PGM₁ Subtype Polymorphism in 14 Endogamous Dravidian-Speaking Populations of South India

A.P. REDDY, B.N. MUKHERJEE, M. VIJAYAKUMAR, AND K.C. MALHOTRA
Anthropometry and Human Genetics Unit, Indian Statistical Institute, Calcutta 700035, India

KEY WORDS Gene frequency, Social variation, Inter-population heterogeneity

ABSTRACT Red cell hemolysates from 1,004 persons belonging to 14 population groups drawn from four South Indian states, Andhra Pradesh, Tamil Nadu, Karnataka, and Kerala, were tested for PGM₁ subtypes. The groups are characterized by a high frequency of phenotype 1+1+ (range 36.98-71.64%) and the allele 1+ (range 60-79%). The groups exhibit marked heterogeneity for PGM₁ locus. The results show a clear demarcation between tribes and Brahmin groups.

The enzyme phosphoglucomutase (E.C. 2.7.5.1) occurs in all human tissues and is controlled by three unlinked autosomal loci designated PGM1, PGM2, and PGM3. A polymorphism within the PGM locus 1 of human red cells, with two common alleles, PGM1 and PGM7, was first demonstrated by Spencer et al. (1964). Bark et al. (1976) and Kuhnl et al. (1978), using isoelectric focusing in acrylamide, demonstrated ten common phenotypes and reported the existence of four common alleles instead of two on the PGM, locus. The subsequent works of Sutton and Burgess (1978), Welch et al. (1978), and Kuhnl and Spielmann (1977) confirmed the four allele hypothesis.

Rather limited data are available to date on PGM locus 1 subtyping among the Indian populations; altogether 17 populations, three from Himachal Pradesh (Papiha et al., 1981), three from Orissa (Reddy et al., 1982; Papiha, 1983), one from Bihar (Das et al., 1983), eight from West Bengal (Mukherjee et al., 1982), and two from Maharsabtra (Reddy, unpublished data) have been studied so far. It is noteworthy that date on South Indian populations are conspicuous by their absence.

The purpose of this paper therefore is to report, for the first time, the distribution of the four common alleles of PGM, among the 14 population groups of four South Indian states, namely, Andhra Pradesh, Karnataka, Kersla, and Tamil Nadu.

MATERIALS AND METHODS

As part of the ongoing joint Indo-Soviet collaborative anthropogenetic project, during January through March, 1983, blood samples were collected from 1,004 individuals belonging to 14 endogamous populations spread over the four Dravidian-speaking South Indian states, namely, Andhra Pradesh, Karnataka, Kerala, and Tamil Nadu. The names of the populations investigated together with sample sizes are given in Table 1 and their approximate geographical locations are shown in Figure 1.

The caste system is a unique social institution in India, which, in origin, was based mainly on specialized social and occupational functions. Today, each caste and subcaste behaves as an endogamous community. The scheduled castes referred to here are the endogamous Hindu communities who do not belong to the traditional caste hierarchy and have been declared as "scheduled caste" for administrative purpose by the Government of India.

The three populations investigated from Andhra Pradesh include the Vaidic Brahmin, a priestly caste; the Vysya, a trader caste; and the Kamma, an agriculturist caste. These three groups belong to the Tenali Taluk of Guntur district. In Tamil Nadu, the castes studied were the Chettiar, a trader group from Thirupattur taluk of Ramnad district, and the two scheduled castes, Pariah and Kallan, who were from Trimangalam and Usliampattam Talukas of Madurai and Ramnathpuram districts, respectively. From Karnataka, four populations were studied,

Fig. 1. Locations of the populations studied.

namely, a horticulturist caste of Sirsi taluk of the North Kanara district called the Havik Brahmin; a Saivite religious population, the Lingayat: an agricultural population, the Vokkaliga; and a tribe, the Jenu Kuruba. The latter three populations were sampled from Mysore and Hunsur districts. The four populations investigated from Kerala were a priestly group, the Namboodri Brahmin; an agricultural caste, the Ezhavas; a scheduled caste, the Pulayan from Kottayam district; and the Urali tribe from Idukki district. The ethnographic evidence shows that all the Brahmin and non-Brahmin castes are recent immigrants in this region with variable antiquity (Hutton, 1951), whereas the tribes are the autochthones of the area (Sarkar, 1954).

The practice of consanguineous marriages is prevalent in South India among most of these communities, and it ranges between 12.7% and 63.7% (Roychoudhury, 1979). The castes and tribes under study do practice consanguineous marriages, mostly either maternal uncle-niece or maternal cross-cousin types.

Blood samples were airlifted to Calcutta, and the PGM₁ subtyping was performed in the Anthropometry and Human Genetics Unit of the Indian Statistical Institute, according to the modified IEF method of Reddy et al. (1982), using LKG 2117 Multiphore apparatus as follows. A thin-layer (1 mm) polyacrylamide gel plate was prepared using 7 ml stock solution of 19.4% acrylamide and 0.6% bisacrylamide and adding to it 0.4 ml of pH 4-6 and 1.5 ml of pH 5-7 pharmalytes (Pharmacia Fine Chemicals, Uppsalla, Sweden), 17 ml distilled water, 0.08 ml TEMED, and 0.7 ml ammoniumpersulphate solution (1.2%). The anodal and cathodal electrode so lutions were 1 M H3PO4 and 1 M NaOH, respectively. The gels were prefocussed at 480 V for 45 min, and the hemolysate samples were soaked in 5 × 6-mm filter paper strips and applied on the gel at a distance of 2 cm from the anode. For the first 30 min, a current at 800 V was passed through the gel. and then the sample strips were removed and the focusing was again continued with increased power at 1,000 V for 50 min; the current was never beyond 24 MA. Visualization of bands was achieved following the method of Spencer et al. (1964).

RESULTS

Table 1 shows the PGM₁ phenotype frequency results obtained in the 14 endogs mous populations of South India. Only eight

	:	;							-	PGM, Subtypes	урев							
	Map.	Zeat.		+	۱ä	1+1-	~	1	À	+2+	ř	1+2-	8	2+	2+	2+2-		1 2
Population	No.	ક		88	0	*2	æ	88	a	88	E .	₽8	E	8 8		¥	<u>c</u>	86
Havik Brahmin	-	78	47	60.26	11	14.10	61	2.56	12	15.38	0	0.00	4	5.13	2	2.56	۰	00.0
Vokkaliga	61	29	48	71.64	eo	4.48	0	0.00	80	11.94	0	00.0	2	7.46	es	4.88	0	0.00
Lingayat	e	37	19	51.35	က	8.11	0	0.00	12	32.43	0	0.00	2	5.41	-	2.70	0	0.00
Jenu Kuruba	4	106	51	48.11	4	3.77	7	0.95	39	36.79	0	0.00	2	4.72	4	3.77	81	1.89
Pulayan	2	73	27	36.98	9	4.11	4	5.48	31	42.47	0	0.00	10	6.85	m	4.11	0	0.00
Namboodri Brahmin	9	77	4	57.14	4	5.19	0	0.00	56	33.77	0	0.00	က	3.90	0	0.0	٥	0.0
Ezahava	7	48	58	54.16	m	6.25	0	0.00	14	29.17	0	0.00	81	4.17	6	6.25	0	0.00
Urali	89	53	23	43.40	6	16.98	0	0.00	10	18.87	8	3.77	9	11.32	2	3.77	-	1.88
Chettier	6	28	30	51.72	4	6.83	0	00.0	11	18.96	0	0.00	7	12.06	2	8.62	1	1.72
Kallan	01	62	28	45.16	9	9.68	4	4.65	17	27.42	0	00.0	2	8.06	2	3.22	0	0.00
Pariah	11	96	57	59.32	2	2.08	0	0.00	56	27.08	0	0.00	6	9.38	7	2.08	0	0.00
Vaidic Brahmin	12	100	20	50.00	80	8.00	-	1.00	¥	34.00	8	3.00	4	4.00	0	0.00	0	0.00
Kamma	13	67	38	58.21	2	2.99	0	0.00	98	38.80	0	0.00	0	0.00	0	0.0	0	0.00
Vysya	14	82	46	56.10	01	12.20	61	2.44	18	21.95	0	0.00	4	4.88	7	2.	0	0.00
Totals		1,004	535		72		14		284		9		62		53		4	

common phenotypes were observed in the present series. Not all occurred in every population examined. The types 1-2+ and 1-2- are not found in any of the present populations. The results show that the observed and expected phenotype frequencies are in reasonable agreement for each population. The type 1+1+ predominated in all the groups, ranging between 36.98% and 71.64% in the Pulayan and Vokkaliga, respectively. The next most prevalent types are 2+2+ and 1-1-. Only three groups showed the 2-2- type. Among the heterozygous types, 1+2+ shows the highest frequency in all the population groups, and rare variants of PGM1 subtype are not found here.

The estimated gene frequencies of the four common alleles are given in Table 2. The allele 1+ is the most common allele in all the groups, ranging between 60% and 79%. The lowest frequency is registered by allele 2-. Among the Namboodri Brahmins of Kerala and Kammas of Andhra Pradesh, it is totally absent. In this context, it is worth mentioning that the frequency of the 1+ allele among the two Brahmin groups is significantly higher than the tribes (Namboodri Brahmin × Urali, $\chi_3^2 = 11.85$; Havik Brahmin × Jenua Kuruba, $\chi_3^2 = 15.26$). The χ^2 homogeneity test based on gene frequencies was performed among the 14 South Indian populations. The total χ^2 value obtained (94.603, d.f. 39) is highly significant, demonstrating the existence of genetic differentiation between the populations for PGM, locus.

DISCUSSION

Including the present study, 31 population groups from India, with a total of 2,455 individuals, have been screened for the PGM, subtypes. The mean PGM₁ gene frequencia among the Brahmin and non-Brahmin casts and the tribes are presented in Table 3. With respect to 1+ allele, the frequency is highest among the Brahmins and lowest among the tribes; the non-Brahmin groups occupy as intermediate position. The 2- allele frequency is higher among the tribes than the caste groups.

To examine whether the PGM₁ locus reveals a geographical pattern, the available data on the Indian populations have been pooled under four geographical zones, i.e. South, North, East, and West. The populations of North India tend to show somewhat lower frequencies of the alleles 1+ and 2+ and higher frequencies of 1- and 2- than other regions in India (Table 4).

Table 5 gives the distribution of PGM₁ allele frequencies in various world populations including India. About 62% 1+ gene is observed among the Europeans (Welch et al.,

TABLE 3. Mean PGM₁ subtype gene frequencies in some Indian population groups

	No. tested		Mele fr	eqencie	:5
Populations	(N)	1+	2+	1 -	2-
Tribes	1,167	.6705	.2242	.0560	.0493
Non-Brahmins	1,019	.7215	.1935	.0623	.0229
Brahmins	269	.7678	.1656	.0571	.0093

TABLE 2. PGM₁ subtype gene frequencies in 14 South Indian

	рорина	tions			
	No. tested		Allele fr	equencie	8
Population	(N)	1+	2+	1-	2-
Havik Brahmin	78	.7500	.1410	.0960	.0130
Vokkaliga	67	.7985	.1567	.0224	.0224
Lingyat	37	.7162	.2298	.0405	.0135
Jenkuruba	106	.6840	.2500	.0280	.0380
Pulayan	73	.5030	.3010	.0750	.0210
Namboodri Brahmin	77	.7662	.2078	.0260	.0000
Ezhava	48	.7190	.2190	.0310	.0310
Urali	53	.6321	.2264	.0849	.0566
Chettiar	58	.6466	.2586	.0345	.0603
Kallan	62	.6371	.2339	.1129	.0161
Pariah	96	.7397	.2395	.0104	.0104
Vaidic Brahmin	100	.7250	.2100	.0500	.0150
Kamma	67	.7919	.1940	.0149	.0000
Vysya	82	.7317	.1707	.0854	.0122

TABLE 4. Mean PGM1 subtype gene frequencies in four regions of India

	No. tested		Allele fr	equencies	
Region	(N)	1+	2+	1-	2-
East	1,047	.7058	.1929	.0526	.0487
South	1,004	.7126	.2166	.0497	.0209
North	254	.6200	.1650	.1540	.0610
West	228	.6995	2171	.0679	.0153

TABLE 5. Frequencies of four common PGM_1 alteles in various world populations

1,886 1,94 1- 2+ 2- 1,188 1,189		No.					
188 614 1- 1- 2+ 2- 1- 1- 1- 1- 1- 1-	Population	Lested	:		,		
1,889 684 134 189 092 Wuchbe (1978) 2,000 610 160 172 067 (1978) 2,000 610 160 172 067 (1978) 501 628 130 184 069 (1978) 501 685 113 1164 069 (1978) 502 132 113 1164 069 (1978) 503 147 168 068 544 564 504 173 1142 068 078 Welbre (1978) 64 773 1142 068 078 170 170 70 647 150 173 071 Welbre (1978) 170 70 680 163 173 073 170 170 84 732 250 112 170 170 170 84 732 250 112 100 170 170		(AT)	-	<u>-</u>	*2	2-	References
291 619 143 1172 067 (Kinin) 2,000 610 160 160 170 070 Survass 218 628 113 197 194 049 Subers 246 681 130 139 194 049 Subers 246 681 132 132 139 109 Webbe 300 647 130 232 071 Webbe 102 703 1142 098 1028 Webbe 141 681 128 138 109 109 Tiplere 141 681 184 198 118 109 109 Tiplere 141 681 185 186 1189 1098 Tiplere 141 681 185 186 1199 1199 Tiplere 141 681 185 186 1199 1199 Tiplere 142 684 135 1197 043 Tiplere 143 686 006 128 1199 Papiba 144 686 006 223 040 Mukber 145 686 0070 040 250 000 Mukber 146 685 006 223 041 Mukber 147 686 0070 048 201 000 Mukber 148 685 006 223 040 Mukber 149 685 006 1126 000 Mukber 150 009 Mukber 160 000 000 000 Mukber 170 000 000 Mukber 180 000 000 000 Mukber 180 000 000 000 000 Mukber 180 000 000 000 000 000 000 000 000 000	England	1,888	.624	.134	180	.062	Weich et al (1978)
2,000 610 160 170 Suchase 501 628 130 194 049 Suchase 518 686 130 194 049 Suchase 546 130 132 115 069 Suchase 546 132 132 115 069 Weich e 300 547 130 232 071 Weich e 162 730 142 098 079 Tiplere 163 73 142 098 079 Tiplere 163 73 142 098 179 Tiplere 164 165 117 099 179 Tiplere 164 166 117 090 Tiplere 179 179 164 165 117 099 179 179 179 164 166 117 009 179 179 179 179 179 179 179	Cermany	291	619	.143	.172	.067	Kuhnl and Spielmann
501 628 130 150 150 218 656 117 194 049 246 681 132 115 049 246 681 132 115 019 300 547 130 156 071 64 733 114 158 073 77 773 114 088 072 77 773 117 088 072 84 773 174 179 083 141 680 1734 1179 083 70 664 1734 109 083 107 664 134 169 083 107 664 135 157 043 107 664 135 157 043 107 664 135 157 043 11 664 135 157 043 11 664 1	Sweden	2,000	610	96	160	020	(1977)
2181 6628 1130 1194 049 246 681 1130 1194 049 246 681 1132 1153 246 681 1132 1153 247 732 1154 1152 248 732 1142 1159 1028 241 188 288 294 1179 1028 241 188 288 294 1179 1028 241 188 294 1179 1028 241 188 288 294 1179 1028 241 188 288 294 1179 1028 241 188 288 294 1179 1028 241 188 288 294 1179 1028 241 188 288 298 1179 109 241 188 288 298 118 109 241 188 288 298 118 118 118 241 188 288 298 118 242 118 291 109 253 288 298 118 254 288 298 118 255 288 298 119 256 298 119 257 298 109 258 298 108 258 288 108 258 288 108 258 288 108 258 288 108 258 288 108 258 288 108 258 288 108 258 288 108 258 288 108 258 288 108 258 288 108 258 288 108 258 288 108 258 288 108				3	001	0/0	Suchason and Watterling
218 856 117 167 061 246 681 132 159 061 300 547 130 159 073 96 633 134 158 073 102 703 1142 088 072 773 1172 088 072 84 773 1172 043 84 773 124 042 042 84 773 126 139 042 84 768 134 169 050 84 769 134 169 050 84 769 134 169 062 99 580 169 173 043 141 621 134 169 050 150 664 134 169 062 107 664 135 157 043 118 668 066 123 04	Switzerland	201	.628	130	194	920	Catana at 1,1991
637 795 053 133 019 246 681 132 1159 019 300 547 1350 132 019 102 733 142 086 028 112 168 026 023 141 586 204 1179 025 141 586 163 1179 025 141 586 163 1179 025 141 587 163 1179 025 141 581 163 1179 025 141 581 163 1179 025 141 581 163 102 003 141 581 164 105 004 107 564 135 115 043 11 562 066 227 041 11 564 070 220 042 11 565 060	Japan	218	.656	117	187	2 2	Ministration (1981)
246 681 132 158 028 300 547 130 232 071 98 6533 114 158 028 64 773 1172 088 022 773 1172 088 022 77 773 1172 088 022 78 773 124 179 002 78 580 124 109 002 70 664 134 109 003 107 664 135 157 043 107 664 135 157 043 107 664 135 157 043 107 664 135 157 043 11 664 135 157 043 107 664 135 160 060 11 665 066 120 061 11 666 076 22	Gambia, West Africa	637	795	053	261	200	Nishigaxi et al. (1982)
300 547 150 222 071 98 533 142 168 026 102 773 142 168 026 773 142 108 023 81 586 204 1179 025 141 586 163 1179 025 141 588 163 1179 025 141 680 163 1179 025 141 681 163 1179 003 141 684 1184 106 005 153 141 231 043 107 664 136 157 043 107 664 136 167 043 110 664 136 167 043 11 664 136 167 043 11 665 066 227 042 110 666 070 220	Black and West Indian	246	189	130	021	610	Welch et al. (1978)
300 547 150 222 071 198 553 114 158 008 773 1172 018 008 773 1172 018 002 141 586 1179 009 141 660 118 002 141 621 134 109 003 141 621 1134 109 004 17 664 134 109 004 107 664 135 118 001 107 668 066 126 004 107 668 066 126 004 118 668 066 126 004 110 666 076 227 004 110 666 070 220 006 110 666 070 223 004 111 668 070 070 009	(domiciled in England)				901:	070.	welch et al. (1978)
102 733 184 188 188 1026 1026 1027 1029	Newfoundland African Black (southern)	300	.547	.150	.232	1.70.	Welch et al. (1978)
175 175	Pedi	80	600				
64 7,739 1,142 1088 0029 71 5,86 1,142 1088 0029 141 5,86 1,174 1,48 0032 141 5,86 1,174 1,135 0043 76 6,80 1,24 1,135 0043 70 6,81 1,24 1,199 0023 70 6,84 1,26 1,18 062 70 6,84 1,35 1,18 063 107 6,86 1,66 1,26 1,41 11 6,87 1,41 231 043 107 6,86 1,66 1,26 1,40 11 6,65 0,06 223 0,42 11 6,65 0,06 223 0,42 11 6,70 0,00 0,45 0,00 11 6,70 0,00 0,45 0,00 11 6,70 0,00 0,45 0,00 <t< td=""><td>Zulu</td><td>8 2</td><td>200</td><td>184</td><td>.168</td><td>920</td><td>Tipler et al. (1982)</td></t<>	Zulu	8 2	200	184	.168	920	Tipler et al. (1982)
173 773 171 148 0032 141 686 139 004 179 002 141 686 125 179 002 002 144 680 134 109 005 173 103 104 105 006 174 680 134 109 051 17 664 135 167 043 17 664 135 167 043 107 666 126 140 091 116 665 066 126 140 118 665 060 227 041 110 666 070 220 060 111 667 070 200 060 113 665 060 227 042 110 666 140 009 52 666 140 009 53 670	Kavango	200	05.7	142	860	.029	Tipler et al. (1982)
81 5.17 5.05 1.13 0.09 141 5.60 1.63 1.13 0.09 141 5.60 1.63 1.13 0.02 141 5.80 1.54 1.09 0.05 141 6.81 1.54 1.09 0.05 170 6.64 1.35 1.52 0.62 107 6.64 1.35 1.57 0.43 107 6.64 1.35 1.57 0.43 107 6.64 1.35 1.57 0.43 107 6.64 1.35 1.67 0.43 107 6.64 1.35 1.41 0.91 107 6.64 1.35 1.41 0.91 108 6.64 1.06 0.07 0.42 118 6.65 0.06 2.23 0.042 118 6.65 0.06 2.23 0.042 113 6.72 0.07 0.04 0.09 <	Herero	Š	202	.117	.148	.032	Tipler et al. (1982)
141 586 1294 1779 025 141 586 1250 1015 0003 141 521 1250 1015 0003 141 521 1.165 1.169 0.051 141 521 1.165 1.167 0.043 150 564 1.135 1.167 0.043 172 564 0.066 1.126 1.140 173 565 0.066 1.126 1.140 184 565 0.060 0.070 185 566 0.070 0.050 185 567 0.066 1.140 185 567 0.070 0.050 185 567 0.066 1.100 185 567 0.066 1.100 185 567 0.066 1.100 185 567 0.066 1.100 185 567 0.066 1.100 185 567 0.066 1.100 185 567 0.066 1.100 185 567 0.066 1.100 185 567 0.066 1.100 185 567 0.066 1.100 185 567 0.066 1.100 185 567 0.066 0.066 185 567 0.066 185 567 0.066 0.066 185 567 0.066 0.066 185 567 0.066 0.066 185 567 0.066 0.066 185 567 0.066 0.066 185 567 0.066 0.066 185 567 0.066 0.066 185 567 0.066 0.066 185 567 0.066 0.066 185 567 0.066 0.066 185 567 0.066	Kzalazadi	2 6	507	.056	139	060	Tipler et al. (1982)
141 1860 1.163 1.185	Fearing	10	286	.204	.179	.025	Tipler et al. (1982)
141 .621 .250 .012 .000 141 .621 .165 .162 .062 70 .664 .135 .167 .043 107 .646 .066 .126 .140 77 .646 .066 .126 .140 117 .646 .076 .227 .041 110 .665 .060 .227 .042 110 .666 .070 .223 .042 110 .666 .070 .223 .042 110 .665 .070 .223 .042 110 .665 .070 .223 .042 110 .665 .070 .223 .042 110 .665 .070 .045 .026 110 .665 .060 .060 .026 110 .671 .060 .009 .060 110 .060 .140 .009 <td< td=""><td>Khosian Kung</td><td>141</td><td>.660</td><td>.163</td><td>.135</td><td>043</td><td>Tipler et al. (1982)</td></td<>	Khosian Kung	141	.660	.163	.135	043	Tipler et al. (1982)
141 621 185 182 065 187 189	Nama	\$ 8	732	.250	.012	000	Tipler et al. (1982)
141 621 .165 .162 .062 70 .664 .135 .157 .043 39 .537 .141 .231 .091 107 .668 .066 .126 .140 72 .646 .076 .227 .041 118 .665 .060 .227 .042 100 .860 .070 .250 .042 113 .672 .070 .045 .025 113 .672 .070 .045 .005 89 .672 .070 .045 .009 83 .770 .019 .211 .000 83 .770 .048 .211 .000 84 .770 .048 .211 .000 85 .770 .048 .204 .009 86 .770 .048 .204 .009 87 .770 .009 .008 .008 <tr< td=""><td></td><td>9</td><td>080.</td><td>134</td><td>89</td><td>.051</td><td></td></tr<>		9	080.	134	89	.051	
141 .621 .165 .182 .062 70 .664 .135 .157 .043 39 .537 .141 .231 .043 107 .668 .066 .126 .140 118 .665 .076 .223 .041 101 .866 .076 .223 .042 103 .860 .040 .250 .066 113 .672 .070 .045 .025 113 .672 .070 .045 .025 113 .672 .070 .045 .026 113 .672 .070 .045 .026 113 .672 .070 .045 .026 113 .672 .070 .045 .026 23 .770 .019 .211 .000 23 .770 .019 .284 .053 100 .645 .055 .284 .053	Himselvel Dendonk						
141 521 155 152 062 70 664 135 157 043 39 537 .141 231 .043 107 668 066 .126 .140 72 646 076 .237 .041 111 665 .060 .223 .042 101 860 .070 .223 .042 113 672 .070 .245 .025 113 672 .078 .045 .025 89 .070 .066 .140 .009 53 .070 .075 .042 .009 53 .070 .070 .009 .009 54 .070 .070 .000 .000 54 .070 .070 .000 .000 54 .070 .070 .000 .000 65 .070 .070 .000 .000 67<	Gaddi Rainit Canara	:	į				
70 664 .135 .157 .043 39 .537 .141 .231 .043 107 .668 .066 .126 .140 118 .665 .076 .237 .041 101 .860 .076 .223 .042 113 .672 .070 .045 .026 113 .672 .070 .045 .025 113 .672 .070 .045 .025 113 .672 .070 .045 .025 123 .070 .045 .140 .009 23 .770 .019 .211 .000 23 .770 .019 .214 .009 24 .770 .019 .284 .008 25 .770 .019 .284 .053 100 .655 .284 .053 .055 24 .055 .285 .055	(tribe)	141	.621	.165	.152	.062	Papiha et al. (1981)
39 537 .141 .231 .043 107 .668 .066 .126 .140 72 .646 .076 .237 .041 118 .665 .060 .223 .042 100 .860 .070 .223 .042 113 .672 .070 .250 .086 113 .672 .070 .045 .005 53 .830 .086 .140 .009 223 .140 .000 .000 843 .086 .140 .000 843 .070 .019 .211 .000 843 .056 .038 .038 10 .645 .055 .245 .053	Gaddi Rainut Chamba	£					
39 .537 .141 .231 .091 107 .646 .076 .126 .140 118 .646 .076 .237 .041 101 .666 .076 .237 .042 103 .660 .070 .250 .060 113 .672 .070 .045 .025 113 .672 .070 .045 .025 113 .672 .070 .045 .025 123 .070 .045 .025 140 .000 .009 .009 23 .770 .019 .211 .000 24 .770 .048 .019 .009 25 .630 .048 .038 .055 .284 .053 10 .055 .284 .053 .055 .055 .055 .053	(tribe)	0	3 99	.135	.157	.043	Papiha et al. (1981)
107	Gaddi Brahmin, Chamba	98		:			
107 568 066 126 140 172 646 076 237 041 118 665 076 223 042 101 860 0,40 250 0,60 113 672 0,70 0,45 0,25 113 672 0,70 0,45 0,25 113 672 0,70 0,45 0,23 123 672 0,70 0,65 140 0,09 123 673 0,66 1,40 0,09 124 0,09 0,66 1,40 0,09 125 633 0,66 1,40 0,09 126 1,70 0,19 2,11 0,09 127 0,19 2,11 0,00 128 0,19 2,11 0,00 129 0,19 2,14 0,00 120 0,19 2,24 0,53 120 0,55 245 <t< td=""><td>(caste)</td><td>'n</td><td>150.</td><td>.141</td><td>231</td><td>60</td><td>Papiha et al. (1981)</td></t<>	(caste)	'n	150.	.141	231	60	Papiha et al. (1981)
107 .668 .066 .126 .140 118 .656 .076 .237 .041 118 .656 .060 .223 .042 101 .660 .070 .250 .042 113 .672 .018 .217 .085 89 .803 .056 .140 .009 53 .770 .019 .21 .009 24 .070 .045 .009 89 .070 .046 .000 89 .070 .009 .009 93 .070 .009 .009 100 .009 .009 .009 100 .009 .009 .009 100 .000 .000 .000 100 .000 .000 .000 100 .000 .000 .000 100 .000 .000 .000 100 .000 .000 .000	Orissa						
72 646 009 128 140 140 140 140 140 140 140 140 140 140	Langia Saora (tribe)	107	000				
116 665 060 223 042 140 100 1860 070 085 140 100 1860 070 085 113 667 113 672 100 186 1140 085 140 100 186 1140 085 140 100 186 1140 085 140 186 140 1	Munda (tribe)	72	989	900	126	140	Papiha (1983)
101 866 0.00 223 0.042 100 866 0.00 250 0.050 113 672 0.08 140 0.05 53 830 0.06 1.10 0.00 93 6.50 0.08 21 0.00 100 645 0.05 245 0.05	Kissan (tribe)	3 2 2	199	9,0	.237	80.	Mukherjee et al. (1982)
101 866 .040 .250 .050 110 860 .070 .045 .025 113 .672 .018 .217 .093 89 .803 .056 .147 .093 53 .770 .056 .104 .009 93 .530 .056 .211 .000 100 .645 .058 .284 .053 100 .645 .058 .284 .053 100 .645 .058 .284 .053	West Bengal	911	600.	.060	.223	.042	Mukherjec et al. (1982)
100 880 000 000 000 000 000 000 000 000	Munda (tribe)	101	030	9,0	;		
113 672 018 045 0025 025 025 025 025 025 025 025 025 0	Bagdi (tribe)	5 5	000	0.00	250	.050	Mukherjee et al. (1982)
89 802 006 147 1093 1093 1093 1093 1093 1093 1093 1093	Lodha (tribe)	113	673	200	3	.025	Mukherjee ct al. (1982)
53	Jalia Kaibarta (caste)	0	2 0	930	117	260.	Mukherjec et al. (1982)
25 7570 009 104 009 109 109 109 109 109 109 109 109 109	Rarhi Brahmin (casta)	200	000	950	140	000	Mukherjee et al. (1982)
93 .645 .055 .245 .055	Vaidya	3 6	020	900	3	600	Mukherjee et al. (1982)
100 .645 .055 .245 .055	Mech (tribe)	3 8	000	610	.211	00	Mukherjee et al. (1982)
500.	Garo (tribe)	36	545	5 20	787	.038	Mukherjce et al. (1982)
			25.	cen.	.245	.055	Mukherjee et al. (1982)

N.B., Kgalagadi, Kung, and Nama show .006, .006, and .026 PCM, allele respectively, also.

1978, 1979; Kuhnl et al., 1978; Suensson and Watterling, 1979; Scherz et al., 1981); the corresponding allele frequency in the African populations is about 69% (Welch et al., 1978; Tipler et al., 1982), which appears to be little higher; the Indians in general show nearly 68% (Papiha et al., 1981; Papiha, 1983; Mukherjee et al., 1982), which is closer to the Africans; whereas about 65% of the Japanese exhibit the same allele (Nishigaki et al., 1982), which stands between the Europeans and Africans. It has been shown previously, using starch gel electrophoresis, that the frequency of the PGM² allele is, in general, lower in blacks than in whites, and it is also known to be unusually high in the Asiatic Indians (Giblett, 1969). The present study indicates that the high PGM2 among Indians is due largely to the high 2+ gene frequency. The 2+ allele frequency is not much different among the Indians and whites. It is lower among the African blacks.

ACKNOWLEDGMENTS

The authors are grateful to Prof. M.M. Hegde, Dr. V.G. Hegde, Mr. V.N. Hegde, Prof. Madhav Gadgil, Dr. G. Pais, Prof. P.K. Misra, Dr. Mewa Singh, and Dr. Parthasarathy of Karnataka; Prof. V.N.K. Namboothiri and Dr. Thomas Mathew of Kerals; Prof. M.K. Chandrashekaran, Dr. Subbaraj, and Mr. Kumar of Tamil Nadu; and Mr. V.S. Deep Kumar, Mr. Gopalam, and Mr. Satyanarayana of Andhra Pradesh for the help they have extended in establishing rapport with the various populations investigated. The assistance rendered by Mr. Badal Dey in collection of the blood samples in the field is gratefully acknowledged.

LITERATURE CITED

Bark, JE, Harris, MJ, and Firth, M (1976) Typing of the common PGM variants using isoelectricfocusing—A new interpretation of the PGM system. J. Forensic Sci. Soc. 16:115-120.

Das, NK, Reddy, AP, Dey, B, Chatterjee, S, Sarkar, JM, and Basu, A (1983) Red cell enzyme polymorphisms among the Orson. Hum. Sci. 32:57-59.

Giblett, ER (1969) Genetic Markers in Human Blood.

Oxford: Blackwell, 1969.

Hutton, JH (1951) Caste in India - Ita Nature, Function and Origin. Bombay: Oxford University Press, 1951. Kuhnl, P, Schmidtmann, U, and Spielmann, W (1978 Evidence for two additional common alleles at the PGM, locus. Hum. Genet. 35:219-23.

Kuhni, P. and Spielmann, W (1977) Investigation of the PGM₁ polymorphism (phosphoglucomutase E.C. 2.7.5.1) by isoelectricfocusing. Hum. Genet. 43:57-67.

Mukherjee, BN, Sauber, P, Walter, H, and Malhotra, KC (1982) Isoelectricfocusing in the detection of extended genetic polymorphism of PGM, in ten endogamous groups of West Bengal and Orisses, India. Recent Trees Immunohaematol. 132–188.

Nishigaki, I, Barkmann, HG, and Goedde, HW (1962) Isoelectric focusing studies of human red cell PGM, is Japanese, with special reference to the characteristion of PGM?. Hum. Hered. 32:301-302.

Papiha, SS, White, I, and Chahal, SMS (1981) Study of phospo-glucomutase polymorphism by isoelectric is cusing: gene frequencies in Gaddi tribe of Himachal Pradesh, India. Ann. Hum. Biol. 8:374-382.

Papiha, SS (1983) Phosphoglucomutase (PGM₁) and group-specific component (GC) subtypes in the Longis Saora tribe of Orissa, India. J. Ind. Anthropol. Sc. 1820, 432.

Reddy, AP, Mukherjee, BN, and Sahu, PN (1982) Study of PGM[®] polymorphism by isoelectricfocusing among the Munda and Kisan tribes of Orissa, India. J. Ind Anthropol. Soc. 17:69-73.

Roychoudhury, AK (1979) The Incidence of Affinal marriages in different states of India. Demography India 8:211-216.

Sarkar, SS (1954) The aboriginal races in India. Calcutta: Bookland Limited, 1954.

Scherz, R. Pflugshaupt, R. and Butler, R (1981) Isoelectric focusing of human red cell phosphoglucomutase (PGM₁) Hum. Hered. 31:187-190.

Spencer, N, Hopkinson, DA, and Harris, H (1964) Phosphoglucomutase polymorphism in man. Nature 204:742-745.

Suenason, M, and Watterling, G (1979) Experience with isoelectric focusing in PGM₁ subtyping. Int. Tag. Ges Blutgnuppenkunde 8:557-560.

Sutton, JG, and Burgess, P (1978) Genetic evidence for four common alleles at the phosphoglucomutase locu (PGM₁) datectable by isoelectric focusing. Vox Sang 34:97-103.

Tipler, TD, Dunn, DS, and Jenkins, T (1982) Phosphoglucomutase first locus polymorphism as revealed by isoelectric focusing in Southern Africa. Hum. Hered. 32:80-83.

Welch, SG, Swindlehurst, CA, McGregor, A, and Wiliams, K (1978) Isoelectric focusing of human red oil phosphoglucomutase: The distribution of variant phenotypes in a village population from Gambia, Was Africa, Hum. Genet. 43:307–330.