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Summary

Dey (1971), Saha (1975), Kageyama & Saha (1983) and others
have shown how optimum chemical balance weighing designs can be
constructed from the incidence matrices of balanced incomplete block
(BIB) designs. In this paper, it is shown that weighing designs can be
constructed from some suitably chosen two-symbol balanced arrays of
strength two, which need not always be incidence matrices of BIB
designs. The findings lead us to construct new optimum chemical
balance weighing designs from incidence matrices of BIB designs.
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1. Introduction

From an examination of the existing results on connections be-
wween incomplete block designs (which are always equireplicated and
equiblock-sized) and weighing designs, it is clear that the parameter k
(being the block size) has no role to play in the weighing design set up.
This leads us to think of the use of balanced arrays, pairwise balanced
designs and others, as a weighing design. Some utility of pairwise
balanced designs for the construction of optimum chemical balanced
weighing designs is found in Kageyama & Saha (1983). We here call a
chemical balance weighing design to be optimum if it estimates each of
the weights with minimum variance. In this case, the (v x b) weighing
design matrix W for v objects in b weighings satisfies WW'=b[,,
where I, is the identity matrix of order v. For standard terms and
definitions a reference may be made to Raghavarao (1971).

In Section 2, we obtain the basic results for the construction of
optimum chemical balance weighing designs from suitably chosen
balanced arrays of two symbols and strength two. In Section 3, we use
them to construct new optimum weighing designs from the incidence
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matrices of BIB designs. In the course of these investigations we make
some observations on results of Dey (1971), given in the last section. It
is realized that optimum chemical balance weighing designs and two.
symbol orthogonal arrays of strength two coexist.

2. Basic Results

A balanced array of strength ¢ with two symbols, v constraints, b
runs and index set {go, &1, - - -, &} is a (v X b) matrix B whose elements
are the two symbols (0 and 1, say) such that, in every (¢ X b) submatrix
B, of B, every f-vector (i.e., a vector with ¢ elements) a of weight i
(i=0,1,...,1: the weight of a is the number of 1's in it) appears
as a column of B, exactly g times. We denote it by
BA[v, b, 2, t; o, fs - - - » ). In particular, if g, = p for all i, the array

is called an orthogonal array. It is known that b=Y;., (f)u,. for a
balanced array. N

Let B=B(0,1) be 2 BA[1,5,2,2; uo iy, i), and let W=
W(v, b) denote an optimum chemical balance weighing design for y
objects in b weighings. Clearly B and W are (v X b) matrices. So, W
has x1 as its elements and WW' = bL, We use ¥, and O,,,, for
(m x n) matrices with all entries equal to 1 and 0 (zero), respectively.
The following two basic results can now be easily proved by consider-
ing the meaning of parameters po, 1, and p,.

Theorem 1. The existence of a balanced array B with parameters
(0, b,2,2; o, 1, b2) satisfying po+ puy=2uy, or equivalently b<dp,,
implies the existence of an optimum chemical balance weighing design
W for v objects in 4y, weighings, where W is given by

W=[B*:J], p=2p1-po—pa
and B*=B(-1, 1) obtained from B=B(0, 1) by replacing 0’s by —1's.

Sketch of proof. It follows that WW' = B*B*'+pJ, .. In this case,
from the definition of B* = B(=1, 1), it holds that diagonal elements of
B*B™ are all po+2u,+u, (=b) and off-diagonal elements are all
o= 2py+py. This shows that WW’'=4y,[, which completes the
proof.

Theorem 2. The existence of a balanced array B=B(0, 1) with
parameters (0, b,2,2; o, i1y, p2)  satfisfying the condition that
max {p, pt1, #2} = .y, implies the existence of an orthogonal array A
with parameters (v* = v, b*=4y,,2,2; p* =), where the armay A is
given by

A=[B:0,x, Joxp )y Po=m1—Ho P1=g1~pa

This theorem yields immediately the following.
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Corollary 1. The existence of a balanced array as in Theorem 2
implies the existence of an optimum chemical balance weighing design
W for v+ 1 objects in 4p, weighings, where

and A* = A with O's replaced by —1's.

Remark. (i) Since max {po, pt1, pa} = 1, implies po+ p, <2p,, we
see that the existence of a BA[v, b,2,2; po, 1, 2] such that
max {go, i1, 12} = . implies the existence of two optimum chemical
balance weighing designs, one for v objects in 4u, weighings (by
Theorem 1), and the other for v+1 objects in 4y, weighings (by
Theorem 2). In these resulting designs, it should be noted that the
number of weighings is the same, but the number of objects to be
estimated is different by one. Finally, note (Rafter & Seiden (1974))
that, for vZ3, u,=po+p, holds. (i) For applications of balanced
arrays satisfying the above restriction, refer to the next section.

Example. Consider a BA[v=4,b=7,2,2; po=2,1,=2, p,=1]
whose array is given by

0000111
0011001
0101010
0110100

Then this array yields two optimum chemical balance weighing designs,
one for 4 objects in 8 weighings, and the other for 5 objects in 8
weighings.

3. Optimum Weighing Designs from BIB Desigos

Let B=B(0, 1) be the (vxb) incidence matrix of a BIB design
(BIBD) with parameters v, b, r, k and A. In this case, it is known (Saha
(1975)) that the existence of such a B(0, 1) satisfying b=4(r-\)
implies the existence of an optimum chemical balance weighing design
W=[B(-1,1):J,.,] with p=4(r—A)=b, for v objects in 4(r-A)
weighings. We shall now show that some of these B(0, 1)'s also yield
optimum chemical balance weighing designs for v+ 1 objects as well.

Theorem 3. The existence of a BIBD(v, b, r, k, A) with v =2k -1,
2k, or 2k+1, implies the existence of an ornthogonal array
A(v*, b*,2,2; 1*) with v*=v, b*=4(r-1) and p*=r-\, which
again implies the existence of an optimum chemical balance weighing
design W(v+1,b*). When B=B(0, 1) is the incidence matrix of the
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BIBD(v, b, r, k, A), the orthogonal array A is given by

(i) A=[B:0yx,], P=pi—#o if v=2k-1;
i) A=[B:0uup:doxpl P=1—H2= i~ Ho, H v=2k;
(iii) A=B:lospl, P=pr1—n2 if v=2k+1;

and W is given by A*= LA] with O’s replaced by —1's.

1xb”

Proof. It is well known that when B(0, 1) is the incidence matrix
of a BIBD(v, b, 1, k,A), B(0,1) is also a BA[v, b,2,2; po, iy, pal,

where
A(u . 2)
k-j/ .
M=o o0 i=0,1,2. (3.1
(h-3)
Now, since (")%( " 1) according as n—r+ 1357, we have
r r—

(i) poZ u, according as vE2k+1; and

(ii) @13 p, according as vE2k— 1.
Thus, it follows that max {po, 1, f2} = iy iff 11 Z po and py Z p,, that
is, iff 2k —1=v =2k + 1. Hence, from Theorem 2, these observations
complete the proof of the first part of the theorem. Also, note that (i)
v=2k-1 implies p,=py; (i) v=2k implies uo=p,; and (i) v=
2k+1 implies po=p,. Therefore, the structure of A as given in
Theorem 3 follows.

Remark. () In (3.1), po=b—2r+A, py=r—A and p,=A (i) It
also holds that (a) vZ2k+1 iff bZ3r—2A, and (b) vZ2k—1 iff
rZ2A.

Corollary 2. The existence of a BIBD (v, b, r, k, A) satisfying v=
2k or 2k £ implies the existence of two optimum chemical balance
weighing designs; one for v objects in 4(r— A) weighings and the other
for v+ 1 objects in 4(r—\) weighings.

Remark. The complement of a BIBD (v=2k+1)is a BIBD (v=
2k —1) and conversely. Furthermore, the value of r~A is invariant by
the complementary operation. So, it is sufficient to consider Corollary
2 for v=2k and 2k +1 or 2k—1.

There are a large number of BIB designs satisfying v =2k or
v=2k—1 (Takeuchi (1962), Kageyama & Saha (1983)). Incidentally.
we present some series of such BIB designs (Raghavarao (1971),
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Sprott (1956)):
() v=b=4ar+3, r=k=2t+1, A=t (when 41+3 is a prime or a

prime power);

(i) v=41+1,b=8t+2,r=41, k=21, A=2t—1 (when dt+1isa
prime or a prime power);

(iii) v=4(t+1), b=2(4t+3), r=at+3, k=20+1), A=21+1
(4t+3 is a prime or a prime power).
Note {Kageyama (1980)) that a BIBD (v =2k) exists (i) for even
k =132 and (ii) for odd k =67. Hence, we can produce many optimum
chemical balance weighing designs by the present approach.

4. Concluding Remarks

One can easily show that a necessary condition for the existence of
an optimum chemical balance weighing design W(v, b) is that b be a
multiple of four. Furthermore, by using the same idea as in the above,
one can prove the following stronger result.

Proposition. The existence of a W(v, b) is equivalent to the exis-
tence of an orthogonal array with parameters (v~ 1, b, 2,2; p = b/4).

Sketch of proof. The necessity is shown after changing the first row
of the W(uv, b) to all +1’s and deleting the row with replacement of —1
by 0. The sufficiency is obvious.

Thus, the whole problem of constructing a W(uv, b) from the
incidence matrices of incomplete block designs reduces to constructing
orthogonal arrays from such 0-1 matrices.

We conclude this section with a few observations on the paper of
Dey (1971) referred to in Section 1. He shows that a
BIBD (v, b, r, k, A) satisfying v#2k and b=4(r—1) is an optimum
chemical balance weighing design. He also shows that 3
BIBD (v, b, r.k,A) with v=(1/2)[4k+1x£V8k+1] is an optimum
chemical balance weighing design. Now, one can easily see that 4(r—
A)-b20 iff v=(v—2k)? and the equalities are both attained at the
same time. Obviously b = 4(r— ) implies v# 2k. Hence, the condition
v# 2k in his first result is redundant. Again v =(1/2)[4k + 1 V8k +1]
is a solution of the quadratic equation in v:v=(v~2k)? which is
equivalent to b =4(r —A), and hence his second result is the same as
the first result.
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