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1. Introduction

Consider a positive measure p on R? not con-
centrated on a line such that its Laplace transform

LF(0)=L__exp(0, Hu(dr)

exists on a subset of R? with a non-empty interior
@(p). It is well-known that O(p) is convex. Now
for 8 € () we write the cumulant transform

k,(8)=log L,(8).

and

Pdr) =exp((8. 1) — k,(8)}u(dr).
The family of probability measures
F=F(p)= [Py 0€6(p))

is known as the natural exponential family (NEF)
generated by u. In this paper we shall consider the
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ition, Gamma distribution. independence. natural

two-parameter exponential family on R given by
dPy(x) =a(8)b(x)exp{8u(x)+6,x}dx.
x€R. (1)

Therefore the NEF associated with it in R* is
generated by the image p in R? of the measure
b(x)dx on R by the map x —[u(x). x]. Here
k,(6)= —log a(8). If I, denotes the interior of
lhe closed convex hull of the support of p |n R*
and T, the image of 8(p) by k.(8) in R>. the
family is said to be steep if /= T,. Let

9k,(8) 3k,(8)
(r.m)= 38, " a6,

= (E,[u( x)]. Eo(X)).

where X is the real random variable with distribu-
tion (1).

If O, is the projection of &(x) by the mapping
(6,. 6,)— 8, and 7, the projection of Ty by the
map (1. i) =7 (i=1.2 and j=1.2). then by
Lemma 3.1 of Barndorff-Niclsen and Blaesild
(BNB) (1983). for any (6,. 1) in €, X T,. there
exists a unique 8§, and a unique 7, such that
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(8,, 8;) € B(p). (1, 1) €T, and

3%,(6,. 8:(8:, )

7(8,, TZ) = 26, .

and

:= 3",,(0.- 6,(6,, "'z))
LA ———302 .

We shall from now on assume that (1) is both
steep and satisfies the above properties.

2. A decomposition

Suppose that X,, X,,..., X, is a random sam-
ple from (1), we define

The following proposition was established in BNB
(1983, Corollary 5.4).

Proposition 1. Suppose that for the exponential
model (1)

(1) 6,(8,, 7,) = —8,h(1,) for some function h,

(2) 1, € I with probability 1,

(3) for every ¢ > 1, ¢ int @(p) C int O(u),

(4) u is continuous,
then one has

(a) X, = (is distributed as) P,y

(b) u’ exists and h(7) = u’(7),

(¢) v, is independent (1) of X,,,

(d) the Laplace transform of v, defined for all s
such that 8, +s/n€ 6, is

E, (exp sv,) =exp— { M(n8, +5) — M(nb,)}
+n{M(ﬂ| +n7ls) - M(0,))

for 8, € 6,, for some real valued function M on
int8,.

According to Theorem 3.2, BNB (1983, a) mod-
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els satisfying the above assumptions are said to be
strongly reproductive. Now let
Ry=klu,—u(x,)] fork=2.3.....n.

and

Q0,=R,, for k=3,....,n.

4]

Qi=R,~R,,

We then have the following lemma.

Lemma. Let X,, X,,.... X, be a random sample
from a steep model given by (1). satisfying the
conditions of Proposition 1. Then Q. Q;,....0,
are independent and, writing g.(8,, 5)=
M(nb, + ns) — M(n6,),

E a,(exP sQ,)

=exp{ —g.(81. s) + £.-1(8,. 5) + g,(8,, 5)}
foralln.

Proof. From Proposition 1, @, 1 X, for all k=
2,3,...,n. Moreover @, is a function of X,_,.
and x;, alone. One can then show thal
(Q,. Oy.-...0Q,. X,) are mutually independent.
Indeed it is easy to see that Q, 1 @, Thus if
Y, = 8:(Qs). where g, is a bounded function (in
our case, we let Y, =exp(—s5,0,)) we can use
induction on n to show that E(Y,. }; -+ ¥, |X,)
=E(Y,) - - E(Y,). Hence we have

E(exp 5Q,) = E(exp sR;)/E(exp sR)
=exp{ —2,(6,. 5) +8:(8,. 5)
+g,(8,.5)).
and in general, since 0, =R, - R, _,.
E(exp sQ,) = exp( ~8,(8,. s) +5,_,(6,. 5)
+8,(8,.5)).

3. The main result

In a personal communication, Blaesild has,
shown that, if for all ¢>1, Q.. Q,..... Q, are
identically distributed under P, for some § €
O(p) and every n € Z*, then their common distri-
bution is Gamma. We shall show here that if 0,
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and @, are identically distributed under P, for
some 6, € ©(p) and every ¢ > 1, then their com-
nmon distribution is gamma. The same proof goes
through essentially for any @, and Q, (i # ). if Q,
and Q, are assumed to have identical distribution.
Our proof is based on Proposition 2 a generalized
version of the Choquet—Deny theorem which can
be derived from a general result due to Deny
(1961). Elementary real analysis proofs of the
result can be found in Ramachandran and Prakasa
Ruo (1984), and Ramachandran (1987) and a proof
using the Krein—Milman theorem in Lau and Rao
(1984).

Proposition 2. Let f be a i non-negative
real valued function on R and p a sigma-finite
measure on the Borel subsets of R such that

f(x) =/_:/(x +y)du(y) forallxeR,

then
f(x) = 4,(x) exp(A,x)
+A4,(x) exp(A,x) forallxeR,

where A, and A, are continuous, non-negative and
periodic with every member of the support of p as
period, and A, and X\, are solutions of the equati.
in A given by

f_:eXP(Xy) dp(y)=1.

( A1 most two such A's exist.)

Theorem. If Q,, and Q, as defined in (3) are
identically distributed under P,y for every ¢ > 1 and
some 8, € O(p), then their common distribution is
gamma.

Proof. Under the above assumptions and the as-
sumptions of Proposition 1, we may, by reparame-
trization assume, without loss of generality, that
Q, and @, are identically distributed under P, for
every 6> 0. This in turn implies that, for every
8,>0, s>0,

M(38, + 35) — 2M(26, + 25) + M(6, +5)
=M(38,) - 2M(28,) + M(6,).
Recall that M(28, + 2s5) — M(26,) is the loga-
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rithm of E(exp sQ,); therefore M” exists and is
= 0. Differentiating with respect to s twice and
letting s — 0, we see that, for every 8§, > 0,

9M " (38,) — 8M”(20,) + M (8,) =0.

With the substitution L(x)= M(e*), x €R, the
above equation becomes

L({u+n2)=3L(u+In3)+iL(u), u€ER.
or
L(u)=3L(u+1n3)+}L(u—In2), ueR.

Note that L > 0 on R (since M(8, + s) — M(6,) is
the logarithm of a Laplace transform, its second
derivative with respect to s is >0 for all s> 0,
8,>0,ie, M”20 on (0, »)).

Applying Proposition 2 to equation (4), we see
that

L(u) = 4,(u) exp(Au) + A;(u) exp(A,u)

where 4, and A, are continuous and periodic
with In? and In 2 as periods, that is, with In 3 and
In 2 as periods. These periods being incom-
mensurable, 4, and A4, are necessarily constants,
and A, and A, are solutions of the equation

1=3(3)"+i(®)" ()
or 22+2 =32+A 41
By inspection it is clear that A= —2 and A=

—1 are solutions. It is easily seen by considering
the map A —32**—23*X 11 that they are the
only roots of (5). Thus there exist A, and 4, >0
such that

" 4 A
M (s)=Tl+s_:

fors>0
or
M(s)=A(sIns—5)—A,In s+ A;s+ A,.

Noting that M(3s) —2M(2s)+ M(s) is a con-
stant for all s > 0, we see that

Ay(3sIn3—-4s5In2)+A4,(—In3+1n2)
is independent of s and hence 4, = 0. Thus

M(s)=A,+Ay—A; In s.
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Hence
~M(26, +2s) + M(20,) + 2M(0, +5) — M(6,)

5
= —Az ln(l + '0—,],

so that

sy "
E(exp sQ,)=(1+0—) .

1
Since A, is positive, it follows that @, is gamma
distributed.

Observe that when u(x) = x? (the normal case)
and u(x)=1/x (the inverse-Gaussian case) A,
= }.and Q, and Q, are chi-squared distributed.
Aside from these two cases we are unaware of
other examples of u(x) when gamma distributions
arise.
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