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ABSTRACT

This paper employs some variants of the usual Kronecker pro-
duct to construct orthogonal factorial designs controlling the
interaction efficiencies. The methods suggested have a fairly wide
coverage and the resulting designs involve a small number of

replicates.

1. INTRODUCTION

A factorial experiment in a block deaign is said to have the
orthogonal factorial structure (OFS) if the adjusted treatment gum

of squares can be split up or g 1ly into due to

different factorial effects. A broad sufficient condition for OFS
was obtained by John and Smith (1972) and Cotter, John and Smith
(1973), while Mukerjee (1979) derived a necessary and sufficient
condition. Construction problems for orthogonal factorial experi-~
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ments in generalized cyclic designs were considered by John (1973
a,b), Dean and John (1975) and other authors and for a comprehepn-
sive list of references one may refer to John and Lewis (1983),

As an alternative approach, Mukerjee (1980, 1981, 1984) and
Gupta (1983) employed Kronecker-type products of varietal designs
to generate factorial designs with OFS. Although their approach
could control the main effect efficiencies in the resulting designs
no general results could be obtained on interaction efficiencies
(cf. Gupta (1983),section 5). Gupta (1985), however, obtained some
results on the interaction-efficiency in a two-factor Kronecker
design particularly considering the situation when the two varietal
designs involved in the Kronecker product are balanced.

Recently, Lewis and Dean (1985) established the 'efficiency-
consistency' of designs with OFS. Although their result is theore-
tically elegant, problems still remain in so far as practical
applications are concerned. In particular, if an m-factor design
D is generated from varietal designs Dl" ..,Dm, then under OFS of
D it follows from Lewis and Dean (1985) that the efficiency of any
interaction in D equals that in the subdesign Da ub obtained from D
by deleting from the treatment combinations all digits except those
corresponding to the factors involved in that interaction. It, how-
ever, remains uncertain what the interaction efficiencies (either
in D or in the appropriate Ds ub) are in terms of the efficiencies
of Dl""’Dm' This problem is important since in practice the
experimenter may have Dl" . "Dm at his/her disposal and may wish
to choose them suitably to control the interaction-efficiencies
in D.

In an attempt to settle this issue, this paper suggests cons-
truction procedures for factorial designs with OFS starting from
varietal designs and controlling the efficiencies of interactions
up to some suitable order in terms of those of the component
designs. Such a method of construction has been termed 'faithful’
(see section 2). It may be remarked that the notion of faithful-
ness is different from that of efficiency-consistency defined by
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Lewis and Dean (1985) in the sense that (with notations as above)
the latter ensures that the efficlency of any interaction in D
equals that in the appropriate D sub while the former goes a step
further to set a lower bound for this interaction efficiency in
terms of the efficiencies of Dl""’Dm (see (2.4)).

2. PRELIMINARIES

Throughout this paper, whether the design considered is varie-
tal or factorial, the fixed effect intrablock model with independent
homoscedastic errors and no block-treatment interaction is assumed.
Consider first an equireplicate varietal design Do in s treatments
and T, replicates. If Xo =0, Xl,..., Xs-l be the eigenvalues of the
usual C-matrix {cf. Raghavarao (1971), Ch. 4) of Do' then the Op-
efficiency, say Hép), of Do may be defined (cf. Kiefer (1975)) as
follows. If Xl,..., Xs_l are all positive then

s-1
(@ (1 0y e vhen p = 0,
-] t=1
.y el .y
= (=177 I O/r) Pyl/P uheno<p <=, (2.1)
o
t=1
= min O /r) when p = @,
letes~1 to

vwhile 1f X;,...s X _, are not all positive (in which case ﬁo is dis-
connected) then trivially Hc(’p) =0 {0 < p < w). Clearly, if p =0,
1, =, then op—efficiency reduces to the standard D-, A-, B~ effici-
encies respectively. Also if D_ be variance balanced then Xl = XZ
== x._l = ), say, and for each p, H;p) = A/ro, which may be
termed simply the efficiency of Do'

Turning to a factorial set-up, consider a factorial design in
m factors Pl,..., ?n at Seenne B (> 2) levels respectively. The
ve lllz-..ﬂm treatment combinations will be assumed to be lexico-
graphically ordered. Let for 1 < j <m, Lj be an lj-ccuponent vec-
tor with all elements unity, Pj an (lj'l)"ij real matrix such that

(‘;1/2%' P; ! ie orthogonal and
X,

3y _ -1/2," a0 = = 1. 2.2
Pj 85 ljif.xj 0; Pjuxj 1 (2.2)
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Then defining T as the vxl vector of treatment effects, J as the

set of all non-null m-component vectors with elements 0 or 1 and for
any x = (xl.....x-) e J,

m x x x
x b ] 1 m
= @ Pj - Pl e...8 Pm . (2.3)
j=1
where ® denotes Kronecker product, it can be gseen (cf. Kurkjian and

Zelen (1963), Mukerjee (1979))that er represents a full aet: of

x
orthonormal contrasts belonging to the factorial effect P

. .E‘

(= I(x), say). Let a(x) denote the number of rows of P* 1

Suppose the above factorial experiment is conducted in a block
design each treatment combination being replicated r times. Denote
by A the coefficient matrix of the reduced normal equations for
eutimating p* 1 (cf. Kiefer (1975)) and by Xt (1 <t <alx)) the
eigenvalues of A . Then the Op-eft'iciency, say B(P) (x), of the fac-
torial effect T(x) may be defined analogously to (2.1), replacing r o
s-1 and A in (2.1) by r, a(x) and A respectively provided the x:

are not all positive, then E(p)

are all positlve. If the At (x) = 0.
The effect I{x) will be called balanced (cf. Shah (1958)) if the Ax
are all equal in which case E(p )
mon value being termed the efficiency of I(x).

Suppose an 51"82"--."Sm factorial design is constructed start-

(x) is the same for all p, the com-

ing from varietal designs Dl' Dyreesy Dm involving Byr Syreee, s
treatments respectively. A component design D 5 will be called rele-
vant for the factorial effect I(x) if xj = 1.

pefinition 2.1. A method of construction as above will be called
faithful of order g (1 < g < m) if for every effect I(x) involving
g or less factors and every p (0 < p < w), the op-efficiency of
1{(x) is at least as large as that of each relevant component design
i.e. if for every x ¢ Jg and every p (0 < p < =),

E(p)(x)l max xH(p),
lcjem 33

where H;p) is the op-efﬂciency of Dy (1<j<m and J is a sub-
set of J containing vectors with at most g 1's., 9

(2.4)
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The naxt sections g9 two ion A

which
are faithful of order g. Clearly, with such a procedure, one can

control and remain assured of the efficiencies of the resulting

designs for effects involving up to g factors by suitably choosing
Dl""' Dn' It may be remarked that the methods in Mukerjee (1981,
1984) and Gupta (1983) are faithful of order 1 and, in general, so
is any method of construction yielding designs with OPS (cf. Lewis

and Dean(1985)). The following result will be helpful in the sub~
sequent development.
Theorem 2.1 (Mukerjee (1979)). An s Xs oo one equireplicate factor-

12
ial design with constant block size and incidence matrix N will have
L}

OFS if and only if NN has the form

' 4q m
"N-It(o vj).
=1

vhere 4 is a pouit:iva integer, ;1..... Ed are some real numbers and
for each &, j, the lj 3 matrix V,.j has all row and column sums
equal.

Remark. If the above condition holds, it can be seen (cf. Mukerjee
(1979)) that for each x ¢ J, A_ = P*c?™’, C baing the C-matrix of
the factorial design.

3. COMPONENTWISE KRONECKER FRODUCT OF ORDER g
For 1 < J <m, let Dj be a varietal design in b, blocks and sy
treatments with common replication number Ty constant bhﬁl)c size
kj and the 'j 5 incidence matrix Hj. If “1 8...8 N (= N } be
the usual Kronecker product of “1""' N ., then it can be shown
(see Theorems 3.1, 4.1, with g = m) that t.he sl"lzl...xs factorial
design given by Nu) has OFS and, further, this method of construc-
tion is faithful of oxder m (in fact, as one can check, these
observations hold even when each Dj is allowed to have varying
block sizes). Thus using the ordinary Kronecker product it is pos-
aible to control the efficiencies of all the factorial effects.
A difficulty with this method is that the block size and the number

of replicates in the design represented by n(l) may bec too
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large. For example, in an m-factor design, based on ordinary Krone-
cker product, the block size should be at least 2" in order that
all the main effect contrasts are estimable.

As an alternative approach one may, therefore, attempt to achi-
eve a control only over the lower order factorial effects and there-
by reduce the block size or the number of replicates. To that effact,
some modifications of the ordinary Xronecker product may be employed.

with Nj,...0 Nm as before, let for 1 < j < m,
Ny = Ny + Nyy #oeat Ny Ly (3.1
where “j is a positive integer and the elements of Njh (0< h, <
3

u j-l) are non-negative integers.
Definition 3.1. The componentwise Kronecker product of order g (< m)
of LY Nm with respect to the decomposition (3.1) is given by

N . T (0 N.

)'
(hy,... her =1

the sum being taken over only a subset T of the Huj possible combi-
nations (hl""'hm) such that the combinations included in T, writ-
ten as columng, form an orthogonal array (with possibly variable
symbols) with m rows, Upreeer W symbols and strength g (cf. Rao
(1973)).

The special case g = 1 was considered in Mukerjee (1981). On
the other extreme, if g = m then “(2) reduces to the ordinary Krone-
cker product N(l)

Theorem 3.1. If for each j, hj (0 ihj i“j'l' 1<j<m, the

design represented by N 3h be equireplicate with replication number

3
j j and has constant block aize ujlk 4 then the method of compo-
nentwise Kronecker product of order g is faithful of order g and
the design D(z) (2) has OFS.

Proof. Under the conditions of the theorem, for 0 < hj' qj < uj-l,

represented by N

lcj<cm, has all row and column sums equal. Further, the

jh jqj
2) (2)
:I.s equireplicate with replication number nnuj rj (= x

, n being the cardinality

design D

say) and has constant block size nnu

3%
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of T. Since by Daf.inition 3.1,
(2) (2)' _

gﬂ(ju n, jqj (3.2)

where h = (hl""'h Joq= (qll...,%), it is clear by Theorem 2.1
12)
that D has OFS.
The C-matrix of D(z) is, say,

C= (2)( o I, - n : ujk;l)n(z)n(zv, (3.3)
j=1 =1
1j being the identity matrix of order lj- To show that the method
of construction is faithful of order g, take any T () involving £
<9 factors. Let, without loss of generality, x = x = (;1""';111)
with Ej =1(1<c)<f), =0 (£41 < J <m). Then by (2.2), (2.3),
(3.2) and the assumptions regarding “jh ’
xN(Z) ) x
£ f
n 53 2Kgp,) ¢ . POCEI (BN N jq Mo rj). (3.0
1=£41 3=1 7 hoger =1 3 0% ym
since £ < g, (3.1) and the fact that the n members of T form an
orthogonal array of strength g yield,

f b4 £
I (8N ) = (/0 mu ) enN).
hogeT 3=1 ™) 3“1 g3 g 1
Hence if one defines the C-matrix of p, as C =r k ]*N N

3% 33’
recalls that rjsj - kjbj and employs (3.3), (3 4) and the remark

following Theorem 2.1, then one obtains after some simplification,

- p%o(2) x N ¢ I ,
Az =PC ' J:l{Pj(xj jCj)PJ)l

where I is the identity matrix of order a(x). Denote by Ajo =0,

le""’ Aj = the eigenvalues of cj. Then it follows that the
3

eigenvalues of A— are say,
x (2) _ _ -
X"—r--tg n jll {1 “jtj/‘jm' lst <ay-1, 1<t
{3.5)
Clearly for each tl,.. Y
x

A /e > max (, /r). (3.6)

tyeeety 1<iet LT
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From (3.5), (3.6), (2.1) and its analogue for factorial designs, it
is clear that for the effect I(x) under consideration '® %) >

max H(p) (0 < p £ =). This proves the theorem.

1<j<f
Remark. Given N,,..., N_, relations like (3.5) may be used for
exactly determining E(p (x), x € J_. Interestingly, as Example 3.1
suggests, the exact values of E(p)(x) for interactions are usually
much greater than the lower bound (2.4). Incidentally, Theorem 3.1
strengthens Theorem 3 in Gupta (1985) in the sense that the varietal
designs involved are not necessarily balanced and the result holds

even in the multifactor case. In particular, if the designs D

1
*

Df are balanced then le =, .= stj_l = Xj' say, and b¥ {3.5) in

p‘?) the effect T(x) is balanced with efficiency 1 - T a-u,),

j=1
where H (= x;/zj) ia ‘the efficlency of D, (1 <3 < £). This holds

in general for any I(x), x e Jg, provided the relevant component
designs are balanced.
One may follow the line of Mukerjee (198l) to get the matrices
Njh. satisfying the conditions of Theorem 3.1.
J

Example 3.1. To construct a 3x4x5 design, let Dl' D,, D, be such

2" 73
that the ijbj arrays zj' obtained by writing the blocks of Dj as

columns, are as follows:

2. = 012 0123 _ 01234012314

L= 12, = $Zy= .
120 1230 1234023401

Then rl=!2’2' r3=4, k1=k2=k3=2. Note that each Dj’ written as above,

is positionally balanced in the sense that with the blocks written

as columns all the treatments occur equally often in each row.

L]

Hence if for each j, Zj be partitioned as zj = [Zjo' z;ljl, where

zjh is lxbj and Njh be the incidence matrix of a varietal design
B

with blocks given by the columns of zjh (hj = 0,1) then the matri-
b

ces “jh satisfy the conditions of Theorem 3.1 with u1=u2=u3=2.

According to Definition 3.1, now N(z) may be formed taking T =
{(0,0,0),(0,1,1),(1,0,1),(1,1,0)}. Since T represents an orthogonal
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array of strength 2, the xesulting 3x4x5 factorial design has OFS
and the method is faithful of order 2. As Dl' I)3 are balanced with
efficiencies 0.75 and 0.625, the remark following Theorem 3.1 shows
that the effects Fl. FJ, FIPJ are balanced with respective efficien-
cies 0.75, 0.625, 0.9062. The Op-efficiencies for P2, PIFZ' r2p3 may
be obtained by (3.5). In particular, the A-efficiencies of these
effects are 0.6, 0.9130, 0.8667 respectively. The design involves 8
replicates and block size 4, while the corresponding usual Kronecker

product requires 16 replicates and block size 8.

Alternatively, taking Dl’ Dz, D3 such that
[+] 0123 01234
zl=1.22= 1230,23=12340,
2 2301 23401

and with ul=u2=u3=3. T = {{0,0,0),(0,1,1),(0,2,2),(1,0,1),(1,1,2),
{1,2,0),(2,0,2),(2,1,0),(2,2,1)}, one may proceed exactly as before
to construct a 3Ix4x5 factorial design in 3 replicates and block size
9. Since T is again an orthogonal array of strength 2, the factorial
design obtained has OFS and the method is faithful of order 2. In

this design the effects Pl, F,, F are balanced with respective

F
efficiencies 1, 0.8889, 1, whzle tl'.h: A-efficiencies of the effects
E'3, FIFJ' F2F3 are 0.8148, 1, 0.9B13 respectively. The design, like
the earlier one is connected.

The second design in this example requires a smaller number of
replicates but a larger block size than the first one. In fact, many
other 3x4x5 designs with a fairly wide range of parameter-values and
efficiency-levels can be obtained by the above method by choosing
Dl’ Dz, D3 suitably. In a practical situation, a choice from amongst
the available designs depends on the particular context.

4. KHATRI-RAO PRODUCT OF ORDER g

Khatri and Rao (1968) considered, in a different context,
another modification of the ordinary Kronecker product which was
used by Mukerjee (1980, 1984) and Gupta (1983) in the construction
of factorial designs controlling the main effects alone. This
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gection considers a generalized version of the Khatri-Rao product.

For 1 < j < m, let Dj’ Nj be as in the first paragraph of sec-
tion 3 and partition N 3 as

-1
"y
N,= p N
I p0 :Ihj, (4.1)
3
where N is of ord xu;lp < < u,-
ere jhj of order s xu, j(o—hj—“j 1),u:.| is a positive
integer and for matrices Ml' Hz,..., Ma of the same order
a

UM, = (M, M,..., M ).
"_11 1 2 a

Then the Khatri-Rao product of order g (< m) of “1"' . Nm under
the decomposition (4.1) is defined as

3 b

N - u (S Njh.)' (4.2)

(hl"" ,hm) €T j=1 b]
as before, T being a subset of the possible combinations (hl,...,hm)
forming an orthogonal array of strength g. Clearly, N(a) reduces to
the ordinary Kronecker product if g = m. The following result may
be proved along the line of Theorem 3.1.
Theorem 4.1. If for each j, h]. (o ihj :uj-l, 1 <3j<m, the
design represented by N jhj be equireplicate with replication number

uglr 3 then the method of Khatri-Rao pz('c;)iuct of order g is faithf\g)
of order g and the factorial design D with incidence matrix N
has OFS.

The observations made in the remark following Theorem 3.1 hold
in the present set-up as well. Under the conditions of Theorem 4.1,

the design D(3) has replication number nnujlrj and block size Ik.,

n being the cardinality of T. Thus, compared to the ordinarxy Krone-
cker product, the Khatri-Rao product can achieve a reduction only
in the number of replications but not in the block size and, in

this sense, it is inferior to the componentwise Xronecker product
which can reduce both.
One may follow Mukerjee (1980, 1984) and Gupta (1983) to get

the matrices N 4h satisfying the conditions of Theorem 4.1. This
3
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is fairly simple when each Dj is (u;lrj)—ranolvuble.
Example 4.1, To construct a 4x6x9 factorial design, let Dl’ DZ' D3
pe varietal designs such that the corresponding lijj arrays zj' as

in Example 3.1, are
0201 012012 012036
= . 22= . z3 = .
1 1323 453534 145147
678258
Then ry=r,=r =2, k,=k,=2, k3-3. Each Dj is l-resolvable. Hence if

3 1772 H
be partitioned as zj = (Z 2;1) . where Z is k x(b ./2), then

-
jo* jh:l 33
of the varietal designs z;

Z

the incidence matrices “j satisfy

h
3
the conditions of Theorem 4.1 with u,=u,=uy
the 4x6x9 factorial design with incidence matrix Nu) formed accor-
ding to (4.2) taking T = {(0,0,0),(0,1,1),(1,0,1),(1,1,0)} will have

OFS. The method is faithful of order 2 and (3.5) may be applied to

"
=2. As in Example 3.1,

obtain the OP-efﬂciencies of different effects involving at most
two factors. In particular, the A-efficiencies of Pl, E‘z, 93, PIPZ'
F.F., F.F, are 0.6, 0.4286, 0.6667, 0.8347, 0.9, 0.8706 respective-

1’3" "2°3
1y. The design involves blocks of size 12 and 4 replications and

is connected.
5. CONCLUDING REMARKS

As noted in the remark following Theorem 3.1, the methods of
construction presented in this paper lead to designs in which the
interaction contrasts are usually estimated with greater precision
than the main effect contrasts. The methods may be of practical
value in situations where the efficient estimation of the inter-
action contrasts is considered important. In particular, the proce-
dures that are faithful of order 2 pose no severe combinatorial
problem as orthogonal arrays of strength 2 are easily available,
and the resulting designs may be useful in many practical situa-
tions where emphasis lies on the estimation of the two-factor
interaction contrasts.

The methods considered in this paper may be extended in seve-
ral directions. One may consider a combination of componentwise
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Kronecker product and Khatri-Rao product. A similar approach was
investigated by Gupta in the case g = 1.

Alternatively, instead of starting with varietal designs, one
may try to generate more complex factorial designs from simplexr
factorials. Thus for 1 < j < w, let N; be the incidence matrix of

an equireplicate factorial design involving factors Fjl""'rjm
3

’
*

and having a constant block size. Suppose N represents a factorial

design in m = ij factoxrs obtained by suitably combining Nl, - N .

Yor any effect l(x) (in the design N ), defining I (x) as the effect

(in the design N } given by the factors among Fjl""' Fj that are
™y

jnvolved in I(x), one getas the following result:
Theorem 5.1. If for each j, the design given by N; has OFS and N' be
the ord:mary Kronecker product of Nl,..., N o’ then the design given
by N also has OFS. Further, for each x and each p (0 <p <=,
? -efficiency of T(x) in the design given by N
> max {8 -efficiency of Tj(x) in the design given by N }
1<i<w
The proof of the above proceeds along the line of Theorem 3.1
and makes use of Theorem 2.1. In fact, in the above setting one may
as well introduce the componentwise Kronecker product or Khatri-Rao
product of order g to obtain results similar to Theorems 3.1, 4.1.
Theorem 5.1 resembles the efficiency-consistency criterion in Lewis
and Dean (1985) if the inequality is replaced by an equality. A
referee feels that the Kronecker product of incidence matrices of
symmetric factorials may belong to the generalized cyclic class of
designs.
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