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1. latroduction and fwo pts of ‘simplicity’

1.1. First approach

For ready reference, we take up the following results from Tocher (1952),
Caliski (1971), Jones (1954), Saha (1976), Puri and Nigam (19752, 1975b), and
Kageyama (1974), regarding the more familiar approach to simplicity. Throughout
we consider only connected block designs.

(i) The reduced normal equations Cf=Q with the side restriction r'=0 are
equivalent to (C+rr'/myt=Q, i.e., Q7'¢=0Q, where

Q7 '=C+rr'/n=r(I- My) m
is positive definite with
My=r~*Nk=*N'~1r'/n, 2

where r'=(r,, 3, ... 7,) is the vector of replications, r® is the diagonal matrix
Diag(ry, Fas > 7y ) r7% being the inverse of 74, N is the ux b treatment-block inci-
dence matrix, k= (k, ky, ..., kp) is the vector of block-sizes, 1 is a vector of unities
of appropriate order, and n=1%=1r. Further,
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V'fH=a’2'0k, 3

whatever 4 satisfying 4'1=0.

(ii) To achicve ‘simplicity” in the analysis, it is d ded thal the computation of
@ be simple. By that it is meant that £ be of the form (/, + (1 - u)~'M)r -2, where
I, is the v x v unit matrix. This is so iff the design is a C-design (Saha (1976)). i.e.,
iff

Mi=uM,, Osu<l. )
(iii) Recall that a design is efficiency-balanced (EB) if{
My=ull,—1r'/n), 5

so that M, has a {unique) eigenvalue g of multiplicity (v - 1).
(iv) Similarly a design is variance-balanced (VB) iff (Rao (1958))

C=oll,~11'), ®

where ¢ (>0) is a constant.
1.2. Second approach

Also, as for example in Kiefer (1958), the reduced normal equations Cf= Q are
equivalently written as (PCP’}PT = PQ where

(1Yol P')

is an orthogonal matrix. Writing Pr=»x, and observing that PCP is p.d., one
obtains

f=(PCP)"'PQ, ]
and that, for any contrast A’z with 2°'1=0,

Vix'f = Us')y=a’8'(PCPY'8, ®
where §=PA.

It is well known that (3) holds iff (8) holds for al! A satisfying 2'1=0. To achieve
‘simplicity’ in this case, one would demand that the computation of (PCP")™' be
‘simple’. Let £=(PCP’)"", so that Z™'= PCP'=Pr"(I,,—Mn— 17°/mP. We then
demand that Z be of the form

Z2PU,+ (- p) ‘Mo=1r/njr 8P = P[L+ (1 - ) 'My)r=2P, )
since P1=0.
Theorem 1. We have

M2=pM, (10)
iff Zis of the form in (9).
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Proof. The {f part is trivial. To prove the only if part we take £ as in (9) and con-
sider the identity /,_, = XX, which leads 10

p(Mﬂ Pr=0,

I-u
of,
@ a .. 4,
Mu-Mi=|D 2 %
o & . a

with L', =0, since Mpl=0. Now, using the fact that r’M,=0’, one gets

a,=ay=--=a,=0, and hence Mi=uM,.

Note 1. Theorem ! can be alternatively proved as follows. Since (PCP’)~' = PDP’
is equivalent to CDC=C, demanding (9) is equivalent to demanding that
[1,+(1 - )~"My)r be a g-inverse of C, which holds if C[/,+(1-u)"'My)r= is
idempotent of rank (v—1), or equivalent iff, C[f,+(1-u) 'Molr=4+r1/n is
idempotent of rank v, i.e., [,. Thus (9) holds iff

Clly+(1 =) Mylr~ +r1'/n=1,. (11

{10) now follows from ([1) on substitution of C by r"(l,,—Mo— 1r'/n).

Note 2. Thus the two approaches to simplicity lead to the same condition, namely
M§=uM,, first derived by Califiski (1971), who, however, did perhaps not realise
that this condition is necessary as well for a block design to possess the desired impli-
cation of simplicity in its analysis.

2. Balanced designs and some related results
Let C~ denole a g-inverse (g.i.) of C.

Theorem 2. A block design is VB iff C~ «l, for some g.i. C~ of C. Also, a block
design is EB iff C~ «rd Jfor some g.i. C~ of C. (Here the block design need not
be connected.)

Proof. (i) A design is VB iff (A°C~1)/(2°2) is a constant for every A from the row-
space of C, whatever C™ be used. This, however, implies C~ o/, for some C~.

(ii) A design is EB iff (°C™A)/(4 ‘r~42) is a constant for all A in the row-space
of C, for all g-inverses C™. This also leads to the condition that €~ «r™¢ for at
least one g-inverse C~ of C.

Since €~ has such simple forms as /, and =% in VB and EB designs respectively,
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the analysis turns out to be extremely simple.

Using the fact (already used in Note 1) that the condition {AGA = A} is equi-
valent 10 {AG is idempotent, and of rank equal to rank A} or {GA is idempoient,
and of rank equal to rank A}, we can characlerize the C-malrices of VB and EB
block designs in the following manner.

Corollary 2.1. A block design is VB iff C=0L, where L is idempotent. And, a block
design is EB iff r=%C=0L, where L is idempotent.

1t is easy 1o see that C = 6L if( the positive roots of C are all equal. When the block
design is connected we can determine L more specifically, and this lcads to the
following.

Corollary 2.2. A connected block design is (i) VB iff C=0(I,-11°/v), and (ii) EB
Uf C=0r—rr'/n).

Proof. (i) Since C1=0, we must have L1=0, and 1’L =0". Therefore, L + 117y is
idempolent of rank (u—1)+1=v. Hence L+11'/v=1,, from which the result
follows.

(i) Since rr%C=1'C=0", and r"’Cl=0, we must have L1=0 and r’'L =0
When the rank of C is (v—1) the matrix (L + 1r°/n) is idempolent and of rank
(v—1)+ 1=y, which implies that L =1,— 1r"/n. Hence the result.
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