4By converges asymptotically to
the Weber behaviour i.e., A4ByxB (AB+/B being
defined as Weber ratio).

Figure 2 [6) presents such a characteristic re-
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Figure 2. Variation of tog 4 By with log B (in arbitrary scale) [6).

sponse in the tog 4By —log B plane. The Weber
behaviour is characterised by the unit slope of the
curve. The preceding region with slope { is known
as De Vries-Rose region, characterised by
ABrxVB. However, in the actual case this rule is
followed in a small restricted region. The dashed
curve shows the deviation from Weber's law. This
deviation is usually not exhibited by the retinal
core mechanism even under very high intensities,
but can happen in very restricted cases [6].
Therefore, it the brightness value of an object is
higher (fower) than its surrounding or background
or a reference intensity B by such an amount that
it corresponds to a point on or above the curve
(Figure 2), the object will only then appear brighter
(darker) i.e., discriminable for the human visual
system (HVS). Furthermore, an equal amount of
4B value created at different background intensity
(B-values) does not result in an equal perceivable
change to the HVS. For example, the discrimina-
tion ability in the De Vries—-Rosc region is greater
than in the Weber region and this ability decreases
with increase in value of B. The possible reason for
this detenioration in discrimination ability can be
attributed Lo inherent visual nonlinearity.

3.2. Measures of contrast and homogeneity

It has already been discussed that the problem of
segmentation is to partition the set G, of gray
levels into some non-intersecting subsets such that
each segment is as homageneous as possible while
the contrast between any segment and its neigh-
bouring segments is as high as possible. Two such
measures, namely the contrast of a segment with
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its neighbouring segments and the homogeneity of
a segment are first of all defined. A composite
measure of the two is then used to select the thres-
hold levels in F.

Let the gray levels ranging from K to M form
one of the segments, say, R, of the image F, i.c.,
R\ =[K.M], M=K.

Define Cf . the contrast of the segment Ry
with respect Lo other segments, as follows:

):ie R ):juR. i W
(C)e ZieR. ZJ’!R: f

Moy
ik Lickorom i Wi
. 9D

(C) Zf’i‘ ):,<1( or s> lij

Since the same amount of change in gray level at
different positions on the gray scale does not pro-
duce identical impression to the Human Visual
System (Section 3.1), the weighting factor W is
incorporated in the above expression. In other
words, W, provides different phase weights 1o the
changes '’ to (¢+1)and ‘i’ to (i +1), i#¢, in order
to reflect the different impressions created by these
changes.

W; may be defined as

8
Cym=

either Wy=1i—j|/i+)) (103)
or  Wy=li—jl/max{i,j} (10b)
or W;=|i—j|/min{i, j}. (10¢)

It is, therefore, seen that W also ensures the equal
contribution to equation (9) when the object and
background intensities are interchanged.

In the denominator of equation (9), the term
L ¥ ¢, is used to make the measure independent
of the size of regions while the constant C, is in-
troduced to make 0sCf,<1. C, obviously
depends on the choice of W, and is equal to the
maximum possible value of Wj.

Therefore
C,=(L-1)/(L+1) for equation (10a),
=(L-1)/L for equation (10b),
=(L—-1) for equation (10c).

where L is the maximum level in F.

It therefore appears from equation (9) that if
i=Jj, then C2,=0 i.e., the contrast in [K,Af] is
minimum. On the other hand, if i=1 and j =
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<] K M L=

K7 /

L=l

1V,

Figore 3. Pictorial representation of contrast and homogeneity
measures.

then the contrast is maximum (= 1); since for all ¢;
those are considered in C,{?_M. the values of W
tecome equal to C, thereby making the numerator
wd denominator the same.

The #,'s considered in the equation (9) are
shown by the shaded portion in Figure 3, which
zves the total number of transitions across the
boundary of the segment R, i.e., from the region
[\, M] to its outside.

Again, define Cy’py, the homogeneity of the
region [K,M], as

Lier Ljer fyeli—J1

CA?M=1—
L-D*Licp Ljer,ti
M M o
1 i—
-1 2,,* Z!=k i | Jl an

(w-negl, }:jMxk[U ’
The #,'s considered in equation (11) are shown by
the dotted portion in Figure 3. C,:'M lies in the in-
teval [0,1) i.e., 0= Co s 1.

If R, is perfectly homogeneous, K =M (i.e. the
tegion contains only one gray level), then C,:'M= 1
®|i-j|=0 for all i and j.

With the decrease of the homogeneity of R,
i-j| increases and approaches to (L—1). As a
tesult, the ratio in eqn. (11) approaches to one and
¥y tends to zero. Thus Cg, and C¥, are
found to increase with increase in contrast and
homogeneity respectively of a region [K,M]. On
the basis of these two measures we define a com-
posite measure

exm(Clms CR 1) = CEry® CR . 12)

Since 0s C¥pys 1 and 0= CZ <1, g also lies be-
tween 0 and 1.
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The level at which g attains 8 maximum value
can therefore be considered as a boundary (or
threshold) between regions.

3.3. Merging of a single valued region

As mentioned above, the composite measure
gx.um is found to be very much sensitive to highly
uniform regions. In other words, a region contain-
ing only one gray level is very likely to be detected
as a separate segment, although one does not desire
to have such a segment. To avoid this we have sug-
gested here a merging algorithm whereby such a
single valued segment is accepted if the transitions
within the segment is higher than those across it.
This criterion enables one to retain only those
regions which have significant dimension (i.e., in-
formative) in spatial domain.

The algorithm therefore, first of all, finds out
the regions of single gray level and determines
whether such a region should be merged or not. If
it decides to merge a region, then the next task is
to determine the adjacent region (left or right) to
which it is to be merged.

Let R,;=[M, M) be the region under considera-
tion.

Let Ty =total number of transitions within the
region R;, then

Tw=tym- (13)

If T,=total number of transitions from R; to all
other outside regions, then

M
T=Y% % u (14)

M jEM

Decision rule
If Ty> Ty, then the size of the region can be
taken as reasonably big. So accept the region, do
not merge it, otherwise merge the region. Now the
problem is to select the adjacent region to which it
is to be merged.
Case 1. If M=0, merge R, to the right adjacent
region.
Case 2. If M =L —1, merge R, to the left adjacent
region.
Case 3. If 0<M <L — 1, we proceed as follows.
Let 7; =total number of transitions from R, to
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its left adjacent region. If the left adjacent region
contains gray levels ranging from L, to L, then

M =Ly
=% %4 s

1M guly

Suppose Ty = total number of transitions from R;
to the right adjacent region and the right adjacent
region contains gray levels ranging from R, and
R, then

MM Ry
Te=Y L 4 (16)
i=M =R,

If T.>Ti then merge R, 1o the left adjacent
region, otherwise merge it to the right adjacent
region.

The above decision rule can also be formulated
in a more general way as follows.

Let T,=total number of transitions from R, to
all regions including itself, i.e.,

T=% Ty amn
]
and

0=Tw/T,, 6<I.

Now if 8>8,, accept the region, otherwise
merge it, where 8y, is some pre-assigned threshold
value.

f,4=0.5 obviously gives the original decision
rule.

The advantage of defining the decision rule in
this manner is that in an interactive environment
one can change 8y, if necessary and compare the
results to pick up the most appropriate value of 6,
for a particular type of image.

In order to extract the thresholds in an image F,
we start with R, =[0,0] and increase the size of R,
one by one to the right side of the gray scale until
we get a local maximum of gy 4, i.e., the process
is started with K=0, M =0 and M is incremented
one by one until g »s attains a maximum value. If
the maximum occurs at gray level K, then K, cor-
responds to a threshold and gray levels ranging
from 0 to K, represent a region of the image F.
Then we start with K=M =K, + 1 and the process
is repeated as described above until we get the next
maximum, say at K,. The gray levels ranging from
K, +1 to K, thus constitute another segment. In
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this way the process is carried on until the entire
gray scale is exhausted.

After obtaining a set of thresholds, the next task
is to check if there is any single valued region to be
merged.

4. Implementation and results

The segmentation algorithm described in Section
3 is implemented on a set of four different images
[8] having dimension 64 x 64 with 32 gray levels.
Figures 4(a), 5(a), 6(a) and 7(a) represent the
original input images, while Figures 4(b), 5(b), 6(b)
and 7(b) represent the corresponding gray level
histograms. These images are produced on a line
printer by over printing different character com-
bination for different gray levels.

Figure 4(a) represents an image of Mona Lisa.
It is to be noted that the gray level histogram
Figure 4(b) is almost unimodal (having some local
minima). When the present algorithm (without
merging) is applied to it, four thresholds, namel\
0, 1, 6 and 17 are produced. The corresponding
segmented image is shown in Figure 4(g), where
different segments are represented by different tex
tures. When the merging algorithm is applied to it.
the segment [1,1] (Table 1) is merged to its right
adjacent segment. The segmented image so obtain-
ed after merging is shown in Figure 4(¢c). Compar-
ing Figures 4(c) and 4(g) we find that there is an
undesirable region inside the hair of Mona Lisa,
which after being merged results in a more mean-
ingful segmentation (Figure 4(c)). Figure 4(g) 1s
shown, as an illustration, only to demonstrate the
effect of the merging algorithm in selecting final
thresholds.

Figure 5(a) is an image of Abraham Lincoln,
and the corresponding gray level histogram (Figure
5(b)) is found to have a number of deep valley~,
The thresholds (before and after merging) genc-
rated by the proposed method are shown in Table
1. The output segmented image is shown in Figura
5(c).

In order to demonstrate the validity of the algo-
rithm for images with flat and wide valleys in their
histogram, the algorithm is applied to the image of
a jet (Figure 6(a)). One can see in Figure 6(a) that
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higure 4. (a) Input image of Mona Lisa; (b) Histogram; (c) Segmenicd image by the proposed method: (d) Segmenied image by (3);
{c) Scgmenicd image by (4]; (f) Segmented image by (5); (g) Segmented image by the proposed method (before merging).
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the right wing of the jet has vanished inside the
cloud in such a way that apparently it is very dif-
ficult to trace the boundary of the right wing. The
present algorithm is found to be successiul in
scparating out that wing from the cloud. Figure

peore il "1"'1”

u“ur “""I””'u I_.\z::ff

) lfl H‘i,\ gy W“
K ‘”q/( o
\h|

{ N
il i
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6(c) represents the scgmented image, while 1he
thresholds are shown in Table 1.

Figure 7(a) represents the image of a biplane
having two dominant modes in its histogram
(Figure 7(b)). From Figure 7(¢) the object is found

15 20 15 n

b Grey tovet

1 . " Po— oln: H g 5
1gure 5. (a) Input image of Lincoln; (b) Histogram; (¢) Segmented image by the proposed method; (d) Segmented image by [1]. (e)
Segmented imuge by {4): {F) Scgmented image by |5). S
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10 be clearly separated out from the background.

The above results were obtained by using eqn.
{10a) while computing W), of the contrast mcasure.
Experiments were also carried out with eqn. (10b)
and the corresponding performances were found
10 be almost similar.

Comparison

In order to compare the performance of the
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algorithm with those of some of the existing algo-
rithms based on co-occurrence matrix, we have
considered algorithms of Weszka and Rosenfeld
(eqn. (3)) [3]. Deravi and Pal {eqn. (4)-(6) [4] and
Chanda et al. (eqn. (7)) [S]. The thresholds obrtain-
cd by these methods are also shown in Table 1.
Equation (3) is found to fail to extract all the
meaningful regions of the image of Mona Lisa. It
has sclected only three segments (Figure 4(d)) with
thresholds at 0 and 30, as a result, most of the im-

[ B 10
b

i)

Grey level

\\\\\\\k\\\\\%\\ﬂ“&{lﬁ

Figure 6. (a) Input imaye of a jel; (b) Histogram; (c) Segmented image by the proposed method; (d) Scgmented image by [3); (e)
Segmented image by [4]; () Segmented image by [S): (8) Segmenicd image with the proposed mcihod with 8=0.75.
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portant informations are lost.

Equalions (4)-(6). on the other hand, have de-
tected two extra segments in the chest and one ex-

H |-n|||1 |

: ﬂ! Ml }

\Mmu

‘l.u _"
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tra region in the hair (Figure 4(¢)), while eqn. (7)
has also produced two simifar segments (onc ol
them is of smaller size than the corresponding onc

Figure 7. (a) Inpul imoge of a biplane: (b) IMistogram: {¢) Segmenicd image by the proposed mcthod; (d) Scgmented image v 3k

,|“‘,,.‘,,mh||"

Gy e

(¢) Segmented image by [4]: (I') Segmented image by [5].
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Table |

Thresholds for various methods

Images Proposed method Mcthod of Weszka Mcthad of Deravi Mecihod of

Before merging After merging and Rosenfeld (3] and Pal 4] Chanda et al. (5]

Mona Lisa 0.1.6,17 0,617 0,30 0.3.6,17,25,30 0,3,6,17,28,30
{Figure 4)

tincoln 04912171824 0.4,9,13,17.24 0.4.9,12,17,24,30 4,9.12,17,23,30 5,10,12.17,22, 27,30
(Figure £)

et 0.3,7,23,24,26 0,3,7.24,26 0,3,5,7,18,29 3.7.11,18,29 710 83,18.21.23
{Figure 6)

giplane 0,1,2,10.17,18,23 1,10,17,23 0,2,10,17,22.30 0,2,10,17,22,30 0.10,13.17.21.29
(Figure 7

produced by eqn. (4)-(6) (Figure 4(f)). From Fig-
wre 4(¢), it is seen that the regions generated by the
proposed miethod where these additional regions
ate absent, create a better impression to the eye.

For the image of Lincoln (Figure 5) all the
methods except the present one, has divided the
fore-head into two regions. This is probably due to
the fact that 1hose methods are based on similar
concept. Furthermore, the present method and the
method by Weszka and Rosenfeld have divided the
beard into two regions, which is not the case for
the other 1wo methods.

In the case of the jet, eqn. (7) has failed to discri-
minate between the cloud and the right wing (Figure
6(N) while the other two methods like ours are suc-
cessful in doing so (Figure 6(¢), 6(d) and 6(¢)). The
present method and eqn. (3) produced comparable
tesults, while the result produced by egns. (4)-(6)
(Figure 6(c¢})) scern to create a better impression to
the eve. However, il we alter the value of 6y from
0.510 0.75 in the merging algorithm, the first two
regions (Table 1) get merged and the resulting
image (Figure 6(g)) is found to be much better than
Figure 6(c) in that respect (having less noisy back-
ground).

In case of the biplane, all the methods have been
able to detect its contour (Figure 7). However,
eqns. {4)-(6) are found 1o gencrate two additional
regions inside the tail of the biplane which are ab-
sent for other cases. The background is found to
be clustered in two parts by all but our method.
Furthermore, all the methods except ours have
divided the shade of the biplane into three or more
regions, which is two in our case.

From Table 1 it appears that the equations (3),
(4)-(6) and (7) detected, except for the jet, a thres-
hold at the end of the grey scale (e.g., 30 for Mona
Lisa, Lincoln and biplane). These thresholds cor-
respond to some undcsirable regions at the frame
of the images. The incorporation of the factor
W, in eqn. (9) which accounts for the nonlinear
behaviour of the HVS has been found to be able to
climinate such occurrences.

5. Conclusion

A two-stage algorithm for image segmentation is
described using the measures of *homogeneity® and
‘contrast’ (involving the concept of logarithmic
response of the human visual system) within/be-
tween regions of the image and incorporating
thereafter a provision for merging to climinate
undesirable segments.

The algorithm is found 1o be much more cffec-
tive than the existing oncs in extracting meaning-
ful rcgions of images having unimodal, multiple
valleyed, flat-wide valleyed and bimodal (with local
minima) histograms.
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