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Abstroct: Asymptotically D- and E-optimal spring balance weighing designs with string property
are obtained. The techniques applied include use of Fréchel derivatives. These asympiotic results
are helpful in dealing with the more intraciable design problem with a finile number of observa-
tions and some new exacl oplimality resulls follow.
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1. Introduction

Fulkerson and Gross (1965) and Ryser (1969) considered matrices with elements
0 or 1 with exactly one run of 1’s in each row. These were called by them (0,1)
matrices with consecutive 1’s property. Sinha and Saha (1983) indicated that spring
balance weighing designs, with the design matrix having consecutive 1’s property,
have wide applications in a number of fields - particularly in biometry and optics
- and cited several references in this regard. They called such designs spring balance
designs with string property.

The problem of obtaining optimal spring balance designs with string property was
initiated by Sinha and Saha (1983) and, in particular, the special case when n, the
number of observations, equals p, the number of objects, was covered extensively.
Some results for the case n>p were also obtained by them and certain conjectures
were made.

This paper applies techniques including the use of Fréchet derivatives to obtain
asymptotically D- and E-optimal spring balance weighing designs with string pro-
perty. As elaborated in the last section these asymptotic results are helpful in dealing
with the more intractable design problem with a finite number of observations and
for certain combinations of a and p, not covered in Sinha and Saha (1983), exactly
optimal designs have been characterised.
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2. Preliminaries

For 1susvsp, let h,, be a vector with elements 0 or 1 and having exactly one
run of 1’s starting at the u-th and ending at the v-th (both inclusive) positions. With
p objects and under string property, each row of the design matrix musl be one of
these $p(p+ 1) vectors. Let 7, the design space, be the set of the p(p+ 1) vectors
h,,,. Following Silvey (1980, p. 15), let H be the class of probability distributions
on the Borel sets of . Any #€ A will be called a design measure. Since .7"is finite,
any such n defines a discrete distribution over £ assigning a mass, say, ,, at h,
(I<susvysp). For ne H, under the standard Gauss-Markov finear model with
homoscedasticity and independence of errors, define the (p X p) information matris
M(n)=E(x x'), x being a random vector with distribution #. Denoting the (i, j)-th
element of M(n) by my(n), it can be checked that

mm)= £ M, 2.1
where the summation extends over u<iand v=j (1 <i<j<p). Hence it follows tha

Ry =y (1) = My y ) () = My (M) gy (), 1Sus<usp,
22

my 5,1 (1), Mo, () (15u<p) and m, ,, (1) (1 Susp) being interpreted as zero.

Let .4={M(n):neH} and ¢ be a real-valued function defined on the class of
(p X% p) symmetric matrices and bounded above on .#. Then the problem is to deter-
mine 7° 1o maximize ¢[M(n)) over H. Any such #* will be called ¢-optimal. In the
sequel the following theorem (Silvey (1980, p. 19)) will be used.

Theorem 2.1, If ¢ is concave on .4 and differentiable at M(y1*), then n* is ¢-optimal
if and only if Fy(M(n*), xx’}<0 for each xe 9.

In the above
FoM(n*), XX')=(11T. e @ {(1- Mg ) +exx’} - M)

is the Fréchet derivative of ¢ at M(n*) in the direction of xx’.

3. D- and E-optimsl designs

3.1. D-optimal designs

For D-optimality, ¢[M(n)]=logdetM(n) and if M(n) is nonsingular it can be
seen that (cf. Silvey (1980, pp. 21))

Fy(M{n), xx')= lim &~ "Nog{det((1 - e)M(n) + e xx’)/det M(n)}]

=x'[M(m™'x~p, G.1.1)
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after some simplification.

Let S be a (px p) matrix with elements 2 along the principal diagonal, - | along
the diagonals just above and below the principal diagonal and 0 at each other posi-
tion, e.g. with p=4,

2 -1 0 0
-1 2 -1 0
=l o o1 2 4
0 0 -1 2

Since for each x€ ', (p/2)x"Sx-p=0, it follows by Theorem 2.1 and (3.1.1) that
if 4 is such that M(n*)=(2/p)S™", then n* is the D-optimal design measure. As

P p-1 .. 2 !

p-1 2p-1) 4 2

S7t=(p+1)”! :
4 2Ap-1) p-1

1 2 v p=1 /]

by (2.2) it becomes evident that M(n*)=(2/p)8™" holds if and only if #* assigns
a probability mass 2/ p(p +1)| to each member of 4. Hence the D-optimal design
measure assigns equal mass to all members of 7.

For a similar result in a different context when the cardinality of the support of
the D-optimal design equals the number of parameters we refer to Silvey (1980, p.
42).

3.2. E-optimal designs
For E-optimality,
<z>lM('1)]=,!,n_f° 'Mny/y'y)

and let 7 be a design measure such that M(f)=p~ "I, where I is the identity matrix
of order p. For any y=(y),...,¥,)’ and any n€ A, by (2.1),

2 2
yMOy= T ¥ (Gt yusit =+ 5 fupe
wal pav
In particular, with y=(1, =1, 1,...,(= 1’"1)" =y (say), observe that the sum of
no set of consecutive elements of y, can exceed unity in magnitude and hence the
above yields
, 2
sMns £ § m=t,
so that for each neH,

PIMON] < yMn) yo/voyo=p~".
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Since clearly p[M(1)]=p~". it follows that # gives the E-optimal design measure,
As M(8)=p~'1, by (2.2), the n,,'s corresponding to # are, say,

t.=p' (lsusp), M,=0 (Isu<vsp)

It may be remarked that
oM = }ljg(y’M(ﬂ)y/.v'y)

is not differentiable at M(7) and, therefore, the technique of Fréchet derivatives
cannot be employed in obtaining the E-optimal design measure. [n a recent paper,
Jacroux and Notz (1983) studied extensively optimal spring balance weighing
designs in general. Some of their E-oplimal designs possess the string property and
hence coincide with the E-optimal ones in the present context.

4. Discussion

From a practical point of view, the object of developing the above asymptotic
theory is 10 help with the more intractable n observation design problem. With a
finite number of observations n, let *, denote the class of # observation spring
balance designs for p objects with string property. Then the lollowing exact op-
timality results follow from the findings of Subsections 3.1, 3.2,

Theorem 4.1. [f n be a multiple of {p(p + 1), then the design matrix in which each
hy, (! Susv=p) occurs as a row 2n/|p(p+1)| times is D-optimal within +,,.

Theorem 4.2. If n is a multiple of p, then the design matrix in which each h,,
(1 <u<p) occurs as a row ap~" times is E-optimal within .

Theorem 4.1 partially setiles the problem left open in Sinha and Saha (1983)
regarding exact D-optimal designs for the case n>p. In facl, the technique of
Fréchet derivatives may also be applied to obtain the A-optimal design measure.
which is, however, somewhat ¢ licated, involves trig ric functions and
does not reduce 1o an exact result, as in Theorems 4.1 and 4.2, even for particular
combinations of n and p. The details regarding the A-optimal measure are not,
therefore, presented here and for the interesied reader reference may be made 10
Mukerjee and Saha Ray (1983).

For general n and p, starting from the asymptotic optimality resuits one can con-
struct n-observation designs which are very close to optimality specially when a is
not small (see e.g. Federov (1972, Ch. 3), Silvey (1980, p. 37)). This is of special
relevance when the available resources permit a fairly large number of observations
and the problem is 10 take these observations in an efficient manner.

In particular, regarding exact D-optimality another result is anticipated. With 2
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observations let n,, be the number of times A, (1 Susvsp) occurs as a row of the
design matrix. The findings in Subsection 3.1 and Theorem 4.1 lead to the conjec-
ture that when n is not a multiple of {p(p+1), in a D-optimal design every two
n,,'s should differ by at most 1. A complete enumeration of the possible situations
proves the conjecture for p=2 or 3 and numerical examples suggest that this
possibly holds for general p. A rigorous proof for general p, however, appears to
be difficult and is likely to involve complicated bi ial techni Under
this conjecture, in looking for an n-observation D-optimal design instead of ¢, one
may consider the much smaller subclass €, in which the n,,'s differ by at most 1.
With this smaller subclass even a complete enumeration does not seem infeasible
and, even if the conjecture regarding completeness of €, in €, in terms of D-
optimality is not generally true, the best design in ¢, should be at least highly
efficient.
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