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Abstract: Algorithms based on minimization of ness and of M are developed whereby it is possible to obtain
both fuzzy und nonfuzzy (thresholded) versions of an ill-defined image. The incorporation of fuzziness in the spatial domain,
i.c., in describing the geometry of regions. makes it possible 1o provide more meaningful results than by considering luzziness
in grey level alone. The effectiveness of the algorithms is demonstrated for different bandwidths of the membership function
using a blurred chromosome image having a bimodal histogram and a noisy tank image having a unimodal histogram as input.
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1. Introduction

The problem of grey level thresholding plays a
huvy role in image processing and recognition. For
cvample, in enhancing contrast in an image, we
need Lo select proper threshold levels so that some
4utable non-linear transformation can highlight a
dosirable set of pixel intensities compared to others.
Sumilarly. in image segmentation one nceds proper
tustogram thresholding whose objective is to estab-
lish boundarics in order to partition the image
space (crisply) into meaningful regions.

When the regions in an image are ill-defined (i.e.,
furszy). it is natural and also appropriate to avoid
committing ourselves to a specific segmentation by
allowing the segments to be fuzzy subsets of the im-
aue, Fuzzy geometric properties (which are the gen-
eralization of those for ordinary regions) as defined
by Rosenfeld [1-6] seem to provide a helpful tool for
auch analysis.

‘The present paper is an attempt to perform the
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luzzy scts, luzziness. fu2zy compuctness.

above mentioned task autormatically with the heip
of a compactness measure (4] which takes into ac-
count fuzziness in the spatial domain, i.e.. in the ge-
ometry of the image regions. Besides this measure,
we have also considered the ambiguity in grey level
through the concepts of index of fuzziness (6], entro-
py (7] and index of nonfuzziness (crispness) [8).
Thesc concepts were found by Pal [9-13] to provide
objective measures for image enhancement, thresh-
old sclection, feature cvaluation and sced point ex-
traction.

The algorithms described here extract the fuzzy
segmented version of an ill-defined image by mini-
mizing the ambiguity in both the intensity and spa-
tial domain. For making a nonfuzzy decision one
may consider the cross-over point of the cor-
responding S function [14) as the threshold level.
The nonfuzzy decisions corresponding to various
algorithms are compared here when a blurred chro-
mosome image and a noisy tank image are used as
input.

2. Measures of fuzziness in an image (8-10, 13)

An image X of size M x N and L levels cun be
considered as an array of fuzzy singletons, each
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having a value of membership denoting its degree
of brightness relative to some brightness level I,
1=012,.... L — 1. In the notation of fuzzy sets,
we may therefore write X = {px(Xpn) = Hinn/Xouns
m=1,2,.... M. n=1,2....N} where puy(x,,) or
Hon/ Xmn (0 < g1, < 1) denotes the grade of possess-
ing some brightness property u,,, (as defined in the
next section) by the (m. n)th pixel intensity x,,,.

The index of fuzziness rcflects the average
amount of ambiguity (fuzziness) present in an im-
age X by measuring the distance (‘linear’ and ‘qua-
dratic' corresponding to linear index of fuzziness
and quadratic index of fuzziness) between its fuzzy
property uy and the nearest two-level property uy;
in other words, the distance between the gray tone
image and its nearest two-tone version. The term
‘entropy’, on the other hand. uses Shannon's func-
tion but its meaning is quite different from classical
entropy because no probabilistic concept is needed
to define it. The index of nonfuzziness, as its name
implies, measures the amount of nonfuzziness
(crispness) in uy by computing its distance from its
complement version. These quantities are defined
below.

(a) Linear index of fuzziness

WX = —— ZZ [ e (Xmn) = 3 Xpna) | (1a)
—N ggyhy (Xnmn) (ib)

= 3N o N (Ux(Xa)s 1= px(Xmn).
m=1,2.. . . Mn=1,2... N,

where uy (x,,) denotes the nearest two-level version
of X such that

HadXma) =0 if py(xpy,) < 0.5, (2a)
=1 otherwise. (2b)

(b) Quadratic index of fuzziness
0.5

V() = ﬁ [)m:)":uxx(xm.) - ugxm,n’] e
M.n=1,2,...,N.

m=12....,
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(c) Entropy

H(X) = ZZ Sulbtx(Xmn)) (4
with
Saltx(Xmn)) = — Hx(Xmalln pix(Xmmn)
— (1 = p(Xma)) IN(1 = pylx))
m=12,...M;n=1,2....N. (db)

(d) Index of nonfuzziness (crispness)

n(x) = —ZZlux(xm)—py(: ). (5)

X is the complement of X,
m=1,2,..Min=1,2... N.

All these measures lie in [0.1] and have the foliow-
ing properties

1(X) =0 (min) for uy(x,,) =0or 1, V(m.n), (62)

I(X) =1 (max) for uy(x,,) =0.5. V(m.n), (6b
I(x) = [(X*), (6!
10Xy = 10X, (6d:

where / stands for vw(X), H(X) and | — n(X). X* i
the ‘sharpened’ or ‘intensified’ version of X such
that

Hxe(Xmn) Z fx(Xma) i px(Xma) 2 0.5, (Ta)
< piy(xmp) if <0.5. (7b)

3. Fuzzy geometry of image subsets (1-5, 13)

Rosenfeld [1-5] extended the concepts of digital
picture geometry to fuzzy subscts and generalized
some of the standard geometric propertics of and
relationships among regions to fuzzy subsets.
Among the extensions of the various propertics, we
only discuss here the arca, perimeter and compacl-
ness of a fuzzy image subset. characterized by
#x(Xma). Which will be used in the following scction
for dcveloping threshold selection algorithms. in
defining the above mentioned parameters we re-
place py(x,,,) by ut for simplicity.

The area of u is defined as
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au) & J‘u (8

where the integral is taken over any region outside
which 4 = 0.

If 1 is piecewise conslant (for example, in a digital
image) a(u) is the weighted sum of the areas of the
regions on which u has constant values, weighted
by these valucs.

For the piecewise constant case, the perimeter of
p s defined as

P(ﬂ)ézglﬂt—ﬂll | Al %)
)

=12...mi<jik=12,....r

This is just the weighted sum of the length of the
arcs A, along which the i-th and j-th regions hav-
ing constant u values y; and pu; respectively meet,
weighted by the absolute difference of these values.

The compactness of p is defined as

comp(u) & au)/p?(u). (10)

For crisp sets, this is largest for a disk, where it
is cqual 1o 1/4n. For a fuzzy disk where u depends
only on the distance from the origin (center), it can
be shown that

a(p)/p*(p) = 1/4n. (1)

In other words, of all possible fuzzy disks. the
compactness is smallest for its crisp version. For
this reason, in this paper we will use minimization
(rather than maximization) of fuzzy compactness as
a criterion for image enhancement and threshold se-
lection,

4. Threshold selection
A Minimizing fuzziness (10, 13)

l.el us consider for example, the minimization of
vt V). It is secen [rom cquations (2) that the nearest
orhinary plane uy (which represents the closest
Lws-tone version of the grey tone image X) is depen-
dent on the position of the cross-over point, i.c., the
0.~ value of uy. Therefore a proper selection of the
cross-over point may be made which will result in
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a minimum value of v(X) only when the cross-over
point corresponds Lo the appropriate boundary be-
tween regions (clusters) in X.

This can be explained further as follows. Suppose
we consider the standard S-function (Figure 1) [14)

Bx(Xmn) = S(Xpp; @, b, €)
=0, Xpn S @, (12a)
= 2[(xps — @)/(c — )},
1 = 2[(Xp — OWc —a)}®, b<x.,<c (12)
= >, (12d)

=1, Xop >

a < X, < b, (12b)

with cross-over point b = (a + ¢)/2 and bandwidth
db=b—-a=c—-b

for obtaining py(x,,) or u,, (representing the de-
gree of brightness of each pixel) from the given x,,,
of the image X. Then for a cross-over point selected
atl, say, b =1, we have u,(l) =0.5 and y,,, would
take on vajues > 0.5 and < 0.5 corresponding to
Xnn > 1l and < I;; which implies allocation of the
grey levels into two ranges. The term v(X) then
measures the average ambiguity in X by computing
Hx ~¥(Xm,) in such a way that the contribution of the
levels towards v(X) comes mostly from those near
I, and decreases as we move away from ;.
Therefore. modification of the cross-over point
will result in different segmented images with vary-
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Figure 1. S lunction.
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ing »(X). When b corresponds to the appropriate
boundary (threshold) between two regions, there
will be a minimum number of pixel intensities in X
having ft,, = 0.5 (resulting in v = 1) and a maxi-
mum number of pixel intensities having u,, ~ 0 or
1 (resulting in v = 0) thus contributing lcast to-
wards v(.X). This optimum (minimum) value of fuz-
ziness would be greater for any other selection of
the cross-over point.

Method of computation (Algorithm 1)

Given an M x N image with minimum and maxi-
mum grey levels I, and [,,:

Step 1. Construct the ‘bright image’ membership
Hy. where

(D=8 a b, c) lpin <Ll < .. (13)

using equation (12) with cross-over point b = [; and
a particular bandwidth db=¢c — |, =1, — a.

Step 2. Compulc the amount of fuzziness in uy cor-
responding to b = I, with

2
Wl = wN Y min{S(: a. . ¢).
1
1 — S(: a. b, YW (14a)

= E T(DOh(! 14b
MN 4% OLIU] ( )
where

T(DH = min{SU; a. l,. ¢). 1 — S({; a, I,. c)} (14c)

and h(l) denotes the number of occurrences of the
level 1.

Step 3. Vary |, from I, lo I, and select |, = [,
say. for which v(X) is a minimum.

I, is thus the cross-over point of yy(x,,) having
minimum ambiguity (i.c.. for which u, has mini-
mum distance from its closest two-lone version).
... can be regarded as a fuzzy segmented version of
the image, with g1, < 0.5und > 0.5 corresponding
10 regions [Imins I — 1] and [L, Inas)-
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For the purpose of nonfuzzy segmentation, on
can consider the level I, as the threshold betweer,
background and object, or the boundary of the ob
ject region. This can further be verified from equa
tion (14) which shows that the minimum value of
v(X) would always correspond to the valley region
of the histogram having minimum number of occur-
rences.

Variation of bandwidth (Ab)

Let us call 7,(}) (cquation 14(c)) a Triangular
Window function centered at {, with bandwidth Jb
As 4h decreases, iy would have more intensified
contrast around the cross-over point resulting in
decrease of ambiguity in py. As a result, the poss
bility of detecting some undesirable thresholds
(spurious minima in the histogram) increases be-
cause of lhe smaller width of the 7,t/) function.

On the other hand. increase of 4b resulls ina
higher value of luzziness and thus cads toward the
possibility of losing some of the weak minima.

The application of this technique to both bimo-
dal and multimodal images with vanous T; func
tions based on v(X). vg(X). H(\) and y(A) is dem-
onstrated in [10, 13]).

B. Minimizing compactness

In the previous discussion of threshold sclection
we considered fuzziness in the grey levels of an im-
age. In this section we take fuzziness in the spatial
domain into consideration by using the compacl:
ness measure for selecting nonfuzzy thresholds.

It is scen from Section 3 that both the perimeter
and area of a fuzzy scgmented image depend on the
membership value, denoting the degree of bright:
ness. say. of cach region. It is further to be noted
that the compactness of a fuzzy region decreases s
its u value increases and it is smallest for a crisp
one. We will now dcfine two algorithms to shov
how the above mentioned concept can be utilized
for selecting a threshold between two regions (say-
the background and a single object) in a bimadu
image X.

As in the case of the previous algorithm, we con
strucl p,,, with ditferent S functions having constant
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.th value and select the cross-over pointof the uy as
the boundary of the object for which comp(p) is a
minimum,

Mecthod of computation (Algorithm 2)
Givenan M x N image with minimum and maxi-
mum grey levels [, and /,,,,:

Step 1. Construct ‘bright” image uyx as in Step 1
of Algorithm 1.

Step 2. Compute the area and perimeter of py
corresponding to b = |, with
A | =33 tn = 3. SU: a i D, (15
m n t

m=12...., Min=12,....N;
lnia S 11, < lgy

and

M N-1
f‘(l‘)l’.‘= z ZI Hen = Hmone
m=inw

+

"Mz

M-
z
1m=)

(excluding the frame of the image).

ll...n—#...._,.’ (16)

For example, consider the 4 x 4y, array

0000
0x2fi0
008 l>a B.y.6>0.
05600

Here.a(p) =a + 28 +y+ 6
and

py=la+|B—a|+B+f+|y—Bl+5+8)
+le+a+5+f+0+08+y+7]

Step 3. Compule the compactness of uy cor-
responding to b = 1, with
“(#)‘Il
XM

comp(u)|l, = a7

Step 4. Vary |, [rom [, to 1., and select that
I, = .. say, for which comp(u) is minimum

PATTERN RECOGNITION LETTERS

February 1988

The level I therefore denotes the cross-over point
of the fuzzy image planc s,,, which is least compact
(or most crisp). The ,,, s0 obtained can therefore
be viewed as a fuzzy segmented version of the image
X.

Like the previous algorithm, one can consider I,
as the threshold for making a nonfuzzy decision on
classifying/scgmenting the image into regions.

Mecthod of computation (Algorithm 3)

Here we approximate the definitions of arca and
compactness of uy by considering that iy has only
two values corresponding to the background and
object regions. The u vilue for the background is
assumed to be zero. whereas the p-value ol the ob-
ject region is monotonically increasing with in-
creasc in threshold level. Therefore. by varying the
threshold, onc can have different segmented ver-
sions of the object region. Each scgmented version
thresholded at /, has its area and perimeter comput-
ed as follows:

a(p)=a  p (18a)
=mY b, L <! <l (18b)
[

where a denoles the area of the region on which p =
u, (constant), i.e., the number of pixels having grey
level greater than or cqual to /, and

plr)=m - p (18c)

where p denotes the length of the arcs along which
the regions having u = g, and =0 meet. or, in
other words. the perimeter of the region on which
1 =, (constant).

For the example considered in Algorithm 2, the
values of a(y,) and p() fora ==y =0 = p, will
be Sy, and |2y, respectively.

The algorithm for selecting the boundary of a sin-
gle-object region from an M x N dimensional im-
age may therefore be stated as follows:

Step 1. Construct the ‘bright” image uy using
ux() = Sl a, b, ¢) (19)

witha =l .. ¢ = I, and b = (a + ¢)/2.
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Step 2. Generate a scgmented version putting
p=0 foru<up, (20a)
=pu foru2u, (20b)

where y, is the value of uy(l,) obtained in Step 1.

Step 3. Compute the compactness of the seg-
mented version thresholded at [

a- a
comp(y,) Prawn il g (21)

Step 4. Vary |, in (Ipine lmsa) and hence g, in (0,1)
and select the level as boundary of the object for
which equation (21) attains its minimum.

It should be noted here that after approximation
of the area and perimeter of u,,. the compactness
measure (equation (21)) reduces to 1/y, times the
crisp compactness of the object region. Unlike Al-
gorithms 1 and 2, here pu, is kept fixed throughout
the process and the output of the algorithm is a
nonfuzzy segemted version of X determined by /.

C. Minimizing the product ( Algorithm 4)

Algorithms 1-3 minimize either the amount of
fuzziness or the compactness of an image X. We can
combine these measures and compute the product
of fuzziness and compactness, and determine the le-
vel for which the product becomes a minimum. In
other words, we compute

9, = V(X)ll, : comp(y)|,, (22)
(using equations (14) and (17))
or 8, = v(X)|, - comp(p,) (23)

(using equations (14) and (21))

at each value of I; (or ). I, < I, 1, < I,,,. and select
I, = I., say, as threshold for which equation (22) (or
(23)) is a minimum. The corresponding u,,, repre-
sents the fuzzy segmented version of the image as [ar
as minimization of its fuzziness in grey level and the
spatial domain is concerned.

1t should be mentioned here that although we
considered the linear index of fuzziness in Algo-
rithms | and 4, one can also consider the other mea-
sures, namely v (X), H(X) and 5(X). for computing
the total amount of fuzziness in g,
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Figurc 2. (a) Chromosome image: (b) Histogram.

5. Implementation and results

Figure 2a shows a 64 x 64, 64 level image of a
blurred chromosome with [_,, =12 and /_,, = 59.
Figure 2b shows its bimodal histogram.

The different minima obtained using Algorithms
14 for 4b =2, 4, 8, 16 are given in Table |. The
enhanced version of the chromosome correspond-
ing to these thresholds (minima) are shown in Fig-
ures 3 to 8 only lor 4b = 4, 8 and 16. In cach of Fig-
ures 3-5, (a). (b) and (c) correspond to Algorithm
I, Algorithm 2 and equation (22) of Algorithm 4.
Similarly, in Figures 6-7, (a). (b) and (c) correspond
to Algorithm 1, Algorithm 3 and equation (23) of
Algorithm 4.

It is seen that the compactness measure usually
resulls in more minima as compared to index of fuz.
ziness. The index of fuzziness (Algorithm 1) basi-
cally sharpens the histogram and it detects a single
threshold in the valley region of the histogram for
4b = 4, 8 and 16. At 4b = 2, the algorithm as cx-
pected results in some undesirable thresholds cor-
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Table |
Mininu for chromosome image

Ab=2 4b=4 4b=8 ab=16
w1
(Algonthm 1) 19, 30, 40 40 46
40°, 46
compn)
Algorthm 2) 18, 24, 29, 54 31, 47¢ 4
31, 56°
vompu)
1Algonthm 3) 33, 48° 13, 48° 33,48 33, 48°
Product
wgn (22) of 19,31, 40 41 4]

Algonthm 4) 40, 42°, 46

Product
wyn 23 of 40,42,
Algorithm 4) 44, 46°. 53

42°,45,53  42°.45.48 33,.48¢

* Denotes global minimum,
Algorithm 3 does not involve variation of db.

responding to weak minima of the histogram. This
conforms to the carlier investigation [10). Algo-
rithms 2 and 3 bascd on the compactncss measure,
on the other hand. detect a higher-valued threshold
{global minimum) which results in better segmenta-
tion {or enhancement) of the chromosome as far as
its shape 1s concerned.

The advantage of the compactness measures over
the index value is that they take fuzziness in the spa-

[+
Figure 3 Enhanced/thresholded versions of chromosome for
h = 4, (a) Algonthm | (I, = 40); (b) Algorithm 2 (I, = 29. 54);
(c) Equution (22) (i, = 40).
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Figure 4. Enhanced:/thresholded versions of chromosome for
4b = 8. (a) Algornthm | (/. = 40} (b) Algonthm 2 (/, = 3, 47);
(c) Equauon (223 (1, = 41).

Figure 5. Enhanced/thresholded versions of chromosome for
4b = 16. (a) Algorithm | (I, = 46); (b) Algorithm 2 ([, = }4). (c)
Equation (22) (I, = 41).

G oo
b
@D 80 o

Figure 6. Enhanced/thresholded veesions of chromosome for
4b = 4. (a) Algorithm 1 (I, = 40); (b) Algorithm X (/, = 3}, 48);
(c) Equation (23) (I, = 42, 45, 53).

33
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a
@ oo
b
o0 80 9
c

Figure 7. Enhanced/thresholded versions of chromosome for
4b = 8. (a) Algonthm | (i, = 40); (b) Algorithm 3 (I, = 33, 48);
(¢) Equation (23} (/, = 42, 45, 48).

a
@ o
b
G o
[

Figure 8. Enhanced/thresholded versions of chromosome for
4b = 16. (a) Algonthm | (I, = 46): (b) Algorithm 3 (I, = 33, 48);
(c) Equation (23) (/. = 33, 48).

tial domain (i.e., the geometry of the object) into
consideration in extracting thresholds. The index
value. on the other hand, incorporates fuzziness
only in grey level. It should further be noted for Al-
gorithm 2 that as 4b increases. the number of and
the separation between minima also decrease.

It is interesting to note that multiplying w(X) by
comp(y,). i.e., equation (23), produces at least as
many thresholds as are generated by the individual
measures. But this is not the case for equation (22)
where the number of thresholds is (except for 4b =
2) equal 10 or less than the numbers for the individ-
ual measures.

The above observations can be explained as fol-
lows. As mentioned before, v(X) basically sharpens
the histogram. Therefore as [, increases, it first in-
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creascs until it reaches a maximum, and then de.
creases until a minimum (threshold) s atlained
After this it follows the same pattern for the othe
modc of the histogram. The compactness measure
on the other hand. first starts decreasing until it rea
ches a minimum, then increases for a while, and
then starts decreasing again.

It is further seen from our results that the vana.
tion of compactness in Algorithm 3 plays a mote
dominant role than the variation of index value in
Algorithm | in detecting minima. The case 18 re-
versed for the combination of Algonthm | and Al-
gorithm 2, where the product is influcnced more by
the index value. As a resull. the threshold obtained
by equation (22) is found to be within the range of
threshold values obtained by the individual measu-
res. Equation (23). on the other hand. is able o cre-
ate a higher-valued (or at least cqual) threshold
which results in better object enhancement than
those of the individual measures.

Figures (9(a) and 9(b) show a noisy image of a
tank and its unimodal histogram. having I, = 14.

100
=)
60
40
20

b
a 20 49 60
Figure 9. () Tank image; (b) Histogrum.
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\

Figure 10 Enhanced/thresholded versions of l1ank for 4h = 4.

1) Algarithm 2 (I, = 23, 34); (b) Algorithm 3 (I, = 22, 33, 36);

i1 Cquation (22) (I, = 40, 49); (d) Equation (23) ({, = 22, 40, 42,
44, 46).

Imsy = 50. The minima obtained by the different al-
porithms for 4b = 2, 4, 8 and 16 are given in Tuble
2. The corresponding enhanced versions for 4b = 4,
K and 16 are shown in Figures 10-12 for various
combinations of algorithms.

As expected. the index of fuzziness alone was not
ible to detect a threshold for the tank image be-
v.ause of its unimodal histogram. The compactness
measure. on the other hand. docs give good thresh-
olds. As in the case of the chromosome imuge,
cquation (23) yields at least as many thresholds as

Figuee 11. Enhanced/thresholded versions of tank for b = 8.
fuy Algarithm 2 (1, = 31); (b) Algorithm 3 (/, = 22, 33, 36); (c)
Equation (23) (I, = 22, 42, 44).
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Figurc 12. Enhanced/thresholded versions of tank for th = 6.
(a) Algorithm 2 ¢/, = 363 (b) Algonithm 3 (1, = 22, 31, 16y (¢)
Equution (23) (/, = 22, 38, 40. 42).

are generated by the compactness measure. Similar-
ly (except for 4b = 2) equation (22) yields at most
as many thresholds as the compactness measure.

6. Conclusions

Algorithms based on compactness measures of
fuzzy sets are developed and used to determine
thresholds (both fuzzy and nonfuzzy) of an ill-de-
fined image (or the enhanced version of a fuzzy ob-

Table 2
Minima for tank image

ab=2 4b=4 ab=8 db=16
wX)
(Algorithm 1) - - -
compiy)
{Algorithm 2) 21° 33 2% 4 3 16
comp()
(Algorithm 3) 22,133°,36 22.33°.36 22.)3*. 36 22

31e.36

Product
(cqn. (22) of 24,39*, 40, 49°
Algorithm 4) 43,46, 49
Product
(eyn. (23) of 24, 40, 22, 40. 22,42°.44 22, 18,

Algorithm 4) 42, 46* 42¢. 44,46 40, 42¢

* Dcnotes global minimum,
Algorithm 3 docs nol involve variation of 44,

85



Volume 7, Number 2

Ject region) without referring to its histogram. The
enhanced chromosome images obtained from the
global minima of the measures are found to be bet-
ter than those obtained on the basis of minimizing
fuzziness in grey level, as far as the shape of the
chromosome is concerned. Consideration of fuzzi-
ness in the spatial domain, i.e., in the geometry of
the object region. provides more information by
making it possible to extract more than a single
thresholded version of an object. Similarly in the
case of the unimodal (noisy) tank image. the com-
pactness measure is able to determine some suitable
thresholds but the index parameter is not. Further-
more, optimization of both compactness and fuzzi-
ness usually allows better selection of thresholded/
enhanced versions.

Acknowledgement

The authors wish to thank Mr. Shijie Wang for
doing the computer programming, Mr. R. Sitara-
man for his constructive criticism of the work, and
Ms. Sandra German for typing the manuscript.
One of the authors (S.K. Pal) is also grateful to the
CIES., Washington, DC and the United States Edu-
cational Foundation in India for providing him a
Fulbright Visiting Fellowship to work in the U.S.A.

86

PATTERN RECOGNITION LETTERS

February 198%

References

n

Rosenfeld, A. (1979). Fuzzy digital topology. /nfurm. and
Conirol 40, 76 87.

[2] Rosenfeld. A. (1984). The fuzzy gcometry of image subsels
Pati. Recog. Len. 2, 311-317

[3] Rosenfeld, A. (1983). On conncctivily propertics of grey.
scale pictuses Patt Recog. 16,47 SO

[4] Rosenfeld, A.and S Haber (1985). The perimeter of a fuzy
sct. Port. Recog. 18,125-130.

[5] Rosenfeld. A. (1984). The diameter of a fuzzy sel. Fu::,

Seis and Systems 13, 241 246.

6] Kaufmann, A. (1975). Introduction to The Theory of Fus:,

Subsets  Fundamenial Theoretical Elements, Vol 1. Ag.

demic Press, New York,

De Luca, A.and S. Termini (1972). A delimmion of non-pro-

babilistic entropy n the setting of fuzzy set theory. Inform

and Control 20, 301 312,

Pal. S.K. {I986) A mecasure of edge ambiguity using fuzzy

sets. Pait. Recog. Letr. 4, 51 -56.

(9) Pal, S.K. (1982). A notc on the quanlitative measure of im-
uge enh. through f 1EEE Trans., PAMI 4,
204 208.

{10} Pul. S.K.. R.A. King and A.A. Hashim (1981). Automauc
grey level thresholding through index of fuzziness and en-
tropy. Patt. Recog. Lett. 1, 141-146.

(11} Pal, S.K. and B. Chakraborty (1986). Fuzzy sct theoretic
measure for : tic feature J IEEE Trans,
SMC 16, 754-760.

112) Pul. S.K. and P.K. Pramumk (1986). Fuzzy mcasures in de-
termsning sced points in clusienng. Paii. Recog Leir 4,
159- 164.

[13]) Pal, S.K. and D. Dutta Majumder (1986). Fuzzy Mathemur
ical Approuch ta Pattern Recognition. Wiley (Halsted Press),
New York.

(14] Zadeh, L.A. (1975). Calculus of fuzzy restnichions. In' LA
Zadch et al., Eds.. Fuzzy Sets and Thewr Applications to Cog-
nitive and Dectsion Processes. Academic Press. London,
L 39.

7

I8




	077
	078
	079
	080
	081
	082
	083
	084
	085
	086

