ON A PROPERTY OF STRONGLY REPRODUCTIVE EXPONENTIAL FAMILIES ON R

B. RAMACHANDRAN and V. SESHADRI

Indian Statistical Institute, Calcutta, India and McGill University, Montreal, Quebec

Received May 1987

Abstract: Strongly reproductive exponential models with affine dual foliations are known to allow of a decomposition analogous to the standard decomposition theorem for Chi-squared distributed quadratic forms in normal variates. It is shown that when the components are identically distributed, then necessarily each component follows the gamma law

AMS 1980 Subject Classifications: Primary 62E10; Secondary 62E15.

Keywords: affine dual foliations, Choquet-Deny theorem, decomposition, Gamma distribution, independence, natural exponential family.

1. Introduction

Consider a positive measure μ on \mathbb{R}^2 not concentrated on a line such that its Laplace transform

$$L_{\mu}(\theta) = \int_{\mathbf{R}^{2}} \exp(\theta, t) \mu(\mathrm{d}t)$$

exists on a subset of \mathbb{R}^2 with a non-empty interior $\Theta(\mu)$. It is well-known that $\Theta(\mu)$ is convex. Now for $\theta \in \Theta(\mu)$ we write the cumulant transform

$$k_{u}(\theta) = \log L_{u}(\theta),$$

and

$$P_{\theta}(\mathrm{d}t) = \exp\{\langle \theta, t \rangle - k_{\mu}(\theta)\} \mu(\mathrm{d}t).$$

The family of probability measures

$$F = F(\mu) = \{P_{\theta}; \theta \in \Theta(\mu)\}$$

is known as the natural exponential family (NEF) generated by μ . In this paper we shall consider the

Research of the authors was supported by NSERC and FCAR grants.

two-parameter exponential family on R given by

$$dP_{\theta}(x) = a(\theta)b(x) \exp\{\theta_1 u(x) + \theta_2 x\} dx.$$

$$x \in \mathbb{R}.$$
 (1)

Therefore the NEF associated with it in \mathbb{R}^2 is generated by the image μ in \mathbb{R}^2 of the measure b(x) dx on \mathbb{R} by the map $x \to [u(x), x]$. Here $k_{\mu}(\theta) = -\log a(\theta)$. If I_F denotes the interior of the closed convex hull of the support of μ in \mathbb{R}^2 and T_F the image of $\theta(\mu)$ by $k'_{\mu}(\theta)$ in \mathbb{R}^2 , the family is said to be steep if $I_F = T_F$. Let

$$\begin{aligned} (\tau_1, \, \tau_2) &= \left(\frac{\partial k_\mu(\theta)}{\partial \theta_1}, \, \frac{\partial k_\mu(\theta)}{\partial \theta_2} \right) \\ &= (\mathbb{E}_\theta[u(X)], \mathbb{E}_\theta(X)), \end{aligned}$$

where X is the real random variable with distribution (1).

If Θ_i is the projection of $\Theta(\mu)$ by the mapping $(\theta_1, \theta_2) \rightarrow \theta_1$ and T_r the projection of T_r by the map $(\tau_1, \tau_2) \rightarrow \tau$ (i = 1, 2 and j = 1, 2), then by Lemma 3.1 of Barndorff-Nielsen and Blaesild (BNB) (1983), for any (θ_1, τ_2) in $\Theta_1 \times T_2$, there exists a unique θ_2 and a unique τ_1 such that

$$(\theta_1, \theta_2) \in \Theta(\mu), (\tau_1, \tau_2) \in T_F$$
 and

$$\tau(\theta_1, \tau_2) = \frac{\partial k_{\mu}(\theta_1, \theta_2(\theta_1, \tau_2))}{\partial \theta_1},$$

and

$$\tau_2 = \frac{\partial k_{\mu}(\theta_1, \theta_2(\theta_1, \tau_2))}{\partial \theta_2}.$$

We shall from now on assume that (1) is both steep and satisfies the above properties.

2. A decomposition

Suppose that $X_1, X_2, ..., X_n$ is a random sample from (1), we define

(i)
$$\bar{x}_n = \left(\frac{1}{n}\right) \sum_{i=1}^n X_i$$
,

$$(ii) \ \overline{u}_n = \left(\frac{1}{n}\right) \sum_{i=1}^n u(X_i),$$

(iii)
$$\bar{t}_n = (\bar{u}_n, \bar{x}_n)$$
, and

(iv)
$$v_n = \overline{u}_n - \overline{x}_n$$
.

The following proposition was established in BNB (1983, Corollary 5.4).

Proposition 1. Suppose that for the exponential model (1)

- (1) $\theta_2(\theta_1, \tau_2) = -\theta_1 h(\tau_2)$ for some function h,
- (2) $I_n \in I_F$ with probability 1,
- (3) for every c > 1, c int $\Theta(\mu) \subseteq \text{int } \Theta(\mu)$,
- (4) u is continuous.

then one has

- (a) $\vec{x}_n \approx$ (is distributed as) $P_{n\theta}$
- (b) u' exists and $h(\tau_2) = u'(\tau_2)$,
- (c) v_n is independent (\perp) of \bar{x}_n ,
- (d) the Laplace transform of v_n defined for all s such that $\theta_1 + s/n \in \Theta_1$ is

$$\mathbf{E}_{\theta_1}(\exp sv_n) = \exp - \left\{ M(n\theta_1 + s) - M(n\theta_1) \right\}$$
$$+ n \left\{ M(\theta_1 + n^{-1}s) - M(\theta_1) \right\}$$

for $\theta_1 \in \Theta_1$, for some real valued function M on $int\Theta_1$.

According to Theorem 3.2, BNB (1983, a) mod-

els satisfying the above assumptions are said to be strongly reproductive. Now let

$$R_k = k \left[\bar{u}_k - u(\bar{x}_k) \right]$$
 for $k = 2, 3, \dots, n$.

and

$$Q_2 = R_2$$
, $Q_k = R_k - R_{k-1}$ for $k = 3, ..., n$.

We then have the following lemma.

Lemma. Let X_1, X_2, \ldots, X_n be a random sample from a steep model given by (1), satisfying the conditions of Proposition 1. Then Q_2, Q_3, \ldots, Q_n are independent and, writing $g_n(\theta_1, s) = M(n\theta_1 + ns) - M(n\theta_1)$,

$$\mathbf{E}_{\theta_n}(\exp sQ_n)$$

$$= \exp\{-g_n(\theta_1, s) + g_{n-1}(\theta_1, s) + g_1(\theta_1, s)\}\$$
for all n .

Proof. From Proposition 1, $Q_k \perp \overline{x}_k$ for all $k = 2, 3, \ldots, n$. Moreover Q_k is a function of \overline{x}_{k-1} and x_k alone. One can then show that $(Q_2, Q_3, \ldots, Q_n, \overline{x}_n)$ are mutually independent. Indeed it is easy to see that $Q_2 \perp Q_3$. Thus if $Y_k = g_k(Q_k)$, where g_k is a bounded function (in our case, we let $Y_k = \exp(-s_kQ_k)$) we can use induction on n to show that $\mathbb{E}(Y_1, Y_2 \cdots Y_n | \overline{x}_n) = \mathbb{E}(Y_1) \cdots \mathbb{E}(Y_n)$. Hence we have

$$E(\exp sQ_3) = E(\exp sR_3)/E(\exp sR_2)$$

= $\exp\{-g_3(\theta_1, s) + g_2(\theta_1, s) + g_3(\theta_1, s)\},$

and in general, since $Q_n = R_n - R_{n-1}$.

$$E(\exp sQ_n) = \exp\{-g_n(\theta_1, s) + g_{n-1}(\theta_1, s) + g_1(\theta_1, s)\}.$$

3. The main result

In a personal communication, Blaesild has shown that, if for all c > 1, Q_2 , Q_3 , ..., Q_n are identically distributed under P_{i,θ_0} for some $\theta_0 \in \mathcal{O}(\mu)$ and every $n \in \mathbb{Z}^*$, then their common distribution is Gamma. We shall show here that if Q_2

and Q_3 are identically distributed under $P_{c\theta_0}$ for some $\theta_0 \in \Theta(\mu)$ and every c > 1, then their common distribution is gamma. The same proof goes through essentially for any Q_i and Q_j ($i \neq j$), if Q_i and Q_j are assumed to have identical distribution. Our proof is based on Proposition 2 a generalized version of the Choquet-Deny theorem which can be derived from a general result due to Deny (1961). Elementary real analysis proofs of the result can be found in Ramachandran and Prakasa Rao (1984), and Ramachandran (1987) and a proof using the Krein-Milman theorem in Lau and Rao (1984).

Proposition 2. Let f be a continuous non-negative real valued function on \mathbb{R} and μ a sigma-finite measure on the Borel subsets of \mathbb{R} such that

$$f(x) = \int_{-\infty}^{\infty} f(x+y) \, d\mu(y) \quad \text{for all } x \in \mathbb{R},$$

then

$$f(x) = A_1(x) \exp(\lambda_1 x) + A_2(x) \exp(\lambda_2 x) \quad \text{for all } x \in \mathbb{R},$$

where A_1 and A_2 are continuous, non-negative and periodic with every member of the support of μ as period, and λ_1 and λ_2 are solutions of the equation in λ given by

$$\int_{-\infty}^{\infty} \exp(\lambda y) \ \mathrm{d}\mu(y) = 1.$$

(At most two such \(\lambda\)'s exist.)

Theorem. If Q_2 , and Q_3 as defined in (3) are identically distributed under $P_{c\theta_0}$ for every c > 1 and some $\theta_0 \in \Theta(\mu)$, then their common distribution is gamma.

Proof. Under the above assumptions and the assumptions of Proposition 1, we may, by reparametrization assume, without loss of generality, that Q_2 and Q_3 are identically distributed under P_{θ} for every $\theta > 0$. This in turn implies that, for every $\theta_1 > 0$, s > 0,

$$M(3\theta_1 + 3s) - 2M(2\theta_1 + 2s) + M(\theta_1 + s)$$

= $M(3\theta_1) - 2M(2\theta_1) + M(\theta_1)$.

Recall that $M(2\theta_1 + 2s) - M(2\theta_1)$ is the loga-

rithm of $\mathbb{E}(\exp sQ_2)$; therefore M'' exists and is $\geqslant 0$. Differentiating with respect to s twice and letting $s \to 0$, we see that, for every $\theta_1 > 0$,

$$9M''(3\theta_1) - 8M''(2\theta_1) + M''(\theta_1) = 0.$$

With the substitution $L(x) = M(e^x)$, $x \in \mathbb{R}$, the above equation becomes

$$L(u + \ln 2) = \frac{9}{8}L(u + \ln 3) + \frac{1}{8}L(u), \quad u \in \mathbb{R}.$$

$$L(u) = \frac{9}{8}L(u + \ln \frac{3}{2}) + \frac{1}{8}L(u - \ln 2), \quad u \in \mathbb{R}.$$

Note that $L \ge 0$ on **R** (since $M(\theta_1 + s) - M(\theta_1)$ is the logarithm of a Laplace transform, its second derivative with respect to s is ≥ 0 for all s > 0, $\theta_1 > 0$, i.e., $M'' \ge 0$ on $(0, \infty)$).

Applying Proposition 2 to equation (4), we see that

$$L(u) = A_1(u) \exp(\lambda_1 u) + A_2(u) \exp(\lambda_2 u)$$

where A_1 and A_2 are continuous and periodic with $\ln \frac{1}{2}$ and $\ln 2$ as periods, that is, with $\ln 3$ and $\ln 2$ as periods. These periods being incommensurable, A_1 and A_2 are necessarily constants, and λ_1 and λ_2 are solutions of the equation

$$1 = \frac{9}{8} \left(\frac{3}{2}\right)^{\lambda} + \frac{1}{8} \left(\frac{1}{2}\right)^{\lambda}$$
or $2^{2+\lambda} = 3^{2+\lambda} + 1$

By inspection it is clear that $\lambda = -2$ and $\lambda = -1$ are solutions. It is easily seen by considering the map $\lambda \to 3^{2+\lambda} - 2^{3+\lambda} + 1$, that they are the only roots of (5). Thus there exist A_1 and $A_2 > 0$ such that

$$M''(s) = \frac{A_1}{s} + \frac{A_2}{s^2}$$
 for $s > 0$

or

$$M(s) = A_1(s \ln s - s) - A_2 \ln s + A_3 s + A_4.$$

Noting that M(3s) - 2M(2s) + M(s) is a constant for all s > 0, we see that

$$A_1(3s \ln 3 - 4s \ln 2) + A_2(-\ln 3 + \ln 2)$$

is independent of s and hence $A_1 = 0$. Thus

$$M(s) = A_4 + A_3 - A_7 \ln s$$
.

Hence

$$-M(2\theta_1+2s)+M(2\theta_1)+2M(\theta_1+s)-M(\theta_1)$$

= $-A_2 \ln\left(1+\frac{s}{\theta_1}\right)$,

so that

$$\mathbb{E}(\exp sQ_2) = \left(1 + \frac{s}{\theta_1}\right)^{-A_2}.$$

Since A_2 is positive, it follows that Q_2 is gamma distributed.

Observe that when $u(x) = x^2$ (the normal case) and u(x) = 1/x (the inverse-Gaussian case) $A_2 = \frac{1}{2}$, and Q_2 and Q_3 are chi-squared distributed. Aside from these two cases we are unaware of other examples of u(x) when gamma distributions arise.

Acknowledgements

We would like to thank Gerard Letac for stimulating discussions on this work as well as the critical reading of the manuscript.

References

Barndorff-Nielsen, O. and P. Blaesild (1983). Exponental models with affine dual foliations. Ann Status 11, 753-769 Barndorff-Nielsen, O. and P. Blaesild (1983a). Reproductor exponential models. Ann. Statust. 11 770-782.

Deny, J. (1961). Sur l'equation de convolution µ=µ•0, Semin. Theor. Potentiel M. Brelot, Fac. Sci. Paris, No. 5.

Lau, K.S. and C.R. Rao (1984), Solution to the ICFE on the whole line, Sankhyā Ser. A 46, 311-318.

Ramachandran, B. and B.L.S. Prakusa Rao (1984). On the equation $f(x) = \int_{-\infty}^{\infty} f(x+y) d\mu(y)$. Sankhyā Ser. A 46, 326–338.

Ramachandran, B. (1987). On the equation $f(x) = \int_{-\infty}^{\infty} f(x + y) d\mu(y)$, $x \in \mathbb{R}$, to appear in Sankhvä Ser. A 49.