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Abstract: Two reference points of a region are defined which do not depend on the position, size and orientation of the region.
Reference points arc used 1o get borders on the basis of which the shape distance and shape similarity are defined.
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1. Introduction

There are two different approaches for shape
analysis. One describes a shape in terms of scalar
measurements and the other does it through struc-
tural descriptions. Pavlidis (1978, 1980) made two
reviews of algorithms for shape analysis.

In the present paper a shape is described on the
basis of its structural features using certain chain
codes. The description is information preserving in
the sense that it is possible to reconstruct any
reasonable approximation of the shape from the
descriptor. In Section 2 two reference points on the
border of a region are defined which are invariant
under translation, dilation and rotation of the
region. From these two reference points some
strings of directional codes describing the border
(clockwise) are extracted in Section 3. The distance
between two shapes is defined in terms of these
strings. Computational techniques and results are
given in Section 4.

2, Shape and its reference poinis
Definltion 2.1. A region.is a closed, bounded and

connected subset of the Buclidean plane R? such
that its complement is also connected.

That is, no holes are permitted inside a region.
Thus the boundary of a region is closed and
describes the region uniquely. Let # be the set of
all regions. We shall write a region 4 as {(xnyi):
iel} where [ is an uncountable index set.

Definition 2.2. R is an equivalence relation in #
such that for A, B belonging to #, (4, B) € R if the
region A can be obtained from the region B
through translation, dilation and rotation.

Definition 2.3. A shape is defined to be an equiva-
lence class generated by R in #. That is, two
regions A and B have the same shape if and only if
(A,B)€eR.

Clearly, all circles (also all squares) have the
same shape. But the shape of an ellipse (or a
rectangle) depends on the ratio of the lengths of its
two axes.

Now, in order to extract features from a region
we shall use the least squares method. The classical
least squares method is as follows: Let (x;, »:),
i=1,2,...,n be n points in R2. Suppose y is to be
predicted on the basis of x. Then the squared error
of any straight line y = a + bx with respect to the n
points is ¥ 7., (¥;—a— bx;)1. The straight line with
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the minimum squared error is y =4 + Bx where

Lo
;‘leiy.'—f}’

b=—2" , d=9p-bx,
Iy m
nl-ExX'z o

Now if this least squares method is applied to the
points (x;, ;) of a region, it can be seen that the
slope of the best linear fit y=4+ bx remains un-
changed if the inpul region is translated or dilated.
But its relative slope may change if the region is
rotated.

This drawback can be overcome by changing the
definition of the squared error, that is, by taking
the shortest distance between (x,,y,) and the line.
Suppose, (7, 8,) is the polar representation of
(x;, ), that is, x;=r;cos 6;, y;=r,sin 8, where r,is a
nonnegative real number and 8 belongs to [0, 2r).
Now, the shortest (perpendicular) distance from
(x, ;) to a straigth line y=xtan @+ c is the abso-
lute value of {ccos8+r,sin(6—6;)}, where cis a
real number and 6 belongs to [0, #). So, the new
squared error is

a

f(6,c)= ‘;, {ccas 8+ r;sin(8-6;)} 2. )

The best linear fit in this case (that is, the line that
minimizes f(6, c)) passes through (£, $) and makes
an angle 4 with the x-axis where d satisfies

2 Y (x—-Ri—9
= @

tan26= - - s
Lxi-n'- ¥ 0-9?

cos2€{ )": x;—%)2- f: (J’i_y)zl +
-] Iy )

+2sin26 )3 (x;— )i~ 9)>0.
I=1

Now we shall consider the best linear fit for the
points belonging to a region. For example, Q,Q; is
the best line for the region (indicated only by its
border) in Fig. 1.

a8
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Fig. 1. Q) Qx is the major axis.

Notations: Let #, be the set of all regions A =
{{x;, »,): i € I} such that both numerator and deno-
minator in (2) are zero.

Note that circles and squares belong to .#,. Lel
#*=A — #,. Suppose, A={(x.y,): iel}.

Definition 2.4. Let Ae.#. Any straight line
passing through its centre (%, p) is called an axis of
the region A.

Definition 2.5. Let 4 € .7 *. The axis of the region
A which makes an angle 8 with the x-axis is defined
as the major axis of the region A (Q,Q; in Fig. 1)
where 8 satisfies

2% (- R0i-9)
Lx-9'- L0o-97

1el

tan26=

cos 26 { Yxi-0i- % ()’.—.7)21 +
. rys

el

+2s5in28 ¥ (x;,— R)(yi—9)>0.
el

It can be shown that
(i) For a region belonging to #, all the axes are
equally good with respect 10 f(8, ¢) defined in (1).

(il) For a region belonging to # ® the major axis
is unique.

(iii) The major axis of a region belonging to #*
is invariant under translation, dilation and rota-
tion of the region.

(iv) If a region belonging to J * is symmetric its
major axis either coincides with or is perpendicular
to the axis of symmetry.
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Definition 2.6. For a region belonging to # * the
iwo farthest points among the points of inter-
section of the major axis with the border of the
region are called the reference points of the region
(Q) and Q, in Fig. 1).

It can be seen that the reference points of a
region belonging to #* are unique and do not
depend upon the position, size and orientation of
the region.

3. Feature extraction

An approximated kind of border is extracted
Irom a region in this section. This is done in terms
of cerlain directional codes which will be defined
now. The directional codes 1,2, ..., 8 are shown in
Fig. 2. Each pair of adjacent directions makes an
angle of 45° in between them. Now this definition
of directional codes can be extended. Let d be any
real number belonging to (0,8]=S3. Note that
i-1<dx<i for some i€ {1,2,...,8} =14 Then the
directional code d defines a direction that makes
an angle of (i — d)45° with direction / on the anti-
clockwise side (Fig. 3). Thus there is a one-to-one
correspondence between Sg and the set of all direc-
tions in R2. From now on unless otherwise
mentioned directional codes will mean elements of
Sg.

7 8 \
4

6 2

5 4 3

Fig. 2. Directional codes.
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Y

Fig. 3. Angle between d and / is (/ - d) 45°.
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We shall now describe extraction of features
from a region. Let there be n points on the border
Py, Py, ...,P,_|,P,=Py such that the arc length
between any two consecutive points is the same.
Let the directional code d, denote the direction
P,_;P,. Then the string of directional codes d =
{d;}j=\ is called an approximated border of the
region which depends on the starting point P, but
not on the position or size of the region. This
approximated border can be made arbitrarily close
to the original border of the region by increasing
the value of .

Now, let Q; and Q, be the two reference points
of a region. Suppose, d;= {d);} /. is the approxi-
mated border of the region starting from Qy for
k=1,2. The set of these two strings d= {d,, d;} is
the feature extracted from the region. Note that
this feature d is information preserving and is in-
variant under translation and dilation. Suppose, F,
is the set of all possible feature values of d (that is,
from all regions belonging to # *®). Thus, for any
fixed value of n, we have described a mapping g
from 2 *to F,.

In the rest of this section we shall establish some
relations between the feature values of o and
shapes and then develop a concept of distance
between shapes on the basis of the feature d.

Notation: Let T, be the set of all possible strings
of directional codes of length n. Let d; = {d\;}/-\
and d,= {dy;} }-1 be two elements of T,,. We write
dy=d,+a for a real number a if dy;=d\;+a
(mod 8) for all j. In that case we say that d, is a
rotation of d,.

Definition 3.1, Let d'={d},d}} and d2= {d?,d}}
be two elements of F,. We say that d?is a rolation
of d' if any onc of the following conditions holds.

(i) d? is a rotation of d} and d} is a rotation of
d,

‘(ii) d?is a rotation of d} and d3 is a rotation of
d}.

We write (d',d?)e R} if d? is a rotation of d!
where R is a relation in F,.

It can be seen that the relation Ry is reflexive,
symmetric and transitive. Hence R} is an equiva-
lence relation in F,. Let .¥, be the set of all equiva-
lence classes generated by Ry in F,. Now, R}
induces an equivalence relation in #°® in the

i
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following way: We have a function g from #® to
F,. Let R, be a relation in 4 ® such that for 4,8
belonging to #°%, (4,8)e R, if (g(A4),g(B))eR,}.
Clearly, R, is an equivalence relation in #*. Let
%, be the set of all equivalence classes generated by
R, in #* Note that each equivalence class gene-
rated by R, includes one or more equivalence
classes generated by R in .#. If (4, B) € R,, we say
that the two regions A and B have the same shape
at the level n. That is, each equivalence class gene-
rated by R, contains regions whose shapes
resemble one another closely. And the degree of
this closeness increases as the value of 7 increases.
In fact, each such equivalence class tends to a
single shape as n goes to infinity.

Let R’ be a relation in :# * such that for 4, B
belonging to #* (4,8)e R’ if (A,B)e R, for all
positive integers n. Clearly, R’ is an equivalence
relation in .#*. Note that each equivalence class
generated by R’ is exactly one equivalen¢e class
generated by R in # and hence corresponds to a
unique shape. The set of all equivalence classes
generated by R’ is a proper subset of the set of
equivalence classes generated by R, the difference
being the equivalence classes obtained from the
regions belonging to .#,.

Since, in praclice, we have to deal with finite n,
we shall consider only R}, R, etc.

We shall now develop a definition of distance
between two equivalence classes belonging to .7,
(which in turn defines a distance function on .¥,)).

Definition 3.2. D is a distance defined on T, such
that for two strings d, = {d\,}]., and d; = {d}, } .,
belonging to T,

D(d, d;)= E min{|d,;—da;(,8~ |d\;~dy|}-
&)
It can be seen that D is a metric on 7,. Note that
D(d,dy) = D(d,+a,d, + a) for any real number a.
Definition 3.3. D’ is a distance defined on 7, such
that for two strings d, and @, belonging to 7,
D'(d,dy) =InfD(d,, d; + a).

D’ has the following properties:
(i) D'(d,,d;) =0,
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(ii) D’(d,,d,) =0 if and only if d, is a rotation
of dy,

(iii) D’(d,,d;) = D’(d,, d)),

(iv) D'(d,. dy) + D’(d,, d3) = D’(d}, dy).

Definition 3.4. D*is a distance defined on .#,such
that for any two equivalence classes E; and E,
belonging to .%,,

D*E), E;)=Min{D"(d},d})+ D’(d},d}),
D'(d}.d}) + D' (dhdh}
where d'={d},d}} is an element of £, and d=
{d} d3} is an element of E,.

It can be seen that this definition of D*E |, E,)is
unambiguous, thatis, if e’ = {e}.e;) is any element
of £, and e= {e} e3} is any element of E,, then

Min {D’(d},d})+ D'(d}, d3).
D*(d},8})+ D'(d5d))} =
=Min {D’(e},e?) + D’ (e}, e3),
D'(el,ed) + D' (e}, ed).

It can be proved that D* is 2 metric on ./,.

Now, there is a one-to-one correspondence
between ., and 7,. Thus D* also gives the
distance between any two elements belonging to
. For finite values of n an element of .7, meansa
set of different shapes. The number of such diffe-
rent shapes comprising one single element of ./,
reduces an 727 increases. In fact this number goes to
unity as 77 goes 10 infinity. Thus asymptotically O*
gives the distance between shapes such that for any
two different shapes the value of D* will be greater
than zero. So, in order to get more accurate
results, greater values of n are taken.

4. Computation and results

For the computation of the directional codes in
d, we do not explicitly find the points P, on the
border. First, the border is extracted as a string of
the directional codes belonging to /3, say, {d,}
starting from each of the points Oy, k =1,2. Note
that all d,'s do not have the same length. In fact,
the odd directional codes 1,3,5,7 have length V2r
and the even directional codes 2,4,6,8 have length
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x where x is the size of the square pixel of the
input. To get rid of this inequality in lengths we
modify the string of directional codes by replacing
d, by 7 consecutive d;’s if d; is odd and by § conse-
cutive d;’s if d, is even. The lengths of the new d;’s
can be considered the same since g is very close to
V2. But the size of the new string {d,}, say N, will
be larger (5 to 7 times the old one). Suppose, » is
the desirable size of the final string. Let N=nr.
Now for each j=1,2,...,n a sort of average direc-
tional code df is obtained from the set of directio-
nal codes {d,: (j— l)ri-_l’sisjr). In fact, dj is
taken as the direction PQ where P is the starting
point of d(,_y),,; and Q is the end point of dj,.
This average string {d/}/., is obtained starting
from each of Q, and Q,.

Suppose, d, = {di;} ., is the average string for
Q. k=1,2. Thus d={d,d;} is computed.

The computational aspect of D* involves com-
putation of D and D’. But the computation of D’
on the basis of the present definition of D is diffi-
cult since D(d,,d; +a) is not in general differen-
tiable with respect to a. We shall now propose an
allernative definition of D which retains all the
desirable properties of the earlier D and which is
differentiable with respect to a. Changing D
defined in (3), we write

D(d,, d;) = )__"sinz;n(d,j—du). 4)
p=
For fixed d, and d,, the function
flay=D(d,,d,+a)= ¥ sin?}n(d,,—dy—a)
jal

is differentiable with respect to a and attains the
minimum/maximum at
4 7w 15in g,
a=—tan-! {%} ®)
n Zja1c0s56;
where ;= {n(d);—dy;). Let a, belonging to (0,4)
satisfy (5). Then a, =a, + 4 also satisfies (5). Now,
lor only one of a, and a, the second derivative

d2f(a)

=} 2 H : H
aa? = G {sm ina IZ:' sin §

+costna If_‘,‘ cos 6/] >0. (6)
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That value of a, say 4, is obtained (which mini-
mizes f(a)). So the value of D’ is also obtained as
S{8). Now to compute the value of D*, four values
of D', namely, D’(d}.d}), D’(d},d3), D'(d},d}),
D’(d},d3) are to be computed.

For the new definition of D in (4) the upper
bound of D’is §»n (assume n is even), and hence the
upper bound of D* is n, Thus, D® can be norma-
lized and we can get a similarity measure between
two shapes as

u=1-D*/n where0su<l|,

We shall now see to what degree an arbitrary
shape is similar to the circular shape. Though
strictly speaking a circle does not belong to # *, its
feature value d can be defined. Let di={d|;}/.,
where d,;=x+ja, (mod8) and a,=8/n .and
d5=d{ +4. For any number x belonging to (0, 8],
ds={df,d5)} describes a circle at the level n (dy is in
fact a regular polygon with n sides). Now, let
d={d,;, d,} be the feature value of an arbitrary
shape. Let de E, and die £;. So, D*E| Ey)=
D'(d,,d}) + D’(d,, d$) because D'(d;, dy) =
D'(d,,dy+a) for any d,,d; and a. In fact,

Table 1

d) =755 800 078 116 200 222 245 247
222 200 1.38 1.22 1.55 248 335 3.78
422 445 452 500 512 531 535 574
$.78 6.22 6.65 6.57 685 .15 7.5 7.9

d; = 448 475 500 S.U5 S48 548 565 6.16
628 629 7.00 7.13 700 7.15 745 778
025 1.00 1.69 200 245 245 245 2.00

1,78 1.28 1.3§ 2.00 2.81 3.59 412 429
D’(d,d{)=1.5712 D'(dydf)=1.5502

D*(E\, E3) = The distance between the circular shape and the
shape of the region in Fig. |
= 3.1214

M(E\ E3) = Shape similarity measure
= 0.9025

Ratio of the side
lengths of a rectangle

Shape similarity measure between
a rectangle and a circle {u)

11.25 0.9196
11.50 0.9015
I 2.00 0.8920
13.00 0.8388
1 4.00 0.8246

41
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D%E E})=D"(d,,d{) + D’ (ds,d}). The similarity
measure between the circular and an arbitrary
shape is 1| — DYE | E;)/n.

For the region in Fig. 1, the values of d,. da.
D’(d,.d}), D'(ds,d}). D*E,, E:) and u are given in
Table 1 where the values of the shape similarity
measures between rectangles and a circle are also
given.

The computation of the two reference points of
a region involves all the points of the region and
hence is costly. This can be avoided by considering
only the border points of a region. The major axis
defined on the basis of the border points has all the
earlier invariant properties.

The distance D* can also be defined in terms ol
area. Suppose A and B are two regions with the
same area. Then the distance between the two

a2
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corresponding shapes is defined as

The areaof (A - BYU(B - A}

D*=
Twice the arca of A

(7

D* is normalised, that is, 0= D*<|.

The definition of the major axis can be exlended
for gray level pictures where the grav level is the
weight of a pixel. In 1hal case the detinition ol D¢
in (7) can also be extended.
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