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On a problem connected with quadratic regression*

By R. G. LAHA anp E. LUKACS
The Catholic University of America, Washington, D.C.

1. Iniroduction. We ider two random variables X and Y and denote by E(Y|X)
the conditional expectation of Y given X. We say that ¥ has polynomial regression of
order & on X if the relation

E(Y|X)=fy+ S X+ ... +5, X" (rn
holds almost everywhere. We assume that the first moment of Y and the moment of order
k of X exist. It follows from (1-1) that

E(Y)=Bo+ B E(X)+... + B E(X¥). {1-2)
If k=2 and B, % 0 (k=1 and B, + 0) then we speak of quadratic {linear) regression
If k=0, that ia if £(Y|X) = E(Y) almost everywhere, then we say that ¥ has conatant
regression on X. The coefficients Ay, 4,, ..., f; are called the regression cocfficients.

Let X, X,, ..., X, beasample of size » (indopendently and identically distributed random
variables) from a population with distribution function F{z). We write

A=X+Xp+...+ X, =nX
for the sum of the observations and § = 8(X,, X, ..., X,,) for another statistic. In many
cases weo know that it is possible to find a statistic S which has conatant regression on A.
Conversely, this property determines sometimes the population.
In the present paper we consider & quadratic atatistic

Q=% T ayX, X+ 3 5,X,
imlj=1 =

and study all the populations which have the property that Q has quadratic regression on A.
It will be necessary to distinguish several cases which are defined in terms of relations
between the coefficients a;; and b, of @ and the regression coefticients £, £,. /i In each of
these cages we show that the population is characterized by the property we mentioned.
We note that we consider here only a quadratic statistic which does not reduce to a linear

)
form since it can be shown easily that every linear form 3 b, X, hes linear regression on A.
=1

In § 2 we derive a fundamental lemma concerning polynomial regression; in § 3 we obtain
a differential equation for the characteristic function of the population. Sections 4 and 5
deal with the solutions of this equation and contain the results.

2. Two lemmas. We give first a condition on polynomial regreasion.
Leama 1. Let X and Y be two random variables and assume that the expectations

E(Y)and E(X*) exist where k is a non-negative integer. The random variable ¥ heas poly-
nomial regression of order & on X if, and only if, the rolation

%
E(YeiX) = ), B(Xo eltx .
holds for all real £. (et 'Z;qﬂ (X ef%) 1)
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If one multiplies (1-1) by ¢“X and takes the expectation then one sees immediately that
condition (2-1) is necessary.

To prove the sufficiency of the condition we assume that (2-1) is valid for all real &. Then

X
E[e“X[Y— ) ﬂ.x-]} =0,
o=0
L) k
or '[ ewE( Y-3 ,B,z'|z) dF(z) = 0.
—e0 o=0
Here F\(z) is the marginal distribution of X. We intreduce here the probability function

P,{A) of the random variable X instead of the distribution function F\(z). This is a set
funotion defined on all Borel sets of R,. The preceding equation becomes then

'|'m e“‘E(Y—'éﬂ,zﬂ:) P, = 0.

k
Let u(4) -J. E(Y— b3 ﬂ',,z']z) dP,. This is a function of bounded variation which is
4 o=0
defined on all Borel sets A of R, and we see that

J. ezdp =0,
n

Sinee the uniq for cha istic functions is valid for the Fourier transforma
of functions of bounded variation we conclude that x(4) = u(R) = 0 for all Borel sets 4.

v

k
This is only possible if E(Y— b ﬂ,z'|:c) = 0 almost everywhere, 80 that the lemma is
proven. o

We next prove a lemma which is needed in §5.

Lemma 2, Let a, p and A be three real numbers and suppose that p > 0. The function
f(t) = [oosh at + iAsinh at]-°

is then an infinitely divisible characteristio function.
The statement of the lemma is trivial if @ = 0, it is therefore no restriction to assume
that a % 0.
We consider the function
y(z) = cosh ez +iAsinhaz (2:2)
of the complex variable z = ¢ +1y (¢, y real). We see from (2:2) that y(z) is an entire function
of order 1; the zeros of y(z) are the solutions of the aystem of equations

(e +eo) (cosay—Aeinayj =0, (2:31)
(e®~¢~) (sinay + A coay) = 0. (2-3-2)

Equation (2-3-1) has the solutions
yk=£(.rm}\+kn) (k=0,+1,£2,..), (24)

while the only real solution of {2-3-2) which is compatible with {2-4) is ¢ = 0. The zeros of
(z) are therefore given by

. ' 1
z,,aty,=‘;(umn/—\+k7r)o (k=0 41,42 .. (25)
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and are thus purely imaginary. We note that y(z) is real for purely imaginary values of the
argument. It follows then from Hadamard's factorization theorem that
70 = e (14 ) oxp (- 3), (29)
k Yu Y
where & is a real constant and where the y, are given by (2-4).

We conclude from P. Lévy's continuity theorem that 1/¥(!) is a characteristio function,
a8 a limit of infinitely divisible characteristic functions 1]y(¢) is ily infinitely divisible
80 that the statement of the lemma is eatablished.

3. The differential equation for the characteristic function. Let X,, X,, ..., X, be a eample
of size n from a population with distribution funotion F(z) and assume that the second
moment of F(z) exists. We denote by

) ='|'_°° e dF(z)

the oharaocteristio function of F(z). We consider a quadratic statistio

» n
= ay X, X, + % X
Q "/f:l XXy ’Z_ZIJ 3

and suppose that Q has quadratic regressi onA=},'L‘X,sot.hut
i=t

E(Q[A) = Bo+ BrA+F AR
almost everywhere. It follows then from Lemma 1 that
BIQet) = B E(ein) + B, E(A ¢48) + £, E(AtetA) @1
holds for all real .

Woe denote 4, - i g Ay = i o B= i‘: b,
i=1 i IS

In a certain neighbourhood of the origin f(¢) is different from zero so that we can introduce
$O =m0 Then gy a T et
Yol #'l) an i) =¢"(0)+[g WP
'We obtain, by means of some elementary computations, the relations
E(Qe%) = — [/ [4,6°0) + (Ay+ Ag) [§/(F + Big () (321)
snd BoE(e") + B E(Acs) + B, E(Ateith)
= =[] {nfad" () + 3Bl WS + 0B () - o). (32:2)
These relations are valid in the neighbourhood of the origin in which ¢(!) is defined. We see
from equations (3-2-1), (3-2-2) and (3-1) that
718" + 7@ (OF +5y3' (1) = Bo. (33)
where V1 =nfy—A4;, Ya=nh—A4,-4, v,=np-B. (3-4)
It is convenient to introduce the function

o) = (1) §'(1). (3-5)
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Equation (3-3) can then be written as

-“n:,—a =70 +120+Be (3-6)
where we wrote @ for 8(¢t). It follows from (3-5) that
6(0) = (1/)¢'(0) = (3-6:1)
ol N "
and d_‘L0=‘T¢ (0) = 1o, (3-6-2)

Here « and o are the mean and the variance respectively of the distribution F(z). We put
¢ = 0 in (3-6) and obtain the relation

oty = ra@*+ 12+, (3-7)
between the coefficients of @ and the regression coefficients. It would also have been possible
to obtain (3:7) from equation (1-2). This is a consistency condition which must be satisfied.

Our next aim is to obtain all the solutions of equation (3-6). For this investigation we
must consider several cases.

Woe need not concern ourselves with the possibility that all coefficients ¥y, ,, 7, vanish.
If y, = 0 while at least one of the coefficients ¥, and y, is different from zero then we see
that 6(¢) and ¢'(t) are constants ao that we obtain a degenerate distribution. We can,
therefore, assume without loss of generality that y, * 0.

In §4 we discuss the case ¥, = 0. Here we bave to study separately the cases where

71#%0, 73=0, 73=0 (3:8)
and NEOL 7, =0, ¥ %0 (39)

In §6 we deal with the case y, + 0 and must distinguish three possibilities which depend
on the sign of the discriminant A = ¥} — 4y, 8,

4. The case yy = 0. We first investigate the case (3-8) and prove the following theorem.

TrEoREM 1. Let X, X,, ..., X, be a ssmple of size # taken from a population which has
a finite variance o%. Consider a quadratic statisti

n "
Q= 3 a, X, X;+ ¥ b,X,
=1 =1

such that A=An-1)-A4,%0, (4-1)
where 4,= ) ay, A= b oy
=1 =
Let 8, and 8, be two real constants such that
B n
A== (whem B= 3 b/)' (4-2-1)
n I=1
1
b= 'T.(A|+A|)~ (4-2:2)

The relation E(QIA) = fo+ B A+ FA? (+3)
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holds almoet everywhere if, and only if, the following two conditions are satisfied
(i) fo=4 g; (i) the population is normal.
We first note that the relations (4-1), (4-21) and (4-2-2) are equivalent to {3-8). We first

prove that the conditions (i) and (ii) are 'y and assume therefore that (4-3) is satisfied
The differential equation (3-8) for 8(¢) reduces in view of (3-8) to

. d0

"Y:a =fo (4-4)
we put here { = 0 and use (3-6:2) to show that S, = —y,0%. Condition (i) follows then
immediately from (3-4) and (4-2-2). We integrate equation (4-4) for () with the initial
conditions (3-6:1) and (3-6-2) and obtain

#t) = — jo¥ +ial,
or () = exp[ - dotit +iat).
This is the characteristic function of & normal (possibly degenerate} distribution so that
{ii) follows.
To prove the sufficiency of condition (4-3) we that the population is normal so that

$Ut) = log f(t) = — ot +ict.
1t follows then from (3-2-1) and (3-2-2) that

EB(Qe"r) = ~[f(H) {o4(4, + 4,) 1 — 0[20(A4, + 4,) + Blit — A, 07— Ba —a}{(4, + 4,)}
(4:5-1)

and B E(eW0) + B, E(A D) + B, E(A%eth)
= — (/IO {o*n*By 4 ~ o*(2an*fy + i )it — fy—afyn—nfyot —ntalf)).  (4:5-2)
In view of (4-2-1), (4-2-2) and (i) we see from (4-5:1) and (4-5-2) that
E(Qeth) = foE(e"?) + B E(Ae%) + B, E(ATeh)

for all real {. We conclude then from Lemma 1 that (4-3) holds almost everywhere. We must
examine the case where (3-9) holds and prove the following theorem.

TekorEM 2. Let X, X,, ..., X, be a sample of size n taken from a population which has
finite variance 0%, Consider a quadratio statistic

e
= X X;+ ¥ bX

such that condition (4-1) of Theorem 1 holds. Let 5, and 4, be two real constants such that

a+2 (whera B=3 b,), (481
n 1=
1
A=A+ 4y (4-6-2)
The relation E(QJA) = fo+ B A+ /A2 (4-8)
holds almost everywhers if, and only if, the following three conditions are satisfied:

(i} the population has the Poisson type characteristic function
Flt) = exp [A(e'# — 1) +u1],
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where A > 0, o + 0 and x are three real conatants,

. A . 1
@ fo=—"2£, (@) B~ ;(dp+nB).

Here the relations {4-1), {4-61) and (4-6-2) are equivalent to (3-8). To prove the neceasity
of conditions (i), {ii) and (iii) we assume that (4-3) is satisfied. The diffe ial equation (3-8)
for 6(t) becomes then

. dd
g = 730 +Fbs 47
Woe integrate equation (4-7) with the initial conditions (3-6-1) and (3-6-2) and obtain

#) = ay—t{}(exv(—iv.tlvx)— l)—&'u.
1 Ys

We write = '7_‘:;5, (4-81)
p= —Z—,f, (+8:2)

1
B= -—"}% {4-8-3)

and obtain the Poisson-type characteristic function (i). We see then easily from (3-4),
(4.6.2), (4.8.2) and (4.8.3) that (ii) and (iii) are satisfied.

To prove the sufficiency of (4-3) we that the characteristic function of the popula-
tion is given by (i) and that £, and £, are defined by (i) and (iii). We see from (3-2-1) and
(3-2-2) that

E(Qet%) = ()] {PA%( A, + A;) ¥+ pAlpA, + 2( Ay + Ay) + Ble'™ + (A, + Ay) + By,
(4-9-1)

BoEei™) + B, E(A ¢9%) + B E(AT %)
= LA (0PA%n2fy €48 & pATn Gy + 2y + fyml e+ fo + frmp + anif). (492)

We use the relations (4-6-2), (ii) and (iii) and Lemma 1 to show that (4-3) holds almost
everywhere.

6. The case vy + 0. Our next theorem deals with the case where 7, + 0 while
A =y3—4y,f > 0.

TeEOREM 3. Let X, X,, ..., X, be a sample of size n taken from a population with finite
variance ¥, Consider a quadratio statistio

» n
= auX,X,+ 3 b X
¢ B X Et T o X

such that condition (4-1) holds. Let f,, §, and f; be three real constants such that

b* A‘:,A'. (51-1)

(nfl,— B)* > 48y(n%f,— 4, — 4,), (6-1-2)
where B=% b
=1
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The relation
E(Q[A) = Bo+SiA+BAY (43)
holds almost everywhere if, and only if, the following four conditions are satisfied:
(i) The population has the ch istio functi

JO) =[pe"n+qe'sp (p+g=1),
(M) fo=-Lhlla Gy paBypAllatid oy g ANt A

np— n - mnp—1) " a(np—1)

Thus, the population is either a binomial population (if p is a positive integer, then neces-
sarily p > 0, ¢ > 0) or a negative binomial population (if p < 0 then pg < 0).

We prove first that condition (4-3) is necessary. It follows from (3-4), (5-1-1) and (5-1-2)
that y, # 0 and A = y3—4y,f, > 0. Since A is the discriminant of the quadratic form
¥20% + 730 + fy one can write the differential equation (3-6) for 0(t) in the form

2 =7y 0-2) 0=y, 52

where 7, and 7, are both real and 7, + 7,. We integrate first this equation, then the equation
which results from (3-5) and use the initial conditions (3-6:1) and (3-6-2). In this way we

obtain v x=7 hY -7 U2
0 =_11n{;ex (_l_--,)_g \ (z_.,)J
4 Ya Uh—" P N ! ﬂx—ﬂze‘p N
If we write 1) = 0 d p=27Mh . _2"Nh,
we f) =exp[¢()] and p o 1T T
_NYs =Y =
# n' o n e 7z

we gee that f(¢) has the form specified in (i).
Weput! = 0in (5-2) and see, using (3-6-1) and (3-6-2) that ~ 0% = (x—7,) (x —7,). From
thig it follows easily that p > 0, ¢ > 0 in case p > 0 while pg < 0if p < 0. We note that

b,
7

AT ==2 and 7=
Ya

Using these relations and the formulae defining s, #; and p aa well as (3-4) we can derive
the expressiona (ii), {iii) and (iv) for £, £, and f,.

To prove that our conditions are sufficient we assume that the population has the charac-
teristic function specified by (i) and that £, £, and £, are given by (ii), (iii) and (iv), respeo-
tively. We proceed then as in the proof of Theorem 2, and can show that (4-3) holds almost
everywhere.

We consider next the case where A = y§ — 4y, f, = 0 and prove the following theorem.

TaEOREM 4. Let X,, X,, ..., X, be a sample of size n taken from a population with finite
variance o2, Consider a drati iati

q

. .
XX+ % b,X
Q = l.)z-la" - l§l I
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such that condition (4:1) holds. Let f,, £, and £, be three real constants such that

Bs * A‘:;A'. (631)
(nfy—~B)* = 4f,(n*fy— 4, - 4,), {5.3.2)
where B=3s,
5=1
The relation B(Q|A) = Bo+ AL A+ B AL (43)
holdsslmoneverywhomxf and only if, the"" ing four cond are fied
(i} The population is a G: population with ch: iatio functi
10=e(1-5)" 0> 0,a 40,
B 2u4 . Alp+1)+Agp
(i) ﬂ°_np—+l' (iii) A= Py n(np+l) (iv) ﬂn=w-

We see from (3-4), (5-3-1) and (5-3-2) that y, + 0 and that A = y}—4y,f, = 0. Since A
is the discriminant of the quadratio from ;6% +y,8 + f, we can write the differential equa-
tion (3-6) for 6(¢) in the form )

"Yl = 70—, (5-4)

where 7 is real. To prove that condition (4-3) ia necessary we solve this equation and deter-
mine then f{¢) and obtain (@~ e
fy= e [1 e a]
1

We put § = 0in (5-4) and see that

n__le-mt_

e
If we write (D £ SR ¢ M —
= 7.(¢ 7 A7

then we see that f(!) has the form epecified in (i). We note that

fo " 4
fal Y d Z2=-—29
7 T Y g
From these relations and from (3-4) we get easily the expreesions (ii), (iii) and (iv) for 4,
By and §,.

The proof of the auﬂimenoy of our conditions ia given in the same way aa in the preceding

h and is theref
Finally, we oonsider the case where A = y3— 4y,8, < 0 and prove the following theorem.

TaroREM 5. LetX,,X,, , X, be a sample of size n taken from a population with vari-
anoe o* Consider a g isti

n »
- X, X b X,
Q ”2_1'1% 4 I+,§ll 3
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such that oondition (4-1) holds. Let f,, #, and 8, be three constanta such that
4, +A

by (6-6-1)
(nf, - B)* < 4;7,(11';9, —4,-4,). {6-6-2)
where B= é:. b,
The relation E(Q[A) = fo+ AL A+ A2 (4:3)
holds almoat everywhere if, and only if, the following four conditiona are satisfied:
(i) the ch function of the population is given by

J(t) = e*H[cosh at + iAsinhat]-r,
wherea.z\,;t,p&mma.lconmnuaudp >0,a%0,
A(p*+pla?)

) 24p . _Ay(1+p)+p4
(i) Bo= Tapil (i) B, = n nlnp+1) (iv) ﬂ’_wl.

We see from (3-4), (6-6-1) and (6-5:2) that y, + 0 and A < 0. We can then write the differ-
ential equation (3-6) for 8(¢) in the form

.. do =
g = vd0-n(E-7) (58)
where y = g +4v, T = s —iv (1, v real). We determine f(¢) from this equation and obtain
fi) = e [cosh 72} +iAsinh 7’ ']nh'.
1

We put ¢ = 0 in (5-6) and see that
N _la—pl+s

<0,
7 ot
We write p=-N50, o=t
b¢] 14
and see that f{¢) has the form specified in (i). We nate that
7+7=-1 and 45 _Eg_
2

From these relations and from (3-4) we get easily (ii). (iii), and (iv).

The proof of the sufficiency of our conditions is given in the same way as in Theorems 1,
2and 3.

In conclusion we note that Tweedie {1948) considered earlier the regression of the sample
variance on the sample mean. He obtained particular cases of some of the theorems of the
present paper. The authors are indebted to Mr Tweedie for calling their attention to his
paper.
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