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Abstraci: Minimization of the variance of the difference between estimated response at lwo points maximized over all pairs of
points in the extrapolation region is taken as the criterion for selecting designs. Optimal designs under the criterion are derived

for second-order models.
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1. Introduction and preliminaries

In recent years it has been recognized that even
in response surface designs the difference between
estimated responses at two points is often of
greater interest than the estimated response at an
individual location in the factor space (see Herz-
berg, 1967; Atkinson, 1970; Hader and Park, 1978;
Box and Draper, 1980; Mukerjee and Huda, 1985).
In such situations, designs minimizing the vari-
ance of the difference between estimated re-
sponses at two points maximized over all pairs of
points in the region of interest may be preferable
to others. Huda and Mukerjee (1984) obtained the
optimal second-order designs under this ‘mini-
max’ criterion when the region of interest and the
region of experimentation are the same hyper-
sphere. In the present paper, optimal second-order
designs are derived taking the region of interest to
be the extrapolation region consisting of a hyper-
spherical shell surrounding a hyperspherical re-
gion of experimentation.

let x,,...,x, be k quantitative factors under
investigation and let z= {x = (x,..., X, );
I ,x? < 1} be the region of experimentation. The

surface designs, second order.

region of interest z is the extrapolation region
given by 2={x; 1 <T* x?< R?}. Let the ex-
pected value of the response y(x) at point x be
given by a second degree polynomial regression
model. Observations are assumed to be uncorre-
lated and to have a common variance which,
without loss of generality, is taken to be unity.

A design £ is a probability measure on z. In
what follows we shall only be concerned with
rotatable designs since it is well-known (Kiefer,
1960) that for polynomial regression in hyper-
spherical regions, the optimal designs under the
type of criterion considered are also rotatable.
Herzberg (1967) derived that for a second-order
rotatable design

N Var{ 3(x) - 5(z)}
=c7'(p2+pt - 2p,p, cos §)
+f '} (1 — cos?6)
+(2/((k+2)f~ ke?)} ™"
x{(k+1)f= (k=1 } (=), (1)

where p(x), $(z) are the estimated responses at
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points x, z, p=IX{ ,x) pf=Xfz}, 6=
cos™'(ZX \x,z,/p.p,). N is the number of experi-
ments performed according to £, c¢= f,x2¢(dx),
f=3fx'¢(dx) (i=1,2,.... k). Since the region
2 is a hypersphere of unit radius, we have (cf. Box
and Hunter (1957))

O<c<l/k, ke*/(k+2)<f<e/(k+2). (2)

The rest of the paper considers the problem of
selecting ¢ and f, subject to (2), such that the
maximum of N Var{ $(x)—j(z)}, over x,z€ =,
is minimized.

2. The minimax design

As in Huda and Mukerjee (1984), it can be
readily seen from (1) that the only admissible
designs for the problem under consideration are
those for which /= c/(k + 2). Further, one of the
points maximizing N Var{ j(x)— y(z)) is always
on the outer surface of z, i.e., at a distance R
from the origin. Hence the problem may be rewrit-
ten as

V(c, ¢t, 8)

O<c<l/k 1/R<1€10glcm

where 1 =p,/R and
V(c,t,8)=c'R*(1 +1%*— 21 cos 8)
+c7'RY2(1 - cos?0)(k + 2)
+{2c(1 - ke)) T'R*(1 - ?)
X {(k+1)—(k—=1)(k+2)c).
Partial differentiation with respect to § shows
that for fixed ¢, ((0<c<1/k, 1/R<t<1),
V(c, t, 8) has a unique maximum over § (0 <6 <
w) at 6 = cos™'{~(R%(k + 2))"'}. Writing
V(e, t) for V(c, ¢, 6), it may be seen that
V(e, 1) =hy(e) +hy(c)e? + hy(c)?,

where hy(c), h,(c), hy(c) are functions exclu-
sively of ¢ and h,(¢)>0, for every ¢ (0 <c<
1/k). Hence for each fixed ¢, the maximum of
V(c, 1), over ¢, is attained either at 1=1 or at
t=1/R. Thus the problem reduces to finding ¢
(0 <c<1/k) such that max{¥(c, 1), V(c, 1/R)}
= V(c¢), say, is minimized.
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Fig. 1.

It is easily seen that ¥(c¢, 1/R) < V(c, 1) for al
¢ such that 0 < ¢ g c*, where
c*=(R*+1)(k +3)

Z{(R*+ 1)(k +2)(k +1) -4}
<1l/k.

Also V(e,1/R)=V(c. 1) if and only if c=¢c*,
Now WV(c, 1) = {(k + )R> + 1}3/(k + 2x is
strictly decreasing in c¢. Further, differentiatiop
with respect to ¢ shows that V(c, 1/R) hasa
unique minimum at ¢ = ¢, where

z=[k+k‘/2(R2—1)

/{(k+3)(k1+ klz)

+ {(Rz—l)z(k+1)}m]_l

It may be seen that ¢ <c* for all k > 1. There
fore, for the optimal design we must have ¢ =c’.
A rough sketch of ¥(c, 1), V(c. 1/R) and V(c)1is
provided in Figure 1 in order to illustrate our
derivation of the optimal design.

3. Comments

From the value of c* it can be seen that the
optimal design puts mass
a(k, R)={2(R*+1) -4}
Z{(R*+1)(k +2)(k +1) - 4)
at the origin and mass 1 —a(k, R) uniformb
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distributed over the surface of the hypersphere z.
Thus our optimal design always puts greater mass
on the surface than that put by second-order
D-optimal design, which puts mass

k(k+3)/{(k+1)(k+2)}

on the surface. However, in the limit R — oo, our
optimal design converges to the D-optimal design.
On the other hand, limg ., a(k. R)=0, and as
expected the optima!l design converges to a singu-
lar design putting all the mass on the surface of
the hypersphere z. Construction of discrete (ex-
act) designs with ¢=c¢* is not considered here.
However, many of the available second-order
rotatable designs can be seen to have ¢ close to
the optimal value c*.
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