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The validity of formal Edgeworth expansions for siatistics which are functions
of sample averages was established in R. N. Bhattacharya and J. K. Ghosh {1978,
Ann. Stavist. 6 434-45]) under a moment condition which is sometimes too severe.
In this article this moment condition is relaxed. Two exampies of P. Hall (1983,
Ann. Probab. 11 1028-1036: 1987, Ann. Probub. 18 920-931) are discussed in this
context. £ 1988 Academue Prews, Inc.

INTRODUCTION

The validity of formal Edgeworth expansions for classical statistics was
established in Bhattacharya and Ghosh [2] under moment conditions
which cannot be relaxed in general, but turn out to be too severe in some
cases. Two such examples are considered in Hall [6, 7). In these examples
and many others the highest order of moments involved in the aciual
expansion is much smaller than the order of moments assumed finite in our
carlier work [2]. and special methods were used by Hall [6,7) to relax
this moment condition. Attempts to find minima) moment restrictions for
the general case run into unexpected analytical difliculties.

Suppose that the siatistic may be expressed as (or approxi d by)
H(Z), where Z=(1/n) ;.. Z,is a mean of i.i.d. vectors and H is a smooth
function in a neighborhood of u= EZ,. If all the components of grad H(u)
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MOMENT CONDITIONS FOR EXPANSIONS 69

are nonzero then one cannot significantly weaken the earlier moment
assumptions. In this article we provide a relaxation of the moment con-
dilion in case grad H(u) has some zero components, as is true in both
examples of Hall. Apart from the method we present in detail here, another
method using conditioning with respect to some coordinates of Z, (namely
coordinates Z' for which (9H(z)/0z'")(u)=0) is sketched as Remark $ in
Section 7. This last method generalizes some ideas of Hall (7] dealing with
Student's statistic.

1. THE MAIN REsuLT

Many classical statistics are (or, may be approximated by statistics) of
the form H(Z2), where Z=(1/n) ¥} Z, is a k-dimensional mean vector of
sample characteristics and H is smooth in a neighborhood of p=E2.
If grad H(u)#0, and E|Z}*<o, then the normalized statistic W,=
ﬁ (H(Z)—- H(p)) is asymptotically normal. This follows from the Taylor
expansion

W,=/n (2= p)-grad Hiw) +0,(1). Ly

If EJZ}|* < oo lor some integer 5 > 3 and H is s-times continuously differen-
tiable in a neighborhood of , then one may approximate W, better by

w: =p' {Z I'{le)_“li))+_ Z ll| ‘)(Z(lnl_u(ll))(ZUx)_“(h))
“hh=1

4 o +(:+l)! z‘: [’IH"_I(Z(M_“(ll))...(Z(’--l)_“lh-x))}.
(12)

Here superscripts  denote  coordinates and /= (D, H)(p). ;=
(D,,D,,H](u). etc., with D, denoting differentiation with respect to the ith

di One may pute the jth cumulant X;, of W} algebraically
(l <j<s), and keep only terms up to order O(n ="'~V

Howabyop =

=K, +oln™""1)  (1gj<s), (13)

K., being a polynomial in n~"? with coefficients determined by the

moments of Z, and the derivatives I,k ..l _;_,- One has

Ria=0(n='"), Rya=0' +o0(n™'"), R,,= O(n~U=D2) (j23), where
o*=grad H(p) ¥ grad Hi),

14
V=cov Z, (4
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The characteristic function of W, is now approximated by
i)
exp {'-I 7 k;n}
2
—ew{—%}cxp {l(k,,——(k,,—a‘“ Y — ('C) }

=cxp{ UZ{Z}[I+ z n? (1{)]

+n(n“‘"")=wm(c)+n(n'" wh (L5)

say. For the second equality in (1.5) one expands in powers of 7 =", Here
(i) is a polynomial (in i§) whose coeflicients depend on Lhe moments of
Z, and the derivatives of H at y. Now ¢, , is the Fourier transform of the
density , . of the formal Edgeworth expansion of the distribution of W,,
obtained by inversion:

w,,(x)—[l + 2 n "’x,(——)] $orlX)

{x)= -t
‘/Zna‘

Suppose that the observations ¥, (j=1,2,..) are i.id. m-dimensional with
common distribution G and that

Z, =LA Sl V)= (20, 22, ., 20, (nn

where /, (I <r<k) are real-vatued Borel measurable functions on R™. Lel
Q, denote the (common) distribution of Z,— . The lollowing assumplions
were made in Bhattacharya and Ghosh [2], Bhattacharya [1]. to prove
the validity of the formal expansion (1.6) (ie, 1o establish
Prob(W, € B) =[5, ,(x) dx + o(n ="~ "?) uniformly for all Borel scis 8);

(By) H is (s—|)-times conti ly differentiable in a neighborhood
of .

(B,) grad H(p)#0.

(By} EIfAY)|'< oo for | Sr<k.

(B,) There exists a nonempty open subset U of R™ with the properties:
(1) G has a nonzero absolwely conti comp {with respect 10
Lebesgue measure on R™ ) with a positive density on U: (i) f, (1< r < k) are
continuously differentiable on U, (i) . £y, ... fy are linearly independent as
elements of the vector space of real valued continuous functions on U.

(L6)
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Let us now assume, instead of (B,), (B,). (B,),
(B}) H is s-times conti ly differentiable in a neighborhood of .
(BY) (i) L,#0 for 1<i<k); (ii)1,=0 for k, <i<k, where k, is an
integer satisfying | <k, <k.
(B)) () EUfAY)l* <o for 1<r<ky; (HYE|fY ) <o for
k, <r <k, for some positive integer s> 3.

Qur main result relaxing carlier moment conditions is the lollowing.

THEOREM.  Under the assumptions (B'), (B}), (B3). (B,) one has

sup Prob(W,,SM)—JW V,a(x)dx| =o(n=0- 1), (1.8)

Proof. Recall the notation W, = ﬁ(H(Z)- H(p)). Let

W, = z I:ﬁlz'“—ﬂ'")

(&i6h
-in
+"T 5 ':..:,ﬁ(Z“"—M“”)\/'—l(z'i"—u""]
o lEhagh
St-2
+...+" : Z ll..l).x..l,\/'-’(z“”_““”)
S bk
e (29— ) (19)

We first prove (1.8) with W, replaced by W,. By Lemma22 in
Bhattacharya and Ghosh [2], Q** (ie., the distribution of ¥* (Z,- )
has a nonzero absolutely continuous component. Hence the distribution Q,

of ﬁ(Z—u) has a nonzero absolutely continuous comp for n2 k.
Write
¢
hzey= § 42"+ Y 20
1€ick L1
El—l
+ - +T Z l:.._.‘,lu')"'zu".
B L TIEA 74

(1.10)
Mz 0= T 12

16ick

Now it is shown in Bhattacharya and Ranga Rao [3] (see the proof of
Theorem 19.5 and the remark on p. 207) that there exists a part g, of the
density (component) of @, which has the properties

p J‘ gi(z)dz— Q. (B)|=o(n""~¥?)  (BaBorelsubset of R*) (1.11)
s |°2
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and

1gu(2) =&, 12l K cdun U1 21 0Y), 2R, (112)

where &, _, (2} Is the density of the (s— 2)-term Cramér-Edgeworth expan-
sion of Q,, ¢ is & positive constant, and §,— 0 as n — co. Note that (1.11)
holds under the assumptions (B3), (B,): ie.. E|Z)'~' < co suffices. Indeed
the right side in (1.11) is o{n ") for every positive integer m (see relations
(19.73), (19.76), (19.77) in Bhattacharya and Ranga Rao [3]).

By (1.11) the following holds uniformly for all &

Prob(W',(u)=Pmb( ¥ I,ﬁ(Z“’—u”')(u)

1&ich

spon(w,cul\{ T nvme-umal)

IGich
—Prob({ b l,ﬁ(z“’-u‘")su}\(msu})
16ich
=Prob( ¥ I,ﬁ(z"’—u"’)su)
18Ik
| o) de
Mz €u\ (M0 u)
_j +o(n™tm ), (1)
Hz.01 €\ {Mz.c) € u).

But in view of (B3)(i) (and (B,)) one has, unformly for all u,

Pmb( Y I‘\/;(Z“’—u”’)su)

1€ick)

=I . ¢, A2)dz+o{n 4", (114)
(e B:E) M G u)

where 'E, , is the density of the (s~ 1}-1erm Cramér~Edgeworth expansion

of the distribution of\/; (Z =g, 2100 — ity
On the other hand,

I p
{Mr e )\ [Min0) S w)

-[ o) d
(M2.0) Cul\ Mol K u)

| Eoala) e en,,

|
{Mrguj\iMed) Cu) (MRO S )\ [Mze) Ew)

(LIS)
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where, by (L12),
q.s(j { +|z|"")"dz) Bnmu=M  (116)
1ML Gu) 4{MzO) € v)

Here 4 denotes symmetric difference: B AC=(B\C)u(C\B). Note that
for 2 in {|z| < 1/¢"*"~ "'} there are positive constants ¢,, d, such that

hz,6)—cye 2]\ —d\ e < h(z, 0) S h(z €) + ¢ e 2P +dye. (1.17)

Write, for given u satisfying [u] <2 |l/e"*~ (2=, ¢)cu, )
A= ({h(z, e)<u} A{h(z, 0)Su} n{lz] < 1feM 1), (L.18)
Then
A.cA, V4,
Ag={u—celzl* —de<h(z,0)<u} n {1z <1/ 1), (1.19)
Ao ={u<h(z,0)Su+c [z +d,e) n {[z] <1/e"- ).
Now make an orthogonal transformation z—+y with y'V'=h(z, 0)/|l] =

Trcicn hz(Z 7). Then

I (1 +|z]"‘)"dz
An

[ U+ . (120)
{tu - eyl - dieiin €N S i) A {1yt < 1pelte- 1)

write [y2=(p")P+ T4 (»") = (")’ +r* and solve the quadratic
equation (in ") y" = (u—c,e(y") —c,er’ — d,6)//|ll, to derive from
(1.20) the inequality

f (14129 &2

[ U+ dy<e (121)
[(w10) = e € AV Sl ) s (1] < 1=y

which holds for some positive constants ¢,, cy and for all sufficiently small
£> 0. Similarly, one has

[ s digee (1.2)
A
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for some positive constant ¢, and all sulliciently small £> 0. Also,
«

(.l+|z|"‘)"dz=w‘f X+

Mebs 1

Lm > bty

1
$w,I —dx<ege, [0<e<1),

N
(1.23)

where w,. ¢, are suitable positive constants.
Combining (1.16)-(1.23) one gets, with e=n"'?,

Ra=ofn4- 1), (1.24)

uniformly for all u satisfying |u] <2 )l/e""*~ " For u> 2 {f|/e"*~", 4, is
emply for all sufficiently small ¢ (see (1.20)). For u< =2 [{|/e*- ",

J (4124 ds

O+ dy

<
-

" k-1 1) —i-k
S P s 10 0

6 =, 2 —s-k4l
s ) e

R ol

sHk L.u--n" dv < cae, (1.25)

for appropriale constants ¢, ¢,. Similarly, one shows that
[ sz ta=0e) e clo (1.26)
Ag
in case #< —2{/|/c"~"", In exactly the same manner one shows that for
w22 [l|/e" -1, the integrals of (1 +]z|)~"~* over A,, and A, are Ofc).
Hence (1.24) holds uniformly for a/f u. Now use (1.24), (1.13)-().15) 10 get

SUP, e

PobWocn-[[ e

[ £oradr) e
(M2 KU\ [M2.0) Ko}

c...,.(z)dz] oln-u-2) (127)

'[(A(:.n)u)\w.-.x)(u)
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The reduction of the above intcgrals is now carried out exactly as in
Bhattacharya and Ghosh [2] to yield

= o{n~tt-17), (1.28)

Prob(W,<u)- [ ,.(x)dr

sup
veaR!
Finally note that there exists a constant ¢, such that

W, = Wi SCon ™ Jn (2= . (129

Now, by Corollary 17.12 in Bhattacharya and Ranga Rao [3] one has, for
every £>0,

Prob(ﬁ |2 = ) > en™to# My = g~ t1= B2y~ (s W+ 1y
=o(n "B (s23).  (1.30)

Since ¢, , is bounded (uniformly in n), (1.28)-(1.30) imply (1.8). |

Remark 1, The proof essentially shows that one may replace the
assumption (B3) by (By): EIZ{"'"'<co for all i which appear in
the expression (19) for the first time in the sum n"“):lll‘..,,

i ﬁ(zu.)_“u.n),,,\/,',(zu..n_“u,..n) (0<r<s—2).

Remark 2. The proof goes over to the case of vector-valued statistics
ﬂ(H(Z)—H(u)) (or, more generally, vector-valued statistics which may
be adequately approximated, coordinate wise, in the form (1.9)).

Remark 3. In Bhattacharya and Ghosh [2], {also see Bhattacharya
[1]) it is proved under the assumptions (B,)-(B,) that

Prob(W, ¢ B)—L ¥,.x) d

sup =o(n~0-112), (130
s
where the supremum is over the class of all Borel subsets B of R'. Qur
proof above, under the moment relaxation (B3) (or (By)), only provides an
approximation of the distribution function. Although this proof may be
extended to carry over to the case of probabilities of sets with smooth boun-
daries (e.g., Borel measurable convex sets), it does not yield (1.31). We do
not know if (1.31) is valid under the hupothesis of the present theorem. (Of
course, (1.31) holds in this case if the right side is replaced by o(n~"~*¥).)

Remark 4. An entirely analogous result holds for statistics H(2) for
which /,=0 for all i, while /, ,#0 for some i, i;. Thus for statistics
n(H(2) - H(p)) arising in testing statistical hypotheses (See Chandra and
Ghosh [4]) moment conditions may be relaxed for those coordinates
which do not appear in the principal term of the Taylor expansion
around .

o4
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Remark § (Conditioning argument). We write 2,=(Z!", ... Z"),
Z;=(ZM* 0. 2, EZ)= ', EZ] = " Under (B,). (2} Z;, T} Z;') has
a joint density and, therefore, 3% Z; has a conditional density given 3} Z;.
Dividing up ¥} Z,. ¥7 Z;" into consecutive blocks of k summands each,
one may first obtain an asymptolic expansion of the conditional dis-
tribution of the first sum (centered around its conditional expectation)
given block sums of Z;'. The successive block sums of Z; are still indepen-
dent under this condilioning, but not identically distributed. However, by
restricting 2* close to p” (the complementary evenl having small
probability), one may often justify an asmptotic expansion of the above
conditional distribution (sce, eg. Bhattacharya and Ranga Rao [3,
Theorem (9.3)]). Under this conditioning regard H(Z) as a function of 2'
with (block sums of) Z;" as parameters, center H(2) around its conditional
expectalion, rewrite \/t (H(2)— H{p)) in terms of this new centering, and
proceed as in Bhattacharya and Ghosh {2] to obtain an asympiotic expan-
sion of its conditional distribution. Finally expand the cxpectation of this
expansion, this time dealing with (sample) means of i.i.d. summands. Such
a procedure sometimes also succeeds in relaxing moment condilions. See
Hall 7] for a similar procedure applied to the Student’s statistic. Clearly,
for the expansion of the conditional distribution of the statistic up to an
error o(n~""*?) one only needs E{Zj|'<co, together with an
appropriate moment condition on Z; 1o ensure that Z* remains sufliciently
close to u" with probability 1 —o(n=“~?), However, higher moments
may be needed in carrying out the expansion of the expectation of the con-
ditional expansion ioned above. See E te 2 in Section 2 for an
additional comment on this.

2. ExampLEs

ExampLE | (Hall [6]). Let Y, {j=1,2,..) be a sequence of iid.
radom variables having zero mean, unit standard deviation and a nonzero
third moment y,, say u,>0. One may expect that the 100{! —a)% point
of the distribution of /n P=(¥,+ ... + ¥,)/n'? is better approximated
(than the 100(1 —a)% point z=z(a) of the standard normal) by that of the
normalized chisquare x} having N degrees of freedom, where N is chosen
50 thal the third moment (namely, (8/N)"?) of T,=(2N)~'? (x4—N)
equals thal of \/:; P (namely, uy/n'?); i,

N=8nfy}. (1
One may use the gamma tables to find z,, =2zy{a) such that

Prob(Ty<zy)=1-a. (22)
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Hall [6] shows that z, is indeed a better approximation of the
100(1 -«)% point for /n ¥ than usual estimates, under Cramér's
condition as well as in the lattice case. In case p, is unknown, replace it by
the sample third moment 4, and write

R =8n/i. (23)
Hall [6, TheoremS] provides an i i of

Prob(\/r—v ¥<z,) up to order o(n~"), uniformly for ae [z, 1 —&] for every
£>0, under the assumptions (i) EY$<eco and (ii)(Y,, ¥]) satisfies
Cramér’s condition. He correctly points out that this expansion may be
derived from Bhattacharya and Ghosh 2] only if (i) is strengthened to
(i) EY}?*< o0. Let us show that our present results may be used to derive
Hall's expansion under the conditions (i) EY? < oo and (ii)” (B,) holds with
m=1, k=2 f()=y fily)=y"

By Lemma 1 of Hall [6], obtained by equating the asymptotic expan-
sion of Prob(7 < y) with 1 —a, one has

zy=z+ NP (2)+ N~'Py(z) +o(N™'), (24)

uniformly for ae [& 1 —s] (for every fixed positive ¢). Here Py, f; are
polynomials. Thus it is enough to expand Prob(\/; P<z'), where

=2+ NP (2)+ N~'Py2)
iy I
=z +ﬁ P(2)+ B Py(2)
=Z+I‘JP1(1)+M§P1(Z)
&n
P 2,
s (Yt (PR gl pi)
= =) 252, @)

Expressing ﬁ P <2 in the form (1.9), one may now apply Remark | with
s=4. Note that \/n (2% — u) = /n (i, — u,) appears the first time with
coefficient n -, so that (B3) becomes

EYi<w, E|Y*=EYi<oo. (2.6)
We have taken f;=n"'¥7. Y} above. One may modify the

calculations a little in case j,=n""'37_, (¥,— ¥)’, to prove that (26)
suffices along with (B,) (with k=3, f{y)=y'for i=1,2,3).
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The expansion of Prob(\/r; P<2') in terms up to order n™" involves
EY| (see Hall [6. p.1032]). It may be shown by complicated algebra that
the coeflicient of n~¥* in the formal expansion involves E¥?. Also, looking
at (2.5) one would not expect a valid asymptotic expansion with error
o{n ") unless /i (i, — p,) converges in distribution. Thus it is unlikely
that the desired expansion holds in general under the condition
E|Y,|' < for some r<6.

EXAMPLE 2 (Sludcnlized statistics). Consider the Student’s statistic
=Y/, where ¢*=(Im¥]., VI- ¥ Here m=1, k=2; Z"=y,
ZM=7Y?, EY,=0. According to lhe theorem in Section |, under (B.) lhe
dnslnbuuon of n'¢ has an asymplotic expansion with error o(n - 1?) if

EYM-lem, @n

instead of the earlier requirement: EY}” < co. Thus for an error ofn *'?)
one needs finite fourth moments. By a conditioning argument, similar to
the one sketched in Remark 5. Hall [7] proves that for an error o(n "),
E|Y}] <0 is enough. He also shows that for a higher order expansion of
the conditional distribution of 1, given { Y2, 1 €j<n}, E|Y|" <  suffices;
but we are unable to obtain the appropriate expansion of the expectation
of the conditional expansion under this moment condition.

Consider now the asmpiotic expansion of the Studentized sample
moment ji,=n""¥7_, ¥; {ris a positive integer). The sludenuud stalistic
is T=(g,-p\d,. wherea is obtained by replacing p
by sample in the expression var(j,) al Jeast
approximately keeping the principal terms (i.e., terms of order n ~'). For an
expansion with an error term o(n~"- ), the theorem in Section |
requites E|Y|”" V<o instead of the older moment condition
ENY[P <.

P
lenlatad
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